
HAL Id: hal-02489967
https://hal.science/hal-02489967

Preprint submitted on 24 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A NOTE ON ASYMPTOTICALLY GOOD
EXTENSIONS IN WHICH INFINITELY MANY

PRIMES SPLIT COMPLETELY
Oussama Hamza, Christian Maire

To cite this version:
Oussama Hamza, Christian Maire. A NOTE ON ASYMPTOTICALLY GOOD EXTENSIONS IN
WHICH INFINITELY MANY PRIMES SPLIT COMPLETELY. 2020. �hal-02489967�

https://hal.science/hal-02489967
https://hal.archives-ouvertes.fr


A NOTE ON ASYMPTOTICALLY GOOD EXTENSIONS IN

WHICH INFINITELY MANY PRIMES SPLIT

COMPLETELY

by

Oussama Hamza & Christian Maire

Abstract. — Let p be a prime number, and let K be a number field. For p “ 2, as-
sume moreover K totally imaginary. In this note we prove the existence of asymptotically
good extensions L{K of cohomological dimension 2 in which infinitely many primes split
completely. Our result is inspired by a recent work of Hajir, Maire, and Ramakrishna [7].

Let K be a number field, and let L{K be an infinite unramified extension. Denote by
SL{K the set of prime ideals of K that split completely in L{K. In [8] Ihara proved

that
ÿ

pPSL{K

logNppq

Nppq
ă 8, and raised the following interesting question: are there L{K for

which SL{K is infinite ? This question was recently answered in the positive by Hajir,
Maire, and Ramakrishna in [7]. In fact, infinite unramified extensions L{K are some
special cases of infinite extensions for which the root discriminants rdF :“ |DiscF|1{rF:Qs

are bounded, where the number fields F vary in L{K, and DiscF is the discriminant of F.
Such extensions are called asymptotically good, and it is now well-known that in such
extensions the inequality of Ihara involving SL{K still holds (see for example [16], or [13]
for the study of such extensions).

Pro-p extensions of number fields with restricted ramification allow us to exhibit asymp-
totically good extensions. Let p be a prime number, and let S be a finite set of prime
ideals of K coprime to p (more precisely each p P S is such that |OK{p| ” 1pmod pq);
the set S is called tame. Let KS the maximal pro-p extension of K unramified outside S,
put GS “ GalpKS{Kq. In KS{K the root discriminants are bounded by some constant
depending on the discriminant of K and the norm of the places of S (see for example [6,
Lemma 5]). Moreover thanks to Golod-Shafarevich criterion, it is well-known that KS{K
is infinite when |S| is large as compared to rK : Qs (see for example [14, Chapter X, §10,
Theorem 10.10.1]), and then asymptotically good. E.g. for p ą 2, QS{Q is infinite when
|S| ě 4. In [7] the authors showed that when S is large, there exist infinite subextension
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L{K of KS{K for which the set SL{K is infinite. But they give no information about the
structure of GalpL{Kq. Here we prove:

Theorem A. — Let p be a prime number, and let K be a number field. For p “ 2

assume K totally imaginary. Let T and S0 be two disjoint finite sets of prime ideals
of K where S0 is tame. Then for infinitely many finite sets S of tame prime ideals of K
containing S0 there exist an infinite pro-p extension L{K in KS{K such that

(i) the set SL{K of places that split completely in L{K contains T ;
(ii) the set SL{K is infinite;
(iii) the pro-p group G “ GalpL{Kq is of cohomological dimension 2;
(iv) the minimal number of relations of G is infinite, i.e. dimH2pG,Fpq “ 8;
(v) for each p P S, the local extension Lp{Kp is maximal, i.e. isomorphic to Zp ⋊Zp;
(vi) the Poincaré series of the algebra FpvGw, endowed with the graduation from the

ideal of augmentation, is equal to
`
1 ´ dt ` rt2 ` t3

ÿ

ně0

tn
˘´1

, where d “ dimGS,

and where r is explicit, depending on K, S, T .

Remark 1. — We will see that the pro-p group G of Theorem A is mild in the termi-
nology of Anick [2]. See also Labute [10] for arithmetic contexts.

The proof uses various tools.
The first one is the strategy developed initially by Labute [10], then by Labute-Mináč
[11], Schmidt [15], Forré [4] etc. for studying the cohomological dimension of a pro-p
group G, through the notion of strongly free sets introduced by Anick [1]. By following
the approach of Forré [4], we refine this idea when the minimal number of relations of G
is infinite.
This key idea is associated to a result of Schmidt [15] that shows that the pro-p group GS

is of cohomological dimension 2 for some well-chosen S; the proof of Schmidt involves the
cup-product H1pGS,Fpq Y H1pGS,Fpq. Here we use the translation of this cup-product
in the polynomial algebra, due to Forré. In particular, this allows us to choose infinitely
many Frobenius in GS such that the family of the highest terms of these plus the highest
terms of the relations of GS, is combinatorially free (see §1.1.3 and Definition 1.2).
We conclude by cutting the tower KS{K by all these Frobenius: this is the strategy of [7].

This note contains two sections. In §1 we recall the results we need regarding pro-p
groups, graded algebras, and arithmetic of pro-p extensions with restricted ramification.
In §2 we start with an example when K “ Q, and prove the main result.

Notations.
Let p be a prime number.
‚ If V is a Fp-vector space we denote by dimV its dimension over Fp.
‚ For a pro-p group G, we denote by H ipGq the cohomology group H ipG,Fpq. The p-rank
of G, which is equal to dimH1pGq, is noted dpG.

1. The results we need

1.1. On pro-p groups. — For this section we refer to [3], [9, Chapters 5,6 and 7], and
[4]. Take a prime number p.
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1.1.1. Minimal presentation and cohomological dimension. — Let G be a pro-p group of
finite rank d, and let 1 Ñ R Ñ F Ñ G Ñ 1 be a minimal presentation of G by a free pro-p
group F. Let F :“ tρiuiPI be an Fp-basis of R{RprF,Rs; observe that I is not necessarily
finite. The algebra ΛG :“ FpvGw acts on R{RprR,Rs, and by Nakayama’s lemma the ρi’s
generate topologically R{RprR,Rs as ΛG-module (see for example [3, Corollary 1.5]).

Let us recall the definition of the cohomological dimension cdpGq of G: it is the smallest
integer n (eventually n “ 8) such that H ipGq “ 0 for every i ě n ` 1.

Theorem 1.1. — The following assertions are equivalent:

(i) cdpGq ď 2;
(ii) R{RprR,Rs is a free compact ΛG-module;

(iii) R{RprR,Rs »
ź

I

ΛG.

Moreover, dimH2pGq “ |I|.

Proof. — See [3, Corollary 5.3] or [9, Chapter 7, §7.3, Theorem 7.7].

We are going to translate conditions of Theorem 1.1 in the algebra Fnc
p vX1, ¨ ¨ ¨ , Xdw.

1.1.2. Filtred and graded algebras. — The results of this section can be found in [1].
‚ Let

E “ Fnc
p vX1, ¨ ¨ ¨ , Xdw

be the algebra of noncommutative series in X1, ¨ ¨ ¨ , Xd with coefficients in Fp. We consider
now noncommutative multi-indices α “ pα1, ¨ ¨ ¨ , αnq, with αi P t1, ¨ ¨ ¨ , du, and we denote
by Xα the monomial element of the form Xα “ Xα1

¨ ¨ ¨Xαn
. We endow each Xi with the

degree 1; the degree degpXαq of Xα is |α|.

For Z “
ÿ

α

aαXα, the quantity ωpZq “ minaα‰0tdegpXαqu is the valuation of Z, with the

convention that ωp0q “ 8. For n ě 0, put En “ tZ P E, ωpZq ě nu. Observe that E1 is
the augmentation ideal of E: this is the two-sided ideal of E topologically generated by
the Xi’s. The algebra E is filtered by the En’s and its graded algebra GradpEq is then:

GradpEq “
à

nPZě0

En{En`1 » Fnc
p rX1, . . . , Xds.

In other words GradpEq is isomorphic to the noncommutative polynomial algebra A :“
Fnc
p rX1, . . . , Xds, where each Xi is endowed with the formal degree 1. Let An “ tz P

A, ωpzq ě nu be the gradation of A; observe that A1 is the augmentation ideal of A.

‚ Let Xα, Xα1 be two monomials (viewed in E or in A). The element Xα is a submonomial
of Xα1 , if Xα1 “ XβXαXβ1, with Xβ, Xβ1 two monomials of A.

Definition 1.2. — A family F “ tXαpiquiPI of monomials of A is combinatorially free
if for all i ‰ j:

(i) Xαpiq is not a submonomial of Xαpjq ,
(ii) if Xαpiq “ XαXβ and Xαpjq “ Xα1Xβ1 , then Xα ‰ Xα1 , with Xα, Xβ, Xα1 , Xβ1

non-trivial monomials, i.e. ‰ 1.

The monomials may be endowed with a total order ă as follows.
First let us consider the natural ordering ă1 defined by: X1 ă1 X2 ă1 ¨ ¨ ¨ ă1 Xd.
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Let Xα and Xβ two monomials, we say that Xα ą Xβ, if ωpXαq ă ωpXβq; if Xα and Xβ

have the same valuation, we use the lexicographic order induced by ă1.

Now, let Z “
ř

α aαXα be a nonzero element of E, with aα P Fp. Then pZ :“
maxtXα, aα ‰ 0u is the highest term respecting the order ă.

‚ Let F :“ tZiuiPI be a locally finite graded subset of A1 generating C as two-sided
A-ideal: C “ AFA. Observe that I is countable. Let B :“ A{C be the quotient endowed
with the quotient gradation; we denote by PBptq “

ř
nPZě0

dimpBn{Bn`1q ¨ tn the Poincaré

series of B. Observe that the family F generates the B-module C{CA1.

Theorem 1.3 (Anick). — Let F “ tZiuiPI be a locally finite graded subset of A1, and
let C be a two-sided ideal of A generated by the Zi’s; put B “ A{C. For each i, let

Xαpiq :“ pZi be the highest term of Zi. If the family tXαpiquiPI is combinatorially free, then

(i) C{CA1 is a free B-module over the Zi’s, and

(ii) PBptq “
`
1 ´ dt `

ÿ

iPI

tni
˘´1

, where ni “ ωpZiq “ ωpXαpiqq.

Proof. — See [1, Theorems 2.6 and 3.2].

If C{CA1 is a free B-module over the Zi’s, we say that the family F “ tZiuiPI is strongly
free (see [1]).

Example 1.4. — Take d “ 5, and the lexicographic ordering X1 ă X2 ă ¨ ¨ ¨ ă
X5. Let an ě 1 be an increasing sequence, n ě 1, and consider the family F “
tX5X3, X4X2, X4X3, X5X2, X5X1, X5X

an
4
X1, n ě 1u. Put B “ A{AFA. Then F is

combinatorially free, and PBptq “
`
1 ´ 5t ` t2

ÿ

ně1

tan
˘´1

.

1.1.3. Pro-p groups of cohomological dimension ď 2 and polynomial algebra. — Let us
conserve the notations of §1.1.1.
Let F be a free pro-p group on d generators x1, ¨ ¨ ¨ , xd. Let ΛF :“ FpvFw be the complete
algebra associated to F. Recall that FpvFw is isomorphic to the Magnus algebra E “
Fnc
p vX1, ¨ ¨ ¨ , Xdw; this isomorphism ϕ is given by xi ÞÑ Xi`1 (see for example [9, Chapter

7, §7.6, Theorem 7.16]).
Let us endow E with the filtration and the ordering of §1.1.2. The filtered isomorphism ϕ :

ΛF

»
Ñ E allows us to endow ΛF with the valuation ωF defined as follows: ωFpzq “ ωpϕpzqq.

Observe that E1 » IF : kerpΛF Ñ Fpq, that is E1 is isomorphic to the augmentation ideal
of ΛF.
Take x P F, x ‰ 1. Then the degree degpxq of x is defined as degpxq :“ ωFpx ´ 1q “
ωpϕpx ´ 1qq. We denote by px the highest term of ϕpx ´ 1q P E. Hence px is a monomial.

Example 1.5. — Take d ě 3 with the lexicographic ordering X1 ă X2 ă X3 ă ¨ ¨ ¨ ă Xd.

(i) The highest term of rx1, rxpn

2 , x3ss is X3X
pn

2 X1.
(ii) Given x, y P F, let us write fxpyq “ rx, ys P F. Then the highest term of fx1

˝
f ˝n
x2

px3q is X3X
n
2
X1.

Let G be a pro-p group of p-rank d, and let 1 Ñ R Ñ F Ñ G Ñ 1 be a minimal
presentation of G by F; this induces a filtered morphism θ : ΛF Ñ ΛG. We now endow
ΛG with the induced valuation ωG of ωF as follows: for z P ΛG, let us define

ωGpzq “ maxtωFpz1q, z1 P ΛF, θpz1q “ zu.
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Put EG,n “ tz P ΛG, ωGpzq ě nu, the filtration of ΛG. Then GradpΛGq “À
n EG,n{EG,n`1 is the graded algebra of FpvGw respecting the quotient gradation

with PGptq “
ÿ

ně0

dimEG,n{EG,n`1 ¨ tn as Poincaré series.

For n ě 1, put Fn :“ tx P F, ϕpx ´ 1q P Enu, and Gn “ FnR{R. The sequences pFnq and
pGnq are the Zassenhaus filtrations of F and G. The filtration pEG,nq corresponds also to
the filtration coming from the augmentation ideal of ΛG (see for example [12, Appendice
A.3, Théorème 3.5]).

Theorem 1.6. — Let F “ tρiuiPI be a family of generators R{RprR,Rs. For each P I,
let Xαpiq “ tpρiuiPI P A be the highest term of ρi. If tXαpiquiPI is combinatorially free, then

(i) R{RprR,Rs »
ź

iPI

ΛG, and cdpGq ď 2;

(ii) PGptq “
`
1 ´ dt `

ÿ

iPI

tni
˘´1

, where d “ dpG, and ni “ degpρiq “ ωpXαpiqq.

Proof. — When the set of indexes I is finite, this version can be found in [4]. We show
here that the result also holds when I is infinite. First, observe that as tXαpiquiPI is
combinatorially free then I is countable infinite.

For i P I, put Yi “ ϕpρi´1q P E1; ni “ ωpYiq. Let IpRq Ă E1 be the closed two-sided ideal
of E1 topologically generated by the Yi’s, i P I; one has kerpθq » IpRq (see for example
[9, Chapter 7, §7.6, Theorem 7.17]). Let us recall now the topological G-isomorphism
between R{RprR,Rs and IpRq{IpRqE1 (see for example [4, Proposition 4.3]). We want to
some informations on the G-module R{RprR,Rs, and then on IpRq{IpRqE1.

For i P I, let Zi P A be the initial form of Yi P E1 defined as follows: let us write
Yi “ Zi,ni

` Zi,ni`1 ` ¨ ¨ ¨ , where ni “ ωpYiq and where Zi,j are homogeneous polynomial

of degree j (eventually Zi,j “ 0); then put Zi “ Zi,ni
. Observe that pρi “ pYi “ pZi.

Let C be the closed ideal of A “ Fnc
p rX1, ¨ ¨ ¨ , Xds generated by the family tZiuiPI . As the

family tpρiuiPI is combinatorially free then by Theorem 1.3 the family tZiuiPI is strongly
free. Put B “ A{C.

Proposition 1.7. — One has C “ GradpIpRqq Ă A. In particular, as graded A-modules,
one gets GradpΛGq » B, and

GradpIpRq{IpRqE1q » C{CA1 »
à
iPI

BZi »
à
iPI

Brnis,

where Brnis means B as A-module with an ni-shift filtration.

Proof. — This is only a slightly generalization of the case I finite; see proof of [4, Theorem
3.7].

Then by Theorem 1.3 and Proposition 1.7 we firstly get

PGptq “ PBptq “
`
1 ´ dt `

ÿ

iPI

tni
˘´1

¨

Consider now the continuous morphism

Ψ :
ź

iPI

ΛG Ñ IpRq{IpRqE1 » R{RprR,Rs,
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sendind paiq to
ř

i aiYi pmod IpRqE1q; as ni Ñ 8 with i, it is well-defined. Remember
that ΛG » E{IpRq. Put N “ kerpΨq.

Lemma 1.8. — The map Ψ is surjective.

Proof. — Put W “ t
ř

iPI aiYi, ai P Eu Ă IpRq. Then

IpRq “ WE

“ WFp ` EWE1 “ W ` WE1.

We conclude by observing that WE1 Ă IpRqE1.

Therefore one gets a sequence of filtered G-modules:

1 Ñ N Ñ
ź

iPI

ΛGrnis
Ψ
Ñ IpRq{IpRqE1 Ñ 1.

This one induces the following sequence of graded A-modules:

0 Ñ GradpNq Ñ Gradp
ź

iPI

ΛGrnisq Ñ GradpIpRq{IpRqE1q Ñ 0.

For the surjectivity, use the fact that I is countable. Now as ni Ñ 8 with i, then

Grad
` ź

iPI

ΛGrnis
˘

“ Grad
` à

iPI

ΛGrnis
˘

»
à
iPI

Brnis.

By Proposition 1.7, we finally get that Ψ induces an isomorphism between Grad
` ź

iPI

ΛGrnis
˘

and Grad
`
IpRq{IpRqE1

˘
, which implies GradpNq “ 0, then N “ 0. Hence, as G-modules,ź

iPI

ΛG » IpRq{IpRqE1 » R{RprR,Rs, and we conclude with Theorem 1.1.

Remark 1.9. — Conclusions of Theorem 1.6 also hold if tpρiuiPI is strongly free.

Remark 1.10. — For references on graded and filtered modules, see also [12, Chapter
I and II].

1.1.4. Cup-products and cohomological dimension. — Here we suppose now p ą 2.
Let G be a pro-p group of p-rank d which is not pro-p free. Recall that the cup product
sends H1pGq b H1pGq to H2pGq. Labute in [10] gave a criterion involving cup-products
so that cdpGq “ 2. This point of view has been developped by Forré in [4]. Let us recall
it.

Theorem 1.11 (Forré). — Let p ą 2 be a prime number. Let G be a finitely presented
pro-p group which is not pro-p free. Suppose that H1pGq “ U ‘ V such that U Y U “ 0

and U Y V “ H2pGq. Put c “ dimV . Then cdpGq “ 2, and G can be described by some
relations ρ1, ¨ ¨ ¨ , ρr such that the highest term of each ρi can be written as XtpiqXspiq for
some spiq, tpiq such that spiq ď c ă tpiq, and such that pspiq, tpiqq ‰ pspjq, tpjqq for i ‰ j.

Proof. — See the proof of [4, Theorem 6.4, Corollary 6.6] with the choice of the ordering
X1 ă X2 ă ¨ ¨ ¨ ă Xd.

Remark 1.12. — Observe that the family tXspiqXtpiqui of Theorem 1.11 is combinatori-
ally free.

6



Before to present a corollary, let us make the following observation: given n ě 1, thanks
to Example 1.5, one may find some x P F such that the highest term of x is like XkX

n
j Xi

for i ă j ă k.

Corollary 1.13. — Consider the situation of Theorem 1.11. Suppose c ě 2. For some
fixed 1 ă i0 ď c ă j0 ď d, and n ě 1, let xn P F of highest term Xj0X

n
i0
X1. Sup-

pose moreover that r ă pd ´ cqpc ´ 1q. Then there exists pi0, j0q such that the family
t pρ1, ¨ ¨ ¨ , pρr, xxn, n ě 1u is combinatorially free. In particular for such pi0, j0q:

(i) the group quotient Γ :“ F{xρ, ¨ ¨ ¨ , ρr, xn, n P Zą0yNor of G is of cohomological
dimension 2;

(ii) dimH2pΓ,Fpq “ 8;

(iii) The Poincaré series of ΛΓ is
`
1 ´ dt ` rt2 ` t3

ÿ

ně0

tn
˘´1

.

Proof. — Thanks to Theorem 1.11, for i “ 1, ¨ ¨ ¨ , r, the highest term of ρi is of the form
XtpiqXspiq for some spiq ď c ă tpiq, and the family E :“ tXtp1qXsp1q, ¨ ¨ ¨ , XtprqXsprqu is
combinatorially free. Now, as r ă pd ´ cqpc ´ 1q and c ě 2, we can find pi0, j0q such
that Xj0Xi0 is not in E , and then E Y tXj0X

n
i0
X1, n P Zą0u is combinatorially free. Then

apply Theorem 1.6.

Remark 1.14. — In fact r ď pd ´ cqc ´ 2 is sufficient. Indeed, with such condition
one has Xj0Xi0 R E for some pi0, j0q ‰ p1, rq, i0 ď c ă j0 ď r. Hence, if i0 ‰ 1 the
family E Y tXj0X

n
i0
X1, n P Zą0u is combinatorially free. Otherwise j0 ‰ r, and take

E Y tXrX
n
j0
Xi0 , n P Zą0u.

1.2. Arithmetic backgrounds. — Let p be a prime number, and let K be a number
field. For p “ 2, assume K totally imaginary. Let S and T two disjoint finite sets of
prime ideals of the ring of integers OK of K. We assume moreover that each p P S is such
that |OK{p| ” 1pmod pq; the set S is called tame. We denote by ClT

K
ppq the p-Sylow of

the T -class group of K.
Let KT

S{K be the maximal pro-p extension of K unramified outside S and where each p P T

splits completely in KS{K; put GT
S “ GalpKT

S{Kq. As we recalled it in Introduction, when
GT

S is infinite, the extension KT
S{K is asymptotically good. Recall Shafarevich’s formula

(see for example [5, Chapter I, §, Theorem 4.6]):

dpG
T
S “ |S| ´ pr1 ` r2q ´ 1 ´ |T | ` δK,p ` dpV

T
S {Kˆp,

where
VT

S “ tx P Kˆ, x P Kp
p
Up @x R S Y T, x P Kp

p
@p P Su,

and where δK,p “ 1 if K contains µp (the p-roots of 1), 0 otherwise. Here as usual, Kp

is the completion of K at p, and Up is the group of the local units at p. Observe that
if there is no p-extension of Kpµpq unramified outside T and p in which each prime of S
splits completely, then VT

S {Kˆ p is trivial: this is a Chebotarev condition type.

Schmidt in [15] showed that GT
S may be mild following the terminology of Labute [10].

More precisely, he proved:

Theorem 1.15 (Schmidt). — Let K be a number field and let p be a prime number.
For p “ 2 suppose K totally imaginary. Let S0 and T two disjoint finite sets of prime
ideals of K with S0 tame. Assume T sufficiently large such that ClTKppq is trivial; when
µp Ă K, assume moreover that T contains all prime ideals above p. Then there exist

7



infinitely finite tame sets S containing S0 such that H1pGT
S q “ U ‘ V where the two

subspaces U and V satisfy: piq U Y U “ 0; piiq U Y V “ H2pGT
Sq. Moreover, for such S

and T one has dimH2pGT
Sq “ dimH1pGT

S q ` r1 ` r2 ` |T | ´ 1.

Theorem 1.15 is not presented in this form in [15], here we give the form we need: the
result presented here can be found in the proof of Theorem 6.1 of [15].

At this level, let us compute the value of c “ dimV of Theorem 1.15, following [15].
When µp Ć K let us choose first a finite set S0 of prime ideals of K, tame and disjoint
from T , such that for every p P S0, one has

dpG
T
S0ztpu “ |S0| ´ r1 ´ r2 ´ |T | ` δK,p,

which is equivalent by Shafarevich’s formula to the triviality of VT
S0ztpu{Kˆp.

When µp Ă K let us choose S0, finite, tame and disjoint from T , such that the set of the

Frobenius at p in G
p´el
T when p varies in S0, corresponds to the nontrivial elements of

G
p´el
T , where G

p´el
T is the Galois group of the p-elementary abelian extension K

p´el
T {K of

KT {K. Here one has also the triviality of VT
S0ztpu{Kˆp.

The set S of Theorem 1.15 contains S0, and is of size 2|S0|; the prime ideals p P S ´ S0

are choosen by respecting some global conditions, thanks to Chebotarev density theorem.
Moreover U “ H1pGT

S0
,Fpq, and the subspace V is such that dimV “ c “ |S0|. See [15,

Proof of Theorem 6.1] for more details.
Now observe the following:

Lemma 1.16. — Above the previous conditions, each prime p P S is ramified in the
p-elementary abelian extension K

T,p´el
S {K of KT

S{K.

Proof. — Observe first that if S2 Ă S 1, then VT
S1{Kˆp

ãÑ VT
S2{Kˆp.

Hence thanks to the choice of S0, it is not difficult to see the following: for every p P S,
VT

Sztpu{Kˆp is trivial. Then by Shafarevich’s formula, we get that

dpG
T
S “ 1 ` dpG

T
Sztpu,

showing that p is ramified in K
T,p´el
S {K.

Put αK,T “ 3 ` 2
a

2 ` r1 ` r2 ` |T |. In Theorem 1.15 one may take S sufficiently large
so that d “ dimH1pGT

S ,Fpq ą αK,T .

Lemma 1.17. — If d ą αK,T , then d ` r1 ` r2 ` |T | ´ 1 ă pd ´ cqpc ´ 1q for every
c P r2, ds.

Proof. — Easy computation.

Let us finish this part with an obvious observation thanks to class field theory.

Remark 1.18. — If GT
S is not trivial and of cohomological dimension at most 2, then

cdpGT
Sq “ 2.
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2. Example and proof

2.1. Example. — ‚ Take p ą 2, and K “ Q. In this case the relations of the pro-p
groups GS are all local, and then not difficult to describe: this is the description due to
Koch [9, Chapter 11, §11.4, Example 11.11].

Let ℓ be a prime number such that p|ℓ ´ 1. Denote by Qℓ the (unique) cyclic degree
p-extension of Q unramified outside ℓ; the extension Qℓ{Q is totally ramified at ℓ.

Let S “ tℓ1, ¨ ¨ ¨ , ℓdu be d different prime numbers such that p divides each ℓi´1. The pro-
p group GS can be described by x1, ¨ ¨ ¨ , xd generators, and ρ1, ¨ ¨ ¨ , ρd relations verifying:

ρi “
ź

j‰i

rxi, xjs
ajpiqmod F3,(1)

where ajpiq P Z{pZ; moreover the element xi can be chosen such that it is a generator of
the inertia group of ℓi. The element ajpiq is zero if and only the prime ℓi splits in Qℓj{Q,
which is equivalent to

ℓ
pℓj´1q{p
i ” 1pmod ℓjq.

‚ Typically take p “ 3, and S0 “ t7, 13u, T “ H. Then put S “ tp1, p2, p3, p4, p5u with
p1 “ 31, p2 “ 19, p3 “ 13, p4 “ 337, p5 “ 7. Then the highest terms of the relations (1),
viewed in Fnc

p rX1, ¨ ¨ ¨ , X5s, are pρ1 “ X1X3, pρ2 “ X2X4, pρ3 “ X2X3, pρ4 “ X1X4, pρ5 “
X1X5. Hence as the pρi’s are combinatorially free, then GS is of cohomological dimension 2

by Theorem 1.6.

Now for each n P Zą0, let us choose a prime number pn of Z such that the highest term in
Fnc
p vX1, ¨ ¨ ¨ , X5w of its Frobenius σn P GS is like X5X

n
4
X1 (which is possible by Example

1.5 or Corollary 1.13, see next section). Then consider the maximal Galois subextension
L{Q of QS{Q fixed by all the conjuguates of the τn’s (this is the “cutting towers” strategy
of [7]). Put G “ GalpL{Qq. Then the pro-3 group G can be described by the generators
x1, ¨ ¨ ¨ , x5, and the relations tρ1, ¨ ¨ ¨ , ρ5, τn, n P Zą0u (which is not a priori a minimal
set). By construction all the pn split totally in L{Q. Observe now that

t pρ1, ¨ ¨ ¨ , pρ5, pτn, n ě 1u “ tX5X1, X5X2, X4X3, X4X2, X5X3, X5X
n
4
X1, n P Zą0u,

which is combinatorially free. By Theorem 1.6 the pro-3-group G is of cohomological

dimension 2, H2pGq is infinite, and F3vGw has
`
1 ´ 5t ` 5t2 ` t3p1 ` t ` t2 ` ¨ ¨ ¨ q

˘´1
as

Poincaré series.

2.2. Proof of the main result. — ‚ Let p ą 2 be a prime number, and let K be
a number field. Let S0 and T two finite disjoint sets of prime ideals of K, where S0 is
tame. Take T sufficiently large such that ClTKppq is trivial. When K contains µp, assume
moreover that T contains all p-adic prime ideals.

First take S containing S0 as in Theorem 1.15, and sufficiently large such that d ą αK,T .
Put G “ GT

S . Here r “ dimH2pGq “ d ` r1 ` r2 ´ 1 ` |T |.

Let us start with a minimal presentation of G:

1 ÝÑ R ÝÑ F
ϕ

ÝÑ G ÝÑ 1.

By Theorem 1.15 and Theorem 1.11 the quotient R{RprF,Rs may be generated as Fp-
vector spaces by some relations ρ1, ¨ ¨ ¨ , ρr such that the highest terms pρk are like XiXj

for some i ď c ă j, where c “ dimV . Observe that as G is FAb then c P r2, d ´ 2s.
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Given n ě 1, then the quotient G{Gn`1 is finite. Put Kpn`1q “ pKT
SqGn`1 . Let an P Zą0 be

an increasing sequence. Let xn P FanzFan`1. By Chebotarev density theorem there exists
some prime ideal pn Ă OK such that σpn is conjuguate to xn in GalpKpan`1q{Kq. Here
σpn P G denotes the Frobenius of pn in KT

S{K. Now take zn P F such that ϕpznq “ σpn .
Hence

zn ” σpn pmod RFan`1q.

In other words, there exists yn P Fan`1 and rn P R such that zn “ σpnynrn.

Let Σ “ T Y tp1, p2, ¨ ¨ ¨ u, and consider KΣ

S the maximal pro-p extension of K unramified
oustide S and where each primes pi of Σ splits completely. Put GΣ

S “ GalpKΣ

S{Kq. Then

GΣ

S » G{xσpn , n P Zą0yNor.

Here xσpn , n P Zą0yNor is the normal closure of xσpn , n P Zą0y in GΣ

S . Hence KΣ

S satisfies
piq and piiq of Theorem A. But observe now that

G{xσpn , n P Zą0yNor » F{xρ1, ¨ ¨ ¨ , ρr, zn, n P Zą0y
Nor “ F{xρ1, ¨ ¨ ¨ , ρr, xnyn, n P Zą0yNor,

as σpn and xn are conjugate.

Since the highest term of each xnyn in E “ Fnc
p vX1, ¨ ¨ ¨ , Xdw is the same as the highest

term of xn, it suffices to choose the xn’s as in Corollary 1.13 which is possible: indeed
as d ą αK,T then by Lemma 1.17 r ă pc ´ 1qpd ´ cq, for every c P r1, d ´ 1s. Thanks to
Corollary 1.13, one gets piiiq, pivq, and pviq of Theorem A.

pvq: by Lemma 1.16 each prime ideal p P S is ramified in K
T,p´el
S {K, showing that τp P G

is not in RFprF,Fs, where τp is a generator of the inertia group at p in G. As the p-rank
of GΣ

S is the same as the p-rank of G, each prime p P S is ramified in KΣ

S . But as G

is without torsion (because cdpGq “ 2), necessarly xτpy » Zp, and the structure of local
extensions forces pKΣ

S qp{Kp to be maximal.

‚ Assume p “ 2, and K be totally imaginary. Then Theorem 1.15 holds, but Theorem
1.11 does not. As explained by Forré in [4, Proof Theorem 6.4], one has to take two
orderings to show that the highest terms of the relations ρ1, ¨ ¨ ¨ , ρr are strongly free.
Now in this context the strategy of the approximation of elements xn by some Frobenius
as in Corollary 1.13 also applies. Then by following the proof of Theorem 6.4 in [4], and
by choosing the xn’s as in the case p ‰ 2, we observe that the initial forms of the new
relations tρ1, ¨ ¨ ¨ , ρr, xn, n ě 1u are still strongly free. We conclude by using Remark 1.9
of Theorem 1.6.
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