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BACKGROUND: Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or met-
abolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory
approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling.
OBJECTIVES: In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consor-
tiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for
Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project
(CERAPP).
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METHODS: The CoMPARA list of screened chemicals built on CERAPP’s list of 32,464 chemicals to include additional chemicals of interest, as well
as simulated ToxCast™ metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contrib-
uted 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746
chemicals compiled from a combined data set of 11 ToxCast™/Tox21 HTS in vitro assays.
RESULTS: The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-
model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80%
for the evaluation set.

DISCUSSION: The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into
the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This
implementation was used to screen the entire EPA DSSTox database of ∼ 875,000 chemicals, and their predicted AR activities have been made available
on the EPACompTox Chemicals dashboard and National Toxicology Program’s Integrated Chemical Environment. https://doi.org/10.1289/EHP5580

Introduction
Humans are exposed to an increasingly high number of natural
and synthetic chemical substances (Dionisio et al. 2015; Egeghy
et al. 2012; Judson et al. 2009). These exogenous chemicals may
have the potential to cause adverse health effects to humans and
ecological species (Gray et al. 1997; Safe 1997). The endocrine
system regulates a fragile hormonal equilibrium, which might be
altered by chemicals that interfere with hormone signaling, e.g.,
by interacting with its different receptors. Over the last few deca-
des, endocrine-disrupting chemicals (EDCs) have been linked to
a large number of health issues, including neurological, develop-
mental, reproductive, cardiovascular, metabolic, and immune sys-
tem disorders (Colborn et al. 1993; Davis et al. 1993; Diamanti-
Kandarakis et al. 2009; European Environment Agency 2012;
Martin et al. 2010; Skakkebaek et al. 2011; WHO 2013). The
estrogen receptors (ER) and androgen receptors (AR) are among
the most studied targets, with a variety of in silico (Bolger et al.
1998; Judson et al. 2015; Waller et al. 1996), in vitro (Chang et al.
2015; Fang et al. 2000; Rotroff et al. 2010; Shanle and Xu 2011;
Soto et al. 1998), and in vivo (Kleinstreuer et al. 2015; Mueller and
Korach 2001; U.S. EPA 2011) EDC screening assays available.

The Endocrine Disruptor Screening Program (EDSP) of the
U.S. Environmental Protection Agency (EPA) is one of the larg-
est efforts to screen chemicals for endocrine-disrupting potential
(U.S. EPA 2014b; U.S. EPA-OCSPP 2014, 2015). However, the
time and cost to screen the approximately 10,000 chemicals
required by EDSP through the entire battery of ToxCast™ endo-
crine disruptor assays, estimated at ∼ $1millionUSD per chemi-
cal, is untenable (HSIA 2009; U.S. EPA 2013, 2015). The EDSP
has begun to address this resource issue by using in vitro high-
throughput screening (HTS) assays included in the EPA’s
ToxCast™ program (Dix et al. 2007; Judson et al. 2014; Kavlock
et al. 2012) and the interagency Tox21 collaboration (Tice et al.
2013) involving the EPA, the U.S. Food and Drug Administration
(FDA), the National Institutes of Health (NIH), and the National
Toxicology Program (NTP). These two programs include assays
that measure multiple steps of the ER and AR signaling pathways
following the typical nuclear receptor activation process (Judson
et al. 2018). Note that the ToxCast™ program also includes a ster-
oidogenesis assay in the H295R cell line, measuring perturbations
levels of multiple hormones, including testosterone (Haggard et al.
2018; Karmaus et al. 2016). However, the current work does not
use this information.

In vitro HTS assays are faster and more cost-effective than
traditional in vivo toxicity testing, and they avoid the ethical con-
cerns associated with animal tests. However, no single assay is
currently sufficient (due to lack of accuracy, cytotoxicity, solubil-
ity issues, etc.) to screen all classes of chemicals for a given mo-
lecular target and activity mode (e.g., agonist or antagonist) for
an accurate evaluation of potential harm to human health and the
environment (Judson et al. 2015, 2018). Therefore, it has been
necessary to develop batteries of assays covering various aspects

and steps of the ER and AR pathway signaling processes, which
increases the time and costs that are necessary to run and analyze
the data. Also, such assays are not applicable to chemicals that
are still in the molecular development and optimization phases.
Thus, a prioritization of existing chemicals and a virtual screen-
ing of new ones being designed are necessary steps to provide
knowledge about chemicals with little or no known experimental
data (Judson et al. 2018). With the recent technological advances
in computational resources and machine learning algorithms, in
silico approaches, such as quantitative structure–activity relation-
ships (QSARs), are particularly appealing as fast and economical
alternatives for their ability to accurately predict toxicologically
relevant end points (Dearden et al. 2009; Worth et al. 2005).
These methods are based on the congenericity principle, which is
the assumption that similar structures are associated with similar
biological activity (Hansch and Fujita 1964).

The use of computational methods to screen and prioritize
chemicals for endocrine activity has been already initiated at the
EPA’s National Center for Computational Toxicology (NCCT),
the EPA Office of Science Coordination and Policy, and the NTP
Interagency Center for Evaluation of Alternative Toxicological
Methods (NICEATM), with a special focus on ER and AR. Starting
with ER, a total of 18 ToxCast™ and Tox21 in vitro assays targeting
the main estrogen-signaling steps (three cell-free radioligand bind-
ing assays; six dimerization assays using both ERa and ERb; two
DNA binding assays; two RNA transcription assays; two agonist-
mode protein expression assays; two antagonist-mode protein
expression assays; and one cell proliferation assay) were run on a
library of 1,855 ToxCast™ chemicals (Richard et al. 2016). Then, a
mathematical pathway model combined the results into a unique
area under the curve (AUC) score [0–1] overcoming the limitations
of single assays (assay interference and cytotoxicity) as an estimate
of ER pathway activity (Judson et al. 2015). These in vitro model
scores were then used by a consortium of 40 scientists from17 inter-
national research groups, coordinated by NCCT, in the framework
of the Collaborative Estrogen Receptor Activity Prediction Project
(CERAPP) (Mansouri et al. 2016a) to develop models for ER bind-
ing, agonist, and antagonist activity. A total of 48 QSAR and dock-
ing predictive models were developed, which were evaluated using
an external set from the literature and subsequently combined into
consensus models. The consensus models were then used to virtu-
ally screen a library of 32,464 unique chemical structures compiled
from different lists of interest to the EPA, which identified approxi-
mately 4,000 chemicals with evidence of ER activity (Mansouri
et al. 2016a). CERAPP demonstrated the possibility of screening
large lists of environmentally relevant chemicals in a fast and accu-
rate way by combining multiple modeling approaches to overcome
the limitations of single models (Mansouri et al. 2016a). In addition
to the collected data and the screened list of chemicals, this project
also provided a successful collaboration example to follow for using
large amounts of high-quality data inmodel-fitting and rigorous pro-
cedures for the development, validation, and use of efficient and
accurate methods to predict human or environmental toxicity while
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reducing animal testing. Its workflows are now being applied to
other collaborativemodeling projects for different toxicological end
points such as acute oral systemic toxicity (Kleinstreuer et al.
2018b).

Here, we describe a modeling project that aimed to virtually
screen chemicals for their potential AR activity. The template pro-
cess established by CERAPP was adopted to tackle the ARmodel-
ing project. First, a multiassay AR pathway model was developed
based on the results of 11 assays covering the androgen signaling
pathway and combining the in vitro results into an AUC score rep-
resenting the whole AR activity to mimic the in vivo results
(Kleinstreuer et al. 2017). These assayswere run on the same initial
library of 1,855 ToxCast™ chemicals that the ER assays were run
on, and the developed pathway model was validated using refer-
ence chemicals with known in vitro results from the literature
(Kleinstreuer et al. 2017) and further comparedwith a set of chemi-
cals with reproducible results in vivo (Browne et al. 2018;
Kleinstreuer et al. 2018a). Note that the goal of this project is to
predict in vitro AR activity. There is significant discrepancy
between in vitro AR activity and the results of the in vivo
Hershberger assay, especially for antagonist mode. However, as
demonstrated by Kleinstreuer et al. (Kleinstreuer et al. 2018a),

most of these discrepancies are due to the in vivo activity occurring
at internal concentrations well above the upper limit of testing in
the in vitro assays (100 lM). The resulting AR pathway activity
AUC scoreswere used as a training set in a largeARmodeling con-
sortium called the Collaborative Modeling Project for Androgen
Receptor (CoMPARA).Collaborators from25 international research
groups (Supplemental Material S1) contributed a total of 91 qualita-
tive and quantitative predictive QSAR models for binding, agonist,
and antagonist AR activities. The total list of chemicals that
CoMPARA participants screened using their models comprised
55,450 chemical structures, including CERAPP chemicals and
ToxCast™-generated metabolites (Leonard et al. 2018; Pinto et al.
2016). These predictions were evaluated using curated literature data
sets and then combined into binding, agonist, and antagonist consen-
susmodels. Both CERAPP andCoMPARAprojects were collabora-
tions between the participants, aiming to build the best collective
consensus rather than competing for the best single model. We also
describe the procedure of extending CERAPP and CoMPARA con-
sensus models beyond their original lists that was used in the screen-
ing of the entire EPA DSSTox database (https://comptox.epa.gov/
dashboard; Grulke et al. 2019) and other chemicals of interest that
are structurally similar to the initial lists (Williams et al. 2017).

Figure 1.Workflow of the project defining the major steps and the different data sets used for training, evaluation, and prediction.
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Materials and Methods
CoMPARA followed the template defined by the CERAPP
research effort, taking into account the learnings and best practices
to update scripts and workflows applied to AR data (Mansouri et al.
2016a). The steps were as follows:

1. Preparation of the AR pathway data as derived from the bi-
ological model using the 11 ToxCast™ assays (Kleinstreuer
et al. 2017), which formed the basis of a common training
set.

2. Compilation of the prediction set, which was the list of
chemicals to be screened by the collaborators.

3. Collection and curation of an external evaluation set, which
comprised data extracted from the literature to be used for
evaluating the predictive ability of the models (mostly for
verification purposes and not to compare models), per-
formed in parallel with themodel building efforts.

4. Model evaluation process and generation of consensus pre-
dictions once all models were submitted.

5. Validation and extension of the consensus models for future
screening procedures.

Figure 1 represents the workflow of the project and the genesis
of the different chemical sets (training, evaluation, and prediction).

Data Sets
A number of different data sets were created and applied at various
stages of the project, described in detail below. First, a common
training set was compiled and provided to the participants to fit
their models. Subsequently, participants were provided a predic-
tion set consisting of the list of chemicals to be screened using their
models. While modelers were fitting the training set, other data
were being collected and curated from the literature to be used as
an evaluation set to assess the predictive ability of themodels.

Training Set, the ToxCast™ AR Pathway Model
Aswas done for ER, theAR in silico efforts startedwith the develop-
ment of a multiassay in vitromodel covering the signaling pathway.
A battery of 11ToxCast™/Tox21 in vitro assayswere selected: three
receptor binding, two cofactor recruitment, one RNA transcription,
three agonist-mode protein production, and two antagonist-mode
protein production (Judson et al. 2018; Kleinstreuer et al. 2017). One
of the antagonist mode assays was run with two different concentra-
tions of the stimulating ligand to provide confirmation data for
receptor-mediated activity and to further distinguish true antagonist
pathway activity from cell stress or cytotoxicity-mediated loss of
function. The 1,855 ToxCast™ chemicals were run through these
assays and the resulting data were combined using a mathematical
model to yield a uniqueAUCscore forAR agonist and antagonist ac-
tivity (Kleinstreuer et al. 2017). This score was used in combination
with a confidence score derived from confirmation assay data (using
a higher concentration of the activating ligand to characterize com-
petitive binding) and a bootstrapping procedure so that chemicals
with anAUC of at least 0.1 (corresponding to activity concentrations
up to 100 lM) were considered actives, chemicals with AUC less
than 0.001 were considered inactives, and the remaining chemicals
were considered inconclusive (Kleinstreuer et al. 2017). This model,
accounting for assay interference and cytotoxicity, was validated
using 54 reference chemicals from the literature (Kleinstreuer et al.
2017). Because the AUC scores are available only for agonist and
antagonist activity, for the purpose of this project (as well as in
CERAPP previously) a chemical was considered to be a binder if it
were either an active agonist or antagonist.

This high-quality data set covering the AR signaling pathway,
however, contains a very low fraction of actives: approximately
10% antagonists and only 2% agonists. Because this bias toward

inactives can be challenging for modelers, a literature search was
conducted to identify additional actives. However, with the lack
of sources matching our data (whole AR pathway activity), a list
of only 15 active chemicals (13 agonists and 2 antagonists) col-
lected from DrugBank was added to the data set (Wishart et al.
2008). Being pharmaceuticals, these chemicals were assigned an
AUC score of 1 as strong actives, even though they were not
tested in the 11 ToxCast™ assays.

The KNIME (Konstanz InformationMiner) chemical structure
standardization workflow developed for CERAPP was applied to
the available structures and generated a total of 1,688 unique, or-
ganic, desalted QSAR-ready structures (Mansouri et al. 2016a;
McEachran et al. 2018).

The resulting three data sets (binding, agonist, and antagonist;
Table 1) were provided to the modelers in three separate two-
dimensional structure data files (2D SDFV2000) with QSAR-ready
standardized structures in both Simplified Molecular Input Line
Entry System (SMILES) and molecular format with atom coordi-
nates (MOL) formats. The three-dimensional (3D) structures were
also generated by energy minimization using MMFF94 force field
and provided as 3D structure datafile (sdf) (V2000) files. In both the
2D and 3D files, area under the curve (AUC) values were provided
with the corresponding activity class (binary) and converted concen-
tration values (AC50) indicating potency (Judson et al. 2015). In
addition to the structures and data, each chemical was also given an
associated CASRN, DTXSID identifier, preferred name, standar-
dized InChI code, and a hashed InChI key of the Quantitative
Structure-Activity Relationship (QSAR)-ready structures.

Each one of these data sets (available in Supplemental Material
S2) could be used to build either continuous models predicting
AUC values or categorical models predicting active and inactive
classes. A list of chemicals in these three data sets could be consid-
ered false negatives thus, could be removed by the participants dur-
ing the modeling procedures. These potentially inconclusive
chemicals (available in Supplemental Material S3) consisted of 21
chemicals from binding, 8 from agonist, and 14 from antagonist.
Further filtering based on clustering or other structure-based analy-
sis was recommended to reduce the number of inactives and to
decrease the bias between the two classes. The ToxCast™-derived
data sets (provided in SDF file format), as well as the removed
chemicals were made available for download at https://doi.org/
10.23645/epacomptox.10321697.

Prediction Set, Structure Collection, and Curation of
Lists of Interest
The initial CERAPP list was compiled from a library of over
50,000 chemicals that humans are potentially exposed to from lists
of toxicological and environmental chemicals of interest. Themain
lists included the EPA’s Chemical and Product Categories data-
base (U.S. EPA 2014a), the first version of the EPA’s Distributed
Structure-Searchable Toxicity Database (DSSTox) (Richard et al.
2016; Richard and Williams 2002), and the Canadian domestic
substance list (Environment Canada 2012). This library contained
a total of 42,679 chemicals with known organic structures that, af-
ter QSAR-ready standardization procedure and duplicates re-
moval, was collapsed to 32,464 unique structures known as the
CERAPP list (Mansouri et al. 2016a).

Table 1. Training set chemicals for binding, agonist and antagonist data sets.

Number of Binding Agonist Antagonist

Actives 198 43 159
Inactives 1,464 1,616 1,366
Total 1,662 1,659 1,525
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In CoMPARA, in addition to the lists included in CERAPP, we
used the European inventory of existing commercial chemical sub-
stances (EINECS) containing ∼ 60,000 chemicals as a list of inter-
est for in silico screening. We also incorporated ToxCast™
metabolites in the prediction set that had been generated as part
of related ER studies (Leonard et al. 2018; Pinto et al. 2016). The
goal of including metabolites in the CoMPARA project was to
understand the effect of xenobiotic metabolism, which is lacking in
most in vitro assays. For ER screening efforts, this step was con-
ducted post CERAPP in two different studies generating a total of
15,406metabolite structures for ToxCast™ parent chemicals using
ChemAxon Metabolizer (discontinued 2018) (ChemAxon, Ltd.)
(Leonard et al. 2018; Pinto et al. 2016). After QSAR-ready stand-
ardization and removal of duplicates, the CoMPARA list consisted
of 55,450 QSAR-ready structures with unique CoMPARA integer
IDs, including 6,592 nonredundant metabolite structures. This list
matches 63,848 original (pre-QSAR-ready) chemical structures in
the EPA’s DSSTox database, excluding themetabolites.

The CoMPARA chemical prediction set was provided in 2D
and 3D SDF files. Data provided for each chemical included
CoMPARA_IDs; structures in SMILES, MOL, and InChI code;
and hashed InChI key formats for all chemicals. CASRNs,
names, and DSSTox DTXSIDs were also provided when avail-
able. This list of chemicals (identifiers and structures in SMILES
format) is provided in Supplemental Material S4. The two
QSAR-ready files as well as the original (prestandardization)
structures file were made available for download at https://doi.
org/10.23645/epacomptox.10321697.

Evaluation Set, Literature Search, and Curation
To assess the developed models and their predictivity, an evalua-
tion set with new chemicals (nonoverlapping with the training set)
is required. Ideally, this new set would be the result of the same
mathematical pathway model combining the 11 assays as that used
for the training set. Because such a data set was not available, we
decided to use data from the literature. Because the project was not
a competition and the goal of this step was not to provide an in-
depth comparison of the models, literature data could still be used
to provide quality assessment and check for errors.

Large amounts of experimental data are available in the
PubChem repository and related data sources. However, such public
sources of chemical-biological data have varying levels of quality
control, so additional curation and standardization are necessary
(Williams andEkins 2011). The EPA’s NCCTcollected and curated
PubChem data (64 sources), restructured it, and mapped the bioac-
tivity values to related biological targets. In this effort, we started
with ∼ 80,000 experimental values for AR activity, which mapped
to about ∼ 11,000 chemicals that we grouped by modality (agonist,
antagonist) and hit call (active, inactive). To improve the consis-
tency between the different PubChementries and to add bindingmo-
dality, three rules were applied:

• In the case of multiple records for a test chemical, a mini-
mum concordance of two out of three assay results was
required to assign a positive activity score.

• An active agonist or antagonist was considered a binder.
• Inactive agonists and antagonists were considered nonbinders.
The KNIME standardization workflow referenced earlier

was applied to the chemical structures (Mansouri et al. 2016a;
McEachran et al. 2018). After removing ToxCast™ chemicals
(used for the training set), the generated standard InChI codes
matched 7,281 chemicals from the CoMPARA list (prediction
set). This list of 7,281 chemicals, with associated data extracted
from the literature, was used as the evaluation set. The removed
ToxCast™ chemicals were mostly associated with ToxCast™
data only. The evaluation set chemicals were split into three

data sets based on the available experimental data. The resulting
lists included 4,839 structures for agonist, 4,040 for antagonist,
and 3,882 for binding. The numbers of active and inactive
structures are summarized in Table 2.

AC50 values (lM)were available for 405 chemicals in the bind-
ing data set, 167 chemicals in the agonist data set, and 340 chemicals
in the antagonist data set. This process of preparing the evaluation
set was conducted in KNIME. These three data sets (identifiers and
structures in SMILES format) are provided in Supplemental
Material S5. The SDF files have been made available for download
at https://doi.org/10.23645/epacomptox.10321925.

Participants and Modeling Methods
CoMPARA participants included a total of 70 scientists from 25
international research groups representing academia, governmen-
tal institutions, and industry (See Supplemental Material S1),
including 15 groups that were involved in the related CERAPPpro-
ject. The participating groups were located in 11 different coun-
tries. The modelers were encouraged to use the provided training
set and, preferably, apply free and open-source software tools that
included detailed descriptions of the used methods and the
employed applicability domain assessment. However, the applica-
tion of proprietary commercial tools was also allowed. The different
molecular descriptor calculation tools and the various modeling
approaches employed are summarized in Tables 3 and 4. Some of
the groups collaborated with each other to submit common models.
To produce more balanced data, most participants applied under-
sampling approaches to reduce the number of inactive chemicals.
For further details on themethods and approaches, see the full list of
files submitted by the individual groups at https://doi.org/10.23645/
epacomptox.10321982. Certain participants developed additional

Table 2. Evaluation set chemicals for binding, agonist, and antagonist data
sets.

Number of Binding Agonist Antagonist

Actives 453 167 355
Inactives 3,429 4,672 3,685
Total 3,882 4,839 4,040

Table 3.Modeling approaches applied by the participating groups.

Abbreviation* Approach
Reference to specific method,

if published

ANN Artificial neural networks —
ASNN Associative artificial neural

networks
Tetko 2002; Tetko and
Tanchuk 2002

DF Decision forest Hong et al. 2005, 2004; Tong
et al. 2003; Xie et al. 2005

DT Decision trees —
GBM Gradient boosting method Berk 2008; Mazanetz et al.

2012
HC Hierarchical clustering Martin et al. 2008
kNN k nearest neighbors Cover and Hart 1967;

Kowalski and Bender 1972
LDA Linear discriminant analysis —
MLR Multilinear regression —
NB Naïve Bayes Murphy 2006
PLS Partial least squares Wold et al. 2001
PLSDA Partial least squares

discriminative approach
Frank and Friedman 1993;
Nouwen et al. 1997

RBF Radial basis function Zakharov et al. 2014
RF Random forest Breiman 2001
SCR Self-consistent regression Lagunin et al. 2011
SVM Support-vector machines Cortes and Vapnik 1995

Note: —, No data.
*Approaches are sorted alphabetically by acronym.
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models and published them or expressed their intent to publish them
as separatemanuscripts.

Evaluation Procedure
To ensure consistency and repeatability of the results, all molecular
structures associated with the chemicals in the three data sets
described above (training set, prediction set, and evaluation set)
were processed using the same standardization workflow. This
workflow was designed so that chemicals with the same standar-
dized QSAR-ready structures would automatically have the same
computational predictions (Fourches et al. 2010, 2016; Mansouri
et al. 2016a). Thus, chemicals from the different data sets could be
matched using their respective QSAR-ready standard InChI codes.

After all predictions were made on the prediction set, the over-
lapping chemicals with the evaluation set were used to evaluate the
performance of the submitted models. The goal of this evaluation
was not only to assess model accuracy but also to check for substan-
tial procedural errors that could arise, such as mismatches among
chemical identifiers, structures, and associated data. This step was
intended to process the qualitative and the quantitative predictions
separately. Only predictions within the applicability domain (AD),
if provided, were considered, and there was no penalty for models
with narrowAD. Themain evaluation criteria were:

• Goodness-of-fit: statistics of the training set.

• Predictivity: statistics of on the evaluation set.
• Robustness: balance between goodness-of-fit and predictive
ability.
Each of these three criteria was assigned a weight resulting in

a score (S) ranging from 0 to 1

S=0:3× ðGoodness of fitÞ+0:45

× ðPredictivityÞ+0:25× ðRobustnessÞ: (1)

This score was not intended to rank the models but was
designed by the organizers of the consortium mainly to evaluate
the models’ predictivity and provide a rational basis to combine
the predictions into a consensus in a later step. The weights were
assigned to the different components in a way to give priority to
the predictive ability on the evaluation set but not too high in
comparison with the training set statistics because of the differ-
ence between the two sets. The robustness or balance between
the two was given the third rank but just slightly less weight than
the goodness of fit because it highlights overfitting, which is
almost as important a factor as fitting. However, a slightly differ-
ent weight would most probably lead to the same results. To
ensure equal contribution from the participants, the evaluation
score accounted neither for the fraction of predicted chemicals
nor the coverage of the AD, if provided.

Table 4. Tools and methods applied by the participating groups.

Group* Methods** Descriptors/tool Training and test sets Model type Reference (if published)

ATSDR_IRFMN ANN+SVM+DT ADMET+DRAGON 7 ToxCast™ Qualitative Manganelli et al. 2019
CMPLI RF+kNN+NB+SVM

MLR+PLS+
ANN+RF

MOE 3D ToxCast™ Qualitative +
quantitative

NA

DTU PLR Leadscope ToxCast™, under sampling Qualitative NA
ECUST SVM PaDEL ToxCast™ Qualitative NA
IBMC SCR QNA+MNA+PhysChem

properties (topological length,
volume and lipophilicity) +
PASS

Qualitative Filiminov et al. 2009

IDEA RF Ambit ToxCast™+ExC APE-DB Qualitative Sun et al. 2017
INSUBRIA_
LANZHOU

kNN+LDA+SVM+
RF+DT

RdKit +DRAGON ToxCast™, under sampling Qualitative NA

IRFMN SARpy (Structural alerts) ToxCast™+AR RBA Qualitative Ferrari et al. 2011;
Manganelli et al. 2019

LM Qualitative +
quantitative

NA

NCATS Docking+ QNA+Keras Theano+
DOCK+OpenEye+MOEDock

ToxCast™ Qualitative Filimonov et al. 2009

NCCT kNN+PLSDA PaDEL ToxCast™ Qualitative NA
NCSU RF ToxCast™ Qualitative NA
NCTR_DUT DF Mold2 ToxCast™, under sampling Qualitative NA
NRMRL SVM+HC TEST ToxCast™, under sampling Qualitative NA
SWETOX RF RDKit ToxCast™ Qualitative Carlsson et al. 2014;

Norinder and Boyer
2016

TARTU-1&2 SVM RDKit ToxCast™, under sampling Qualitative NA
TUM MLR+ CDK ToxCast™ Qualitative +

quantitative
NA

UFG GBM RDKit ToxCast™, under sampling Qualitative NA
UMEA ASNN OCHEM ToxCast™ Qualitative NA
UNC RF+RBF DRAGON ToxCast™, under sampling Qualitative NA
UNIBA Docking GOLD ToxCast™, under sampling Qualitative Trisciuzzi et al. 2017
UNIMIB kNN+NB+RF DRAGON ToxCast™, under sampling Qualitative Grisoni et al. 2019,

Todeschini et al. 2015
UNISTRA SVM ISIDA ToxCast™ Qualitative +

quantitative
NA

VCCLAB ASNN+ OCHEM, models are available at
http://ochem.eu/article/102271

ToxCast™ Qualitative +
quantitative

Sushko et al. 2011

*Groups are listed alphabetically by group acronym. See Supplemental Material 1 for full group names.
**Methods names as provided in Table 3.
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For the qualitative models, this general formula was translated
into commonly used classification parameters as discussed below.
However, for the quantitative models, the predictions based on
the training set data (ToxCast™ AUC values) were different
from those of the evaluation set data (AC50 values). To ensure
consistency and validity of the evaluation procedure, the qualita-
tive and quantitative models and predictions were processed sep-
arately as explained below.

Qualitative Evaluation Procedure
The categorical predictions were evaluated using statistical indi-
ces commonly proposed in the literature (Ballabio et al. 2018).
These indices are calculated from the confusion matrix, which
collects the number of samples of the observed and predicted
classes in the rows and columns, respectively. The classification
parameters are defined using the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN). The resulting parameters were the balanced accuracy (BA),
specificity (Sp), and sensitivity (Sn) calculated as follows:

The BA is given by:

BA=
Sn+ Spð Þ

2
, (2)

where the sensitivity (Sn), or true positive rate (TPR) is given by:

Sn=
TP

TP+FN
, (3)

and the specificity (Sp), or true negative rate (TNR) is given by:

Sp=
TN

TN +FP
: (4)

For classification models, not only is the average of the Sn
and Sp explained by the BA important, but also the balance
between them. Therefore, to fully assess the predictivity of the
models, the three criteria are included in the general scoring func-
tion S, calculated as follows:

Goodness of fit = 0:7× ðBATrÞ+0:3× ð1− jSnTr − SpTrjÞ,
ð5Þ

Predictivity = 0:7× ðBAEvalÞ+0:3× ð1− jSnEval − SpEvaljÞ,
ð6Þ

Robustness = 1− jBATr −BAEvalj, ð7Þ
where Tr stands for training set and Eval stands for evaluation
set, attributing weight not only to the BA but also to the balance
between Sn and Sp to account for the reliability of the model in
predicting actives as well as inactives.

Quantitative Evaluation Procedure
Active chemicals with available quantitative information (AC50
values) from the mined literature sources (405 chemicals in the
binding data set, 167 chemicals in the agonist data set and 340
chemicals for the antagonist data set) were considered for this step
to evaluate the quantitative models’ predictivity. The analysis of
the quantitative results conducted during the CERAPP project
showed some differences between the AC50 values collected from
the literature and the AC50 values converted from the predicted
AUC scores. These differences include the fact that the AUC
scores represented the results of multiple assays that were com-
bined to overcome assay interference and cytotoxicity, whereas the

literature data is a one source per assay most of the time. In addi-
tion, the ToxCast™ assays’ limiting dose of 100 lM makes these
assays insensitive to “veryweak” actives that are reported in the lit-
erature to have AC50 values beyond that threshold. Thus, to con-
duct a quantitative evaluation of the predictions using the literature
data without underestimating the accuracy of the predictions, the
two types of results needed to be converted to a more consistent
data type. The multiclass approach presented in this work convert-
ing both the literature data and the predicted AUC values to five
categories with approximately similar potencies was built on the
CERAPP approach (Mansouri et al. 2016a). This approach is com-
monly used in the QSAR field to predict end points that are hard to
model on a continuous scale and to avoid underestimating predic-
tivity (Benigni 2003; Dunn 1990; Kowalski 2013; Waterbeemd
2008). This approach was applied in CoMPARA to avoid the same
problem when evaluating the models that were trained on the
ToxCast™-based AR pathway model (AUC values) using litera-
ture data. Both literature (evaluation set chemicals with quantita-
tive information) and predicted data sets were categorized into five
potency activity classes: inactive, very weak, weak, moderate, and
strong [example reference chemicals with different potency levels
are available in Judson et al. and Kleinstreuer et al. (Judson et al.
2015; Kleinstreuer et al. 2017)]. These five classes were used to
evaluate the quantitative predictions.

The thresholds determined in the CERAPP project were applied
to the concentration-response values (AC50) from the literature:

• Strong: Activity concentration below 0:09 lM
• Moderate: Activity concentration between 0.09 and 0:18 lM
• Weak: Activity concentration between 0.18 and 20 lM
• Very Weak: Activity concentration between 20 and 800 lM
• Inactive: Activity concentration higher than 800 lM
For the training set, the AUC values were converted into five

potency classes based on the following thresholds:
• Strong: AUC equal to or above 0.75
• Moderate: AUC between 0.75 and 0.65
• Weak: AUC between 0.65 and 0.25
• Very weak: AUC between 0.25 and 0.09
• Inactive: AUC below 0.09
Although the ToxCast™ single assays were limited to a maxi-

mum concentration of 100 lM, similar to CERAPP, active chemi-
cals with an AUC score below 0.25 are considered “very weak.”
However, for the lack of chemicals in the 0.25 to 0.5 AUC range
(weak in CERAPP), this arbitrary range for weak actives was
extended to 0.65. The five classes were assigned labels from 1
(inactive) to 5 (strong), and then the models were evaluated as mul-
ticlass categorical models in binding, agonist, and antagonist modes
separately. The above-mentioned formulas for calculating Sn, Sp,
and BA were applied to each of the classes, and then the average
values (for the five classes) were inserted into the scoring function.

Consensus Modeling
After being evaluated separately according to the defined strat-
egy, each model was given a score (S) for predictions within its
AD. This score was used in the consensus modeling step as a
weighting factor. Using these weights, the predictions within the
AD of the submitted models were combined into a single consen-
sus model separately for each modality (binders, agonists, and
antagonists). For each chemical in the prediction set, the consen-
sus category was decided by the weighted majority rule: the
chemical was assigned the class with the highest average score of
the models predicting it (class with the highest average score was
selected). This average score excluded the models that did not
provide a prediction for the chemical in question.

The consensus model predictions were evaluated using the
same evaluation set and procedure used to evaluate the individual
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models, and their performances were compared to the single
models. Analyses of the accuracy trends and concordance (frac-
tion of consistent predictions) among the predictions of the differ-
ent models were also conducted. Considering only the models
that provided predictions, the sum of the concordance among
models for actives and inactives should be equal to 1.

Generalization of the Consensus and Implementation in
OPERA
To use the consensus models beyond the initial prediction set, the
combined predictions were used to train generalizedmodels capable
of replicating the original consensus. This procedure was achieved
by applying a weighted k-nearest-neighbor (kNN) approach to fit
the classification models based on the majority vote of the nearest
neighbors. This approach has the advantage of resembling read-
across, which is a broadly accepted data-gap filling tool in regula-
tory agencies (Ball et al. 2016; Patlewicz et al. 2017). In addition,
kNN models can also satisfy the five OECD principles for QSAR
modeling due to their nonambiguous algorithm, high accuracy, and
interpretability (Buttrey 1998; Cover and Hart 1967). Furthermore,
being distance-based (dissimilarity), the weighted kNN approach
fits the purposes of extending the consensus predictions to new
chemicals and providing the exact same prediction for the chemicals
that already have a consensus model prediction. This goal is
achieved by considering the first nearest-neighbor prediction if the
distance is zero (100% similarity). An applicability domain index is
also provided to assess the similarity of the predicted chemical to
the nearest neighbors.

PaDEL (version 2.21) and CDK (version 2.0) were used to cal-
culate two-dimensional molecular descriptors (Guha 2005; Yap
2011). Because PaDEL uses a previous version of CDK (1.5),
overlapping descriptors between it and CDK2 were excluded. The
union of the PaDEL descriptors (1,444) and CDK2 (287) resulted
in a total of 1,616 variables that were later filtered for low variance
andmissing values.

Here, kNN was coupled with genetic algorithms (GA) to select
a minimized optimal subset of molecular descriptors. GA begins
with an initial random population of chromosomes, which are bi-
nary vectors representing the presence or absence of molecular
descriptors. An evolutionary process is then simulated to optimize
a defined fitness function and new chromosomes are obtained by
coupling the chromosomes of the initial population with genetic
operations such as crossover and mutation (Ballabio et al. 2011;
Leardi and Lupiáñez González 1998).

The best models were selected and implemented in OPERA,
a free and open-source suite of QSAR models (Mansouri et al.
2016b, 2018). Both OPERA’s global and local AD approaches,
as well as the accuracy estimation procedure, were applied to the
predictions (Mansouri et al. 2018). The global AD is a Boolean
index based on the leverage approach for the whole training set,
whereas the local AD is a continuous index in the [0–1] range
based on the most similar chemical structures from the training
set (Mansouri et al. 2018).

Results and Discussion

Received Models
There was a total of 91 models submitted by the participating
groups. Each submission consisted of predictions for the full or
fraction of the prediction set using one or multiple models, as well
as the related documentation with various levels of detail. All sub-
mitted results for the prediction set are provided in Supplemental
Material S6. The full list of files submitted by the participants is
available at https://doi.org/10.23645/epacomptox.10321982. The

submissions included categorical and continuous predictions from
binding, agonist, and antagonist models as shown in Table 5.

The number of categorical models submitted greatly exceeded
the number of continuous models. This difference is due to the dif-
ficulty of modeling the low number of AUC values greater than
zero in the provided training set (ToxCast™ data). All participating
groups provided at least one binding model. Thus, the number of
binding models is higher than the number of either agonist or an-
tagonist models. This higher number is also due to the biased train-
ing data, which included low numbers of active agonists and
antagonists. As described above, the number of active binders is
the union of both active agonists and antagonists.

Results of the Evaluation Procedure
The evaluation procedure described above was applied to the cat-
egorical and continuous predictions provided by the participants.
The goal of this step was to assess the accuracy of the predictions
that, in a later step, were combined into the consensus models.
Thus, the evaluation procedure was not designed to reflect the
uneven coverage of the prediction set, and application of an AD
was encouraged.

The first application of this evaluation procedure revealed
models that suffered from mishandling of data that might occur
during the modeling process. Such errors led to a severe decrease
in prediction accuracy and included mismatches between the IDs
of the prediction set chemicals and their associated predictions,
as well as misinterpretation (inverting or mismatching) of the dif-
ferent fields contained in the provided files (training and predic-
tion sets) introduced by certain automated procedures. Because
the goal of the project was not to compete, but rather to collabo-
rate, the submitters of the models with such issues were notified
to correct them to allow for a better contribution toward the con-
sensus. The final, corrected submissions were used to produce the
statistics provided in Supplemental Material S7. The results of
the evaluation procedure, discussed below, are also available at
https://doi.org/10.23645/epacomptox.10321994.

Qualitative Models
As mentioned earlier, all participating groups built categorical
binding models. Furthermore, certain groups, such as IRFMN
and ATSDR, collaborated with others to provide additional mod-
els (Manganelli et al. 2019). For binding activity, ∼ 85% of the
models achieved a BA above 0.8 for the training set, and about
70% of them achieved a BA above 0.7 for the evaluation set. On
average, the BA of most models decreased ∼ 15% for the evalua-
tion set relative to the training set. We consider this decrease to
be negligible based on the differences between the training set
data (which are based on the AUC values of the ToxCast™ AR
pathway model that combines multiple assays) and the evaluation
set data (which are consensus hit calls from the literature or rely
on only one record for a particular chemical with unknown repro-
ducibility). With this high predictivity and balance between train-
ing and evaluation set performance increasing their robustness,
∼ 75% of the binding models reached a score of 0.75.

The agonist models showed a higher performance in compari-
son with the binding models. Indeed, all agonist models had a
training BA above 0.8, and 95% of them achieved a BA above

Table 5. Summary of the submitted models.

Number of Categorical Continuous Total

Binding 35 5 40
Agonist 21 5 26
Antagonist 22 3 25
Total 78 13 91
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0.75 on the evaluation set. This performance brings the average
difference between training and test BA down to 0.1, indicating
lower risk of overfitting. Most (∼ 95%) of the agonist models
achieved a score above 0.85 (Figure 2).

Although the data sets contained more active antagonists in
comparison with agonists, the general performance of the antago-
nist models was inferior. This inferiority was reflected in the
evaluation set performance, because only two models reached a
BA of 0.75, which affected their robustness (0.24 average differ-
ence between the training and evaluation BAs). However, the av-
erage and median scores reached 0.78 and 0.79 respectively,
which shows high general performance of the models (Figure 2).

Most of the submitted categorical models (agonist, antagonist,
and binding) provided predictions for the majority of the predic-
tion set chemicals (>90%). Some of the participants who submit-
ted more than one model, such as NCATS and UNIMIB, opted
for a low coverage with high accuracy and a high coverage with
lower accuracy. Additional details about the performance of the
models is provided in Supplemental Material S7.

Quantitative Models
The quantitative models were converted into multiclass categori-
cal models as described in the Methods section. The overall per-
formance of the thirteen models across the three modalities
(agonist, antagonist, and binding) was lower than that of the bi-
nary categorical models. The binding models performed a bit bet-
ter than the agonist and antagonist models. Indeed, four binding
models out of five obtained a score above 0.6, whereas only one
agonist and one antagonist model performed that well (Figure 3).
The predictive accuracy of these models was also assessed on the
five classes separately (details available in Supplemental Material
S7). This analysis showed that most models exhibited BAs of
approximately 0.5 for the five classes, with the binding models
exhibiting slightly better performance (0.7–0.78) in identifying
inactives.

Consensus Modeling
Based on their low number and average performance in compari-
son with the categorical models, the recommendation would be
that the continuous models should be used individually. A

continuous consensus model can be derived only from a more
concordant set of models. Thus, for the sake of accuracy and con-
sistency of the predictions, only the categorical models were con-
sidered for the consensus step. Before combining the categorical
predictions into a consensus, we checked the coverage and con-
cordance among the models. As shown in Figure 4, all chemicals
in the prediction set are covered by at least 11 models. Moreover,
most chemical structures can be predicted by 18–20 agonist and
antagonist models. For binding, most chemicals were predicted
by 28–31 models. This high coverage provides a good basis for
the consensus model and strengthens the statistical relevance of
the combined predictions.

The concordance among the models is also an important crite-
rion for combining the predictions. In fact, chemicals predicted
with high concordance among numerous models built using dif-
ferent modeling approaches can inform on accuracy (Mansouri
et al. 2016a). Figure 5 shows that most binding, agonist, and an-
tagonist categorical predictions are at least 90% concordant.
Because most models were associated with comparable scores,
the average score used to categorize chemicals was largely in

Figure 2. Scores of the categorical binding (black), agonist (white) and antagonist (gray) models based on the evaluation set and the scoring Equation 1.

Figure 3. Scores of the continuous binding (black), agonist (white) and
antagonist models based on the evaluation set and the scoring Equation 1
(See Supplemental Material 1 for groups’ abbreviations).
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agreement with model concordance; i.e., the average score for
actives was high when the concordance among the models with
active predictions was high, and vice versa. A few exceptions
were noted when model concordance was around 0.5, which indi-
cated that only one or two models were driving the classification.
Thus, based on these statistical observations about the concord-
ance between the models, it can be concluded that it is possible to
combine the categorical predictions into consensus agonist, an-
tagonist and binding predictions.

Consensus Predictions
The predictions from the binding, agonist, and antagonist cate-
gorical models were at first combined independently based on the
calculated scores. Because the participants provided uneven frac-
tions of the prediction set, the resulting predictions for each of
the 55,450 chemical structures were based on different contribut-
ing models. Thus, predictions from the same model can be asso-
ciated with different weights across the prediction set. After
generating the consensus predictions for the whole prediction set,

the same evaluation procedure described previously was applied
to each of the single models. The resulting statistical details are
reported in Supplemental Material S7 as CONSENSUS_1. All
obtained parameters, including the BA for the training and evalu-
ation sets as well as the corresponding score, were around the top
values obtained for the single models.

In a second step, to improve consistency among the agonist,
antagonist, and binding predictions across the whole set of
55,450 chemicals, the following set of rules were applied:

• If a chemical i was predicted to be an active agonist or antag-
onist with a concordance below 70%, but an inactive binder
with a concordance above 70%, it was considered an inactive
agonist or antagonist, respectively.

• If a chemical i was predicted to be an active agonist or antago-
nist with a concordance above 70%, but an inactive binder with
a concordance below 70%, it was considered an active binder.
After applying these corrections to the consensus predictions,

the total numbers of actives and inactives changed slightly for the
three modalities (Table 6). However, the overall statistics as
reported as CONSENSUS_2 in Supplemental Material S7
remained almost unchanged. This result is because most of the
corrected predictions are not included in the evaluation set. The
evaluation results of the final consensus predictions are reported
in Table 7. The final consensus for the whole prediction set
(identifiers and structures in SMILES format) are provided in
Supplemental Material S8, and the SDF files are available at
https://doi.org/10.23645/epacomptox.10322012.

Because the training and evaluation sets were designed such
that active agonists and antagonists were considered active bind-
ers, the corrected predictions can be considered more consistent
with these two data sets. However, chemicals with inactive bind-
ing prediction and active agonist or antagonist that are all below
70% concordance were not changed. Also, certain chemicals
were predicted to be active binders but inactive in both agonist
and antagonist modalities. This circumstance was also noticed in
the CERAPP predictions and was resolved by classifying these
substances as low potency binders (Mansouri et al. 2016a).
Similarly, certain chemicals were predicted to be active agonists
and antagonists simultaneously. Such chemicals were also pres-
ent in the ER and ARToxCast™ data, as well as CERAPP predic-
tions, and were considered to be strong in one modality but weak
in the other.

Table 7 shows a noticeable drop in Sn and in the associated BA
result for the whole evaluation set with its five potency classes.
However, this drop does not indicate low performance of the single
models or the resulting consensus predictions. It is more of an indi-
cation of differences between the two data sets. Usually, assay
technology and other experimental differences can cause such dis-
cordance for certain chemicals. However, in this case, the low sen-
sitivity of the consensus model on the evaluation set that led to the
drop in accuracy in comparison with the training set is most prob-
ably due to the differences in the ranges of testing between
ToxCast™ and the literature sources. Another cause of the differ-
ence between the two data sets is that the ToxCast™ data is a result
of multiple assays that were combined based on a pathway model
designed to avoid assay interference and cytotoxicity leading to
false positives. This result can occur when chemicals are tested at

Figure 4. Histogram showing the distribution of the number of binding
(black), agonist (white) and antagonist (gray) models covering the prediction
set (minimum of 11 models for agonist and antagonist and 20 for binding).

Figure 5. Histogram showing the distribution of the concordance of the
binding (black), agonist (white) and antagonist (gray) single models.

Table 6. Total numbers of predicted actives and inactives before and after
corrections.

Correction

Binding Agonist Antagonist

Actives Inactives Actives Inactives Actives Inactives

Before 9,878 45,572 2,239 53,211 12,705 42,745
After 10,521 44,929 2,167 53,283 12,136 43,314
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high concentrations, leading to cell stress known as a “burst of ac-
tivity” from turning multiple assays on at the same time (Judson
et al. 2016). Thus, it is highly probable that at least some of the
very weak actives in the evaluation set reported in the literature
with high AC50 are, in reality, false positives that should be dis-
counted. Additionally, as noticed in CERAPP, the increase in the
number of sources in the literature data can provide information
about the repeatability of the results and thus about the accuracy.
These two hypotheses were evaluated by assessing the accuracy of
the models (BA, Sn, and Sp) for the evaluation set after removing
the chemicals in the “very weak” potency class and the chemicals
with only one source, separately. The results of this analysis are
summarized in Table 8.

Table 8 shows that for all three modalities and in both cases
(removal of very weak and single sources), the Sn of the models
increased, which in turn increased the BA. Except for the agonist
mode with the removal of single sources, which is a single case
out of six, the Sn showed an increase of 7%–12%. This increase
can be considered as a statistically significant increase in Sn after
the removal of 2%–7% of the data set. Thus, it can be concluded
that a significant percentage of a) the “very-weak” chemicals
reported in the literature are false positives according to the defi-
nition applied in this project and b) the literature data with a
reported single source is less reliable. Similar to CERAPP find-
ings, Figure 6 shows that only a small fraction of the CoMPARA
list is predicted to be active binders with >75% concordance
between the models. Also, most of the inactive predictions, which
are the majority of the list, are associated with high concordance.
Thus, the models are more in agreement for the inactive predic-
tions. This finding can be explained by the imbalanced training
data and the uneven sensitivity of the models to weak actives.
Additionally, because most of the models were built using
ToxCast™ data, their sensitivity will be limited by its tested con-
centration ranges (≤100 lM).

Coverage and Contribution of Single Models to the
Consensus
The evaluation set that was initially used to evaluate the single
models covered only a small fraction of the full prediction set.
Therefore, to gain insight into the contribution of the single mod-
els, the predictions provided by each of them were evaluated
against the consensus for the full CoMPARA list. Sn, Sp, BA,
and scores were calculated using the same previously mentioned
functions. Figure 7 shows the score and coverage of each one of
the binding models in comparison with the full list of the consen-
sus predictions. The full results of this procedure, including simi-
lar figures for agonist and antagonist modalities, are reported in
Supplemental Material S9. These figures show the consistency of

the different models across the full list of 55,450 chemicals in the
prediction set. This information is also an indication of the con-
cordance of the single models among each other. The analysis of
these figures in comparison with Figure 2, representing the per-
formance of the models on the training and evaluation sets, shows
similar trends for most models. This finding means that the mod-
els are behaving in a consistent way across the full prediction set
in comparison with the training and evaluation sets. However,
certain models showed a higher concordance with the consensus
predictions, whereas others were more consistent with the train-
ing and evaluation set. The trends of such models confirm that
the scores obtained at the initial evaluation procedure for each
individual model did not drive the consensus predictions, but the
general concordance (majority rule) did.

Accuracy and Limitations: Analysis of High and Low
Concordance Chemicals
The analysis of the low concordance chemicals did not reveal any
particular structural similarity. This finding is understandable
because the ToxCast™ chemicals, used as a training set, were pur-
posely selected to cover a wide range of chemical classes and uses
(Richard et al. 2016). Thus, it is highly improbable that a large
number of models based on different machine learning approaches
and molecular descriptors would have similar coverage and accu-
racy trends relative to specific chemical features. However, the
analysis of concordance in terms of the accuracy of prediction in
the evaluation set revealed that the models were more discordant
for inaccurate predictions. Figure 8 shows that the concordance is
generally above 90% for accurately predicted chemicals. There are
certainly a number of exceptions that contradict this observation
and that cannot be linked only to situations where the majority of
models are generating wrong predictions but also to known differ-
ences between the training and evaluation sources. For example,
hydroxyflutamide (CAS52806-53-8 and DTXSID8033562), a
known antiandrogen drug, and confirmed as a strong antagonist
with an AUC (ToxCast™ combined assays) score of 0.999 and a
literature AC50 of 0:262 lM (U.S. EPA 2019e, 2019f; Wikipedia
2018). Hydroxyflutamide is, as expected, predicted by CoMPARA
consensus to be an AR antagonist with a 0.95 concordance (20/21
antagonist models). However, in the collected literature data,
hydroxyflutamide is also a very weak agonist with reported AC50
of 23:85 lM. However, in the CoMPARA consensus agonist pre-
dictions, it is considered as inactive with a concordance of 0.95
(20/21 agonist models), which is consistent with to ToxCast™AUC
score of 0.001 (U.S. EPA 2019f). This example shows that the sensi-
tivity of the CoMPARA consensus models is more similar to the
AUC score assessment, which is based ToxCast™ combined assays,
rather than that in reported literature, which is usually based on a

Table 7. Statistics of the corrected consensus predictions using the whole available evaluation set.

Parameter

Binding Agonist Antagonist

Training set Evaluation set Training set Evaluation set Training set Evaluation set

Sn 0.98 0.65 0.95 0.74 1.00 0.61
Sp 0.96 0.90 0.99 0.97 0.96 0.87
BA 0.97 0.78 0.97 0.86 0.98 0.74

Table 8. Statistics of the consensus predictions after removing the “very weak” actives from the evaluation set.

Parameter

Binding (3,535 chemicals) Agonist (4,406 chemicals) Antagonist (3,664 chemicals)

Very weak excluded Sources >1 Very weak excluded Sources >1 Very weak excluded Sources>1

Number of chemicals 3,407 3,266 4,244 4,282 3,353 3,380
Sn 0.72 0.78 0.81 0.84 0.69 0.62
Sp 0.90 0.90 0.97 0.97 0.87 0.87
BA 0.81 0.84 0.89 0.90 0.78 0.75
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single assay and corresponding independent reference.Another sim-
ilar example is bicalutamide (CAS90357-06-5 | DTXSID2022678)
(U.S. EPA2019c, 2019d;Wikipedia 2019b).However, this compar-
ison does not mean that all very weak actives are mispredicted.
Aldosterone, for example, andmany others are reported in the litera-
ture as very weak antagonists with AC50 values above 60 lM and
predicted byCoMPARA’s antagonist consensus as activeswith con-
cordances above 0.75 (U.S. EPA2019a, 2019b;Wikipedia 2019a).

As previously noted, the concordance around the inactive pre-
dictions is generally high for most cases. Hence, to reveal any
trends in the active predictions, a box plot for the concordance
against the potency of binders was plotted for the evaluation set
chemicals (Figure 9). This analysis showed that the concordance
for moderate and strong binders is clearly higher than for very
weak and weak ones. Similar trends were noticed for the agonist
and antagonist predictions. The decreased accuracy for the low

potency chemicals can explain the low sensitivity of the consen-
sus predictions as discussed above, and the low concordance can
be an indication of low accuracy. However, as Figure 8 shows,
there are accurate predictions associated with low concordance
and inaccurate predictions associated with high concordance.
This finding is comparable to the AD assessment, which helps
provide the user with context based on the assumption that pre-
dictions in the AD are generally more accurate than those outside
the AD. The AD is not a definitive judgment on the accuracy
because certain predictions in the AD might be inaccurate, and
vice versa (Sahigara et al. 2014). Similarly, Figure 9 shows that
moderate and strong predictions are generally associated with
higher concordance than are weak and very weak predictions.

Figure 6. Histogram showing the distribution of the concordance between
the binding models over the active predictions.

Figure 7. Histogram showing the coverage and S-score of the single binding models in comparison with the consensus binding predictions for the full
CoMPARA set.

Figure 8. Box plot showing the correlation between concordance and accuracy
of prediction for the evaluation set chemicals. The box represents the interquar-
tile range. The lower and upper box boundaries represent the 25th and 75th per-
centiles, respectively. The horizontal line splitting the box represents the
median value. The upper and lower whiskers represent the minimum andmaxi-
mum values, respectively. Outliers are represented by the + symbol.

Environmental Health Perspectives 027002-12 128(2) February 2020



One of the known reasons of uncertainty lowering the sensitivity
of the models for the very weak chemicals is the test concentra-
tion limitation in ToxCast™ assays in comparison with the litera-
ture reports. However, a high portion (∼ 50%) of the weak and
very weak chemicals are also associated with relatively high con-
cordance. Consequently, it can be concluded that there is an over-
all higher certainty in predicting moderate and strong chemicals,
but the models are also able to predict weak and very weak chem-
icals with a relatively high certainty.

Analysis and Interpretation of Metabolite Activity
The total number of computationally generated metabolites for
ToxCast™ parent chemicals was 15,406 structures. This number
includes simulations for first- and second-phase metabolism using
the in silico tool ChemAxon Metabolizer (ChemAxon, Ltd.). The
metabolite structures were standardized and deduplicated using the
QSAR-ready workflow, producing 8,601 unique structures that
partially overlapped with the prediction set (a total of 2,009 struc-
tures). The number of active and inactive metabolites for binding,
agonist, and antagonist modalities are summarized in Table 9.

These deduplicated, standardized metabolite structures, how-
ever, are generated from different parent ToxCast™ chemicals.
The active metabolite structures were mapped back to their parent
structures; i.e., the parent of each metabolite was identified. The
major concern with metabolites is in situations when they are
actives, whereas their parents (which are typically tested in in
vitro assays) are not. Table 10 summarizes the number of active
and inactive ToxCast™ parent chemicals that generated metabo-
lite structures predicted to be active using the consensus models.

Table 10 reveals that the number of inactive ToxCast™ par-
ent chemicals with active metabolites is higher than those that
were initially active according to the AR pathway model (based
on ToxCast™ in vitro assays) (Kleinstreuer et al. 2017). The 212
inactive ToxCast™ chemicals with predicted active metabolites
are likely candidates for follow-up as future work, either through
experimental testing of the predicted metabolites, or through met-
abolically competent in vitro AR assays.

Generalization of the Consensus and Implementation in
OPERA
To extend the use of CoMPARA to new chemicals by implementing
support in the open-source prediction tool OPERA, a weighted kNN
modeling approach was applied to provide predictions based on the
existing experimental data and the prediction set consensus predic-
tions with high concordance. Binding, agonist, and antagonist mod-
els were processed separately. To ensure high sensitivity for a
conservative model, all actives were included, whereas inactives
were set to a threshold of at least 85% concordance. ToxCast™-gen-
erated metabolite structures were excluded from this procedure (no
means to validate against real metabolites structures). The total
number of actives and inactives considered for modeling of each
modality are reported in Table 11. Each of the three data sets was
semi-randomly (stratified splitting) divided into training and test
sets, each representing 75% and 25% of the actives and inactives,
respectively. PaDEL and CDK2 descriptors were combined as
described above. The GA-kNN procedure was conducted on the
list of descriptors that passed the low variance and missing values
filters. This step was conducted to make a supervised, end point–
dependent, similarity-based approach for the selection of the
nearest neighbors.

The lists of chemicals summarized in Table 11 are provided as
a single file containing identifiers, structures in SMILES format,
and data in Supplemental Material S10, and as separate SDF files
at https://doi.org/10.23645/epacomptox.10322012.

The statistics of the best kNN models, with k equal to five, for
the three data sets are reported in Table 12. Because the goal of
this modeling step was to reproduce the original consensus, the
models were fitted, aiming for high performance and fidelity to
the original predictions. However, the complexity of the models
was kept to a minimum by adopting the weighted kNN approach
and reducing the number of included descriptors. Indeed, for
each modality (binding, agonist, and antagonist), the number of
selected descriptors was optimized for minimum complexity and
highest accuracy based on the GA ranking of importance. Figure
10 shows the selected number of descriptors for each model
based on the ranked descriptors based on the GA results. In
Figure 10, it is important to note that the ranking of the descrip-
tors for the three modalities was not the same, because the three

Figure 9. Box plot showing the correlation between concordance and po-
tency for the active binders of the evaluation set chemicals. The box repre-
sents the interquartile range. The lower and upper box boundaries represent
the 25th and 75th percentiles, respectively. The horizontal line splitting the
box represents the median value. The upper and lower whiskers represent
the minimum and maximum values, respectively. Outliers are represented by
the + symbol.

Table 9. Total number of active and inactive ToxCast™ deduplicated
metabolites.

Number of Active Inactive

Binding 1,806 4,983
Agonist 470 6,164
Antagonist 2,070 4,772
Total 2,262 8,302

Table 10. Active and inactive ToxCast™ parent chemicals linked to the
metabolites predicted to be actives.

Number of Active parent Inactive parent

Binding 145 150
Agonist 21 31
Antagonist 132 158
Total 152 212

Table 11. Chemicals with high concordance and/or experimental data con-
sidered for training and validating the implemented consensus models.

Number of Binding Agonist Antagonist

Active 6,402 1,419 8,936
Inactive 23,999 29,994 22,132
Total 30,401 31,413 31,068
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GA procedures were conducted independently on the three data
sets. Therefore, the three scatterplots are combined on the same
graph for simplification and comparison reasons only.

Table 12 shows not only high BA but also good balance
between Sn and Sp in five-fold cross-validation for the training
set as well as the test set. The highest difference between Sp and
Sn observed for the agonist model is probably the low number of
actives (Table 11) in comparison with the binding and antagonist
data sets. These statistics show that the three models are robust
enough to simulate the original combined predictions and gener-
ate the same predictions for a new data set without having to
rerun all the single models and repeating the whole procedure.
Thus, the hypothesis of extending the consensus models to apply
to new chemicals is valid.

These three weighted kNN models were first implemented in
the OPERA (version 2.0) application, which is available for
download from GitHub as command-line or user-friendly graphi-
cal interface (https://github.com/NIEHS/OPERA) (Mansouri et al.
2018). This application allows a user to generate CoMPARA (bind-
ing, agonist, and antagonist) predictions starting from a QSAR-
ready 2D structure. This implementation of the models in OPERA
will generate the same results as the initial combined predictions of
the single models if tested on the same list of structures associated
with the CoMPARA analysis. However, original predictions with
concordance below the selected thresholds might change because
they are not included in the knowledge base of the models.

Both OPERA’s AD indices as well as the nearest neighbors and
the statistics are provided in the report that can be viewed in the
application output or online on the EPA’s CompTox Chemicals
Dashboard (https://comptox.epa.gov/dashboard) (Williams et al.

2017). The confidence level estimates for CoMPARA’s predictions
are calculated based on the concordance of the nearest neighbors.

Applications
This project has produced three generalized consensus models
based on the initially generated predictions for the full CoMPARA
list of 55,450 chemicals. A similar approach was applied to the
CERAPPmodels that have also been implemented into the OPERA
application, allowing them to be applied to new chemicals, repro-
ducing the consensus predictions with high accuracy. The binding,
agonist, and antagonist ER and AR activity models have been
applied to theQSAR-ready forms of the entire set of 765,000 chemi-
cal substances contained in the EPA’s DSSTox database (underpin-
ning the Dashboard application), and these predictions will bemade
available in the future via the EPA’s CompTox Chemicals
Dashboard (https://comptox.epa.gov/dashboard/) and the NTP’s
Integrated Chemical Environment (ICE) dashboard (https://ice.ntp.
niehs.nih.gov/). As for previously published OPERA models, once
available on the dashboards, it will be possible to view the predic-
tions for single chemicals online or downloaded using the batch
search page (https://comptox.epa.gov/dashboard/dsstoxdb/batch_
search). The online versions of the prediction reports will also
include useful details, such as accuracy estimates and AD assess-
ment. The details of the whole modeling procedure will be made
available in a QSARModel Report Format (QMRF) report that can
be downloaded from OPERA’s prediction report page on the EPA
Chemicals Dashboard or from the European Commission’s Joint
Research Center (JRC) QMRF Inventory (European Commission
2013; JRC 2017). Moreover, the original online models developed
by the VCCLAB team are available, together with all data, at http://
ochem.eu/article/102271.

In addition to the precalculated predictions available on the
CompTox and ICE dashboards for the full list of DSSTox chemi-
cals, users will be able to perform real-time predictions for chemi-
cals not contained in the dashboard using the CERAPP,
CoMPARA, and other OPERAmodels using the online CompTox
prediction page (https://comptox.epa.gov/dashboard/predictions/
index) or perform the calculations locally by installing the desktop
standalone version (https://github.com/NIEHS/OPERA).

Conclusions
The collaborative efforts of the CoMPARA participants resulted in
robust consensusmodels predicting the potential ability of chemicals
to interact with the AR pathway based only on their structures. Up to
91 separately developed categorical and continuous models were
received from 25 international research groups. Separate models
were built for agonist, antagonist, and binding activity based on a
wide range of structure-based modeling approaches. The models
were applied to a large collection of 55,450 chemical structures that
included the 32,464 CERAPP chemicals as well as additional nono-
verlapping chemicals from the European EINECS list and computa-
tionally generated ToxCast™metabolites. CERAPP workflows and
code were adapted, improved, and then applied at various stages of
the project, from data and chemical structure curation to the evalua-
tion of the submitted predictions and the consensus modeling. Most
of themodelswere trained on a data set derived from the combination
of 11 in vitro assays from ToxCast™ probing various points of the
AR pathway model. Models were then evaluated using a collection
of AR in vitro data curated from the online literature (PubChem).
After this process, the categorical predictions were combined into
consensusmodels to classify the chemicals as actives and inactives.

Despite the challenges caused by the skewed data distribution
in terms of actives and inactives, most models achieved reasonably
high performance, with a slight improvement for certain models

Table 12. Training and test set statistics of the three consensus models.

Number of Descriptors

Training set (75%) in
5-fold-CV Test set (25%)

Sn Sp BA Sn Sp BA

Binding 23 0.92 0.96 0.94 0.92 0.97 0.95
Agonist 10 0.92 1.00 0.96 0.89 0.99 0.95
Antagonist 15 0.91 0.97 0.94 0.93 0.97 0.95

Figure 10. Selected descriptors for the binding (. symbol), agonist (* sym-
bol), and antagonist (x symbol) models and corresponding balanced accuracy
(BA) calculated in five-fold cross-validation in forward selection based on
the genetic algorithm (GA) ranking. The ranked descriptors are not overlap-
ping for the three modalities.
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with narrow ADs. This achievement proves that there is not an
optimal modeling approach for predicting these AR data. It is also
important to note that, although the scoring function was used to
combine the predictions from the different models, the concord-
ance (majority rule) was the real driver of the final consensus pre-
dictions. Hence, most of the single models carried similar weights
for an equal contribution to the consensus. The main difference
between the models was their coverage of different portions of the
prediction as determined by their defined AD, which also explains
the fact that the concordance of the models with the final predic-
tions on the full set of 55,450 chemicals (Figure 7) is different
from the scores that were generated on the evaluation set, which
represents only a small fraction.

The concordance among the predictions was high for most
chemicals, particularly with inactives and strong actives. This con-
sistency was demonstrated, as in the previous collaborative project
CERAPP, to be linked to highly accurate predictions. This obser-
vation can therefore be extrapolated to new predictions. Low accu-
racy and concordance was noticed for weak actives, which, similar
to ER activity, can be linked to the experimental differences between
the ToxCast™-based training set and the literature-based evaluation.
Relevant factors include but are not limited to lack of orthogonal
assay results, differing concentration ranges, the presence of selective
AR modulators (SARMs) with varying activity among tested tissue
sources, and other experimental artifacts and errors.

The ultimate goal of this collaborative effort was to leverage
the strengths of different modeling approaches in order to virtually
screen a large universe of chemicals of high importance to environ-
mental and human health studies. The final consensus models were
able to identify approximately 10% of the screened chemicals as
potential binders to the AR or in agonist/antagonist modes. This
list included a number of computationally simulated ToxCast™
metabolites of inactive parent structures that require further in-
depth attention. The resulting models were generalized and imple-
mented in an open-source standalone application to be applied
beyond the original list of screened chemicals. All materials and
resulting files generated during this project are available for down-
load at (https://doi.org/10.23645/epacomptox.10321697; https://
doi.org/10.23645/epacomptox.10321982; https://doi.org/10.23645/
epacomptox.10321925; https://doi.org/10.23645/epacomptox.
10321994; https://doi.org/10.23645/epacomptox.10322012).

After CERAPP, which established the framework for such inter-
national collaborations, CoMPARA was a more global collabora-
tion with a higher number of participants and a larger set of
chemicals screened. The success of these two projects and the eager-
ness of the participants for more collaborations have prompted the
organization of new consortiums tomodel new end pointswith read-
ily available high-quality data, such as acute oral systemic toxicity
(Kleinstreuer et al. 2018b). In summary, this project further demon-
strates the power of combined computational approaches to accu-
rately and rapidly screen large libraries of chemicals with high
toxicological relevance and to provide open-source tools that can be
readily applied by awide range of stakeholders.
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