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Introduction

Humans are exposed to an increasingly high number of natural and synthetic chemical substances [START_REF] Dionisio | Exploring consumer exposure pathways and patterns of use for chemicals in the environment[END_REF][START_REF] Egeghy | The exposure data landscape for manufactured chemicals[END_REF][START_REF] Judson | The toxicity data landscape for environmental chemicals[END_REF]). These exogenous chemicals may have the potential to cause adverse health effects to humans and ecological species [START_REF] Gray | Endocrine Screening Methods Workshop report: detection of estrogenic and androgenic hormonal and antihormonal activity for chemicals that act via receptor or steroidogenic enzyme mechanisms[END_REF][START_REF] Safe | Is there an association between exposure to environmental estrogens and breast cancer?[END_REF]). The endocrine system regulates a fragile hormonal equilibrium, which might be altered by chemicals that interfere with hormone signaling, e.g., by interacting with its different receptors. Over the last few decades, endocrine-disrupting chemicals (EDCs) have been linked to a large number of health issues, including neurological, developmental, reproductive, cardiovascular, metabolic, and immune system disorders [START_REF] Colborn | Developmental effects of endocrinedisrupting chemicals in wildlife and humans[END_REF][START_REF] Davis | Medical hypothesis: xenoestrogens as preventable causes of breast cancer[END_REF][START_REF] Diamanti-Kandarakis | Endocrine-disrupting chemicals: an Endocrine Society scientific statement[END_REF]; European Environment Agency 2012; [START_REF] Martin | Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA's ToxCast program[END_REF][START_REF] Skakkebaek | The exposure of fetuses and children to endocrine disrupting chemicals: a European Society for Paediatric Endocrinology (ESPE) and Pediatric Endocrine Society (PES) call to action statement[END_REF]WHO 2013). The estrogen receptors (ER) and androgen receptors (AR) are among the most studied targets, with a variety of in silico [START_REF] Bolger | Rapid screening of environmental chemicals for estrogen receptor binding capacity[END_REF][START_REF] Judson | Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor[END_REF][START_REF] Waller | Ligandbased identification of environmental estrogens[END_REF], in vitro [START_REF] Chang | Application of reverse dosimetry to compare in vitro and in vivo estrogen receptor activity[END_REF][START_REF] Fang | Quantitative comparisons of in vitro assays for estrogenic activities[END_REF][START_REF] Rotroff | Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening[END_REF][START_REF] Shanle | Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action[END_REF][START_REF] Soto | Assays to measure estrogen and androgen agonists and antagonists[END_REF], and in vivo [START_REF] Kleinstreuer | A curated database of rodent uterotrophic bioactivity[END_REF][START_REF] Mueller | Estrogen receptors and endocrine diseases: lessons from estrogen receptor knockout mice[END_REF]; U.S. EPA 2011) EDC screening assays available.

The Endocrine Disruptor Screening Program (EDSP) of the U.S. Environmental Protection Agency (EPA) is one of the largest efforts to screen chemicals for endocrine-disrupting potential (U.S. EPA 2014b; U.S. [START_REF] Epa-Ocspp | Endocrine Disruption[END_REF], 2015). However, the time and cost to screen the approximately 10,000 chemicals required by EDSP through the entire battery of ToxCast™ endocrine disruptor assays, estimated at ∼ $1 million USD per chemical, is untenable (HSIA 2009;U.S. EPA 2013U.S. EPA , 2015)). The EDSP has begun to address this resource issue by using in vitro highthroughput screening (HTS) assays included in the EPA's ToxCast™ program [START_REF] Dix | The ToxCast program for prioritizing toxicity testing of environmental chemicals[END_REF][START_REF] Judson | In vitro and modelling approaches to risk assessment from the U.S. Environmental Protection Agency ToxCast programme[END_REF][START_REF] Kavlock | Update on EPA's ToxCast program: providing high throughput decision support tools for chemical risk management[END_REF]) and the interagency Tox21 collaboration [START_REF] Tice | Improving the human hazard characterization of chemicals: a Tox21 update[END_REF] involving the EPA, the U.S. Food and Drug Administration (FDA), the National Institutes of Health (NIH), and the National Toxicology Program (NTP). These two programs include assays that measure multiple steps of the ER and AR signaling pathways following the typical nuclear receptor activation process [START_REF] Judson | New approach methods for testing chemicals for endocrine disruption potential[END_REF]. Note that the ToxCast™ program also includes a steroidogenesis assay in the H295R cell line, measuring perturbations levels of multiple hormones, including testosterone [START_REF] Haggard | High-throughput H295R steroidogenesis assay: utility as an alternative and a statistical approach to characterize effects on steroidogenesis[END_REF][START_REF] Karmaus | High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells[END_REF]. However, the current work does not use this information.

In vitro HTS assays are faster and more cost-effective than traditional in vivo toxicity testing, and they avoid the ethical concerns associated with animal tests. However, no single assay is currently sufficient (due to lack of accuracy, cytotoxicity, solubility issues, etc.) to screen all classes of chemicals for a given molecular target and activity mode (e.g., agonist or antagonist) for an accurate evaluation of potential harm to human health and the environment [START_REF] Judson | Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor[END_REF][START_REF] Judson | New approach methods for testing chemicals for endocrine disruption potential[END_REF]. Therefore, it has been necessary to develop batteries of assays covering various aspects and steps of the ER and AR pathway signaling processes, which increases the time and costs that are necessary to run and analyze the data. Also, such assays are not applicable to chemicals that are still in the molecular development and optimization phases. Thus, a prioritization of existing chemicals and a virtual screening of new ones being designed are necessary steps to provide knowledge about chemicals with little or no known experimental data [START_REF] Judson | New approach methods for testing chemicals for endocrine disruption potential[END_REF]. With the recent technological advances in computational resources and machine learning algorithms, in silico approaches, such as quantitative structure-activity relationships (QSARs), are particularly appealing as fast and economical alternatives for their ability to accurately predict toxicologically relevant end points [START_REF] Dearden | How not to develop a quantitative structureactivity or structure-property relationship (QSAR/QSPR)[END_REF][START_REF] Worth | The Characterisation of (Quantitative) Structure-Activity Relationships: Preliminary Guidance[END_REF]. These methods are based on the congenericity principle, which is the assumption that similar structures are associated with similar biological activity [START_REF] Hansch | p-σ-π Analysis: a method for the correlation of biological activity and chemical structure[END_REF].

The use of computational methods to screen and prioritize chemicals for endocrine activity has been already initiated at the EPA's National Center for Computational Toxicology (NCCT), the EPA Office of Science Coordination and Policy, and the NTP Interagency Center for Evaluation of Alternative Toxicological Methods (NICEATM), with a special focus on ER and AR. Starting with ER, a total of 18 ToxCast™ and Tox21 in vitro assays targeting the main estrogen-signaling steps (three cell-free radioligand binding assays; six dimerization assays using both ERa and ERb; two DNA binding assays; two RNA transcription assays; two agonistmode protein expression assays; two antagonist-mode protein expression assays; and one cell proliferation assay) were run on a library of 1,855 ToxCast™ chemicals [START_REF] Richard | ToxCast chemical landscape: paving the road to 21st century toxicology[END_REF]. Then, a mathematical pathway model combined the results into a unique area under the curve (AUC) score [0-1] overcoming the limitations of single assays (assay interference and cytotoxicity) as an estimate of ER pathway activity [START_REF] Judson | Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor[END_REF]. These in vitro model scores were then used by a consortium of 40 scientists from 17 international research groups, coordinated by NCCT, in the framework of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) (Mansouri et al. 2016a) to develop models for ER binding, agonist, and antagonist activity. A total of 48 QSAR and docking predictive models were developed, which were evaluated using an external set from the literature and subsequently combined into consensus models. The consensus models were then used to virtually screen a library of 32,464 unique chemical structures compiled from different lists of interest to the EPA, which identified approximately 4,000 chemicals with evidence of ER activity (Mansouri et al. 2016a). CERAPP demonstrated the possibility of screening large lists of environmentally relevant chemicals in a fast and accurate way by combining multiple modeling approaches to overcome the limitations of single models (Mansouri et al. 2016a). In addition to the collected data and the screened list of chemicals, this project also provided a successful collaboration example to follow for using large amounts of high-quality data in model-fitting and rigorous procedures for the development, validation, and use of efficient and accurate methods to predict human or environmental toxicity while Environmental Health Perspectives 027002-2 128(2) February 2020 reducing animal testing. Its workflows are now being applied to other collaborative modeling projects for different toxicological end points such as acute oral systemic toxicity (Kleinstreuer et al. 2018b).

Here, we describe a modeling project that aimed to virtually screen chemicals for their potential AR activity. The template process established by CERAPP was adopted to tackle the AR modeling project. First, a multiassay AR pathway model was developed based on the results of 11 assays covering the androgen signaling pathway and combining the in vitro results into an AUC score representing the whole AR activity to mimic the in vivo results [START_REF] Kleinstreuer | Development and validation of a computational model for androgen receptor activity[END_REF]. These assays were run on the same initial library of 1,855 ToxCast™ chemicals that the ER assays were run on, and the developed pathway model was validated using reference chemicals with known in vitro results from the literature [START_REF] Kleinstreuer | Development and validation of a computational model for androgen receptor activity[END_REF]) and further compared with a set of chemicals with reproducible results in vivo [START_REF] Browne | Development of a curated Hershberger database[END_REF]Kleinstreuer et al. 2018a). Note that the goal of this project is to predict in vitro AR activity. There is significant discrepancy between in vitro AR activity and the results of the in vivo Hershberger assay, especially for antagonist mode. However, as demonstrated by Kleinstreuer et al. (Kleinstreuer et al. 2018a), most of these discrepancies are due to the in vivo activity occurring at internal concentrations well above the upper limit of testing in the in vitro assays (100 lM). The resulting AR pathway activity AUC scores were used as a training set in a large AR modeling consortium called the Collaborative Modeling Project for Androgen Receptor (CoMPARA). Collaborators from 25 international research groups (Supplemental Material S1) contributed a total of 91 qualitative and quantitative predictive QSAR models for binding, agonist, and antagonist AR activities. The total list of chemicals that CoMPARA participants screened using their models comprised 55,450 chemical structures, including CERAPP chemicals and ToxCast™-generated metabolites [START_REF] Leonard | A workflow for identifying metabolically active chemicals to complement in vitro toxicity screening[END_REF][START_REF] Pinto | Prediction of estrogenic bioactivity of environmental chemical metabolites[END_REF]). These predictions were evaluated using curated literature data sets and then combined into binding, agonist, and antagonist consensus models. Both CERAPP and CoMPARA projects were collaborations between the participants, aiming to build the best collective consensus rather than competing for the best single model. We also describe the procedure of extending CERAPP and CoMPARA consensus models beyond their original lists that was used in the screening of the entire EPA DSSTox database (https://comptox.epa.gov/ dashboard; [START_REF] Grulke | EPA's DSSTox database: history of development of a curated chemistry resource supporting computational toxicology research[END_REF]) and other chemicals of interest that are structurally similar to the initial lists [START_REF] Williams | The CompTox Chemistry Dashboard: a community data resource for environmental chemistry[END_REF]. 

Materials and Methods

CoMPARA followed the template defined by the CERAPP research effort, taking into account the learnings and best practices to update scripts and workflows applied to AR data (Mansouri et al. 2016a). The steps were as follows:

1. Preparation of the AR pathway data as derived from the biological model using the 11 ToxCast™ assays [START_REF] Kleinstreuer | Development and validation of a computational model for androgen receptor activity[END_REF], which formed the basis of a common training set. 2. Compilation of the prediction set, which was the list of chemicals to be screened by the collaborators. 3. Collection and curation of an external evaluation set, which comprised data extracted from the literature to be used for evaluating the predictive ability of the models (mostly for verification purposes and not to compare models), performed in parallel with the model building efforts. 4. Model evaluation process and generation of consensus predictions once all models were submitted. 5. Validation and extension of the consensus models for future screening procedures. Figure 1 represents the workflow of the project and the genesis of the different chemical sets (training, evaluation, and prediction).

Data Sets

A number of different data sets were created and applied at various stages of the project, described in detail below. First, a common training set was compiled and provided to the participants to fit their models. Subsequently, participants were provided a prediction set consisting of the list of chemicals to be screened using their models. While modelers were fitting the training set, other data were being collected and curated from the literature to be used as an evaluation set to assess the predictive ability of the models.

Training Set, the ToxCast™ AR Pathway Model

As was done for ER, the AR in silico efforts started with the development of a multiassay in vitro model covering the signaling pathway. A battery of 11 ToxCast™/Tox21 in vitro assays were selected: three receptor binding, two cofactor recruitment, one RNA transcription, three agonist-mode protein production, and two antagonist-mode protein production [START_REF] Judson | New approach methods for testing chemicals for endocrine disruption potential[END_REF][START_REF] Kleinstreuer | Development and validation of a computational model for androgen receptor activity[END_REF]. One of the antagonist mode assays was run with two different concentrations of the stimulating ligand to provide confirmation data for receptor-mediated activity and to further distinguish true antagonist pathway activity from cell stress or cytotoxicity-mediated loss of function. The 1,855 ToxCast™ chemicals were run through these assays and the resulting data were combined using a mathematical model to yield a unique AUC score for AR agonist and antagonist activity [START_REF] Kleinstreuer | Development and validation of a computational model for androgen receptor activity[END_REF]. This score was used in combination with a confidence score derived from confirmation assay data (using a higher concentration of the activating ligand to characterize competitive binding) and a bootstrapping procedure so that chemicals with an AUC of at least 0.1 (corresponding to activity concentrations up to 100 lM) were considered actives, chemicals with AUC less than 0.001 were considered inactives, and the remaining chemicals were considered inconclusive [START_REF] Kleinstreuer | Development and validation of a computational model for androgen receptor activity[END_REF]. This model, accounting for assay interference and cytotoxicity, was validated using 54 reference chemicals from the literature [START_REF] Kleinstreuer | Development and validation of a computational model for androgen receptor activity[END_REF]. Because the AUC scores are available only for agonist and antagonist activity, for the purpose of this project (as well as in CERAPP previously) a chemical was considered to be a binder if it were either an active agonist or antagonist.

This high-quality data set covering the AR signaling pathway, however, contains a very low fraction of actives: approximately 10% antagonists and only 2% agonists. Because this bias toward inactives can be challenging for modelers, a literature search was conducted to identify additional actives. However, with the lack of sources matching our data (whole AR pathway activity), a list of only 15 active chemicals (13 agonists and 2 antagonists) collected from DrugBank was added to the data set [START_REF] Wishart | DrugBank: a knowledgebase for drugs, drug actions and drug targets[END_REF]. Being pharmaceuticals, these chemicals were assigned an AUC score of 1 as strong actives, even though they were not tested in the 11 ToxCast™ assays.

The KNIME (Konstanz Information Miner) chemical structure standardization workflow developed for CERAPP was applied to the available structures and generated a total of 1,688 unique, organic, desalted QSAR-ready structures (Mansouri et al. 2016a;[START_REF] Mceachran | MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies[END_REF].

The resulting three data sets (binding, agonist, and antagonist; Table 1) were provided to the modelers in three separate twodimensional structure data files (2D SDF V2000) with QSAR-ready standardized structures in both Simplified Molecular Input Line Entry System (SMILES) and molecular format with atom coordinates (MOL) formats. The three-dimensional (3D) structures were also generated by energy minimization using MMFF94 force field and provided as 3D structure data file (sdf) (V2000) files. In both the 2D and 3D files, area under the curve (AUC) values were provided with the corresponding activity class (binary) and converted concentration values (AC50) indicating potency [START_REF] Judson | Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor[END_REF]. In addition to the structures and data, each chemical was also given an associated CASRN, DTXSID identifier, preferred name, standardized InChI code, and a hashed InChI key of the Quantitative Structure-Activity Relationship (QSAR)-ready structures.

Each one of these data sets (available in Supplemental Material S2) could be used to build either continuous models predicting AUC values or categorical models predicting active and inactive classes. A list of chemicals in these three data sets could be considered false negatives thus, could be removed by the participants during the modeling procedures. These potentially inconclusive chemicals (available in Supplemental Material S3) consisted of 21 chemicals from binding, 8 from agonist, and 14 from antagonist. Further filtering based on clustering or other structure-based analysis was recommended to reduce the number of inactives and to decrease the bias between the two classes. The ToxCast™-derived data sets (provided in SDF file format), as well as the removed chemicals were made available for download at https://doi.org/ 10.23645/epacomptox.10321697.

Prediction Set, Structure Collection, and Curation of Lists of Interest

The initial CERAPP list was compiled from a library of over 50,000 chemicals that humans are potentially exposed to from lists of toxicological and environmental chemicals of interest. The main lists included the EPA's Chemical and Product Categories database (U.S. EPA 2014a), the first version of the EPA's Distributed Structure-Searchable Toxicity Database (DSSTox) [START_REF] Richard | ToxCast chemical landscape: paving the road to 21st century toxicology[END_REF][START_REF] Richard | Distributed structure-searchable toxicity (DSSTox) public database network: a proposal[END_REF], and the Canadian domestic substance list (Environment Canada 2012). This library contained a total of 42,679 chemicals with known organic structures that, after QSAR-ready standardization procedure and duplicates removal, was collapsed to 32,464 unique structures known as the CERAPP list (Mansouri et al. 2016a). In CoMPARA, in addition to the lists included in CERAPP, we used the European inventory of existing commercial chemical substances (EINECS) containing ∼ 60,000 chemicals as a list of interest for in silico screening. We also incorporated ToxCast™ metabolites in the prediction set that had been generated as part of related ER studies [START_REF] Leonard | A workflow for identifying metabolically active chemicals to complement in vitro toxicity screening[END_REF][START_REF] Pinto | Prediction of estrogenic bioactivity of environmental chemical metabolites[END_REF]. The goal of including metabolites in the CoMPARA project was to understand the effect of xenobiotic metabolism, which is lacking in most in vitro assays. For ER screening efforts, this step was conducted post CERAPP in two different studies generating a total of 15,406 metabolite structures for ToxCast™ parent chemicals using ChemAxon Metabolizer (discontinued 2018) (ChemAxon, Ltd.) [START_REF] Leonard | A workflow for identifying metabolically active chemicals to complement in vitro toxicity screening[END_REF][START_REF] Pinto | Prediction of estrogenic bioactivity of environmental chemical metabolites[END_REF] 

Evaluation Set, Literature Search, and Curation

To assess the developed models and their predictivity, an evaluation set with new chemicals (nonoverlapping with the training set) is required. Ideally, this new set would be the result of the same mathematical pathway model combining the 11 assays as that used for the training set. Because such a data set was not available, we decided to use data from the literature. Because the project was not a competition and the goal of this step was not to provide an indepth comparison of the models, literature data could still be used to provide quality assessment and check for errors.

Large amounts of experimental data are available in the PubChem repository and related data sources. However, such public sources of chemical-biological data have varying levels of quality control, so additional curation and standardization are necessary [START_REF] Williams | A quality alert and call for improved curation of public chemistry databases[END_REF]. The EPA's NCCT collected and curated PubChem data (64 sources), restructured it, and mapped the bioactivity values to related biological targets. In this effort, we started with ∼ 80,000 experimental values for AR activity, which mapped to about ∼ 11,000 chemicals that we grouped by modality (agonist, antagonist) and hit call (active, inactive). To improve the consistency between the different PubChem entries and to add binding modality, three rules were applied:

• In the case of multiple records for a test chemical, a minimum concordance of two out of three assay results was required to assign a positive activity score. • An active agonist or antagonist was considered a binder.

• Inactive agonists and antagonists were considered nonbinders. The KNIME standardization workflow referenced earlier was applied to the chemical structures (Mansouri et al. 2016a;[START_REF] Mceachran | MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies[END_REF]. After removing ToxCast™ chemicals (used for the training set), the generated standard InChI codes matched 7,281 chemicals from the CoMPARA list (prediction set). This list of 7,281 chemicals, with associated data extracted from the literature, was used as the evaluation set. The removed ToxCast™ chemicals were mostly associated with ToxCast™ data only. The evaluation set chemicals were split into three data sets based on the available experimental data. The resulting lists included 4,839 structures for agonist, 4,040 for antagonist, and 3,882 for binding. The numbers of active and inactive structures are summarized in Table 2.

AC50 values (lM) were available for 405 chemicals in the binding data set, 167 chemicals in the agonist data set, and 340 chemicals in the antagonist data set. This process of preparing the evaluation set was conducted in KNIME. These three data sets (identifiers and structures in SMILES format) are provided in Supplemental Material S5. The SDF files have been made available for download at https://doi.org/10.23645/epacomptox.10321925.

Participants and Modeling Methods

CoMPARA participants included a total of 70 scientists from 25 international research groups representing academia, governmental institutions, and industry (See Supplemental Material S1), including 15 groups that were involved in the related CERAPP project. The participating groups were located in 11 different countries. The modelers were encouraged to use the provided training set and, preferably, apply free and open-source software tools that included detailed descriptions of the used methods and the employed applicability domain assessment. However, the application of proprietary commercial tools was also allowed. The different molecular descriptor calculation tools and the various modeling approaches employed are summarized in Tables 3 and4. Some of the groups collaborated with each other to submit common models. To produce more balanced data, most participants applied undersampling approaches to reduce the number of inactive chemicals. For further details on the methods and approaches, see the full list of files submitted by the individual groups at https://doi.org/10.23645/ epacomptox.10321982. Certain participants developed additional Environmental Health Perspectives 027002-5 128(2) February 2020 models and published them or expressed their intent to publish them as separate manuscripts.

Evaluation Procedure

To ensure consistency and repeatability of the results, all molecular structures associated with the chemicals in the three data sets described above (training set, prediction set, and evaluation set) were processed using the same standardization workflow. This workflow was designed so that chemicals with the same standardized QSAR-ready structures would automatically have the same computational predictions [START_REF] Fourches | Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research[END_REF][START_REF] Fourches | Trust, but verify II: a practical guide to chemogenomics data curation[END_REF]Mansouri et al. 2016a). Thus, chemicals from the different data sets could be matched using their respective QSAR-ready standard InChI codes. After all predictions were made on the prediction set, the overlapping chemicals with the evaluation set were used to evaluate the performance of the submitted models. The goal of this evaluation was not only to assess model accuracy but also to check for substantial procedural errors that could arise, such as mismatches among chemical identifiers, structures, and associated data. This step was intended to process the qualitative and the quantitative predictions separately. Only predictions within the applicability domain (AD), if provided, were considered, and there was no penalty for models with narrow AD. The main evaluation criteria were:

• Goodness-of-fit: statistics of the training set.

• Predictivity: statistics of on the evaluation set.

• Robustness: balance between goodness-of-fit and predictive ability.

Each of these three criteria was assigned a weight resulting in a score (S) ranging from 0 to 1 S = 0:3 × ðGoodness of fitÞ + 0:45 × ðPredictivityÞ + 0:25 × ðRobustnessÞ:

(1)

This score was not intended to rank the models but was designed by the organizers of the consortium mainly to evaluate the models' predictivity and provide a rational basis to combine the predictions into a consensus in a later step. The weights were assigned to the different components in a way to give priority to the predictive ability on the evaluation set but not too high in comparison with the training set statistics because of the difference between the two sets. The robustness or balance between the two was given the third rank but just slightly less weight than the goodness of fit because it highlights overfitting, which is almost as important a factor as fitting. However, a slightly different weight would most probably lead to the same results. To ensure equal contribution from the participants, the evaluation score accounted neither for the fraction of predicted chemicals nor the coverage of the AD, if provided. For the qualitative models, this general formula was translated into commonly used classification parameters as discussed below. However, for the quantitative models, the predictions based on the training set data (ToxCast™ AUC values) were different from those of the evaluation set data (AC50 values). To ensure consistency and validity of the evaluation procedure, the qualitative and quantitative models and predictions were processed separately as explained below.

Qualitative Evaluation Procedure

The categorical predictions were evaluated using statistical indices commonly proposed in the literature [START_REF] Ballabio | Multivariate comparison of classification performance measures[END_REF]). These indices are calculated from the confusion matrix, which collects the number of samples of the observed and predicted classes in the rows and columns, respectively. The classification parameters are defined using the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The resulting parameters were the balanced accuracy (BA), specificity (Sp), and sensitivity (Sn) calculated as follows:

The BA is given by:

BA = Sn + Sp ð Þ 2 , ( 2 
)
where the sensitivity (Sn), or true positive rate (TPR) is given by:

Sn = TP TP + FN , (3) 
and the specificity (Sp), or true negative rate (TNR) is given by:

Sp = TN TN + FP : (4) 
For classification models, not only is the average of the Sn and Sp explained by the BA important, but also the balance between them. Therefore, to fully assess the predictivity of the models, the three criteria are included in the general scoring function S, calculated as follows:

Goodness of fit = 0:7 × ðBA Tr Þ + 0:3 × ð1 -jSn Tr -Sp Tr jÞ, ð5Þ 
Predictivity = 0:7 × ðBA Eval Þ + 0:3 × ð1 -jSn Eval -Sp Eval jÞ, ð6Þ 
Robustness = 1 -jBA Tr -BA Eval j, ð7Þ 
where Tr stands for training set and Eval stands for evaluation set, attributing weight not only to the BA but also to the balance between Sn and Sp to account for the reliability of the model in predicting actives as well as inactives.

Quantitative Evaluation Procedure

Active chemicals with available quantitative information (AC50 values) from the mined literature sources (405 chemicals in the binding data set, 167 chemicals in the agonist data set and 340 chemicals for the antagonist data set) were considered for this step to evaluate the quantitative models' predictivity. The analysis of the quantitative results conducted during the CERAPP project showed some differences between the AC50 values collected from the literature and the AC50 values converted from the predicted AUC scores. These differences include the fact that the AUC scores represented the results of multiple assays that were combined to overcome assay interference and cytotoxicity, whereas the literature data is a one source per assay most of the time. In addition, the ToxCast™ assays' limiting dose of 100 lM makes these assays insensitive to "very weak" actives that are reported in the literature to have AC50 values beyond that threshold. Thus, to conduct a quantitative evaluation of the predictions using the literature data without underestimating the accuracy of the predictions, the two types of results needed to be converted to a more consistent data type. The multiclass approach presented in this work converting both the literature data and the predicted AUC values to five categories with approximately similar potencies was built on the CERAPP approach (Mansouri et al. 2016a). This approach is commonly used in the QSAR field to predict end points that are hard to model on a continuous scale and to avoid underestimating predictivity [START_REF] Benigni | Quantitative Structure-Activity Relationship (QSAR) Models of Mutagens and Carcinogens[END_REF][START_REF] Dunn | Pattern recognition techniques in drug design[END_REF][START_REF] Kowalski | Chemometrics: Mathematics and Statistics in Chemistry[END_REF][START_REF] Waterbeemd | Chemometric Methods in Molecular Design[END_REF]. This approach was applied in CoMPARA to avoid the same problem when evaluating the models that were trained on the The thresholds determined in the CERAPP project were applied to the concentration-response values (AC50) from the literature:

• Strong: Activity concentration below 0:09 lM • Moderate: Activity concentration between 0.09 and 0:18 lM • Weak: Activity concentration between 0.18 and 20 lM • Very Weak: Activity concentration between 20 and 800 lM • Inactive: Activity concentration higher than 800 lM For the training set, the AUC values were converted into five potency classes based on the following thresholds:

• Strong: AUC equal to or above 0.75

• Moderate: AUC between 0.75 and 0.65

• Weak: AUC between 0.65 and 0.25

• Very weak: AUC between 0.25 and 0.09

• Inactive: AUC below 0.09 Although the ToxCast™ single assays were limited to a maximum concentration of 100 lM, similar to CERAPP, active chemicals with an AUC score below 0.25 are considered "very weak." However, for the lack of chemicals in the 0.25 to 0.5 AUC range (weak in CERAPP), this arbitrary range for weak actives was extended to 0.65. The five classes were assigned labels from 1 (inactive) to 5 (strong), and then the models were evaluated as multiclass categorical models in binding, agonist, and antagonist modes separately. The above-mentioned formulas for calculating Sn, Sp, and BA were applied to each of the classes, and then the average values (for the five classes) were inserted into the scoring function.

Consensus Modeling

After being evaluated separately according to the defined strategy, each model was given a score (S) for predictions within its AD. This score was used in the consensus modeling step as a weighting factor. Using these weights, the predictions within the AD of the submitted models were combined into a single consensus model separately for each modality (binders, agonists, and antagonists). For each chemical in the prediction set, the consensus category was decided by the weighted majority rule: the chemical was assigned the class with the highest average score of the models predicting it (class with the highest average score was selected). This average score excluded the models that did not provide a prediction for the chemical in question.

The consensus model predictions were evaluated using the same evaluation set and procedure used to evaluate the individual Environmental Health Perspectives 027002-7 128(2) February 2020 models, and their performances were compared to the single models. Analyses of the accuracy trends and concordance (fraction of consistent predictions) among the predictions of the different models were also conducted. Considering only the models that provided predictions, the sum of the concordance among models for actives and inactives should be equal to 1.

Generalization of the Consensus and Implementation in OPERA

To use the consensus models beyond the initial prediction set, the combined predictions were used to train generalized models capable of replicating the original consensus. This procedure was achieved by applying a weighted k-nearest-neighbor (kNN) approach to fit the classification models based on the majority vote of the nearest neighbors. This approach has the advantage of resembling readacross, which is a broadly accepted data-gap filling tool in regulatory agencies [START_REF] Ball | Toward Good Read-Across Practice (GRAP) guidance[END_REF][START_REF] Patlewicz | Navigating through the minefield of read-across tools: a review of in silico tools for grouping[END_REF]). In addition, kNN models can also satisfy the five OECD principles for QSAR modeling due to their nonambiguous algorithm, high accuracy, and interpretability [START_REF] Buttrey | Nearest-neighbor classification with categorical variables[END_REF][START_REF] Cover | Nearest neighbor pattern classification[END_REF]. Furthermore, being distance-based (dissimilarity), the weighted kNN approach fits the purposes of extending the consensus predictions to new chemicals and providing the exact same prediction for the chemicals that already have a consensus model prediction. This goal is achieved by considering the first nearest-neighbor prediction if the distance is zero (100% similarity). An applicability domain index is also provided to assess the similarity of the predicted chemical to the nearest neighbors. PaDEL (version 2.21) and CDK (version 2.0) were used to calculate two-dimensional molecular descriptors [START_REF] Guha | Using the CDK as a backend to R[END_REF][START_REF] Yap | PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints[END_REF]). Because PaDEL uses a previous version of CDK (1.5), overlapping descriptors between it and CDK2 were excluded. The union of the PaDEL descriptors (1,444) and CDK2 (287) resulted in a total of 1,616 variables that were later filtered for low variance and missing values.

Here, kNN was coupled with genetic algorithms (GA) to select a minimized optimal subset of molecular descriptors. GA begins with an initial random population of chromosomes, which are binary vectors representing the presence or absence of molecular descriptors. An evolutionary process is then simulated to optimize a defined fitness function and new chromosomes are obtained by coupling the chromosomes of the initial population with genetic operations such as crossover and mutation [START_REF] Ballabio | Genetic algorithms for architecture optimisation of counter-propagation artificial neural networks[END_REF][START_REF] Leardi | Genetic algorithms applied to feature selection in PLS regression: how and when to use them[END_REF].

The best models were selected and implemented in OPERA, a free and open-source suite of QSAR models (Mansouri et al. 2016b[START_REF] Mansouri | OPERA models for predicting physicochemical properties and environmental fate endpoints[END_REF]. Both OPERA's global and local AD approaches, as well as the accuracy estimation procedure, were applied to the predictions [START_REF] Mansouri | OPERA models for predicting physicochemical properties and environmental fate endpoints[END_REF]. The global AD is a Boolean index based on the leverage approach for the whole training set, whereas the local AD is a continuous index in the [0-1] range based on the most similar chemical structures from the training set [START_REF] Mansouri | OPERA models for predicting physicochemical properties and environmental fate endpoints[END_REF].

Results and Discussion

Received Models

There was a total of 91 models submitted by the participating groups. Each submission consisted of predictions for the full or fraction of the prediction set using one or multiple models, as well as the related documentation with various levels of detail. All submitted results for the prediction set are provided in Supplemental Material S6. The full list of files submitted by the participants is available at https://doi.org/10.23645/epacomptox.10321982. The submissions included categorical and continuous predictions from binding, agonist, and antagonist models as shown in Table 5.

The number of categorical models submitted greatly exceeded the number of continuous models. This difference is due to the difficulty of modeling the low number of AUC values greater than zero in the provided training set (ToxCast™ data). All participating groups provided at least one binding model. Thus, the number of binding models is higher than the number of either agonist or antagonist models. This higher number is also due to the biased training data, which included low numbers of active agonists and antagonists. As described above, the number of active binders is the union of both active agonists and antagonists.

Results of the Evaluation Procedure

The evaluation procedure described above was applied to the categorical and continuous predictions provided by the participants. The goal of this step was to assess the accuracy of the predictions that, in a later step, were combined into the consensus models. Thus, the evaluation procedure was not designed to reflect the uneven coverage of the prediction set, and application of an AD was encouraged.

The first application of this evaluation procedure revealed models that suffered from mishandling of data that might occur during the modeling process. Such errors led to a severe decrease in prediction accuracy and included mismatches between the IDs of the prediction set chemicals and their associated predictions, as well as misinterpretation (inverting or mismatching) of the different fields contained in the provided files (training and prediction sets) introduced by certain automated procedures. Because the goal of the project was not to compete, but rather to collaborate, the submitters of the models with such issues were notified to correct them to allow for a better contribution toward the consensus. The final, corrected submissions were used to produce the statistics provided in Supplemental Material S7. The results of the evaluation procedure, discussed below, are also available at https://doi.org/10.23645/epacomptox.10321994.

Qualitative Models

As mentioned earlier, all participating groups built categorical binding models. Furthermore, certain groups, such as IRFMN and ATSDR, collaborated with others to provide additional models [START_REF] Manganelli | Development, validation and integration of in silico models to identify androgen active chemicals[END_REF]. For binding activity, ∼ 85% of the models achieved a BA above 0.8 for the training set, and about 70% of them achieved a BA above 0.7 for the evaluation set. On average, the BA of most models decreased ∼ 15% for the evaluation set relative to the training set. We consider this decrease to be negligible based on the differences between the training set data (which are based on the AUC values of the ToxCast™ AR pathway model that combines multiple assays) and the evaluation set data (which are consensus hit calls from the literature or rely on only one record for a particular chemical with unknown reproducibility). With this high predictivity and balance between training and evaluation set performance increasing their robustness, ∼ 75% of the binding models reached a score of 0.75.

The agonist models showed a higher performance in comparison with the binding models. Indeed, all agonist models had a training BA above 0.8, and 95% of them achieved a BA above 2). Although the data sets contained more active antagonists in comparison with agonists, the general performance of the antagonist models was inferior. This inferiority was reflected in the evaluation set performance, because only two models reached a BA of 0.75, which affected their robustness (0.24 average difference between the training and evaluation BAs). However, the average and median scores reached 0.78 and 0.79 respectively, which shows high general performance of the models (Figure 2).

Most of the submitted categorical models (agonist, antagonist, and binding) provided predictions for the majority of the prediction set chemicals (>90%). Some of the participants who submitted more than one model, such as NCATS and UNIMIB, opted for a low coverage with high accuracy and a high coverage with lower accuracy. Additional details about the performance of the models is provided in Supplemental Material S7.

Quantitative Models

The quantitative models were converted into multiclass categorical models as described in the Methods section. The overall performance of the thirteen models across the three modalities (agonist, antagonist, and binding) was lower than that of the binary categorical models. The binding models performed a bit better than the agonist and antagonist models. Indeed, four binding models out of five obtained a score above 0.6, whereas only one agonist and one antagonist model performed that well (Figure 3). The predictive accuracy of these models was also assessed on the five classes separately (details available in Supplemental Material S7). This analysis showed that most models exhibited BAs of approximately 0.5 for the five classes, with the binding models exhibiting slightly better performance (0.7-0.78) in identifying inactives.

Consensus Modeling

Based on their low number and average performance in comparison with the categorical models, the recommendation would be that the continuous models should be used individually. A continuous consensus model can be derived only from a more concordant set of models. Thus, for the sake of accuracy and consistency of the predictions, only the categorical models were considered for the consensus step. Before combining the categorical predictions into a consensus, we checked the coverage and concordance among the models. As shown in Figure 4, all chemicals in the prediction set are covered by at least 11 models. Moreover, most chemical structures can be predicted by 18-20 agonist and antagonist models. For binding, most chemicals were predicted by 28-31 models. This high coverage provides a good basis for the consensus model and strengthens the statistical relevance of the combined predictions.

The concordance among the models is also an important criterion for combining the predictions. In fact, chemicals predicted with high concordance among numerous models built using different modeling approaches can inform on accuracy (Mansouri et al. 2016a). Figure 5 shows that most binding, agonist, and antagonist categorical predictions are at least 90% concordant. Because most models were associated with comparable scores, the average score used to categorize chemicals was largely in Environmental Health Perspectives 027002-9 128(2) February 2020 agreement with model concordance; i.e., the average score for actives was high when the concordance among the models with active predictions was high, and vice versa. A few exceptions were noted when model concordance was around 0.5, which indicated that only one or two models were driving the classification. Thus, based on these statistical observations about the concordance between the models, it can be concluded that it is possible to combine the categorical predictions into consensus agonist, antagonist and binding predictions.

Consensus Predictions

The predictions from the binding, agonist, and antagonist categorical models were at first combined independently based on the calculated scores. Because the participants provided uneven fractions of the prediction set, the resulting predictions for each of the 55,450 chemical structures were based on different contributing models. Thus, predictions from the same model can be associated with different weights across the prediction set. After generating the consensus predictions for the whole prediction set, the same evaluation procedure described previously was applied to each of the single models. The resulting statistical details are reported in Supplemental Material S7 as CONSENSUS_1. All obtained parameters, including the BA for the training and evaluation sets as well as the corresponding score, were around the top values obtained for the single models.

In a second step, to improve consistency among the agonist, antagonist, and binding predictions across the whole set of 55,450 chemicals, the following set of rules were applied:

• If a chemical i was predicted to be an active agonist or antagonist with a concordance below 70%, but an inactive binder with a concordance above 70%, it was considered an inactive agonist or antagonist, respectively. • If a chemical i was predicted to be an active agonist or antagonist with a concordance above 70%, but an inactive binder with a concordance below 70%, it was considered an active binder. After applying these corrections to the consensus predictions, the total numbers of actives and inactives changed slightly for the three modalities (Table 6). However, the overall statistics as reported as CONSENSUS_2 in Supplemental Material S7 remained almost unchanged. This result is because most of the corrected predictions are not included in the evaluation set. The evaluation results of the final consensus predictions are reported in Table 7. The final consensus for the whole prediction set (identifiers and structures in SMILES format) are provided in Supplemental Material S8, and the SDF files are available at https://doi.org/10.23645/epacomptox.10322012.

Because the training and evaluation sets were designed such that active agonists and antagonists were considered active binders, the corrected predictions can be considered more consistent with these two data sets. However, chemicals with inactive binding prediction and active agonist or antagonist that are all below 70% concordance were not changed. Also, certain chemicals were predicted to be active binders but inactive in both agonist and antagonist modalities. This circumstance was also noticed in the CERAPP predictions and was resolved by classifying these substances as low potency binders (Mansouri et al. 2016a). Similarly, certain chemicals were predicted to be active agonists and antagonists simultaneously. Such chemicals were also present in the ER and AR ToxCast™ data, as well as CERAPP predictions, and were considered to be strong in one modality but weak in the other.

Table 7 shows a noticeable drop in Sn and in the associated BA result for the whole evaluation set with its five potency classes. However, this drop does not indicate low performance of the single models or the resulting consensus predictions. It is more of an indication of differences between the two data sets. Usually, assay technology and other experimental differences can cause such discordance for certain chemicals. However, in this case, the low sensitivity of the consensus model on the evaluation set that led to the drop in accuracy in comparison with the training set is most probably due to the differences in the ranges of testing between ToxCast™ and the literature sources. Another cause of the difference between the two data sets is that the ToxCast™ data is a result of multiple assays that were combined based on a pathway model designed to avoid assay interference and cytotoxicity leading to false positives. This result can occur when chemicals are tested at Environmental Health Perspectives 027002-10 128(2) February 2020 high concentrations, leading to cell stress known as a "burst of activity" from turning multiple assays on at the same time [START_REF] Judson | Analysis of the effects of cell stress and cytotoxicity on in vitro assay activity across a diverse chemical and assay space[END_REF]). Thus, it is highly probable that at least some of the very weak actives in the evaluation set reported in the literature with high AC50 are, in reality, false positives that should be discounted. Additionally, as noticed in CERAPP, the increase in the number of sources in the literature data can provide information about the repeatability of the results and thus about the accuracy. These two hypotheses were evaluated by assessing the accuracy of the models (BA, Sn, and Sp) for the evaluation set after removing the chemicals in the "very weak" potency class and the chemicals with only one source, separately. The results of this analysis are summarized in Table 8. Table 8 shows that for all three modalities and in both cases (removal of very weak and single sources), the Sn of the models increased, which in turn increased the BA. Except for the agonist mode with the removal of single sources, which is a single case out of six, the Sn showed an increase of 7%-12%. This increase can be considered as a statistically significant increase in Sn after the removal of 2%-7% of the data set. Thus, it can be concluded that a significant percentage of a) the "very-weak" chemicals reported in the literature are false positives according to the definition applied in this project and b) the literature data with a reported single source is less reliable. Similar to CERAPP findings, Figure 6 shows that only a small fraction of the CoMPARA list is predicted to be active binders with >75% concordance between the models. Also, most of the inactive predictions, which are the majority of the list, are associated with high concordance. Thus, the models are more in agreement for the inactive predictions. This finding can be explained by the imbalanced training data and the uneven sensitivity of the models to weak actives. Additionally, because most of the models were built using ToxCast™ data, their sensitivity will be limited by its tested concentration ranges (≤100 lM).

Coverage and Contribution of Single Models to the Consensus

The evaluation set that was initially used to evaluate the single models covered only a small fraction of the full prediction set. Therefore, to gain insight into the contribution of the single models, the predictions provided by each of them were evaluated against the consensus for the full CoMPARA list. Sn, Sp, BA, and scores were calculated using the same previously mentioned functions. Figure 7 shows the score and coverage of each one of the binding models in comparison with the full list of the consensus predictions. The full results of this procedure, including similar figures for agonist and antagonist modalities, are reported in Supplemental Material S9. These figures show the consistency of the different models across the full list of 55,450 chemicals in the prediction set. This information is also an indication of the concordance of the single models among each other. The analysis of these figures in comparison with Figure 2, representing the performance of the models on the training and evaluation sets, shows similar trends for most models. This finding means that the models are behaving in a consistent way across the full prediction set in comparison with the training and evaluation sets. However, certain models showed a higher concordance with the consensus predictions, whereas others were more consistent with the training and evaluation set. The trends of such models confirm that the scores obtained at the initial evaluation procedure for each individual model did not drive the consensus predictions, but the general concordance (majority rule) did.

Accuracy and Limitations: Analysis of High and Low Concordance Chemicals

The analysis of the low concordance chemicals did not reveal any particular structural similarity. This finding is understandable because the ToxCast™ chemicals, used as a training set, were purposely selected to cover a wide range of chemical classes and uses [START_REF] Richard | ToxCast chemical landscape: paving the road to 21st century toxicology[END_REF]). Thus, it is highly improbable that a large number of models based on different machine learning approaches and molecular descriptors would have similar coverage and accuracy trends relative to specific chemical features. However, the analysis of concordance in terms of the accuracy of prediction in the evaluation set revealed that the models were more discordant for inaccurate predictions. Figure 8 shows that the concordance is generally above 90% for accurately predicted chemicals. There are certainly a number of exceptions that contradict this observation and that cannot be linked only to situations where the majority of models are generating wrong predictions but also to known differences between the training and evaluation sources. For example, hydroxyflutamide (CAS52806-53-8 and DTXSID8033562), a known antiandrogen drug, and confirmed as a strong antagonist with an AUC (ToxCast™ combined assays) score of 0.999 and a literature AC50 of 0:262 lM (U.S. EPA 2019e, 2019f; Wikipedia 2018). Hydroxyflutamide is, as expected, predicted by CoMPARA consensus to be an AR antagonist with a 0.95 concordance (20/21 antagonist models). However, in the collected literature data, hydroxyflutamide is also a very weak agonist with reported AC50 of 23:85 lM. However, in the CoMPARA consensus agonist predictions, it is considered as inactive with a concordance of 0.95 (20/21 agonist models), which is consistent with to ToxCast™ AUC score of 0.001 (U.S. EPA 2019f). This example shows that the sensitivity of the CoMPARA consensus models is more similar to the AUC score assessment, which is based ToxCast™ combined assays, rather than that in reported literature, which is usually based on a As previously noted, the concordance around the inactive predictions is generally high for most cases. Hence, to reveal any trends in the active predictions, a box plot for the concordance against the potency of binders was plotted for the evaluation set chemicals (Figure 9). This analysis showed that the concordance for moderate and strong binders is clearly higher than for very weak and weak ones. Similar trends were noticed for the agonist and antagonist predictions. The decreased accuracy for the low potency chemicals can explain the low sensitivity of the consensus predictions as discussed above, and the low concordance can be an indication of low accuracy. However, as Figure 8 shows, there are accurate predictions associated with low concordance and inaccurate predictions associated with high concordance. This finding is comparable to the AD assessment, which helps provide the user with context based on the assumption that predictions in the AD are generally more accurate than those outside the AD. The AD is not a definitive judgment on the accuracy because certain predictions in the AD might be inaccurate, and vice versa [START_REF] Sahigara | Assessing the validity of QSARs for ready biodegradability of chemicals: an applicability domain perspective[END_REF]. Similarly, Figure 9 shows that moderate and strong predictions are generally associated with higher concordance than are weak and very weak predictions. One of the known reasons of uncertainty lowering the sensitivity of the models for the very weak chemicals is the test concentration limitation in ToxCast™ assays in comparison with the literature reports. However, a high portion ( ∼ 50%) of the weak and very weak chemicals are also associated with relatively high concordance. Consequently, it can be concluded that there is an overall higher certainty in predicting moderate and strong chemicals, but the models are also able to predict weak and very weak chemicals with a relatively high certainty.

Analysis and Interpretation of Metabolite Activity

The total number of computationally generated metabolites for ToxCast™ parent chemicals was 15,406 structures. This number includes simulations for firstand second-phase metabolism using the in silico tool ChemAxon Metabolizer (ChemAxon, Ltd.). The metabolite structures were standardized and deduplicated using the QSAR-ready workflow, producing 8,601 unique structures that partially overlapped with the prediction set (a total of 2,009 structures). The number of active and inactive metabolites for binding, agonist, and antagonist modalities are summarized in Table 9. These deduplicated, standardized metabolite structures, however, are generated from different parent ToxCast™ chemicals. The active metabolite structures were mapped back to their parent structures; i.e., the parent of each metabolite was identified. The major concern with metabolites is in situations when they are actives, whereas their parents (which are typically tested in in vitro assays) are not. Table 10 summarizes the number of active and inactive ToxCast™ parent chemicals that generated metabolite structures predicted to be active using the consensus models.

Table 10 reveals that the number of inactive ToxCast™ parent chemicals with active metabolites is higher than those that were initially active according to the AR pathway model (based on ToxCast™ in vitro assays) [START_REF] Kleinstreuer | Development and validation of a computational model for androgen receptor activity[END_REF]. The 212 inactive ToxCast™ chemicals with predicted active metabolites are likely candidates for follow-up as future work, either through experimental testing of the predicted metabolites, or through metabolically competent in vitro AR assays.

Generalization of the Consensus and Implementation in OPERA

To extend the use of CoMPARA to new chemicals by implementing support in the open-source prediction tool OPERA, a weighted kNN modeling approach was applied to provide predictions based on the existing experimental data and the prediction set consensus predictions with high concordance. Binding, agonist, and antagonist models were processed separately. To ensure high sensitivity for a conservative model, all actives were included, whereas inactives were set to a threshold of at least 85% concordance. ToxCast™-generated metabolite structures were excluded from this procedure (no means to validate against real metabolites structures). The total number of actives and inactives considered for modeling of each modality are reported in Table 11. Each of the three data sets was semi-randomly (stratified splitting) divided into training and test sets, each representing 75% and 25% of the actives and inactives, respectively. PaDEL and CDK2 descriptors were combined as described above. The GA-kNN procedure was conducted on the list of descriptors that passed the low variance and missing values filters. This step was conducted to make a supervised, end pointdependent, similarity-based approach for the selection of the nearest neighbors.

The lists of chemicals summarized in Table 11 are provided as a single file containing identifiers, structures in SMILES format, and data in Supplemental Material S10, and as separate SDF files at https://doi.org/10.23645/epacomptox.10322012.

The statistics of the best kNN models, with k equal to five, for the three data sets are reported in Table 12. Because the goal of this modeling step was to reproduce the original consensus, the models were fitted, aiming for high performance and fidelity to the original predictions. However, the complexity of the models was kept to a minimum by adopting the weighted kNN approach and reducing the number of included descriptors. Indeed, for each modality (binding, agonist, and antagonist), the number of selected descriptors was optimized for minimum complexity and highest accuracy based on the GA ranking of importance. Figure 10 shows the selected number of descriptors for each model based on the ranked descriptors based on the GA results. In Figure 10, it is important to note that the ranking of the descriptors for the three modalities was not the same, because the three Environmental Health Perspectives 027002-13 128(2) February 2020

GA procedures were conducted independently on the three data sets. Therefore, the three scatterplots are combined on the same graph for simplification and comparison reasons only.

Table 12 shows not only high BA but also good balance between Sn and Sp in five-fold cross-validation for the training set as well as the test set. The highest difference between Sp and Sn observed for the agonist model is probably the low number of actives (Table 11) in comparison with the binding and antagonist data sets. These statistics show that the three models are robust enough to simulate the original combined predictions and generate the same predictions for a new data set without having to rerun all the single models and repeating the whole procedure. Thus, the hypothesis of extending the consensus models to apply to new chemicals is valid.

These three weighted kNN models were first implemented in the OPERA (version 2.0) application, which is available for download from GitHub as command-line or user-friendly graphical interface (https://github.com/NIEHS/OPERA) [START_REF] Mansouri | OPERA models for predicting physicochemical properties and environmental fate endpoints[END_REF]. This application allows a user to generate CoMPARA (binding, agonist, and antagonist) predictions starting from a QSARready 2D structure. This implementation of the models in OPERA will generate the same results as the initial combined predictions of the single models if tested on the same list of structures associated with the CoMPARA analysis. However, original predictions with concordance below the selected thresholds might change because they are not included in the knowledge base of the models.

Both OPERA's AD indices as well as the nearest neighbors and the statistics are provided in the report that can be viewed in the application output or online on the EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard) [START_REF] Williams | The CompTox Chemistry Dashboard: a community data resource for environmental chemistry[END_REF]). The confidence level estimates for CoMPARA's predictions are calculated based on the concordance of the nearest neighbors.

Applications

This project has produced three generalized consensus models based on the initially generated predictions for the full CoMPARA list of 55,450 chemicals. A similar approach was applied to the CERAPP models that have also been implemented into the OPERA application, allowing them to be applied to new chemicals, reproducing the consensus predictions with high accuracy. The binding, agonist, and antagonist ER and AR activity models have been applied to the QSAR-ready forms of the entire set of 765,000 chemical substances contained in the EPA's DSSTox database (underpinning the Dashboard application), and these predictions will be made available in the future via the EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/) and the NTP's Integrated Chemical Environment (ICE) dashboard (https://ice.ntp. niehs.nih.gov/). As for previously published OPERA models, once available on the dashboards, it will be possible to view the predictions for single chemicals online or downloaded using the batch search page (https://comptox.epa.gov/dashboard/dsstoxdb/batch_ search). The online versions of the prediction reports will also include useful details, such as accuracy estimates and AD assessment. The details of the whole modeling procedure will be made available in a QSAR Model Report Format (QMRF) report that can be downloaded from OPERA's prediction report page on the EPA Chemicals Dashboard or from the European Commission's Joint Research Center (JRC) QMRF Inventory (European Commission 2013; JRC 2017). Moreover, the original online models developed by the VCCLAB team are available, together with all data, at http:// ochem.eu/article/102271.

In addition to the precalculated predictions available on the CompTox and ICE dashboards for the full list of DSSTox chemicals, users will be able to perform real-time predictions for chemicals not contained in the dashboard using the CERAPP, CoMPARA, and other OPERA models using the online CompTox prediction page (https://comptox.epa.gov/dashboard/predictions/ index) or perform the calculations locally by installing the desktop standalone version (https://github.com/NIEHS/OPERA).

Conclusions

The collaborative efforts of the CoMPARA participants resulted in robust consensus models predicting the potential ability of chemicals to interact with the AR pathway based only on their structures. Up to 91 separately developed categorical and continuous models were received from 25 international research groups. Separate models were built for agonist, antagonist, and binding activity based on a wide range of structure-based modeling approaches. The models were applied to a large collection of 55,450 chemical structures that included the 32,464 CERAPP chemicals as well as additional nonoverlapping chemicals from the European EINECS list and computationally generated ToxCast™ metabolites. CERAPP workflows and code were adapted, improved, and then applied at various stages of the project, from data and chemical structure curation to the evaluation of the submitted predictions and the consensus modeling. Most of the models were trained on a data set derived from the combination of 11 in vitro assays from ToxCast™ probing various points of the AR pathway model. Models were then evaluated using a collection of AR in vitro data curated from the online literature (PubChem). After this process, the categorical predictions were combined into consensus models to classify the chemicals as actives and inactives.

Despite the challenges caused by the skewed data distribution in terms of actives and inactives, most models achieved reasonably high performance, with a slight improvement for certain models with narrow ADs. This achievement proves that there is not an optimal modeling approach for predicting these AR data. It is also important to note that, although the scoring function was used to combine the predictions from the different models, the concordance (majority rule) was the real driver of the final consensus predictions. Hence, most of the single models carried similar weights for an equal contribution to the consensus. The main difference between the models was their coverage of different portions of the prediction as determined by their defined AD, which also explains the fact that the concordance of the models with the final predictions on the full set of 55,450 chemicals (Figure 7) is different from the scores that were generated on the evaluation set, which represents only a small fraction. The concordance among the predictions was high for most chemicals, particularly with inactives and strong actives. This consistency was demonstrated, as in the previous collaborative project CERAPP, to be linked to highly accurate predictions. This observation can therefore be extrapolated to new predictions. Low accuracy and concordance was noticed for weak actives, which, similar to ER activity, can be linked to the experimental differences between the ToxCast™-based training set and the literature-based evaluation. Relevant factors include but are not limited to lack of orthogonal assay results, differing concentration ranges, the presence of selective AR modulators (SARMs) with varying activity among tested tissue sources, and other experimental artifacts and errors.

The ultimate goal of this collaborative effort was to leverage the strengths of different modeling approaches in order to virtually screen a large universe of chemicals of high importance to environmental and human health studies. The final consensus models were able to identify approximately 10% of the screened chemicals as potential binders to the AR or in agonist/antagonist modes. This list included a number of computationally simulated ToxCast™ metabolites of inactive parent structures that require further indepth attention. The resulting models were generalized and implemented in an open-source standalone application to be applied beyond the original list of screened chemicals. All materials and resulting files generated during this project are available for download at (https://doi.org/10.23645/epacomptox.10321697; https:// doi.org/10.23645/epacomptox.10321982; https://doi.org/10.23645/ epacomptox.10321925; https://doi.org/10.23645/epacomptox. 10321994; https://doi.org/10.23645/epacomptox.10322012).

After CERAPP, which established the framework for such international collaborations, CoMPARA was a more global collaboration with a higher number of participants and a larger set of chemicals screened. The success of these two projects and the eagerness of the participants for more collaborations have prompted the organization of new consortiums to model new end points with readily available high-quality data, such as acute oral systemic toxicity (Kleinstreuer et al. 2018b). In summary, this project further demonstrates the power of combined computational approaches to accurately and rapidly screen large libraries of chemicals with high toxicological relevance and to provide open-source tools that can be readily applied by a wide range of stakeholders.
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 1 Figure 1. Workflow of the project defining the major steps and the different data sets used for training, evaluation, and prediction.
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 2 Figure 2. Scores of the categorical binding (black), agonist (white) and antagonist (gray) models based on the evaluation set and the scoring Equation 1.
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 3 Figure 3. Scores of the continuous binding (black), agonist (white) and antagonist models based on the evaluation set and the scoring Equation 1 (See Supplemental Material 1 for groups' abbreviations).

Figure 4 .

 4 Figure 4. Histogram showing the distribution of the number of binding (black), agonist (white) and antagonist (gray) models covering the prediction set (minimum of 11 models for agonist and antagonist and 20 for binding).

Figure 5 .

 5 Figure 5. Histogram showing the distribution of the concordance of the binding (black), agonist (white) and antagonist (gray) single models.

Figure 6 .

 6 Figure 6. Histogram showing the distribution of the concordance between the binding models over the active predictions.

Figure 7 .

 7 Figure 7. Histogram showing the coverage and S-score of the single binding models in comparison with the consensus binding predictions for the full CoMPARA set.

Figure 8 .

 8 Figure 8. Box plot showing the correlation between concordance and accuracy of prediction for the evaluation set chemicals. The box represents the interquartile range. The lower and upper box boundaries represent the 25th and 75th percentiles, respectively. The horizontal line splitting the box represents the median value. The upper and lower whiskers represent the minimum and maximum values, respectively. Outliers are represented by the + symbol.

Figure 9 .

 9 Figure 9. Box plot showing the correlation between concordance and potency for the active binders of the evaluation set chemicals. The box represents the interquartile range. The lower and upper box boundaries represent the 25th and 75th percentiles, respectively. The horizontal line splitting the box represents the median value. The upper and lower whiskers represent the minimum and maximum values, respectively. Outliers are represented by the + symbol.

Figure 10 .

 10 Figure 10. Selected descriptors for the binding (. symbol), agonist ( * symbol), and antagonist (x symbol) models and corresponding balanced accuracy (BA) calculated in five-fold cross-validation in forward selection based on the genetic algorithm (GA) ranking. The ranked descriptors are not overlapping for the three modalities.

Table 1 .

 1 Training set chemicals for binding, agonist and antagonist data sets.

	Number of	Binding	Agonist	Antagonist
	Actives	198	43	159
	Inactives	1,464	1,616	1,366
	Total	1,662	1,659	1,525

Table 2 .

 2 Evaluation set chemicals for binding, agonist, and antagonist data sets.

	Number of	Binding	Agonist	Antagonist
	Actives	453	167	355
	Inactives	3,429	4,672	3,685
	Total	3,882	4,839	4,040

Table 3 .

 3 Modeling approaches applied by the participating groups.

	Abbreviation *	Approach	Reference to specific method, if published
	ANN	Artificial neural networks	-
	ASNN	Associative artificial neural	Tetko 2002; Tetko and
		networks	Tanchuk 2002
	DF	Decision forest	Hong et al. 2005, 2004; Tong
			et al. 2003; Xie et al. 2005
	DT	Decision trees	-
	GBM	Gradient boosting method	Berk 2008; Mazanetz et al.
			2012
	HC	Hierarchical clustering	Martin et al. 2008
	kNN	k nearest neighbors	Cover and Hart 1967;
			Kowalski and Bender 1972
	LDA	Linear discriminant analysis	-
	MLR	Multilinear regression	-
	NB	Naïve Bayes	Murphy 2006
	PLS	Partial least squares	Wold et al. 2001
	PLSDA	Partial least squares	Frank and Friedman 1993;
		discriminative approach	Nouwen et al. 1997
	RBF	Radial basis function	Zakharov et al. 2014
	RF	Random forest	Breiman 2001
	SCR	Self-consistent regression	Lagunin et al. 2011
	SVM	Support-vector machines	Cortes and Vapnik 1995

Note: -, No data. * Approaches are sorted alphabetically by acronym.

Table 4 .

 4 Tools and methods applied by the participating groups.

	Group *	Methods **	Descriptors/tool	Training and test sets	Model type	Reference (if published)
	ATSDR_IRFMN	ANN + SVM + DT	ADMET + DRAGON 7	ToxCast™	Qualitative	Manganelli et al. 2019
	CMPLI	RF + kNN + NB + SVM	MOE 3D	ToxCast™	Qualitative +	NA
		MLR + PLS +			quantitative	
		ANN + RF				
	DTU	PLR	Leadscope	ToxCast™, under sampling Qualitative	NA
	ECUST	SVM	PaDEL	ToxCast™	Qualitative	NA
	IBMC	SCR	QNA + MNA + PhysChem		Qualitative	Filiminov et al. 2009
			properties (topological length,			
			volume and lipophilicity) +			
			PASS			
	IDEA	RF	Ambit	ToxCast™ + ExC APE-DB Qualitative	Sun et al. 2017
	INSUBRIA_	kNN + LDA + SVM +	RdKit + DRAGON	ToxCast™, under sampling Qualitative	NA
	LANZHOU	RF + DT				
	IRFMN		SARpy (Structural alerts)	ToxCast™ + AR RBA	Qualitative	Ferrari et al. 2011;
						Manganelli et al. 2019
	LM				Qualitative +	NA
					quantitative	
	NCATS	Docking +	QNA + Keras Theano +	ToxCast™	Qualitative	Filimonov et al. 2009
			DOCK + Open Eye + MOE Dock			
	NCCT	kNN + PLSDA	PaDEL	ToxCast™	Qualitative	NA
	NCSU	RF		ToxCast™	Qualitative	NA
	NCTR_DUT	DF	Mold2	ToxCast™, under sampling Qualitative	NA
	NRMRL	SVM + HC	TEST	ToxCast™, under sampling Qualitative	NA
	SWETOX	RF	RDKit	ToxCast™	Qualitative	Carlsson et al. 2014;
						Norinder and Boyer
						2016
	TARTU-1&2	SVM	RDKit	ToxCast™, under sampling Qualitative	NA
	TUM	MLR +	CDK	ToxCast™	Qualitative +	NA
					quantitative	
	UFG	GBM	RDKit	ToxCast™, under sampling Qualitative	NA
	UMEA	ASNN	OCHEM	ToxCast™	Qualitative	NA
	UNC	RF + RBF	DRAGON	ToxCast™, under sampling Qualitative	NA
	UNIBA	Docking	GOLD	ToxCast™, under sampling Qualitative	Trisciuzzi et al. 2017
	UNIMIB	kNN + NB + RF	DRAGON	ToxCast™, under sampling Qualitative	Grisoni et al. 2019,
						Todeschini et al. 2015
	UNISTRA	SVM	ISIDA	ToxCast™	Qualitative +	NA
					quantitative	
	VCCLAB	ASNN +	OCHEM, models are available at	ToxCast™	Qualitative +	Sushko et al. 2011
			http://ochem.eu/article/102271		quantitative	

  ToxCast™-based AR pathway model (AUC values) using literature data. Both literature (evaluation set chemicals with quantitative information) and predicted data sets were categorized into five potency activity classes: inactive, very weak, weak, moderate, and strong [example reference chemicals with different potency levels are available inJudson et al. and Kleinstreuer et al. (Judson et al. 2015;[START_REF] Kleinstreuer | Development and validation of a computational model for androgen receptor activity[END_REF]]. These five classes were used to evaluate the quantitative predictions.

Table 5 .

 5 Summary of the submitted models.

	Number of	Categorical	Continuous	Total
	Binding	35	5	40
	Agonist	21	5	26
	Antagonist	22	3	25
	Total	78	13	91

0.75 on the evaluation set. This performance brings the average difference between training and test BA down to 0.1, indicating lower risk of overfitting. Most ( ∼ 95%) of the agonist models achieved a score above 0.85 (Figure

Table 6 .

 6 Total numbers of predicted actives and inactives before and after corrections.

		Binding	Agonist	Antagonist
	Correction	Actives Inactives Actives Inactives Actives Inactives
	Before	9,878	45,572	2,239	53,211	12,705	42,745
	After	10,521	44,929	2,167	53,283	12,136	43,314

Table 7 .

 7 Statistics of the corrected consensus predictions using the whole available evaluation set.

		Binding		Agonist			Antagonist
	Parameter	Training set	Evaluation set	Training set	Evaluation set	Training set	Evaluation set
	Sn	0.98	0.65	0.95	0.74	1.00	0.61
	Sp	0.96	0.90	0.99	0.97	0.96	0.87
	BA	0.97	0.78	0.97	0.86	0.98	0.74

Table 8 .

 8 Statistics of the consensus predictions after removing the "very weak" actives from the evaluation set. Wikipedia 2019b). However, this comparison does not mean that all very weak actives are mispredicted. Aldosterone, for example, and many others are reported in the literature as very weak antagonists with AC50 values above 60 lM and predicted by CoMPARA's antagonist consensus as actives with concordances above 0.75 (U.S. EPA 2019a, 2019b; Wikipedia 2019a).

		Binding (3,535 chemicals)	Agonist (4,406 chemicals)	Antagonist (3,664 chemicals)
	Parameter	Very weak excluded	Sources >1	Very weak excluded	Sources >1	Very weak excluded	Sources >1
	Number of chemicals	3,407	3,266	4,244	4,282	3,353	3,380
	Sn	0.72	0.78	0.81	0.84	0.69	0.62
	Sp	0.90	0.90	0.97	0.97	0.87	0.87
	BA	0.81	0.84	0.89	0.90	0.78	0.75
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Table 9 .

 9 Total number of active and inactive ToxCast™ deduplicated metabolites.

	Number of	Active	Inactive
	Binding	1,806	4,983
	Agonist	470	6,164
	Antagonist	2,070	4,772
	Total	2,262	8,302

Table 10 .

 10 Active and inactive ToxCast™ parent chemicals linked to the metabolites predicted to be actives.

	Number of	Active parent	Inactive parent
	Binding	145	150
	Agonist	21	31
	Antagonist	132	158
	Total	152	212

Table 11 .

 11 Chemicals with high concordance and/or experimental data considered for training and validating the implemented consensus models.

	Number of	Binding	Agonist	Antagonist
	Active	6,402	1,419	8,936
	Inactive	23,999	29,994	22,132
	Total	30,401	31,413	31,068

Table 12 .

 12 Training and test set statistics of the three consensus models.

			Training set (75%) in		
				5-fold-CV		Test set (25%)
	Number of Descriptors	Sn	Sp	BA	Sn	Sp	BA
	Binding	23	0.92	0.96	0.94	0.92 0.97 0.95
	Agonist	10	0.92	1.00	0.96	0.89 0.99 0.95
	Antagonist	15	0.91	0.97	0.94	0.93 0.97 0.95
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