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Abstract.    Starting with a conventional bump on tail problem, which is equivalent to finding 
a solution of the Vlasov/Fokker-Planck equation in the presence of the phase space island, we 
obtain a primary equilibrium state. The stability of this state is investigated as a function of 
the effective velocity-space drag and diffusion, as well as the width of these phase space islands. 
The secondary instabilities have been found in a certain range of plasma parameters and wave 
numbers. Solving the full Vlasov/Fokker-Planck – Poisson system, we obtain the  dispersion 
function, which provides information about the secondary mode onset and allows an estimate 
of the secondary mode growth rate for different input plasma parameters. 

 
 
 
 

1. Introduction 
Energetic particles (EPs), generated by Resonance Heating or Neutral Beam Injection, as well as 
fusion alpha particles can excite Alfvén modes, resonating with plasma waves in a tokamak [1]. 
These instabilities, in turn, might cause EP losses [2] and degrade confinement [3]. Since fusion 
produced alpha particles are expected to be the main heating source in ITER and future power 
plants, it is crucial to predict the particle-wave interaction and control/mitigate its consequences. 

In the simplest case, this problem is referred to as the bump on tail problem. The main 
thermal distribution provides a Maxwellian background, and the EP fraction appears as an 
additional peak in the tail of this Maxwellian, centred about the beam velocity, Vb, in velocity 
space [4]. The EP distribution function has a positive slope close to this beam velocity, which 
makes the mode unstable, provided Vb is sufficiently large. Originally, this description had been 
applied to Langmuir waves [5], i.e. a purely electrostatic problem, but is also valid for toroidal 
Alfvén  modes  in  magnetically  confined  plasmas  [6,7].   It  is  well  known  that  in  the  absence  of 
sinks and sources on the right hand side of the kinetic equation, the distribution function has 
a ”plateau” in the vicinity of the particle-wave resonance. Adding collisions always drives the 
particle distribution towards a Maxwellian, and hence its final shape is formed by a competition 

of these two processes. 
To address both, purely electrostatic and magnetic cases, we apply the Hamiltonian 

formalism, introducing the Hamiltonian of the considered system as H0 = p2/2 − ω2cosξ with 
{p, ξ} being a pair of the generalised momentum and coordinate and ωb denoting the bounce 
frequency of deeply trapped particles.    Contours of constant H0 in the (p, ξ) plane represent 
an island in phase space.  H0 ≥ ω2 corresponds to the region outside the phase space island, 
i.e.  to the passing particles, while −ω2 ≤ H0 ≤ ω2 describes the contours inside the island 
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region, i.e. to represent particles, trapped in phase space (see Figure 1). When collisions are 
neglected, the EP distribution function is flattened inside the island, which decreases the drive 
for secondary modes. However, the distribution function gradient is steep in the vicinity of the 
island separatrix, which enhances the drive. 

 

 

 
Figure  1.  Sketch  of  H0  vs.   ξ  at  p  = 0. 
ξ varies from −π to π for passing particles 
and between the bounce points, ξb1,2, given 
by H0 = −ω2 cos ξb1,2 for trapped particles. 

Figure 2. The primary equilibrium 
distribution function for the case of pure 
diffusion (triangle down markers) and 
diffusion vs. drag (triangle up and square 
markers). Dashed line represents the initial 
equilibrium, i.e. in the absence of the 
island.  ω̂b = 1. 

 

Adding the collision operator to the problem will modify the EP distribution. In this work 
we focus on a joint consideration of the pitch angle scattering, velocity diffusion and slowing 
down effects on the form of the EP distribution function. Working in the wave reference frame, 
we first seek the time independent solution of the initial Fokker-Planck equation, localised to the 
island vicinity. Once this distribution function is found, we address the Vlasov/Fokker-Planck 
– Poisson system to explore the stability of this new obtained equilibrium. 

We have to highlight that there exist several asymptotic solutions of the Vlasov/Fokker- 
Planck equation we consider for the integrable Hamiltonian system. One of them [8] was found 
in the framework of the Landau damping for plasmas in the full absence of collisions. It is 
valid in nonlinear regimes, where particle trapping is important, and includes a full calculation 
of the distribution function and electric field time evolution. Later it was extended to the 
bump on tail problem, where it predicts a saturated nonlinear state [9]. The difference is in 
the distribution function behaviour close to the island separatrix. The O’Neil solution assumes 
that as the distribution function is flat within the island due to phase mixing, it then joins 
smoothly the unperturbed distribution function in the island vicinity, again using the phase 
mixing ansatz. In contrast, Berk’s prescription corresponds to the discontinuous distribution 
function, which is flattened inside the island, and joins the unperturbed distribution exactly 
at the separatrix. Other types of the functional behaviour close to the island edge are also 
allowed and, in general,  depend on a contribution of barely passing particles,  i.e.  particles in 
the vicinity of the separatrix from the outer island region. Another solution is the Zakharov and 
Karpman solution [10],  found in the presence of strong velocity diffusion also in steady state, 
and then exploited by Berk et al in [11]. The other branch of solutions is less dissipative than the 
Zakharov-Karpman limit and is characterised by a formation of a clump-hole pair. First, it had 
been found by Berk and Breizman [12,13] and was further investigated by Lilley and Nyqvist 
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[14], and Eriksson [15]. To consider the transition from the Zakharov-Karpman case to the Berk- 
Breizman solution, it is convenient to Taylor expand the initial equilibrium distribution function 
(i.e. distribution function in the absence of the island) in the vicinity of the resonant surface, i.e. 

feq = feq| 
 
res 

+ ∂feq  
res 

p. Therefore, the Berk and Breizman solution is expected to prevail when 

Dp/ω3 ∼ νf,p/ω2     p˙/ω2 (see Eqs. (1,2) in Section 2 for more detail). Here Dp and νf,p are the 
velocity diffusion and drag rates in p space, and a dot denotes the partial time derivative). After 
some algebra, an equivalent condition can be obtained:  Dp/γ3    (γL/δω) (γd/γL), where δω  is 
the frequency shift in p space that corresponds to a position of the resonant surface. γL and γd 
are the linear (in the absence of dissipation processes) and the ad-hoc damping rates, defined 
as shown in [13]. In addition, we note that the detachment condition imposes ωb ' γL    δω, 
i.e. which requires the system to be weakly unstable. The above condition on Dp is roughly in 
agreement with the phase diagram, found by Lesur and Idomura [16], and the pioneering work 
by Vann et al [17], in the sense that clump/hole pairs are always found for a weak dissipation 
in the Vlasov/Fokker-Planck equation. 

Our solution for the distribution function, presented in Section 2, is dissipative and is obtained 
in the wave frame. In this sense, it can be approached as an extension of the Zakharov and 
Karpman solution, but includes a detailed treatment of the separatrix layer, which is crucial 
for the secondary mode analysis. Investigating the stability of a single island in phase space, 
we find the primary EP distribution function, localised to the island region. From the physical 
point  of  view,  we  keep  only  one  primary  mode,  as  for  instance  only  one  toroidal  Alfvén  mode 
would appear first in the context of EP driven modes. 

 
2. Plasma Response to Phase Space Island 
We consider a plasma of three species: main electrons, main ions and the EP component. 
Assuming a Maxwellian background, we start with a calculation of the EP distribution, f0,j, 
associated with the presence of the island in phase space (j denotes the fast particle species: 
energetic electrons/ions). This distribution function corresponds to the new primary equilibrium 
state, whose stability we will explore in the next section. It describes the EP population of lower 
density, compared to the bulk plasma, and hence is to be derived as a solution of the Fokker- 
Planck equation: 

∂f0,j 

∂t   
− {H0, f0,j} = C (f0,j − feq,j) + S. (1) 

Here curly brackets represent the conventional Poisson’s bracket. feq,j is the initial equilibrium 
distribution in the absence of the wave, shown in Figure 2 by the dashed line. Solving the kinetic 
equation of a form, given by Eq.  (1),  allows us to find f0,j  in the Langmuir wave problem,  as 
well  as  the  EP  distribution,  associated  with  the  Alfvén  modes  in  tokamak  plasmas.   Working 
in the slab geometry, we introduce a single wave of the form Φ (x, t) = Φ0 cos (k0x − ω0t) for 
the primary mode, where Φ is the electrostatic potential, and k0 and ω0 are the wave number 
and frequency,  respectively.  The generalised coordinate and momentum are  ξ = k0x − ω0t and 
p = k0V   ω0 with x, V  and t being position, velocity and time.  We note that p is related 
to the particle velocity in the frame of reference of the primary wave, if V  here is the particle 
velocity in the laboratory frame.  The energy in the laboratory frame, H = mj V 2 

+ eZ Φ, is 
 

 

lab 2 j 

not an invariant of motion, as Φ is time dependent. On the other hand, the primary Hamiltonian 
function, H0, introduced above, is a motion invariant, which can be easily verified. The bounce 
frequency of deeply trapped particles is then ω2 = k2 eZj Φ0 , where eZj and mj are the particle 

b 0    mj 

charge and mass. Provided ρϑe,i r,  for a burning tokamak plasma the pair {p, ξ}  can be 
interpreted as Vǁ/qR (q  is the safety factor and R is the major radius of a tokamak, see [18] for 
more detail) and n0ϕ−m0ϑ−ω0t with m0/n0 being the poloidal/toroidal primary mode number, 
and ϕ and ϑ denoting the toroidal and poloidal angles, respectively. ρϑe,i is the electron/ion 
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poloidal Larmor radius and r is the minor radius of a tokamak. The small inverse aspect ratio, 
ε   1, circular cross section, toroidal geometry [19] has been assumed here. On the right hand 
side of Eq. (1), C and S are the collision operator and the source term. We take their sum as 
shown in Eq. (2.74) of [20]. It includes the following operators in velocity space: pitch angle 
scattering,  diffusion and dynamical friction.   Following the Berk and Breizman approach [21] 
and projecting the right hand side operator of Eq. (1) on the resonant surface, we reduce its 
dimension from 2D to 1D to arrive at a simple combination of diffusion and drag in p-space: 

 

∂2 ∂ 
C + S = Dp 

∂p2  + νf,p 
∂p

, (2) 

where Dp and νf,p are the corresponding diffusion and drag rates. To solve Eqs.  (1,2), we impose 
a linear behaviour of the distribution function far from the island, where it stays unperturbed by 
the energetic fraction. Solving Eq. (1) in the wave reference frame for g0,j = f0,j feq,j with the 
right hand side, Eq. (2), we obtain the full distribution function, valid inside/outside the phase 
space island, as well as in the separatrix layer, where the collisional effects are comparable to the 
free streaming contribution,  ∼ p∂/∂ξ.  g0,j  is  treated  as  g0,j (ξ, H0 (p, ξ) ; σp) = g0,j (p, ξ),  where 
σp is the sign of p. Reconstructing f0,j = feq,j + g0,j, we obtain a ”perturbed” equilibrium that 
fully accounts for the presence of an island in phase space. f0,j vs. p is plotted in Figure 2 for 
different values of Dp and νf,p (the dotted vertical lines represent the island separatrix). Hats are 

used to denote the normalised quantities: ĝ0,j , f̂ 0,j = g0,j , f0,j · 
   

∂feq . 
 
 

res 

 −1
,  p̂  =  p/ (γ — γd), 

Ĥ0  = H0/(γL − γd)2,  D̂p  = Dp/(γL − γd)3,  ν̂f,p = νf,p/(γL − γd)2  and ω̂b = ωb/ (γL − γd).  Here 
γL is the EP contribution to the growth rate of the wave, while γd is the wave damping rate due 
to dissipation processes. The described normalisation has been chosen to establish a connection 
with [22]. In a pure diffusion case, the EP distribution function remains flattened in the island 
region for any chosen value of Dp. Adding the drag term modifies its form significantly, creating 
a hole inside the island (see Figure 2).   A similar destabilising dynamical friction effect was 
shown by Lilley in [22] in a pure electrostatic case in the slab geometry. Estimations, made in 
[22], demonstrate that the slowing down effects may be dominant over the collisional diffusion 
close to the resonance region. As we will see in Section 3, the form of the secondary mode 
dispersion function depends significantly on the inclusion of drag. f0,j, we have found, describes 
the new primary equilibrium state, the stability of which will be the subject of next section. 

 
3. Seeking Secondary Instability 
To produce the stability analysis of the obtained equilibrium, we address the Vlasov/Fokker- 
Planck – Poisson system, which we write as 

 

−iδωfjω − {H0, fjω} = {hω, f0,j} (3) 
 

together with 
∂L 

∂h∗
ω 

 

= 0. (4) 

Here we have assumed secondary waves of the form Φ (x, t) = Φkωeikx− iωt +c.c. in the laboratory 
frame, which  becomes Φ (ξ, t)  =  Φkωeilξ− iδωt + c.c.  in  the  primary  wave  frame,  l  =  k/k0 
and δω = ω − lω0 (k0 and ω0 are the primary wave number and frequency). For the full 
Hamiltonian and the full EP distribution function we  impose H (ξ, p) = H0 (ξ, p) + δH and 
fj (ξ, p)  =  f0,j (ξ, p) + δfj ,  respectively.   H0  and  f0,j  are  ”perturbed”  equilibrium  quantities, 
defined in the previous section, while δH  and δfj  are secondary perturbations,  associated with 
the secondary modes and written as δH  = hω (ξ, p) e− iδωt + c.c. and δfj  = fjω (ξ, p) e− iδωt + c.c.. 

L 
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0 p 

, p < 0 (12) 
pJ 

b 

 

 

hω  is defined as eZjΦω.  These definitions are valid for Langmuir waves and also can be applied 
to  consider  toroidal  Alfvén  modes.   Note:  to  extend  the  above  slab  formulation  to  a  tokamak 
case, we have to replace kx above by nϕ − mϑ. 

The Lagrangian L in Eq. (4) is given by 

L (ω, l) = −l2|hkω|2 + Lj (ω) (5) 
j 

 

with  
Lj (ω) = ωpj 

π dξ 

−π 2π 

 
fjω (ξ, p) hω

∗ (ξ, p) dp. (6) 
঩ 

Poisson’s  equation  requires  the  extremum  of  the  functional       for  any  given  Φ
∗

ω ,  which  in  the 
bump  on  tail  problem  is  equivalent  to  the  extremum  in  h

∗

ω .   The  first  term  of  Eq.   (5)  is  the 
field contribution, while the rest comes from each particle species, i.e. main ions, main electrons 
and the EP component, whose distribution function we have determined in Section 2. ωpj is the 
plasma frequency of each species, and fj is normalised to the density of the considered species. 

To solve Eq.  (3), we split fjω  into the adiabatic contribution  ∂f0,j hω  and the resonant term gjω 

(note that gjω  here differs from g0,j , introduced in Section 2): 
 

 
 

Thus, gjω  needs to satisfy 

fjω = 
∂f0,j h 

∂H0     
kω e

ilξ + gjω
 
 

. (7) 

 

∂gjω 
 

 

∂f0,j 
 

 

 
ilξ 

 

Its analytic solution is 

−iδωgjω + p = iδω 
∂ξ ∂H0 

hkωe . (8) 

 

 
g =  iδω  

∂f0,j 

jω  
∂H0

 

 

hkωe iδωQ  
ξ 

ξb1 

dξJ 
e 

pJ 
i(lξ− δωQ′) 

 

+ C (σp) 
 

, (9) 

where pJ and QJ denote QJ = Q (ξJ, H0; σp) and pJ = (ξJ, H0; σp), respectively. Q by definition is 
 

ξ 

Q (ξ, H0; σp) = 
 

dξJ 
, (10) 

p (ξJ, H ; σ ) 
 

which has an equivalent representation through the incomplete elliptic integral of the first kind, √
2σ 

 
H 

+ ω2
  − 1/2F 

   
ξ ,   2ω2 

 
.  C (σ ) is a constant of integration and is to be determined 

 
p 0 b 

2    H0+ω2 p 
for both, passing and trapped branches. For passing particles, we simply require the distribution 
function to be the same at ξ = ξb1 and ξ = ξb2 for each sign of p. While for trapped particles, 
we need to ensure that gjω  matches at ξ = ξb2  after half a bounce on [ξb1, ξb2] and at ξ = ξb1  on 
the way back, i.e. [ξb2, ξb1]. σp is different in each case. Thus, to simplify the algebra below, we 
introduce an angle variable, α [23]: 

 

 
 

 
and 

 

α = Ωb 
ξ dξJ 

, p > 0 (11) 
0 pJ 

 

∫ ξ dξJ 
 

 

 

 0 

0 

∫ ∫ 

∫ 

α = π + Ωb 

∫ 
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Ωb 

+ ω 

pj Ωb Ωb 

L | | 

2 ω3 

— 
2ω 

Σ 
( 

ω
 

Σ 

b 0 ξb,1 π|p| b 

b 0 p − π 2π|p| 

pj + 2i 
ω2 j 2 

pj 
0 

Ωb 
0,j + 

∂H0 

  

) 

∞ + 

δω 

 

with Ω  (H ) = 
  ∫ ξb,2 dξ   

  − 1
. Ω   is the bounce frequency, ω 

 
is its limit at the deeply trapped 

end. For passing particles, α is given by  

 
α = Ωb 

 

ξ dξ
J
 

(13) 
0 pJ 

with Ω  (H ) = σ  
  ∫ π      dξ    

  − 1
. Rewriting Eq. (9) in terms of α and imposing the continuity 

condition as gjω (H0, α = −π/2) = gjω (H0, α = 3π/2) [23], we obtain 

∫ π    dαe
i
  

lξ−  δω α
 

 

 

C (σp) =   −π Ωb . (14) 
e
− 2πi Ωb − 1

 

Substituting the obtained solution for the perturbed distribution function, Eq. (7) with Eqs. 
(9,14), into Eq. (5) provides 

 

Σ 
( 

ω2
 

ωγ 
) 

Σ ∫ +∞ dH  ∂f  
 

 
 

2πiω2 
j=e,i 

Σ ∫ +∞ dH0  δω  ∂f0,j 
∫ π

 
  

pj σp 

dα
e
− i

 
lξ−  δω α

   
 

b 

C (σp) + 
∫ +∞ dαJ 

e
i
 

lξ′− δω α′
  

· Θ   σ
 α − α J 

 

,
 

σ −ω2 Ωb  |Ωb| ∂H0 −π 2π −∞ 2π 
(15) 

 

D is the dispersion function, defined as (δω, l) = D (δω, l) hkω 2. Θ denotes  the  Heaviside 
step function. The second term of Eq. (15) is introduced for the thermal particle background. 

ω2 

γj has been defined as γj = 1 π 1/2 
2 

ω3 

ωpj 
pj e 

 

tj 

    pj 
2 
tj   with ωtj  = kVT j  being the transit frequency, 

VT j = (Tj/mj)1/2 is the thermal velocity. This is a common expression of the Landau damping 
rate of Langmuir waves in Maxwellian plasmas. The last two contributions come from the 
adiabatic and resonant parts of the EP distribution function.  It can be shown that D (δω, l) has 
an equivalent form with an explicit resonance [23]: 

 

D (δω, l) = −l2 + l2 
2 
pj + 2i 

ω2 

ωγj 

ω2 − 
j=e,i pj (16) 

2 Σ ∫ +∞ dH0 nΩb ∂f0,j . .2 

 

 
with 

ωpj 
n=−∞ σp 

−ωb Ωb δω − nΩb + i0+  ∂H0 
.hnω . 

 
 

hnω = 
π   dα 

e 
−π 2π 

i(lξ− nα) , (17) 

that can be obtained by a direct discrete Fourier method in α space, applied to Eq.  (8) [23].  δω 
is complex here and takes the form δω + iγ. γ corresponds to the secondary mode growth/decay 
rate.   Eq.   (15) and Eqs.   (16,17) describe a full dispersion function of the secondary mode 
in non-resonant and resonant forms, respectively. D (δω, γ) = 0 provides the secondary mode 
dispersion relation. To analyse the stability of this mode, we plot constant |D (δω, γ)| contours in 
the (δω, γ) plane. Any root of |D (δω, γ)| will appear as a pole of |D (δω, γ)|− 1. For simplicity, we 

b p 

−ω2 ω2 

∫ 

∫ 

b 

D (δω, l) = −l2 + l2 

p 
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focus on the fast electron component, dropping the background ion contribution in the dispersion 
function, as ωpi   ωpe, provided the plasma quasineutrality is maintained. The fraction of EPs 
is small by assumption. In Figure 3 we plot the secondary mode growth/decay rate against 

D̂p,  ν̂f,p  and  l  (for  convenience  δω  and  γ  are  normalised  to  ωpe,  δω̂  =  δω/ωpe  and  γ̂  =  γ/ωpe, 
respectively).  As can be seen from the figure, γ̂ varies monotonically with velocity diffusion and 
dynamical  friction  rates  for  given  ω̂b  and  l.   Keeping  ω̂b  fixed  and  fixing  the  velocity  diffusion 
and slowing down rates, we vary l in the secondary mode dispersion relation to obtain the l 
dependence  of  γ̂,  shown  in  Figure  3b.  γ  as  a  function  of  l  is  not  monotonic  and  has  two  roots, 
lcrit  and  lsat.   Between  these  roots  γ̂  is  positive,  which  corresponds  to  the  unstable  region  of 
secondary modes. The critical l value, below which modes are stable, lcrit, against the slowing 
down rate is plotted in Figure 3c. 

 
 
 

 

Figure  3.    The  normalised  secondary  mode  growth/decay  rate,  γ̂,  as  a  function  of  (a)  the 

normalised velocity diffusion growth rate, D̂p,  (red  square  markers)  at  fixed ν̂f,p  =  50.  and 

l = 0.35;  the  normalised  dynamical  friction  rate,  ν̂f,p,  (green  round  markers)  at  fixed  D̂p  = 50. 
and l = 0.35, and (b) as a function of ln l. The bounce frequency at deeply trapped end is fixed, 
ω̂b  =  1.2.   Arrows  indicate  roots  of  γ̂  =  γ̂(l).   lcrit  and  lsat  are  the  first  and  the  second  roots, 
respectively. lcrit is a critical l value, below which secondary modes are stable; lsat corresponds to 
the saturation level, above which γ̂ becomes negative again.  Solid lines are used to approximate 
the dependencies in the regions just before and after the main maximum.  (c) lcrit  vs.  ν̂f,p. 

 
Provided ω0/k0 is the primary island resonant velocity and ω/k is the secondary mode resonant 
velocity, we can estimate the l value that corresponds to the maximum growth rate of the 
secondary modes from ω/k    ω0/k0     ωb/k0.  Here we expect to obtain the maximum growth 
rate when the secondary mode resonant velocity is close to the boundary of the primary island 
(  2ωb/k0)/  the  primary island O-point  (  ωb/k0).  The first case is  explained by  steepening  of 
the distribution function in the vicinity  of  the  island  separatrix  due  to  its  flattening  inside 
the island in a pure diffusion model. The second case is due to a hole in the perturbed 
equilibrium when drag is added. As ω ≈ ω0 ≈ ωpe typically, the latter condition roughly 
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Figure 4.  Contours of constant log10 |D (δω̂, γ̂)|−1  (a.u.)  in the (δω̂, γ̂) plane for different values 
of  the  bounce  frequency  at  deeply  trapped  end:   (a)  ω̂b  =  0.6,  (b)  ω̂b  =  1.0,  (c)  ω̂b  =  1.2,  (d) 

ω̂b = 1.4, (e) ω̂b = 1.6, (f) ω̂b = 1.8.  In each case D̂p  = 50., ν̂f,p = 40. and l = 0.1. 

 
becomes 1 ± ωb/ωpe ≈ k0/k = 1/l, which, in turn, gives l = 0.5. The other important parameter 
is the width of the island in phase space, 2ω̂b.  In Figure 4 we plot log10   D −1 in the (δω̂, γ̂) plane 
for different widths of the phase space island, characterised by the bounce frequency of deeply 
trapped  particles.   γ̂  increases  monotonically  with  ω̂b,  reaches  maximum  and  then  decreases. 
This  functional  behaviour  allows  us  to  introduce  a  marginal  island  width,  below  which  γ̂  <  0 
and  hence  the  mode  is  stable,  as  well  as  a  saturation  level,  where  γ̂  as  a  function  of  ω̂b  has  a 
second root. The analysis of this marginal stability is produced in [23] in more detail. 

 
4. Conclusions 
To summarise, in the absence of an island in phase space, created by trapping of EPs in a plasma 
wave, the equilibrium distribution function is simply Maxwellian, i.e. linear in the vicinity of Vb. 
Adding EPs creates the island and hence modifies the total particle distribution. Its form in the 
island region depends on the ratio of the diffusion and dynamical friction rates in p space. Once 
this new equilibrium state is obtained, we investigate its stability by solving the Vlasov/Fokker- 
Planck – Poisson system. We have found secondary modes, which correspond to γ > 0 for a 
certain range of plasma parameters. γ has been calculated as a function of the diffusion and 
the slowing down rates, as well as l = k/k0, based on a full dispersion function, Eqs. (15,16,17). 
Two stable and one unstable region of l have been found in range of the slowing down rates. 
This work was motivated by a paper by Lilley [14], where the secondary instabilities are referred 
to as a generic mechanism for triggering holes and clumps in phase space, and therefore explain 
mode  frequency  chirping  in  a  general  context  of  Alfvén  waves,  driven  by  EPs.    The  results, 
presented here,  confirm that the secondary modes are possible,  but under certain conditions 
on the primary mode amplitude and for a certain range of wave numbers of these secondary 
instabilities. Although the secondary mode  onset  is  demonstrated,  it  still  does  not  explain 
the erosion of the island separatrix. Berk and Breizman suggested the asymptotic dynamics. 
However, the actual physics requires more rigorous calculations and is far from being clear. 
We emphasise that the analysis, produced here, can be applied to both, Langmuir waves and 
toroidal  Alfvén  modes  as  the  primary  wave,  and  depends  on  a  definition  of  the  Hamiltonian 
function.  Although we do not specify a class of the secondary modes in this work,  we admit 
that, in principle, the above results may be applied to the EP-driven geodesic acoustic modes 
(EGAMs). 
Investigating the stability of a single island in phase space, we took as an assumption the 
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existence of only one primary mode. It is worth mentioning that in a general situation, a 
number of harmonics can be resonant. If they resonate on the same resonant surface, the island 
configuration is maintained but will be deformed. If several harmonics are resonant on different 
surfaces, several islands will be generated and can overlap. In the region of their overlapping, 
stochasticity will arise, which potentially could flatten the distribution function everywhere 
between the two adjacent resonant surfaces, and hence prevent secondary modes. Some theories 
suggest that this can be relevant to the situation in ITER advanced scenarios, where several 
toroidal  Alfvén  eigenmodes  (TAEs)  appear  simultaneously.   We  leave  this  situation  for  future 
investigation. 
In this work we have focused on the role of the dynamical friction in formation of the phase 
space island and the secondary mode growth/decay rate behaviour. The next step will be to 
estimate the threshold phase island width, above which modes saturate, and hence to determine 
the region of the marginal stability of secondary modes. 

 
Acknowledgments 
The authors would like to acknowledge the 9th Festival de Théorie in Aix-en-Provence, France, 
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