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A NOTE ON ASYMPTOTICALLY GOOD EXTENSIONS IN
WHICH INFINITELY MANY PRIMES SPLIT
COMPLETELY
by

Oussama Hamza & Christian Maire

Abstract. — Let p be a prime number, and let K be a number field. For p = 2, as-
sume moreover K totally imaginary. In this note we prove the existence of asymptotically
good extensions L/K of cohomological dimension 2 in which infinitely many primes split
completely. Our result is inspired by a recent work of Hajir, Maire, and Ramakrishna [7].

Let K be a number field, and let /K be an infinite unramified extension. Denote by
1k the set of prime ideals of K that split completely in L/K. In [8] Ihara proved

that Z loliw < o0, and raised the following interesting question: are there L/K for
ven Np)

which 77,k is infinite 7 This question was recently answered in the positive by Hajir,
Maire, and Ramakrishna in [7]. In fact, infinite unramified extensions L/K are some
special cases of infinite extensions for which the root discriminants rdg := |Discg|"/["@
are bounded, where the number fields F vary in L/K, and Discg is the discriminant of F.
Such extensions are called asymptotically good, and it is now well-known that in such
extensions the inequality of Ihara involving .77,k still holds (see for example [16], or [13]
for the study of such extensions).

Pro-p extensions of number fields with restricted ramification allow us to exhibit asymp-
totically good extensions. Let p be a prime number, and let S be a finite set of prime
ideals of K coprime to p (more precisely each p € S is such that |Ok/p| = 1(mod p));
the set S is called tame. Let Kg the maximal pro-p extension of K unramified outside S,
put Gg = Gal(Kg/K). In Kg/K the root discriminants are bounded by some constant
depending on the discriminant of K and the norm of the places of S (see for example |6,
Lemma 5]). Moreover thanks to Golod-Shafarevich criterion, it is well-known that Kg/K
is infinite when |S| is large as compared to [K : Q] (see for example [14, Chapter X, §10,
Theorem 10.10.1]), and then asymptotically good. E.g. for p > 2, Qg/Q is infinite when
|S| = 4. In |7] the authors showed that when S is large, there exist infinite subextension
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L/K of Kg/K for which the set .71,k is infinite. But they give no information about the
structure of Gal(L/K). Here we prove:

Theorem A. — Let p be a prime number, and let K be a number field. For p = 2
assume K totally tmaginary. Let T and Sy be two disjoint finite sets of prime ideals
of K where Sy is tame. Then for infinitely many finite sets S of tame prime ideals of K
containing Sy there exist an infinite pro-p extension L/K in Kg/K such that

(1) the set 1,k of places that split completely in L/K contains T';
(i) the set 1,k is infinite;
(i1i) the pro-p group G = Gal(L/K) is of cohomological dimension 2;
(iv) the minimal number of relations of G is infinite, i.e. dim H*(G,F,) = o0;
(v) for each p € S, the local extension L, /K, is mazimal, i.e. isomorphic to Z, X Z,;
(vi) the Poincaré series of the algebra F,|G], endowed with the graduation from the
ideal of augmentation, is equal to (1 —dt+rt* + 13 Z t”)fl, where d = dim Gg,
n=0
and where r is explicit, depending on K, S, T.

Remark 1. — We will see that the pro-p group G of Theorem A is mild in the termi-
nology of Anick |2]. See also Labute |10] for arithmetic contexts.

The proof uses various tools.

The first one is the strategy developed initially by Labute [10], then by Labute-Minac¢
[11], Schmidt [15], Forré [4] etc. for studying the cohomological dimension of a pro-p
group G, through the notion of strongly free sets introduced by Anick [1]. By following
the approach of Forré [4], we refine this idea when the minimal number of relations of G
is infinite.

This key idea is associated to a result of Schmidt [15] that shows that the pro-p group Gg
is of cohomological dimension 2 for some well-chosen S; the proof of Schmidt involves the
cup-product H'(Gg,F,) u H'(Ggs,F,). Here we use the translation of this cup-product
in the polynomial algebra, due to Forré. In particular, this allows us to choose infinitely
many Frobenius in Gg such that the family of the highest terms of these plus the highest
terms of the relations of Gg, is combinatorially free (see §1.1.3 and Definition 1.2).

We conclude by cutting the tower Kg/K by all these Frobenius: this is the strategy of |7].

This note contains two sections. In §1 we recall the results we need regarding pro-p
groups, graded algebras, and arithmetic of pro-p extensions with restricted ramification.
In §2 we start with an example when K = Q, and prove the main result.

Notations.

Let p be a prime number.

o If Vis a F,-vector space we denote by dim V its dimension over F,,.

e For a pro-p group G, we denote by H*(G) the cohomology group H*(G,F,). The p-rank
of G, which is equal to dim H'(G), is noted d,G.

1. The results we need

1.1. On pro-p groups. — For this section we refer to [3], [9, Chapters 5,6 and 7], and
[4]. Take a prime number p.



1.1.1. Minimal presentation and cohomological dimension. — Let G be a pro-p group of
finite rank d, and let 1 - R — F — G — 1 be a minimal presentation of G by a free pro-p
group F. Let .# := {p;}ic; be an F,-basis of R/RP[F, R]; observe that [ is not necessarily
finite. The algebra Ag := F,[G] acts on R/RP[R, R], and by Nakayama’s lemma the p;’s
generate topologically R/RP[R, R] as Ag-module (see for example [3, Corollary 1.5]).

Let us recall the definition of the cohomological dimension ¢d(G) of G: it is the smallest
integer n (eventually n = ) such that H(G) = 0 for every i > n + 1.

Theorem 1.1. — The following assertions are equivalent:
(i) cd(G) < 2;
(i) R/RP|R,R] is a free compact Ag-module;
(iii) R/RP[R,R] ~ | [ Ac.
I
Moreover, dim H*(G) = |I|.
Proof. — See [3, Corollary 5.3] or [9, Chapter 7, §7.3, Theorem 7.7]. O

We are going to translate conditions of Theorem 1.1 in the algebra F7¢[ X, -+, Xq4].

1.1.2. Filtred and graded algebras. — The results of this section can be found in [1].
o Let

E=F‘[Xy, -, X4
be the algebra of noncommutative series in X, - - - , X; with coefficients in F,. We consider
now noncommutative multi-indices o = (o, - -+ , o), with a; € {1,--- | d}, and we denote
by X, the monomial element of the form X, = X,, --- X,,. We endow each X; with the
degree 1; the degree deg(X,) of X, is |«/.
For Z = Z a0, X4, the quantity w(Z) = min,, .o{deg(X,)} is the valuation of Z, with the

convention that w(0) = co. For n = 0, put E,, = {Z € E,w(Z) = n}. Observe that E; is
the augmentation ideal of E: this is the two-sided ideal of E topologically generated by
the X;’s. The algebra E is filtered by the E,’s and its graded algebra Grad(E) is then:

Grad(E) = (—B En/BEn >~ Xy, ..., Xy

77/622()
In other words Grad(E) is isomorphic to the noncommutative polynomial algebra A :=

Fre[ Xy, ..., Xq], where each X; is endowed with the formal degree 1. Let A, = {z €
A, w(z) = n} be the gradation of A; observe that A; is the augmentation ideal of A.

e Let X, X be two monomials (viewed in E or in A). The element X, is a submonomial
of Xy, if Xov = XpX,Xp, with X3, Xg two monomials of A.

Definition 1.2. — A family . = {X_ i }ie; of monomials of A is combinatorially free
if for all 7 # j:
(i) X, is not a submonomial of X,
(11) if Xa(i) = XaX5 and Xa,(j) = XQIX5/, then Xa #* Xa/, with Xa,Xﬁ,Xa/,Xﬁl
non-trivial monomials, i.e. # 1.

The monomials may be endowed with a total order < as follows.
First let us consider the natural ordering <’ defined by: X; <’ X, <" -+ <" X,



Let X, and Xz two monomials, we say that X, > Xp, if w(X,) < w(Xp); if X, and Xz
have the same valuation, we use the lexicographic order induced by <’.

Now, let Z = ) anX, be a nonzero element of E, with a, € F,. Then 7 =
max{X,, a, # 0} is the highest term respecting the order <.

o Let . := {Z;}ic; be a locally finite graded subset of A; generating C as two-sided
A-ideal: C = A.ZA. Observe that [ is countable. Let B := A/C be the quotient endowed
with the quotient gradation; we denote by Py(t) = >, dim(B,,/By1) - " the Poincaré
series of B. Observe that the family .# generates the B-module C/CA;.

Theorem 1.3 (Anick). — Let F = {Z;}ic1 be a locally finite graded subset of Ay, and
let C be a two-sided ideal of A generated by the Z;’s; put B = A/C. For each i, let

X, o = Z be the highest term of Z;. If the family { X o }ier is combinatorially free, then
(i) C/CA; is a free B-module over the Z;’s, and
(it) Ps(t) = (1 —dt + Zt"i)_l, where n; = w(Z;) = w(Xam).
i€l
Proof. — See [1, Theorems 2.6 and 3.2|. O

If C/CA; is a free B-module over the Z;’s, we say that the family .# = {Z;},c; is strongly
free (see [1]).

Ezxample 1.4. — Take d = 5, and the lexicographic ordering X; < X; < --- <
X5. Let a, = 1 be an increasing sequence, n > 1, and consider the family .#
{X5X3,X4X2,X4X3,X5X2,X5X1,X5XZ"X1,TL = 1} Put B = A/AﬁA Then .7 is
combinatorially free, and Pg(t) = (1 — 5t + ¢* Z t“")_l.

n=1

1.1.83. Pro-p groups of cohomological dimension < 2 and polynomial algebra. — Let us
conserve the notations of §1.1.1.

Let F be a free pro-p group on d generators zy, - - -, z4. Let Ap := F,[F] be the complete
algebra associated to F. Recall that F,[F] is isomorphic to the Magnus algebra E =
Fpe[ Xy, - -+, Xq]; this isomorphism ¢ is given by z; — X; +1 (see for example [9, Chapter
7, §7.6, Theorem 7.16]).

Let us endow E with the filtration and the ordering of §1.1.2. The filtered isomorphism ¢ :
Ar = E allows us to endow A with the valuation wy defined as follows: wr(2) = w(p(2)).
Observe that E; ~ Ip : ker(Ap — F,), that is E; is isomorphic to the augmentation ideal
of AF

Take z € F, © # 1. Then the degree deg(x) of z is defined as deg(z) := wp(z — 1) =
w(e(x —1)). We denote by Z the highest term of p(z — 1) € E. Hence ¥ is a monomial.

Example 1.5. — Take d > 3 with the lexicographic ordering X; < Xs < X3 < - < Xj.
(i) The highest term of [z, [2] , z5]] is X5 X2 X;.
(ii) Given x,y € F, let us write f.(y) = [z,y] € F. Then the highest term of f,, o
f;:(l’g) iS X3X2nX1

Let G be a pro-p group of p-rank d, and let 1 - R — F — G — 1 be a minimal
presentation of G by F; this induces a filtered morphism 6 : Ap — Ag. We now endow
Ag with the induced valuation wq of wg as follows: for z € Ag, let us define

wa(2) = max{wg(2'), 2 € Ap,0(7) = z}.



Put Eq, = {z € Ag,wg(z) = n}, the filtration of Ag. Then Grad(Ag) =
@, Ecn /EG nt1 is the graded algebra of F,[G] respecting the quotient gradation
with Pg(t Z dim Eg ,,/Eg nt1 - t" as Poincaré series.
n=0

Forn>1,put F,, ;= {z e F,p(x — 1) € E,}, and G,, = F,R/R. The sequences (F,) and
(Gy) are the Zassenhaus filtrations of F and G. The filtration (Eg ) corresponds also to
the filtration coming from the augmentation ideal of A (see for example [12, Appendice
A.3, Théoréme 3.5]).

Theorem 1.6. — Let .F = {p;}ic; be a family of generators R/RP[R,R]. For each € I,
let X, ) = {pi}icr € A be the highest term of p;. If {X @ }ier s combinatorially free, then
(i) R/R’[R,R] = | [ Ac, and cd(G) < 2;

el

(it) Po(t) = (1 —dt + Zt"")fl, where d = d,G, and n; = deg(p;) = w(X,@).
el
Proof. — When the set of indexes I is finite, this version can be found in [4]. We show

here that the result also holds when [ is infinite. First, observe that as {X_u }ies is
combinatorially free then [ is countable infinite.

Forie I, putY; = p(pi—1) € Ey; n; = w(Y;). Let I(R) < E; be the closed two-sided ideal
of E; topologically generated by the Y;’s, i € I; one has ker(f) ~ I(R) (see for example
[9, Chapter 7, §7.6, Theorem 7.17]). Let us recall now the topological G-isomorphism
between R/RP[R, R] and I(R)/I(R)E; (see for example [4, Proposition 4.3]). We want to
some informations on the G-module R/RP[R, R], and then on I(R)/I(R)E;

For ¢ € I, let Z; € A be the initial form of Y; € E; defined as follows: let us write
Yi=Zip, + Zip+1 + -+, where n; = w(Y;) and where Z; ; are homogeneous polynomial
of degree j (eventually Z; ; = 0); then put Z; = Z;,,. Observe that p; = Y, = Z,.

Let C be the closed ideal of A = Fp¢[X,- -+, Xy4| generated by the family {Z;},;. As the

family {p;}is is combinatorially free then by Theorem 1.3 the family {Z;},c; is strongly
free. Put B = A/C.

Proposition 1.7. — One has C = Grad(I(R)) < A. In particular, as graded A-modules,
one gets Grad(Ag) ~ B, and

Grad(I(R)/I(R)E;) ~ C/CA; ~ (P BZ; ~ P B[n],
iel iel
where B[n;] means B as A-module with an n;-shift filtration.

Proof. — This is only a slightly generalization of the case I finite; see proof of [4, Theorem
3.7]. O

Then by Theorem 1.3 and Proposition 1.7 we firstly get
Po(t) = Po(t) = (1—dt + D1 t")
i€l
Consider now the continuous morphism

U | [Ac = I(R)/I(R)E; ~ R/R?[R, R],

el



sendind (a;) to Y. a;Y; (mod I(R)E,;); as n; — o with i, it is well-defined. Remember
that Ag ~ E/I(R). Put N = ker(V).

Lemma 1.8. — The map ¥ s surjective.

Proof. — Put W = {>,._; a;Y;,a, € E} < I(R). Then

I(R) = WE
We conclude by observing that WE; < I(R)E;. O

Therefore one gets a sequence of filtered G-modules:
1 - N = [ [Ac[n] = I(R)/I(R)E; — 1.
1€l
This one induces the following sequence of graded A-modules:
0 — Grad(N) — Grad(] [ Ac[n]) — Grad(I(R)/I(R)E;) — 0.
i€l
For the surjectivity, use the fact that I is countable. Now as n; — oo with 4, then
Grad ( H Ac[n;]) = Grad(P Ac[ni]) ~ P Blni].
iel iel iel

By Proposition 1.7, we finally get that ¥ induces an isomorphism between Grad( H Ag[ni])
1€l

and Grad(I(R)/I(R)E,), which implies Grad(N) = 0, then N = 0. Hence, as G-modules,

[ [Ac =~ I(R)/I(R)E; ~ R/R”[R,R], and we conclude with Theorem 1.1. O

el

Remark 1.9. — Conclusions of Theorem 1.6 also hold if {p; };cs is strongly free.

Remark 1.10. — For references on graded and filtered modules, see also [12, Chapter
[ and IIJ.
1.1.4. Cup-products and cohomological dimension. — Here we suppose now p > 2.

Let G be a pro-p group of p-rank d which is not pro-p free. Recall that the cup product
sends H'(G) ® H'(G) to H*(G). Labute in [10] gave a criterion involving cup-products
so that ¢cd(G) = 2. This point of view has been developped by Forré in [4]. Let us recall
it.

Theorem 1.11 (Forré). — Let p > 2 be a prime number. Let G be a finitely presented
pro-p group which is not pro-p free. Suppose that H'(G) = U@V such that U v U = 0
and U 0V = H*G). Put c=dimV. Then cd(G) = 2, and G can be described by some
relations py,- -, p. such that the highest term of each p; can be written as Xy;)Xyq) for
some s(i),t(1) such that s(i) < ¢ < t(i), and such that (s(i),t(i)) # (s(),t(5)) fori # j.

Proof. — See the proof of [4, Theorem 6.4, Corollary 6.6] with the choice of the ordering
X< Xo << Xy O

Remark 1.12. — Observe that the family { X)X }: of Theorem 1.11 is combinatori-
ally free.



Before to present a corollary, let us make the following observation: given n > 1, thanks
to Example 1.5, one may find some x € F such that the highest term of z is like X3 X7'Xj;
fori <j <k.

Corollary 1.13. — Consider the situation of Theorem 1.11. Suppose ¢ = 2. For some
Jived 1 <ig < ¢ < jo < d, andn =1, let x, € F of highest term X; X Xy. Sup-
pose moreover that r < (d — ¢)(c — 1). Then there exists (ig, jo) such that the family
{p1,  \ pryTn,n = 1} is combinatorially free. In particular for such (ig, jo):

(i) the group quotient T' := F/{p, -+, pp,@n,n € Zug)N" of G is of cohomological

dimension 2;
(ii) dim H*(T',FF,) = oo;
(iii) The Poincaré series of Ar is (1 —dt + rt* + ¢* Z t")_l.
n=0

Proof. — Thanks to Theorem 1.11, for ¢ = 1,--- | r, the highest term of p; is of the form
Xt(i)Xs(i) for some S(Z) < c< t(Z), and the famlly & = {Xt(l)Xs(1)7 cet 7Xt(r)Xs(7")} is
combinatorially free. Now, as r < (d — ¢)(¢ — 1) and ¢ > 2, we can find (ig, jo) such
that X;, X, is not in &, and then & U {X;, X}'! X1, n € Z~(} is combinatorially free. Then
apply Theorem 1.6. O

Remark 1.14. — In fact r < (d — ¢)c — 2 is sufficient. Indeed, with such condition
one has X; X;, ¢ & for some (ip,jo) # (1,7), ip < ¢ < jo < r. Hence, if iy # 1 the
family & U {X;, X! X1,n € Z.o} is combinatorially free. Otherwise jo # r, and take
& v {XTX;»(L)XZ‘O, ne Z>0}.

1.2. Arithmetic backgrounds. — Let p be a prime number, and let K be a number
field. For p = 2, assume K totally imaginary. Let S and T two disjoint finite sets of
prime ideals of the ring of integers Ok of K. We assume moreover that each p € S is such
that |Ok/p| = 1(mod p); the set S is called tame. We denote by Cl%(p) the p-Sylow of
the T-class group of K.

Let KL /K be the maximal pro-p extension of K unramified outside S and where each p € T
splits completely in Kg/K; put GL = Gal(KL/K). As we recalled it in Introduction, when
G is infinite, the extension K /K is asymptotically good. Recall Shafarevich’s formula
(see for example [5, Chapter I, §, Theorem 4.6]):

d,GE = |S] = (ri 4+ 12) =1 —|T| + 0k p + d,V§/K™P,
where

Vi={zeK*, 2K, Vo ¢ SuT, zcK. Vpe S},
and where dk, = 1 if K contains i, (the p-roots of 1), 0 otherwise. Here as usual, K,
is the completion of K at p, and U, is the group of the local units at p. Observe that

if there is no p-extension of K(yu,) unramified outside 7" and p in which each prime of S
splits completely, then VL /K* P is trivial: this is a Chebotarev condition type.

Schmidt in [15] showed that GL may be mild following the terminology of Labute [10].
More precisely, he proved:

Theorem 1.15 (Schmidt). — Let K be a number field and let p be a prime number.
For p = 2 suppose K totally imaginary. Let Sy and T two disjoint finite sets of prime
ideals of K with Sy tame. Assume T sufficiently large such that Clk(p) is trivial; when
tp < K, assume moreover that T' contains all prime ideals above p. Then there ewist



infinitely finite tame sets S containing Sy such that H'(GL) = U @V where the two
subspaces U and V satisfy: (1) U v U = 0; (i) U vV = H*(GEL). Moreover, for such S
and T one has dim H*(GY) = dim HY(GL) + ry +ro + |T| — 1.

Theorem 1.15 is not presented in this form in [15], here we give the form we need: the
result presented here can be found in the proof of Theorem 6.1 of [15].

At this level, let us compute the value of ¢ = dim V' of Theorem 1.15, following [15].
When p, ¢ K let us choose first a finite set Sy of prime ideals of K, tame and disjoint
from T, such that for every p € Sy, one has

dpGgy\ gy = |So| =71 =12 — |T| + 0k s

which is equivalent by Shafarevich’s formula to the triviality of Vgo\{p} JK*P,
When g, © K let us choose Sy, finite, tame and disjoint from 7', such that the set of the
Frobenius at p in G?{el when p varies in Sy, corresponds to the nontrivial elements of

G where GP~% is the Galois group of the p-elementary abelian extension K& /K of

K7 /K. Here one has also the triviality of Vgo\{p} JK*P.

The set S of Theorem 1.15 contains Sy, and is of size 2|Sy|; the prime ideals p € S — Sy
are choosen by respecting some global conditions, thanks to Chebotarev density theorem.
Moreover U = H'(G§,,F,), and the subspace V is such that dimV = ¢ = [Sp|. See [15,
Proof of Theorem 6.1] for more details.

Now observe the following:

Lemma 1.16. — Above the previous conditions, each prime p € S is ramified in the
p-elementary abelian extension Kg?~* /K of KL/K.

Proof. — Observe first that if S” < ', then VL, /K*? — VL, /K>
Hence thanks to the choice of Sy, it is not difficult to see the following: for every p € S,
Vg\{p} /K*? is trivial. Then by Shafarevich’s formula, we get that

dpstj - 1 + dpGg\{p}’

showing that p is ramified in K5” K. O

Put axr =3 + 2\/2 + 11+ 13+ |T|. In Theorem 1.15 one may take S sufficiently large
so that d = dim H'(GL,F,) > ax 7.

Lemma 1.17. — If d > axr, then d+r; + 1o +|T| —1 < (d — ¢)(c — 1) for every
cel2,d].

Proof. — Easy computation. O
Let us finish this part with an obvious observation thanks to class field theory.

Remark 1.18. — If GY is not trivial and of cohomological dimension at most 2, then
cd(GL) = 2.



2. Example and proof

2.1. Example. — e Take p > 2, and K = Q. In this case the relations of the pro-p
groups Gg are all local, and then not difficult to describe: this is the description due to
Koch |9, Chapter 11, §11.4, Example 11.11].

Let ¢ be a prime number such that p|¢ — 1. Denote by Q, the (unique) cyclic degree
p-extension of Q unramified outside ¢; the extension Q,/Q is totally ramified at ¢.

Let S = {{1,--- , {4} be d different prime numbers such that p divides each ¢;—1. The pro-

p group Gg can be described by x1, - - - , x4 generators, and py, - - - , pg relations verifying:
(1) pi = H[xi,xj]“j(i)mod Fs,
J#i

where a;(i) € Z/pZ; moreover the element x; can be chosen such that it is a generator of
the inertia group of ¢;. The element a;(7) is zero if and only the prime /; splits in Q,/Q,
which is equivalent to

(57D = 1(mod ;).
e Typically take p = 3, and Sy = {7,13}, T = J. Then put S = {p1, pa, p3, P4, P5} With
p1 = 31,py = 19,p3 = 13, py = 337, p5 = 7. Then the highest terms of the relations (1),
viewed in Fgc[Xl,"' ,X5:|, are ﬁl = X1X37 ﬁQ = X2X4, ﬁg = X2X37 @1 = X1X47 @5 =
X1X5. Hence as the p;’s are combinatorially free, then Gg is of cohomological dimension 2
by Theorem 1.6.

Now for each n € Z-, let us choose a prime number p,, of Z such that the highest term in
Fpe[ X1, -+, X5] of its Frobenius o, € Gg is like X5 XX (which is possible by Example
1.5 or Corollary 1.13, see next section). Then consider the maximal Galois subextension
L/Q of Qg/Q fixed by all the conjuguates of the 7,’s (this is the “cutting towers” strategy
of [7]). Put G = Gal(L/Q). Then the pro-3 group G can be described by the generators
x1,- -, x5, and the relations {py, -, ps, T, n € Z=o} (which is not a priori a minimal
set). By construction all the p,, split totally in L/Q. Observe now that

{p/\la e 7ﬁ57 7:\117 n = 1} = {X5X17 X5X27 X4X37 X4X27 X5X37 X5XZLX17 ne Z>0}7
which is combinatorially free. By Theorem 1.6 the pro-3-group G is of cohomological

dimension 2, H*(G) is infinite, and F5[G] has (1 — 5t + 5t* + t*(1+ ¢t + > + - - - ))_1 as
Poincaré series.

2.2. Proof of the main result. — e Let p > 2 be a prime number, and let K be
a number field. Let Sy and T two finite disjoint sets of prime ideals of K, where Sy is
tame. Take T sufficiently large such that Cl(p) is trivial. When K contains [1p, assume
moreover that 7' contains all p-adic prime ideals.

First take S containing Sy as in Theorem 1.15, and sufficiently large such that d > ax 7.
Put G = GL. Here r = dim H*(G) = d + 1, + 1o — 1 + [T
Let us start with a minimal presentation of G:
l1—-R—F-5G—1
By Theorem 1.15 and Theorem 1.11 the quotient R/RP[F,R| may be generated as F,-

vector spaces by some relations py, - - -, p, such that the highest terms p, are like X;X;
for some i < ¢ < j, where ¢ = dim V. Observe that as G is FAb then c € [2,d — 2].



Given n > 1, then the quotient G/G,, 41 is finite. Put K,11) = (K§)9+1. Let a,, € Z-q be
an increasing sequence. Let x,, € F, \F, 1. By Chebotarev density theorem there exists
some prime ideal p, < Ok such that o,, is conjuguate to x, in Gal(K(,, +1)/K). Here
oy, € G denotes the Frobenius of p,, in KE/K. Now take z, € F such that ¢(z,) = oy,.
Hence

2, = 0y, (mod RF,, 1+1).

In other words, there exists y, € F,, +1 and r, € R such that z, = o, y,ry.

Let ¥ =T U {p1, p2, -}, and consider K% the maximal pro-p extension of K unramified
oustide S and where each primes p; of 3 splits completely. Put G5 = Gal(K%/K). Then

Gy =~ G/{oy,,n € Zg)™".

Here {0y, ., n € Z~, is the normal closure of (o, ,n € Z-o) in G§. Hence K% satisfies
(7) and (i7) of Theorem A. But observe now that

G/{oy,,n € Z>0>N°r ~F/p1,-, pry2Zn,n € Z>0>N°r =F/p1,- , pryTpyn,n € Z>0>N°r,

as 0y, and x, are conjugate.

>Nor

Since the highest term of each x,y, in E = F;CHXI, -+, Xy4] is the same as the highest
term of x,, it suffices to choose the x,’s as in Corollary 1.13 which is possible: indeed
as d > ag r then by Lemma 1.17 r < (¢ — 1)(d — ¢), for every c € [1,d — 1]. Thanks to
Corollary 1.13, one gets (éi7), (iv), and (vi) of Theorem A.

(v): by Lemma 1.16 cach prime ideal p € S is ramified in K5?~%/K, showing that 7, € G
is not in RF?[F, F], where 7, is a generator of the inertia group at p in G. As the p-rank
of G% is the same as the p-rank of G, each prime p € S is ramified in K5. But as G
is without torsion (because c¢d(G) = 2), necessarly (7,) ~ Z,, and the structure of local
extensions forces (K% ),/K, to be maximal.

e Assume p = 2, and K be totally imaginary. Then Theorem 1.15 holds, but Theorem
1.11 does not. As explained by Forré in |4, Proof Theorem 6.4], one has to take two
orderings to show that the highest terms of the relations p,--- , p, are strongly free.
Now in this context the strategy of the approximation of elements x,, by some Frobenius
as in Corollary 1.13 also applies. Then by following the proof of Theorem 6.4 in [4], and
by choosing the x,’s as in the case p # 2, we observe that the initial forms of the new
relations {p1,- -, pr, Tp,n = 1} are still strongly free. We conclude by using Remark 1.9
of Theorem 1.6.

O
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