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Abstract—Group membership verification checks if a biometric
trait corresponds to one member of a group without revealing the
identity of that member. Recent contributions provide privacy
for group membership protocols through the joint use of two
mechanisms: quantizing templates into discrete embeddings, and
aggregating several templates into one group representation.

However, this scheme has one drawback: the data structure
representing the group has a limited size and cannot recognize
noisy query when many templates are aggregated. Moreover, the
sparsity of the embeddings seemingly plays a crucial role on the
performance verification.

This paper proposes a mathematical model for group mem-
bership verification allowing to reveal the impact of sparsity on
both security, compactness, and verification performances. This
models bridges the gap towards a Bloom filter robust to noisy
queries. It shows that a dense solution is more competitive unless
the queries are almost noiseless.

I. INTRODUCTION

Group membership verification is a procedure checking
whether an item or an individual is a member of a group. If
membership is positively established, then an access to some
ressources (a building, a file, . . . ) is granted; otherwise the
access is refused. This paper focuses on privacy preserving
group membership verification procedures where members
must be distinguished from non-members, but where the
members of a group should not be distinguished one another.

To this aim, a few recent contributions have proposed to
rely on the aggregation and the embedding of several distinc-
tive templates into a unique and compact high dimensional
feature representing the members of a group [1], [2]. It has
been demonstrated that this allows a good assessment of the
membership property at test time. It has also been shown that
this provides privacy and security. Privacy is enforced because
it is impossible to infer from the aggregated feature which
original distinctive template matches the one used to probe
the system. Security is preserved since nothing meaningful
leaks from embedded data [3], [4].

[1] and [2], however face severe limitations. Basically, it
seems impossible to create features representing groups having
many members. In this case, the probability to identify true
positives vanishes and the false negative rate grows accord-
ingly. Furthermore, the robustness of the matching procedure
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fades and becomes unable to absorb even the smallest amount
of noise that inherently differentiate the enrolled template of
one member and the template captured at query time for
this same member. In contrast, features representing only
few group members are robust to noise and cause almost no
false negatives. A detailled analysis of [1] and [2] suggests
that these limitations originate from the sparsity level of the
features representing group members.

This paper investigates the impact of the sparsity level of
the high dimensional features representing group members on
the quality of (true positive) matches and on their robustness to
noise. It shows it is possible to trade compactness and sparsity
for better security or better verification performance.

Sect. II first considers the aggregation of discrete random
sequences, and models this compromise with information
theoretical tools. Sect. III applies this viewpoint to binary
random sequences and shows that the noise on the query has
an impact depending on the sparsity of the sequences. Sect. IV
bridges the gap between the templates, i.e. real d-dimensional
vectors, and the discrete sequences considered in the previous
sections. Sect. V gathers the experimental results for a group
membership verification based on faces.

II. DISCRETE SEQUENCES

This section considers the problem of creating a representa-
tion Y of a group of n sequences fX1; : : : ;Xng, whose use
is to test whether a query sequence Q is a noisy version of
one of these n original sequences. This test is done at query
time when the original sequences are no longer available and
all that remains is the representation Y.

The sequences are elements of Xm where X is a finite
alphabet of cardinality jX j, say X := f0; 1; : : : ; jX j�1g. The
sequence follows a statistical model giving a central role to
the symbol 0. The symbols of the sequences are independent
and identically distributed with

P(X = s) =

(
1� p(jX j � 1) if s = 0

p otherwise
(1)

for p 2 (0; 1=jX j]. Sparsity means that probability p is small,
density means that p is close to 1=jX j so that X is uniformly
distributed over X .



A. Structure of the group representation

We impose the following conditions on the aggregation a(�)
computing the group representation Y = a(X1; : : : ;Xn):

� Y is a discrete sequence of the same length Y 2 Ym,
� Symbol Y (i) only depends on symbols
fX1(i); : : : ; Xn(i)g,

� The same aggregation is made index-wise: with abuse of
notation, Y (i) = a(X1(i); : : : ; Xn(i)), 8i 2 [m],

� Y (i) does not depend on any ordering of the set
fX1(i); : : : ; Xn(i)g,

These requirements are well known in traitor tracing and group
testing as they usually model the collusion attack or the test
results over groups. Here, they simplify the analysis reducing
the problem to a single letter formulation where index i is
dropped involving symbols fX1; : : : ; Xng, Y and Q.

These conditions motivate a 2-stage construction. The first
stage computes the type (a.k.a. histogram or tally) T of the
symbols fX1; : : : ; Xng. Denote by TjX j;n the set of possible
type values. Its cardinality equals jTjX j;nj =

�
n+jX j�1
jX j�1

�
which

might be too big. The second stage applies a surjective
function r : TjX j;n ! Y , where Y is a much smaller set.

B. Noisy query

At enrollment time, the system receives n sequences, aggre-
gates them into the compact representationY, and then forgets
the n sequences. At query time, the system receives a new
sequence Q conforming with one of the following hypotheses:

� H1:Q is a noisy version of one of the enrolled sequences.
Without loss of generality, Q = X1 +N.

� H0: Q = X0 +N, where X0 shares the same statistical
model but it is independent of fX1; : : : ;Xng.

We model the source of noise (due to different acquisition
conditions) by a discrete communication channel. It is defined
by function W : X � X ! [0; 1] with W(qjx) := P(Q =
qjX = x). We impose some symmetry w.r.t. the symbol 0:
W(sj0) = �0 and W(0js) = �1, 8s 2 Xnf0g.

At query time, the system computes a score S = s(Q;Y)
and compares to a threshold: hypothesis H1 is deemed true if
S � � . This test leads to two probabilities of error:

� Pfp(n;m) is the probability of false positive:
Pfp(n;m) := P(S � � jH0).

� Pfn(n;m) is the probability of false negative:
Pfn(n;m) := P(S < � jH1).

The emphasis on (n;m) is natural. It is expected that: i) the
more sequences are aggregated, the less reliable the test is, ii)
the longer the sequences are, the more reliable the test is.

C. Figures of merit (C; S;V)

The section presents three information theoretic quantities
(expressed in nats) measuring the performances of the scheme.
The first two depends on the statistical model of X (es-
pecially p) and the aggregation mechanism a. The last one
depends moreover on the channel.

1) Compactness C: The compactness of the group repre-
sentation is measured by the entropy C := H(Y ). It roughly
means that the number of typical sequences Y scales expo-
nentially as emH(Y ), which can be theoretically compressed
to the rate of H(Y ) nats per symbol.

2) Security S: We consider an insider aiming at disclos-
ing one of the n enrolled sequences. Observing the group
representation Y, its uncertainty is measured by the equiv-
ocation S := H(XjY ). This means that the insider does not
know which of the emH(XjY ) typical sequences the enrolled
sequences are.

3) Verification V: In our application, the requirement of
utmost importance is to have a very small probability of false
positive. We are interested in an asymptotical setup where
m ! +1. This motivates the use of the false positive error
exponent as a figure of merit:

Efp(n) := lim
m!+1

� 1

m
logPfp(n;m): (2)

If Efp(n) > 0, it means that Pfp(n;m) exponentially vanishes
as m becomes larger. The theory of test hypothesis shows
that Efp(n) is upper bounded by the mutual information V :=
I(Y ;Q) where Q is a symbol of the query sequence, i.e. a
noisy version of X1. It means that the necessary length for
achieving the requirement Pfp(n;m) < � is [5]

m � � log �

V
: (3)

D. Noiseless setup
The bigger V and S, the better the performance in terms of

verifiability and security. Yet, they can not be both big at the
same time. The noiseless case when the channel introduces no
error and Q = X simply illustrates the trade-off:

V � C (4)
V + S = H(X); (5)

with H(X) = � log p0 + (1 � p0) log
p
p0

and p0 := P(X =
0) (1). For a given jX j, H(X) is maximised by the dense
solution: H(X) � log jX j with equality for p = 1=jX j.

III. BINARY ALPHABET

This section explores the binary case where X = f0; 1g.
We first set the surjection as the identity function s.t. Y = T .
Then, the impact of the surjection is investigated.

A. Working with types
In the binary case, there are n + 1 type values. There

can be uniquely labelled by the number of symbols ‘1’ in
fX1; : : : ; Xng, i.e. T =

Pn

i=1Xi � B(n; p).
1) Verification: In the noiseless case, after some rewriting:

V = h(p)�
nX
t=0

P(T = t)h

�
t

n

�
; (6)

with h(p) := �p log(p)� (1� p) log(1� p), the entropy of a
Bernoulli r.v. B(p). If p = 1=2 and n is large:

V =
1

2n
+ o

�
1

n

�
: (7)



This is not the maximum of this quantity. For large n, the best
option is to set

p =
�

n
; V =

�

n
+ o

�
1

n

�
; (8)

with � = 1:338 and � = 0:580. This was proven in the totally
different application of traitor tracing [6, Prop. 3.8].

This section outlines two setups: the dense setup where
p = 1=2, and the sparse setup where p goes to 0 when more
sequences are packed in the group representation. Both setups
share the asymptotical property that V � �=n for large n.
According to (3), we can pack a big number n of sequences
into one group representation provided that their length m
scales proportionally to n.

2) Compactness: The figure of merit for compactness for
types is just C = H(T ) where T follows a binomial distri-
bution: T � B(n; p). In the dense setup p = 1=2, the bino-
mial distribution is approximated by a Gaussian distribution
N (n=2;n=4) providing:

C =
1

2
log

��en
2

�
+O

�
1

n

�
: (9)

In the sparse setup p = �=n, the binomial distribution is
approximated by a Poisson distribution P(�) [7]:

C � �(1� log(�)) + e��
+1X
j=0

�j log(j!)

j!
: (10)

This shows that the types are not compact in the dense setup;
It approximatively remains constant in the sparse setup.

3) Security: Thanks to (5), we only need to calculate
H(X) = h(p). In the dense setup, H(X) = log(2) and S

converges to H(X) as n increases. Merging into a single
representation protects an individual sequence. If sparse,

H(X) =
�

n

�
1� log

�

n

�
+ o

�
1

n

�
: (11)

Therefore, S converges to zero as n increases, contrary to
the dense setup. It might be more insightful to see that
the ratio of uncertainties before and after observing T , i.e.
H(X)=H(XjT ), converges to 1 in both cases. Merging does
provide some security but sparsity is more detrimental.

B. Adding a surjection

The motivation of the surjection onto a smaller set Y is
to bound C as C � log jYj, 8n. The Markov chain Q !
X1 ! T ! Y imposes that V � I(T ;Q). The surjection thus
provoques a loss in verification as depicted in Fig. 1.

App. A shows that for jYj = 2, this loss is minimized for:

r(t) =

(
0 if t < tp

1 otherwise
(12)

where tp is a threshold depending on p. In the dense setup,
tp = n=2 and the surjection corresponds to a majority vote

Fig. 1. The trade-off (S;V;C) for X = f0; 1g, n = 16, Y = T (blue),
Y = r(T ) for ‘All-1’ (red) and majority vote (green). Dashed plot represents
the projection onto C = 0. Triangles and stars summarize results (7) to (14).

collusion in traitor tracing (a threshold model in group testing).
Hence, by [6, Prop. 3.4]:

V =
1

n�
+ o

�
1

n

�
: (13)

In the sparse setup tp = 1 which corresponds to an ‘All-1’
attack in traitor tracing (a the perfect model in group testing).
Then the best option is to set p = log(2)=n and [6, Prop. 3.3]:

V =
(log(2))2

n
+ o

�
1

n

�
: (14)

From (3), the necessary length is m � �n log(�)=(log(2))2.
The main property V � �=n still holds but the surjection

lowers � from 0:5 to 0:32 (dense), from 0:84 to 0:48 (sparse).
The sparse setup is still the best option w.r.t. V.

C. Relationship with the Bloom filter

A Bloom filter is a well-known data structure Y 2 f0; 1gm
designed for set membership, embedding items to be enrolled
into Y thanks to k hash functions. Its probability of false neg-
ative is exactly 0, whereas the probability of false positive is
not null. The number of hash functions minimizing Pfp(n;m)
is k = blog(2)m=nc. Then, the necessary length to meet a
required false positive level � is m � �n log(�)=(log(2))2.

These numbers show the connection with our scheme (14).
At the enrollment phase, the hash functions indeed associate
to the j-th item a binary sequence Xj indicating which bits
of Y have to be set. This sequence is indeed sparse with
k=m � log(2)=n. The necessary length is the same. Indeed,
the enrollment phase of a Bloom filter is nothing more than
the ‘All-1’ surjection.

The only difference resides in the statistical model. There is
at most k symbols ‘1’ in sequence Xj whereas, in our model,
that follows a binomial distribution B(m; p). Yet, asymptot-
ically as m ! 1, by some concentration phenomenon, the
two models get similar. This explains why we end up with
similar optimal parameters. Yet, the Bloom filter only works



when the query object is exactly one enrolled item, whereas
the next section shows that our scheme is robust to noise.

IV. REAL VECTORS

This section deals with real vectors: n vectors to be enrolled
f~x1; : : : ; ~xng � R

d, and the query vector ~q 2 R
d. All have

unit norm. An embedding mechanism E : Rd ! Xm makes
the connection with the previous section. As in [8], this study
models the embedding as a probabilistic function.

A. Binary embedding

For instance, for X = f0; 1g, a popular embedding is:

X(i) = [~x>~Ui > �x]; 8i 2 [m] (15)

where ~Ui
i:i:d:� N (~0d; Id). This in turn gives i.i.d. Bernoulli

symbols fX(i)g with p = 1� �(�x) if k~xk = 1.
At the query time, the embedding mechanism uses the same

random vectors but a different threshold:

Q(i) = [~q>~Ui > �q]; 8i 2 [m]: (16)

Under H1, suppose that ~q>~x1 = c < 1. This correlation
defines the channel X ! Q with the error rates:

�0 = P(~q>~U > �qj~x>~U � �x); (17)

�1 = P(~q>~U � �qj~x>~U > �x): (18)

The error rate �0 has the expression (and similarly for �1):

�0 = 1� 1

(1� p)
p
2�

Z �x

�1

�

�
�q � cxp
1� c2

�
e�

x
2

2 dx: (19)

B. Induced channel

For this embedding, the parameters (�x; �q; c; d) for the
vectors define the setup (p; �0; �1) for the sequences. It is a
priori difficult to find the best tuning (�x; �q). For a fixed �x,
�0 decreases with �q while �1 increases. App. B reveals that
V is sensitive to �0 especially with the ‘All-1’ surjection of the
sparse solution. Fig. 2 shows indeed that the dense solution
(�x; �q) = (0; 0) is more robust, unless c is very close to
1. Here, we enforce a surjection (identity, All-1, or majority
vote) and make a grid search to find the optimum (�x; �q) for
a given c. It happens that these parameters are better set to
0, i.e. dense solution, for the identity and majority vote. As
for the ‘All-1’ surjection, we observe that �x is s.t. p � 1=n
and �q is slightly bigger than �x to lower �0. Yet, this sparse
solution is not as good as the dense solution unless c is close
to 1, i.e. the query vector is very close to the enrolled vector.

This observation holds only for the embedding func-
tion (15). Hashing functions less prone to error �0 may exist.

V. EXPERIMENTAL WORK

We evaluate our scheme with face recognition. Face images
are coming from LFW [9], CFP [10] and FEI [11] databases.
For each dataset, N individuals are enrolled into random
groups. There is the same number Nq of positive and negative
(impostors) queries.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.005
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0.035
Types
All1
Maj

Fig. 2. V as a function of correlation c, d = 256, n = 15.

Labeled Faces in the Wild: These are pictures of celebri-
ties in all sort of viewpoint and under an uncontrolled envi-
ronment. We use pre-aligned LFW images. The enrollment set
consists of N = 1680 individuals with at least two images in
the LFW database. One random template of each individual
is enrolled in the system, playing the role of ~xi. Some other
Nq = 263 individuals were randomly picked in the database
to play the role of impostors.

Celebrities in Frontal-Profile: These are frontal and
profile views of celebrities taken in an uncontrolled environ-
nement. We only use N = 400 frontal images enrolled in the
system. The impostor set is a random selection of Nq = 100
other individuals.

Faculdade de Engenharia Industrial: The FEI database
contains images in frontal view in a controlled environnement.
We use pre-aligned images. There are 200 subjects with two
frontal images (one with a neutral expression and the other
with a smiling facial expression). The database is created by
randomly sampling N = 150 individuals to be enrolled, and
Nq = 50 impostors.

A. Experimental Setup

Face descriptors are obtained from a pre-trained network
based on VGG-Face architecture followed by PCA [12] .
FEI corresponds to the scenario of employees entering in a
building with face recognition, whereas CFP is more difficult,
and LFW even more difficult. To equalize the difficulty, we
apply a dimension reduction (Probabilistic Principal Compo-
nent Analysis [13]) to d = 128 (FEI), 256 (CFP), and 512
(LFW). The parameters of PPCA are learned on a different
set of images, not on the enrolled templates and queries. The
vectors are also L2 normalized. With such post-processing, the
average correlation between positive pairs equals 0.83 (FEI),
0.78 (CFP), and 0.68 (LFW) with a standard deviation of 0:01.
Despite the dimension reduction, the hardest dataset is LFW
and the easiest FEI.

In one simulation run, the enrollment phase makes random
groups with the same number n of members. A user claims
she/he belongs to group g. This claim is true under hypothesis
H1 and false under hypothesis H0 (i.e. the user is an impostor).
Her/his template is quantized to the sequence Q, and (Q; g)
is sent to the system, which compares Q to the group repre-
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Fig. 3. Verification performance Pfn@Pfp = 0:05 vs. group size n for the baselines (see Sect. V-B) and our scheme.

sentation Yg . This is done for all impostors and all queries of
enrolled people. One Monte-Carlo simulation is composed of
20 runs. The figure of merit is Pfn when Pfp = 0:05.

B. Exp. #1: Comparison to the baselines

Our scheme is compared to the following baselines:
� EoA-SP and AoE-SP [1] (signal processing approach)
� EoA-ML and AoE-ML [2] (machine learning approach)

The drawback of these baselines is that the length m of the
data structure is bounded. Here, it is set to maximum value,
i.e. m = d the dimension of templates.

Our scheme allows more freedom. Setting m = 8 � d
produces a much bigger representation. It is not surprising that
our scheme is better than the baselines. Fig. 3 validates our
motivation to get rid off the drawback of the baselines with
limited m, to achieve better verification performance. These
results are obtained with the dense solution. Indeed, despite
all our efforts, we could not achieve better results with the
sparse solution. This confirms the lesson learnt from Fig. 2:
the dense solution outperforms the sparse solution when the
average correlation between positive pairs is lower than 0:95.

The improvement is also better as the size of groups
increases. We explain this by the use of the types, i.e. Y = T .
Equation (9) shows that C increases with n for the dense
solution, compensating for aggregating more templates.

C. Exp. #2: Reducing the size of the group representation

There are two ways for reducing the size of the group
representation. The first means is to decrease m, the second
means is to lower C thanks to a surjection. Sect. III-B pre-
sented optimal surjections from T2;n to Y = f0; 1g. We found
experimentally good surjections to sets Y for jYj 2 f3; 4; 8g.

This is done according to the following heuristic. Starting
from T2;n, we iteratively decrease the size of Y by one.
This amounts to merge two symbols of Y . By brute force,
we analyse all the pairs of symbols measuring the loss in
V induced by their merging. By merging the best pair, we
decrease the number of symbols in Y by one. This process is
iterated until the targeted size of Y is achieved. This heuristic
is not optimal, but it is tractable. Fig. 4 compares these two

means. Employing a coarser surjection is slightly better in
terms of verification performances.

D. Unexpected results

We have argued that FEI < CFP < LFW in terms of
difficulty due to the opposite ordering of the datasets typical
correlation c between positive pairs. Eq. (19) shows that a
lower c produces a higher �0 (and �1), whence a lower V. In
Fig. 3, the experimental results contradict this intuition.

This may be explained by the Signal to Noise Ratio at the
template level. We define it as c2=v0 where c is the average
correlation for positive pairs and v0 is the variance of this
correlation for negative pairs. If a negative query is uniformly
distributed over the hypersphere, then its correlation with an
enrolled template is approximatively distributed as a centered
Gaussian distribution with variance v0 = 1=d.

Yet, d has no impact on p, �0, and �1. We suppose that
its impact is tangible on the entropy of the template vectors.
Sect. II assumes that the enrolled sequences are statistically
independent. This assumption is not granted with the embed-
ding of Sect. IV. Yet, a bigger d favors the independence (or
at least the decorrelation) between real template vectors.

VI. CONCLUSION

Our theoretical study justifies that the dense setup is more
interesting in terms of verification performance V and security
level S unless we are operating in the high-SNR regime where
the positive queries are very well correlated with the enrolled
templates. This statement holds for any embedding, yet some
are certainly more suited than others depending on d, c, and
the geometrical relationship among positive pairs.
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APPENDIX

Let us first explain how V is computed. Denote Pi(q; y) :=
P(Q = q; Y = yjHi) and channel W (qjx) := P(Q = qjX =
x), 8y 2 Y; q 2 X and i 2 f0; 1g. Then,

V =
X
q;y

P1(q; y) log
P1(q; y)

P0(q; y)
; (20)

with P0(q; y) = P(Q = q)P(Y = y) and

P1(q; y) =
X
x2X

P(Y = y;X = x)W (qjx): (21)

A. Surjection to Y = f0; 1g
We assume here the noiseless setup allowing to write P(Y =

y;X = x) as P1(x; y). Inspired by traitor tracing, we consider
a probabilistic surjection where P(r(t) = 1) = �t. The vector
� 2 [0; 1]n+1 parametrizes the surjection. Denote by r�V(t)
the derivative w.r.t. �t. After some lengthy calculus:

r�V(t) = n�1K1(p;�)(t� nK2(p;�)); (22)
K1(p;�) = P(T = t)�;

K2(p;�) =
h0(P1(0; 1))� h0(P(Y = 1))

�
;

� = h
0(P1(0; 1))� h

0(P1(1; 1)):

It is not possible to cancel the gradient r�V. The optimal
� thus lies on the boundary of the hypercube [0; 1]n+1.
This makes the surjection deterministic. Assuming P(Y =
1jX = 0) < P(Y = 1jX = 1), then 0 < K1(p;�) and
0 < K2(p;�) � 1 because h0(�) is strictly decreasing. This
makes r�V(0) < 0 and �0 must be set to the lowest possible
value, i.e. �0 = 0, to increase V at most. This is indeed the
case for any �t with t < K2(p;�). In the same way, �n = 1
and so is �t if t > K2(p;�). Yet, for a given �, K2(p;�)
ranges from 0 to 1 as p increases from 0 to 1. Therefore,
� = (0; : : : ; 0; 1; : : : ; 1) is optimal only over an interval of p.
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Fig. 4. Verification performance Pfn@Pfp = 0:05 vs. mC, for n = 16. This
quantity is reduced by decreasing m (dashed lines) or by decreasing C thanks
to a surjection (solid lines).

For n odd and p = 1=2, �t = 0 if t � (n+1)=2, and 1 (i.e.
majority vote) otherwise is optimal because K2(1=2;�) = 1=2
(P(Y = 1) = 1=2 and P1(0; 1) = 1� P1(1; 1)).

The ‘All-1’ surjection: � = (0; 1; : : : ; 1) makes P1(1; 1) = 1
so that r�V(t) = +1 if t > 0 and < 0 for t = 0.

B. Impact of the channel

Suppose that � is a parameter of the channel W (�j�). Then

@V

@�
=
X
q;y

@P1(q; y)

@�
log

P1(q; y)

P0(q; y)
; (23)

because
P

q;y
@P1(q;y)

@�
=

@
P

q;y
P1(q;y)

@�
= 0 andP

q;y
P1(q;y)
P0(q;y)

@P0(q;y)
@�

=
P

q
@P(Q=q)

@�
= 0.

Suppose now that � = �0 := W (qj0); 8q 2 Xn0. Then,

@P1(q; y)

@�0
= P(X = 0; Y = y) 8q 2 Xnf0g: (24)

Taking (23) around the noiseless channel where �0 = 0 and
P(X = 0; Y = y) = P1(0; y) because Q = X:

@V

@�0

����
�0=0

=
X
y;x 6=0

P1(0; y) log
P1(x; y)

P0(x; y)
+ : : : (25)

We only express the first terms to outline that if P1(x; y) =
0 while P1(0; y) and hence P0(x; y) are not null, then this
derivative goes to �1. A small deviation from the noiseless
case with �0 6= 0 has a major detrimental impact on V. That
situation happens for sure when working with type, i.e. Y =
T : Consider the null type t0 obtained when X1 = : : : = Xn =
0: P1(0; t0) > 0 while P1(x; t0) = 0, 8x 6= 0.

One can prove that the surjection can mitigate this effect if
9t 6= t0 : r(t) = r(t0) and P1(0; t) > 0. This happens with the
majority vote of the dense setup, but unfortunately, not with
of the ‘All-1’ surjection in the sparse setup.
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