
HAL Id: hal-02489325
https://hal.science/hal-02489325v2

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalization of Rellich-Kondrachov theorem and trace
compacteness for fractal boundaries

Anna Rozanova-Pierrat

To cite this version:
Anna Rozanova-Pierrat. Generalization of Rellich-Kondrachov theorem and trace compacteness for
fractal boundaries. Maria Rosaria Lancia and Anna Rozanova-Pierrat. Fractals in engineering: Theo-
retical aspects and Numerical approximations, 2020, ICIAM 2019 - SEMA SIMAI SPRINGER SERIES
PUBLICATIONS. �hal-02489325v2�

https://hal.science/hal-02489325v2
https://hal.archives-ouvertes.fr


Generalization of Rellich-Kondrachov theorem and

trace compacteness for fractal boundaries

Anna Rozanova-Pierrat∗

Abstract

We present a survey of recent results from the functional analysis that allow to solve

PDEs in a large class of domains with irregular boundaries. We extend the previ-

ously introduced concept of admissible domains with a d-set boundary to domains with

boundaries carrying measures that are not necessarily Ahlfors d-regular. We prove gen-

eralizations of the Rellich-Kondrachov theorem and the compactness of the trace opera-

tor and obtain uniqueness and existence results for weak solutions to Poisson boundary

value problems with Robin boundary conditions. We observe the usual properties of

the associated spectral problem.

Keywords: fractal boundaries, compact operators, d-set, trace and extension operators,
Rellich-Kondrachov theorem.

1 Introduction

From the theory of partial differential equations it is known that the irregularity of the
boundary of the considered domain can be a serious obstacle even for the proof of the
existence of a weak solution. In this paper we are interested to identify a class of domains
with irregular boundaries for which we still have weak well-posedness for elliptic problems.
Here we consider a specific problem, namely the Poisson equation with homogeneous Robin
boundary conditions,

{

−∆u = f in Ω,
∂u
∂ν + αu = 0 with α > 0 on ∂Ω.

(1)

To provide a rigorous weak formulation of this problem it is important to be able to inte-
grate by parts and to have a well-defined trace operator for ∂Ω. For smooth or Lipschitz
boundaries ∂Ω this is classical and well-known (for sufficiently smooth boundary see Raviart-
Thomas [36], for the Lipschitz case see Marschall [33] and [16, 35]). If ∂Ω is Lipschitz, then
the normal unit vector ν to the boundary ∂Ω exists almost everywhere, the trace operator
Tr : W 1,2(Ω) → H

1

2 (∂Ω) is linear, continuous and surjective, [31, 33, 16, 35], and has a

linear right continuous inverse, i.e. an extension operator E : H
1

2 (∂Ω) → W 1,2(Ω) is such
that Tr(E(u)) = u.

Moreover, for u, v ∈ W 1,2(Ω) with ∆u ∈ L2(Ω) the usual Green formula holds in the
sense that

∫

Ω

∇uvdx = 〈
∂u

∂ν
,Trv〉

((H
1

2 (∂Ω))′,H
1

2 (∂Ω))
−

∫

Ω

∇v∇udx. (2)

This formula understands the existence of the normal derivative of u on ∂Ω as the
existence of a linear continuous form on H

1

2 (∂Ω), where H
1

2 (∂Ω) is the image of W 1,2(Ω)

for a Lipschitz domain Ω by the trace operator. The dual space (H
1

2 (∂Ω))′ is usually denoted

by H− 1

2 (∂Ω).

∗CentraleSupélec, Université Paris-Saclay, France (correspondence, anna.rozanova-
pierrat@centralesupelec.fr).

1



For Lipschitz domains it is also possible to give a definition in the weak sense of the
divergence operator for vector valued functions (see for instance Theorem 2.5 § 2 [15]) and
to introduce the usual formula of integration by parts for all u and v from W 1,2(Ω) in the
following weak sense

〈uνi, v〉
(H−

1

2 (∂Ω),H
1

2 (∂Ω))
:=

∫

Ω

∂u

∂xi
vdx+

∫

Ω

u
∂v

∂xi
dx i = 1, . . . , n, (3)

where by uνi is denoted the linear continuous functional on H
1

2 (∂Ω).
Thanks to the classical results of Calderon-Stein [9, 38] it is known that every Lipschitz

domain Ω is an extension domain for the Sobolev space W k,p(Ω) with 1 ≤ p ≤ ∞, k ∈ N
∗,

we briefly recall the definition of this notion

Definition 1. (W k,p-extension domains) A domain Ω ⊂ R
n is called a W k,p-extension

domain (k ∈ N
∗) if there exists a bounded linear extension operator E : W k,p(Ω) → W k

p (R
n),

i.e. a linear operator assigning a function v = Eu ∈ W k
p (R

n) with v|Ω = u to any u ∈

W k,p(Ω), such that

‖v‖Wk
p (Rn) ≤ C‖u‖Wk,p(Ω) with a universal constant C > 0.

This result was generalized by Jones [21] in the framework of (ε,∞)-domains which give
an optimal class of extension domains in R

2, but not in R
3. The optimal class of extension

domains for p > 1 in R
n was found more recently by Hajłas, Koskela and Tuominen [17].

These results are discussed in Section 2, where we give all definitions.
Thanks to the results in [41, 27, 28, 6, 5] it is possible to generalize the trace operator

to cases of more irregular boundaries, such as d-sets, and even to sets without a fixed
dimension [23, 19]. The definition of the trace for a regular distribution and different image
spaces leading to different Green formulas are presented in Section 3.

But to be able to ensure the weak well-posedness of problem (1) and to discuss the
associated spectral problem for −∆, we also need the compactness of the inclusion W 1,2(Ω)
in L2(Ω) and the compactness of the trace operator, now considered as an operator from
W 1,2(Ω) to L2(∂Ω).

Thanks to [13] Theorem V.4.17 it is known that if a domain Ω has a continuous boundary
(in the sense of graphs, see [13] Definition V.4.1) then W 1,2(Ω) is compactly embedded in
L2(Ω). General d-set boundaries with d > n− 1, as for instance a von Koch curve, do not
satisfy the assumption to have a continuous boundary. In our article [5] we proved this fact
in the framework of admissible domains with a d-set boundary. Here we prove it also for
more general boundaries as in [22, 23] (see Section 4). This may be seen as an update to
the concept of admissible domains introduced first in [5]. We follow the same idea as in [5]
and introduce the class of all Sobolev extension domains with boundaries on which one can
define a surjective linear continuous trace operator with linear continuous right inverse. To
emphasize their ”extension nature”, we call these domains Sobolev admissible domains (see
Definition 7).

The most common examples of Sobolev admissible domains are domains with regular or
Lipschitz boundaries, with a d-set boundaries, such as Von Koch fractals or with a “mixed”
boundary (for instance, the boundary of a cylindrical domain in R

3 with the base being a
snowflake domain in R

2 as considered for the Koch snowflake base in [30, 11]).
The generalization of the Kondrachov-Rellich theorem in the framework of Sobolev ad-

missible domains allows to extend the compactness studies of the trace from [4] and to
update the results of [5] (see Section 5): for a Sobolev admissible domain with a compact
boundary the trace operator mapping from W 1,2(Ω) to L2(∂Ω) is compact.

Thus, as for the usual Lipschitz bounded case, the problem (1) is weakly well-posed and
the corresponding spectral problem has a countable number of eigenvalues going to +∞ with
the eigenfunctions forming an orthogonal basis in W 1,2(Ω) which becomes an orthonormal
basis in L2(Ω) by the classical Hilbert-Schmidt theorem for compact self-adjoint operators
on a Hilbert space (see Section 6).
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The paper is organized as follows. In Section 2 we present recent results on Sobolev ex-
tension domains. In Section 3 we firstly define the trace operator on a d-set in Subsection 3.1
and secondly, in Subsection 3.2 we provide analogous results in a framework that does not
require the boundaries to be exactly d-dimensional. We finish the section by a generalization
of the Green formula and the integration by parts formula within this framework in Subsec-
tion 3.3. Using the results on the trace and on the extension operators, we introduce the
concept of Sobolev admissible domains in Section 4 and generalize the Rellich-Kondrachov
theorem. In Section 5 we show the compactness of the trace operator considered as an oper-
ator mapping to Lp(∂Ω). In Section 6 we apply these theorems to show the well-posedness
of the Poisson problem (1) on the W 1,2-Sobolev admissible domains.

2 Sobolev extension domains

As in [5] we start by recalling the classical results of Calderon-Stein [9, 38]: every Lipschitz
domain Ω is an extension domain for W k,p(Ω) with 1 ≤ p ≤ ∞, k ∈ N

∗. This result was
generalized by Jones [21] in the framework of (ε, δ)-domains:

Definition 2. ((ε, δ)-domain [21, 25, 41]) An open connected subset Ω of R
n is an

(ε, δ)-domain, ε > 0, 0 < δ ≤ ∞, if whenever x, y ∈ Ω and |x− y| < δ, there is a rectifiable
arc γ ⊂ Ω with length ℓ(γ) joining x to y and satisfying

1. ℓ(γ) ≤ |x−y|
ε (thus locally quasiconvex) and

2. d(z, ∂Ω) ≥ ε|x− z| |y−z|
|x−y| for z ∈ γ.

As the constant δ is allowed to equal +∞. For δ = +∞ it is possible to avoid the local
character of this definition and in this case Ω is said to be an (ε,∞)-domain. Definition 2
without the second condition yields the definition of a locally quasiconvex domain. The
second condition prohibits the boundary to collapse into thin structures. This is in stark
contrast to the case of fractal trees, in fact, this is the reason why fractal trees [1] are not
(ε,∞)-domains.

The (ε, δ)-domains are also called locally uniform domains [18]. Actually, bounded lo-
cally uniform domains, or bounded (ε, δ)-domains, are equivalent (see [18] point 3.4) to the
uniform domains, firstly defined by Martio and Sarvas in [34], for which there are no more
restriction |x− y| < δ (see Definition 2).

Thanks to Jones [21], it is known that any (ε, δ)-domain in R
n is a W k,p-extension

domain for all 1 ≤ p ≤ ∞ and k ∈ N
∗. Moreover, for a bounded finitely connected domain

Ω ⊂ R
2, Jones [21] proved that

Ω is a W k,p-extension domain (1 ≤ p ≤ ∞ and k ∈ N
∗) ⇐⇒

Ω is an (ε,∞)-domain for some ε > 0 ⇐⇒

the boundary ∂Ω consists of finite number of points and quasi-circles.

However, it is no more true for n ≥ 3, i.e. there are W 1,p-extension domains which are
not locally uniform [21] (in addition, an (ε, δ)-domain in R

n with n ≥ 3 is not necessary a
quasi-sphere).

To discuss general properties of locally uniform domains, let us introduce Ahlfors d-
regular sets, which are more currently called by d-sets:

Definition 3. (Ahlfors d-regular set or d-set [25, 26, 41, 39]) Let F be a closed
Borel non-empty subset of R

n. The set F is is called a d-set (0 < d ≤ n) if there exists
a d-measure µ on F , i.e. a positive Borel measure with support F (suppµ = F ) such that
there exist constants c1, c2 > 0,

c1r
d ≤ µ(Br(x)) ≤ c2r

d, for ∀ x ∈ F, 0 < r ≤ 1,

where Br(x) ⊂ R
n denotes the Euclidean ball centered at x and of radius r.
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As [25, Prop. 1, p 30] all d-measures on a fixed d-set F are equivalent, it is also possible
to define a d-set by the d-dimensional Hausdorff measure md:

c1r
d ≤ md(F ∩Br(x)) ≤ c2r

d, for ∀ x ∈ F, 0 < r ≤ 1

which in particular implies that F has Hausdorff dimension d in the neighborhood of each
point of F [25, p.33].

If the boundary ∂Ω is a d-set endowed with the d-dimensional Hausdorff measure re-
stricted to ∂Ω, then we denote by Lp(∂Ω,md) the Lebesgue space defined with respect to
this measure with the norm

‖u‖Lp(∂Ω,md) =

(
∫

∂Ω

|u|pdmd

)
1

p

.

From [41], it is known that

• All (ε, δ)-domains in R
n are n-sets (d-set with d = n):

∃c > 0 ∀x ∈ Ω, ∀r ∈]0, δ[∩]0, 1] λ(Br(x) ∩Ω) ≥ Cλ(Br(x)) = crn,

where λ(A) denotes the Lebesgue measure of a set A in R
n. This property is also

called the measure density condition [17]. Let us notice that an n-set Ω cannot be
“thin” close to its boundary ∂Ω, since it must all times contain a non trivial ball in its
neighborhood.

• If Ω is an (ε, δ)-domain and ∂Ω is a d-set (d < n) then Ω = Ω ∪ ∂Ω is an n-set.

In particular, a Lipschitz domain Ω of Rn is an (ε, δ)-domain and also an n-set [41]. But
not every n-set is an (ε, δ)-domain: adding an in-going cusp to an (ε, δ)-domain we obtain
an n-set which is not an (ε, δ)-domain anymore. Classical snowflake domains are examples
of (ε,∞)-domains with d-set boundary [10, 41], d > n− 1.

Recently, Hajłasz, Koskela and Tuominen [17] have proved that every W k,p-extension
domain in R

n for 1 ≤ p < ∞ and k ≥ 1, k ∈ N is an n-set. In addition they proved the
following statements:

Theorem 1. (i) A domain Ω ⊂ R
n is a W 1

∞-extension domain if and only if Ω is uni-
formly locally quasiconvex.

(ii) For 1 < p < ∞, k = 1, 2, ... a domain Ω ⊂ R
n is a W k

p -extension domain if and only
if Ω is an n-set and W k,p(Ω) = Ck

p (Ω) (in the sense of equivalent norms).

By Ck
p (Ω) is denoted the space of the fractional sharp maximal functions:

Definition 4. For a set Ω ⊂ R
n of positive Lebesgue measure,

Ck
p (Ω) = {f ∈ Lp(Ω)|

f ♯
k,Ω(x) = sup

r>0
r−k inf

P∈Pk−1

1

λ(Br(x))

∫

Br(x)∩Ω

|f − P |dy ∈ Lp(Ω)}

with the norm ‖f‖Ck
p (Ω) = ‖f‖Lp(Ω) + ‖f ♯

k,Ω‖Lp(Ω). By Pk−1 we denote the space of polyno-
mials of the order k − 1.

From [21] and [17] we immediately obtain the following, [5]

Corollary 1. Let Ω be a bounded finitely connected domain in R
2 and 1 < p < ∞, k ∈ N

∗.
The domain Ω is a 2-set with W k,p(Ω) = Ck

p (Ω) (with norms’ equivalence) if and only if Ω is
an (ε, δ)-domain and its boundary ∂Ω consists of a finite number of points and quasi-circles.

The question about W k
p -extension domains is equivalent to the question of the continuity

of the trace operator Tr : W k
p (R

n) → W k
p (Ω), the trace operator on the domain Ω. In the

next section we introduce the notion of trace to more general Borel sets, and we will use
this notion of trace to study boundary conditions.
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3 Trace on the boundary and Green formulas

3.1 Framework of d-sets and Markov’s local inequality

From [25] p.39, it is also known that all closed d-sets with d > n− 1 preserve Markov’s local
inequality:

Definition 5. (Markov’s local inequality) A closed subset V in R
n preserves Markov’s

local inequality if for every fixed j ∈ N
∗, there exists a constant c = c(V, n, j) > 0, such that

max
V ∩Br(x)

|∇P | ≤
c

r
max

V ∩Br(x)
|P |

for all polynomials P ∈ Pj and all closed balls Br(x), x ∈ V and 0 < r ≤ 1.

For instance, self-similar sets that are not subsets of any (n− 1)-dimensional subspace of
R

n, the closure of a domain Ω with Lipschitz boundary and also R
n itself preserve Markov’s

local inequality (see Refs. [27, 41]). The geometrical characterization of sets preserving
Markov’s local inequality was initially given in [24] (see Theorem 1.3) and can be simply
interpreted as sets which are not too flat anywhere. It can be illustrated by the following
theorem of Wingren [42]:

Theorem 2. A closed subset V in R
n preserves Markov’s local inequality if and only if there

exists a constant c > 0 such that for every ball Br(x) centered in x ∈ V and with the radius
0 < r ≤ 1, there are n+1 affinely independent points yi ∈ V ∩Br(x), i = 1, . . . , n+1, such
that the n-dimensional ball inscribed in the convex hull of y1, y2, . . . , yn+1, has radius not
less than cr.

Smooth manifolds in R
n of dimension less than n, as for instance a sphere, are examples

of “flat” sets not preserving Markov’s local inequality. More precisely, the sets F which
do not preserve Markov’s inequality [25, Thm. 2, p.38] are exactly the sets satisfying the
geometric condition in the following theorem.

Theorem 3. A closed, non-empty subset F of R
n preserves Markov’s inequality if and

only if the following geometric condition does not hold: for every ε > 0 there exists a
ball Br(x0), x0 ∈ F , 0 < r ≤ 1, so that Br(x0) ∩ F is contained in some band of type
{x ∈ R

n| (b, x− x0)Rn < εr}, where b ∈ R
n, |b| = 1, and (b, x− x0)Rn is the scalar product

of b and x− x0.

Relationships between Markov inequalities and inequalities of Sobolev-Gagliardo-Nirenberg
type were studied in [8]. The advantage of d-set boundaries preserving Markov’s inequality
(thus 0 < d < n) is that, [40, 2.1], there exists a bounded linear extension operator Ê of
the Hölder space Ck−1,α−k+1(∂Ω) to the Hölder space Ck−1,α−k+1(Rn), where for k ∈ N

∗

k − 1 < α ≤ k (see also [25, p. 2]). This allows to show the existence of a linear contin-
uous extension from the Besov space Bp,p

α (∂Ω) on ∂Ω to the Sobolev space W k
p (R

n) with

α = k − (n−d)
p ≥ 1 and k ≥ 2 [27]. For the extensions of minimal regularity with k = 1,

and thus with α < 1 (see in addition the definition of the Besov space Def. 3.2 in [20] with
the help of the normalized local best approximation in the class of polynomials Pk−1 of the
degree equal to k − 1) Markov’s inequality is trivially satisfied for j = 0 in Definition 5 on
all closed sets of Rn, and hence we do not need to impose it [27, p. 198].

Before coming to details of the mentioned results, let us generalize the notion of the
trace:

Definition 6. For an arbitrary open set Ω of Rn, the trace operator Tr is defined [25] for
u ∈ L1

loc(Ω) by

Tru(x) = lim
r→0

1

λ(Ω ∩Br(x))

∫

Ω∩Br(x)

u(y)dy,

where λ denotes the Lebesgue measure on R
n. The trace operator Tr is considered for all

x ∈ Ω for which the limit exists.
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Using this definition of the trace one can prove a trace theorem on closed d-sets [25]
Ch.VII and [41] Proposition 4, in which we think it should be made more precise that the
closed set F should preserve Markov’s local inequality not necessarily for all k ∈ N

∗, but at
least up to k− 1 with k ∈ N

∗, the fixed regularity of the Sobolev space of which we take the
trace on F :

Theorem 4. Let F be a closed d-set preserving Markov’s local inequality at least up to
k − 1 for a fixed k ∈ N

∗. If

0 < d < n, 1 < p < ∞, and α = k −
(n− d)

p
> 0,

then the trace operator Tr : W k
p (R

n) → Bp,p
α (F ) is bounded linear surjection with a bounded

right inverse E : Bp,p
α (F ) → W k

p (R
n), i.e. Tr ◦E = Id on Bp,p

α (F ).

The definition of the Besov space Bp,p
α (F ) on a closed d-set F can be found, for instance,

in Ref. [25] p. 135 and Ref. [41]. See also Triebel for equivalent definitions [39].
Thanks to [24, Thm. 1.2, p. 145] we notice that, if the Markov inequality is preserved by

a set F for j = 1, then it is preserved by F for all j ∈ N
∗, j ≥ 1. Thus the added condition

in Theorem 4 for these sets, expessially for d-sets with d > n − 1, is useless. Nevertheless,
for the case of W 1

p with 1 < p < ∞ the theorem explicitly holds for all n− 1-sets, also not
satisfiyng the Markov inequality with j = 1. Note that for d = n − 1, as it also mentioned
in [6], one has α = 1

2 and B2,2
1

2

(F ) = H
1

2 (F ) as usual in the case of the classical results [31, 33]

for Lipschitz boundaries ∂Ω = F . Since α = 1
2 < 1, as noticed previously the geometrical

condition for the boundary to preserve Markov’s inequality does not occur.
Moreover, considering only W 1,2(Rn) = {u ∈ L2(Rn)| ∇u ∈ L2(Rn)} we deduce the

following from Theorem 4

Theorem 5. Let F be a closed d-set,

0 ≤ n− 2 < d < n, and α = 1−
(n− d)

2
> 0.

Then the trace operator Tr : W 1,2(Rn) → B2,2
α (F ) is bounded linear surjection with a bounded

right inverse E : B2,2
α (F ) → W 1,2(Rn), i.e. Tr ◦E = Id on B2,2

α (F ).

3.2 General framework of closed subsets of R
n

It is possible to consider more general measures than d-dimensional measures which can
describe by their supports a boundary of a domain [11, 22, 23].

We follow [22, Section 1] and say that a Borel measure µ on R
n with support suppµ = F

satisfies the Ds-condition for an exponent 0 < s ≤ n if there is a constant cs > 0 such that

µ(Bkr(x)) ≤ csk
sµ(Br(x)), x ∈ F, r > 0, k ≥ 1, 0 < kr ≤ 1. (4)

Here as previously Br(x) ⊂ R
n denotes an open ball centered at x and of radius r. We say

that µ satisfies the Ld-condition for an exponent 0 ≤ d ≤ n if for some constant c > 0 we
have

µ(Bkr(x)) ≥ cdk
dµ(Br(x)), x ∈ F, r > 0, k ≥ 1, 0 < kr ≤ 1. (5)

We also introduce so called the normalization condition

c1 ≤ µ(B1(x)) ≤ c2, x ∈ F, (6)

where c1 > 0 and c2 > 0 are constants independent of x.
Combining (4) and (6) one can find a constant c > 0 such that

µ(Br(x)) ≥ c rs, x ∈ F, 0 < r ≤ 1, (7)

6



what implies dimH F ≤ s, where dimH F denotes the Hausdorff dimension of F . Similarly
(5) and (6) yield a constant c′ > 0 such that

µ(Br(x)) ≤ c′ rd, x ∈ F, 0 < r ≤ 1, (8)

hence dimH F ≥ d. Moreover, (4) implies the doubling condition

µ(B2r(x)) ≤ c µ(Br(x)), x ∈ F, 0 < r ≤ 1/2,

where c > 0 is a situable constant, [22, Section 1].
If a Borel measure µ with support F satisfies (7) and (8) with s = d for some 0 < d ≤ n,

then, according to Definition 3, µ is called a d-measure and F is called a d-set. Obviously,
if we have (4), (5) and (6) and d = s then µ is a d-measure and F a d-set. Otherwise, we
consider measures, which by (7) and (8) satisfy for some constants c > 0 and c′ > 0

c rs ≤ µ(Br(x)) ≤ c′ rd, x ∈ F, 0 < r ≤ 1. (9)

For this general measure µ supported on a closed subset F ⊂ R
n it is possible thanks

to [22] to define the corresponding Lebesgue spaces Lp(F, µ) and Besov spaces Bp,p
β (F, µ)

on closed subsets F ⊂ R
n in such a way that we have the following theorem

Theorem 6. Let 0 ≤ d ≤ n, d ≤ s ≤ n, s > 0, 1 ≤ p ≤ +∞,

n− d

p
< β < 1 +

n− s

p
, (10)

and let F ⊂ R
n be a closed set which is the support of a Borel measure µ satisfying (4), (5)

and (6).
Then, considering the Besov space Bp,p

β (F, µ) on F , defined as the space of µ-classes of
real-valued functions f on F such that the norm

‖f‖Bp,p

β
(F,µ) :=

‖f‖Lp(F,µ) +

(

∞
∑

ν=0

2ν(β−
n
p
)

∫ ∫

|x−y|<2−ν

|f(x)− f(y)|p

µ(B(x, 2−ν))µ(B(y, 2−ν))
µ(dy)µ(dx)

)1/p

is finite, the following statements hold:

(i) TrF is a continuous linear operator from W β
p (R

n) onto Bp,p
β (F ), and

‖TrF f‖Bp,p

β
(F ) ≤ cβ ‖f‖Wβ

p (Rn) , f ∈ W β
p (R

n), (11)

with a constant cβ > 0 depending only on β, s, d, n, cs, cd c1 and c2.

(ii) There is a continuous linear extension operator EF : Bp,p
β (F ) → W β

p (R
n) such that

TrF (EF f) = f for f ∈ Bp,p
β (F ).

Theorem 6 is a particular case of [22, Theorem 1].
The spaces Bp,p

β (F, µ) are Banach spaces, while B2,2
β (F, µ) are Hilbert spaces, and their

corresponding scalar product is denoted by 〈·, ·〉B2,2

β
(F,µ).

A priori the definition of Bp,p
β (F, µ) depends on both F and µ. However, it was shown in

[22, Section 3.5] that for two different measures µ1 and µ2 satisfying hypotheses of Theorem 6
and with common support F , if f ∈ Bp,p

β (F, µ2), then f can be altered on a set with µ2-

measure zero, in such a way that f becomes a function in Bp,p
β (F, µ1). In other words, also

by Theorem 6, the spaces B2,2
β (F, µ1) and Bp,p

β (F, µ2) are equivalent. Thus, we simplify the

notations and instead of Bp,p
β (F, µ) simply write Bp,p

β (F ).

7



Let us notice [22] that this time if F is a d-set with 0 < d ≤ n as defined in Subsection 3.1,
then µ = md satisfies (4), (5) and (6) and hence it is possible to apply Theorem 6. The
restriction on β in Theorem 6 becomes 0 < α < 1 with α = β − n−d

p . Consequently, from

one hand, the space Bp,p
β (F ) is equivalent to the Besov space Bp,p

α (F ) with 0 < α < 1 from
Subsection 3.1 (see [25]), which, from the other hand, by our previous remark for α < 1,
explains why we don’t need to impose that F preserves the local Markov inequality. Thus
in the framework of d-sets this theorem coincides with Theorem 4 for α < 1.

Remark 1. If we apply Theorem 6 for W 1,2(Rn) we obtain the image of the trace equal to
the Hilbert space B2,2

1 (F ) with the restrictions

n ≥ s ≥ d > n− 2 ≥ 0.

3.3 Integration by parts and the Green formula

Let us generalize the Green formula formulated for d-sets in [5] (initially proposed by Lan-
cia [28, Thm. 4.15] for a von Koch curve, see also [29] for an other specific d-set boundary
case) and the integration by parts from Appendix A Theorem A.3 [32] (see also the proof
of formula (4.11) of Theorem 4.5 in [11]).

Proposition 1. (Green formula) Let Ω be a domain in R
n (n ≥ 2) with a closed boundary

∂Ω which is the support of a Borel measure µ satisfying the conditions of Theorem 6 with
n ≥ s ≥ d > n− 2 ≥ 0. Then

1. the Green formula holds for all u and v from W 1,2(Ω) with ∆u ∈ L2(Ω),
∫

Ω

v∆udx+

∫

Ω

∇v · ∇udx = 〈
∂u

∂n
,Trv〉((B2,2

1
(∂Ω))′,B2,2

1
(∂Ω)), (12)

where (B2,2
1 (∂Ω))′ is the dual space of B2,2

1 (∂Ω).

2. In addition the usual integration by parts holds for all u and v from W 1,2(Ω) in the
following weak sense

〈uνi, v〉(B2,2
1

(∂Ω))′,B2,2
1

(∂Ω)) :=

∫

Ω

∂u

∂xi
vdx +

∫

Ω

u
∂v

∂xi
dx i = 1, . . . , n, (13)

where by uνi is denoted the linear continuous functional on B2,2
1 (∂Ω).

The statement of proposition follows, thanks to Theorem 6, from the surjectivity of the
linear continuous trace operator Tr∂Ω : W 1,2(Ω) → B2,2

1 (∂Ω). To prove (12) and (13) it
sufficient to follow [28] and [11] respectively. Thus the proof is omitted.

4 Sobolev admissible domains and the generalization of

the Rellich-Kondrachov theorem

Thanks to Theorems 1 and 6 we can generalize now the notion of admissible domains intro-
duced in [5] in the framework of d-sets:

Definition 7. (Sobolev admissible domain) Let 1 < p < ∞ and k ∈ N
∗ be fixed. A

domain Ω ⊂ R
n is called a (W k,p-) Sobolev admissible domain if it is an n-set, such that

W k,p(Ω) = Ck
p (Ω) as sets with equivalent norms (hence, Ω is a W k,p-extension domain),

with a closed boundary ∂Ω which is the support of a Borel measure µ satisfying the conditions
of Theorem 6.

We summarize several useful results on the trace and extension operators (see [37] for
more general results for the case p > n) for the trace and the extension operators:

8



Theorem 7. Let Ω be a Sobolev admissible domain in R
n, 1 < p < ∞, k ∈ N

∗ be fixed and
β defined in (10). Then the following trace operators (see Definition 6)

1. Tr : W β,p(Rn) → Bp,p
β (∂Ω),

2. TrΩ : W k,p(Rn) → W k,p(Ω),

3. Tr∂Ω : W 1,p(Ω) → Bp,p
1 (∂Ω)

are linear continuous and surjective with linear bounded right inverse, i.e. extension, oper-
ators E : Bp,p

β (∂Ω) → W β,p(Rn), EΩ : W k,p(Ω) → W k,p(Rn), E∂Ω : Bp,p
1 (∂Ω) → W 1,p(Ω).

Proof. It is a corollary of results given in Sections 2 and 3. Indeed, if Ω is Sobolev admissible,
then by Theorem 6, the trace operator Tr : W β

p (R
n) → Bp,p

β (∂Ω) ⊂ Lp(∂Ω) is linear

continuous and surjective with linear bounded right inverse E : Bp,p
β (∂Ω) → W β

p (R
n) (point

1). We notice that since d ≥ n − 1, the interval of suitable β, given by ]n−d
p , 1 + n−s

p [,

includes as a subset ] 1p , 1] for all p > 1. The upper regularity limit for β can be estimated

by 1 < 1 + n−s
p ≤ 1 + 1

p < 2.

On the other hand, by [17], Ω is a W k,p-extension domain and TrΩ : W k,p(Rn) →
W k,p(Ω) and EΩ : W k,p(Ω) → W k,p(Rn) are linear continuous (point 2). Hence, the em-
beddings for k = 1

Bp,p
1 (∂Ω) → W 1,p(Rn) → W 1,p(Ω) and W 1,p(Ω) → W 1,p(Rn) → Bp,p

1 (∂Ω)

are linear continuous (point 3).

By updating the class of admissible domains, all results of [5] still hold in this new class.
For instance it is also possible to consider Sobolev admissible truncated domains for which
two disjoint boundaries satisfy Theorem 6. Without any particular motivation here for the
truncated domain, let us just formulate the compactness of the embedding W 1,2(Ω) to L2(Ω)
for the Sobolev admissible domains:

Proposition 2. Let Ω be a bounded Sobolev admissible domain for p = 2 and k = 1. Then
the Sobolev space W 1,2(Ω) is compactly embedded in L2(Ω):

W 1,2(Ω) ⊂⊂ L2(Ω).

The proof follows with small modifications the proof of Proposition 2 in [5] and thus is
omitted.

However, we would like to recall main compactness results of [5] putting them in the new
framework of Sobolev admissible domains with not necessarily a d-set boundary.

Remark 2. To have a compact embedding it is important that the domain Ω be a W k
p -

extension domain. The boundness or unboudness of Ω is not important to have W k
p (Ω) ⊂⊂

W ℓ
p (Ω) with k > ℓ ≥ 1 (1 < p < ∞). But the boundness of Ω is important for the compact

embedding in Lq(Ω).

As a direct corollary we have the following generalization of the classical Rellich-Kondrachov
theorem (see for instance Adams [2] p.144 Theorem 6.2):

Theorem 8. (Compact Sobolev embeddings for n-sets, [5]) Let Ω ⊂ R
n be an n-set

with W k,p(Ω) = Ck
p (Ω), 1 < p < ∞, k, ℓ ∈ N

∗. Then Then the following embeddings are
compact:

1. W k+ℓ
p (Ω) ⊂⊂ W ℓ

q (Ω),

2. W k
p (Ω) ⊂⊂ Lq

loc(Ω), or W k
p (Ω) ⊂⊂ Lq(Ω) if Ω is bounded,

with q ∈ [1,+∞[ if kp = n, q ∈ [1,+∞] if kp > n, and with q ∈ [1, pn
n−kp [ if kp < n.
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5 Compactness of the trace

We generalize the classical Rellich-Kondrachov theorem for fractals in the following way:

Theorem 9. (Compact Besov embeddings) Let F ⊂ R
n be a compact set satisfying

conditions of Theorem 6 with β = 1. Assume 1 ≤ q ≤ p < ∞.
Then

1. the linear trace operator Tr : W 1,p(Rn) → Lq(F ) is compact,

2. the continuous embedding Bp,p
1 (F ) ⊂⊂ Lq(F ) is compact.

Proof. Indeed, for β = 1, thanks to Theorem 6, the extension EF : Bp,p
1 (F ) → W 1

p (R
n)

is continuous. Thus, if the trace operator Tr : W 1,p(Rn) → Lq(F ) is compact, by the
composition of the bounded and compact operators, the embedding Bp,p

1 (F ) ⊂⊂ Lq(F ) is
compact too.

Hence, let us prove the first statement of the theorem. Taking, for instance, a nontrivial
ball Br ⊂ R

n, or, more generally, any extension domain, in the way that F ⊂ Br, we notice
that, as the operator W 1,p(Rn) → W 1,p(Br) is continuous, the question can be reduced to
the compactness of TrBr ,F : W 1,p(Br) → Lq(F ).

Using the idea of the proof of [4, Proposition 8.1], we take a bounded sequence (un)n∈N

of W 1,p(Br):
∃M̂ > 0 : ∀k ∈ N ‖unk

‖W 1,p(Br) ≤ M̂.

As Br is a bounded extension domain, then by point 2 of Theorem 8 (here, as ∂Br is
C∞, even by the classical Rellich-Kondrachov theorem) the inclusion W 1,p(Br) → Lp(Br)
is compact. Taking 1 ≤ q ≤ p, we have the usual continuous embedding Lp(F ) ⊂ Lq(F ),
holding actually for all bounded sets.

Therefore, there exists a subsequence (unk
)k∈N ⊂ (un)n∈N with an element u ∈ W 1,p(Br)

such that
unk

⇀ u in W 1,p(Br), unk
→ u in Lp(Br) for k → +∞.

Moreover, still by the boudness of (unk
)k∈N in W 1,p(Br), there exists a constant M > 0

such that
∀k ∈ N ‖∇unk

‖pLp(Br)
≤ M.

Since Bp,p
1 (F ) ⊂ Lp(F ) ⊂ Lq(F ), combining the previously viewed continuous embeddings

and Theorem 6, we obtain that the linear operator TrBr,F : W 1,p(Br) → Lq(F ) is bounded.
Consequently, the sequence (TrBr ,Funk

)k∈N is bounded in Lq(F ) with 1 ≤ q ≤ p and thus
in addition (passing if necessarily again to a subsequence, denoted again by (TrBr ,Funk

)k∈N)
TrBr ,Funk

⇀ w in Lq(F ) for an element w ∈ Lq(F ) (we will see in the following that
w = TrBr,Fu). Without loss of generality let us assume that u = 0 and hence let us prove
that TrBr ,Funk

→ 0 in Lq(F ).

We firstly notice that for all σ ∈]0, 1] there exists a constant c = c(σ, M̂) > 0 it holds

‖TrBr,Funk
‖pLq(F ) ≤ σ‖∇unk

‖pLp(Br)
+ c(σ, M̂ )‖unk

‖pLp(Br)
. (14)

Actually, by the boudness of (unk
)k∈N in W 1,p(Ω), for all δ ∈]0, 1] there exists a constant

c(δ, M̂) > 0 such that for all k ∈ N

‖∇unk
‖pLp(Br)

+ ‖unk
‖pLp(Br)

≤ δ‖∇unk
‖pLp(Br)

+ c(δ, M̂)‖unk
‖pLp(Br)

.

By the continuity of TrBr ,F : W 1,p(Br) → Lq(F ), there exists a constant Ctr > 0
(depending on all constants from Theorem 6) such that for all k ∈ N

‖TrBr,Funk
‖pLq(F ) ≤ Ctrδ‖∇unk

‖pLp(Br)
+ Ctrc(δ, M̂)‖unk

‖pLp(Br)
.
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Thus we denote σ = Ctrδ > 0 which can be arbitrary small thanks to the arbitrariness
on ]0, 1] of δ and obtain (14). Let us define now ε = σM > 0 for M > 0, the boundness
constant of ∇unk

in Lp(Br). Then for all k ∈ N it holds

‖TrBr ,Funk
‖pLq(F ) ≤ ε+ c‖unk

‖pLp(Br)

with a constant c > 0 independent on k. Since ‖unk
‖Lp(Br) → 0 for k → +∞, we find that

for all ε > 0
lim sup
k→+∞

‖TrBr ,Funk
‖pLq(F ) ≤ ε,

which directly ensures that TrBr ,Funk
→ 0 in Lq(F ). This finishes the proof of point 2.

Remark 3. The statement of point 2 [5, Theorem 2.13] for compact d-set preserving
Markov’s local inequality should be updated by the general result on the compacteness of
Besov embeddings on d-sets from [39, Proposition 20.5, Theorem 20.6], which actually con-
tains the case q ∈ [1, p] of Theorem 9 independently on the value of the dimensions d and
n. A complement result about compacteness of the embeddings W 1

p (Ω) → Lq(F ) for an ex-
tension domain Ω and F ⊂ Ω, defined as a support of a measure satisfiyng only the upper
estimate in the d-set condition with 0 ≤ n − p ≤ d ≤ n, is given in [7]: for p = n ≥ 2
with q ∈ [1,+∞[, for p > n and p = n = 1 with q = ∞, and finaly, for 1 < p < n and
s = dp

n−p > p for q ∈ [1, s[. We also notice that working in the framework of Theorem 6, if
p = +∞, then β is necessarily strictly less than 1.

In particular, the compactness of the trace operator implies the following equivalence of
the norms on W 1,p(Ω):

Proposition 3. Let Ω be a Sobolev admissible domain in R
n with a compact boundary ∂Ω

and 1 < p < ∞, k ∈ N
∗. Then

1. W k,p(Ω) ⊂⊂ Lp
loc(Ω), k ∈ N

∗;

2. Tr : W 1,p(Ω) → Lp(∂Ω) is compact;

3. If in addition the mesure µ is Borel regular then the image Im(Tr) = Bp,p
1 (∂Ω) is dense

in Lp(∂Ω).

4. ‖u‖W 1,p(Ω) is equivalent to ‖u‖Tr =
(∫

Ω
|∇u|pdx+

∫

∂Ω
|Tru|pdµ

)
1

p .

Proof. Let us prove point 3. To prove all other points it is sufficient to follow the proof of
Proposition 3 in [5].

If ∂Ω is endowed with a Borel regular measure µ, then the space {v|∂Ω : v ∈ D(Rn)},
which is dense in C(∂Ω) by the Stone-Weierstrass theorem for the uniform norm, is also
dense in Lp(∂Ω) (see Theorem 2.11 in [14]). Hence, Bp,p

k (∂Ω) is dense in Lp(∂Ω).

The Poincaré’s inequality stays also true on a bounded Sobolev admissible domain [12]:

Theorem 10. (Poincaré’s inequality) Let Ω ⊂ R
n with n ≥ 2 be a bounded connected

Sobolev admissible domain. For all u ∈ W 1,p
0 (Ω) with 1 ≤ p < +∞, there exists C > 0

depending only on Ω, p and n such that

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω).

Therefore the semi-norm ‖.‖W 1,p
0

(Ω), defined by ‖u‖W 1,p
0

(Ω) := ‖∇u‖Lp(Ω), is a norm which

is equivalent to ‖.‖W 1,p(Ω) on W 1,p
0 (Ω).

Moreover for all u ∈ W 1,p(Ω) there exists C > 0 depending only on Ω, p and n such that
∥

∥

∥

∥

u−
1

λ(Ω)

∫

Ω

u dλ

∥

∥

∥

∥

Lp(Ω)

≤ C‖∇u‖Lp(Ω).
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Proof. The result for u ∈ W 1,p
0 (Ω) comes from the boundness of Ω. The result for u ∈

W 1,p(Ω) comes from the compactness of the embedding W 1,p(Ω) ⊂⊂ Lp(Ω) from Theorem
8 and following for instance the proof from [14] (see section 5.8.1 Theorem 1).

Thus the results of [5] on the Dirichlet-to-Neumann operator can be also updated in the
framework of the Sobolev admissible domains of Definition 7. For instance we have

Theorem 11. Let Ω be a bounded Sobolev admissible domain in R
n (n ≥ 2) for p = 2 and

k = 1. Then the Poincaré-Steklov operator

A : B2,2
1 (∂Ω) → (B2,2

1 (∂Ω))′

mapping u|∂Ω to ∂νu|∂Ω is a linear bounded self adjoint operator with kerA 6= 0.

6 Application to the Poisson boundary valued and spec-

tral problems

In this section we show the application of the theory of functional spaces developed in the
previous sections on the example of the Poisson equation with Robin boundary conditions
which we can weakly solve on the Sobolev admissible domains.

Let Ω be a W 1,2-Sobolev admissible domain with a compact boundary ∂Ω and f ∈ L2(Ω).
For a > 0 we define W 1,2(Ω) endowed with the equivalent by Proposition 3 norm

‖u‖2Tr =

∫

Ω

|∇u|2dx+ a

∫

∂Ω

|Tr∂Ωu|
2dµ. (15)

Then u ∈ W 1,2(Ω) is called a weak solution of the Poisson problem (1) if for for all v ∈
W 1,2(Ω)

(u, v)Tr =

∫

Ω

∇u∇v dx+ a

∫

∂Ω

Tr∂ΩuTr∂Ωv dµ =

∫

Ω

fv dx.

Thus, the Riesz representation theorem gives us the well-posedness result:

Theorem 12. Let Ω be a W 1,2-Sobolev admissible domain with a compact boundary ∂Ω.
Then for all f ∈ L2(Ω) and a > 0 there exists a unique weak solution u ∈ W 1,2(Ω) of the
Poisson problem (1) and it holds the stability estimate

‖u‖Tr ≤ C‖f‖L2(Ω).

In the same time with the additional assumption that Ω is bounded, ensuring the com-
pactness of the embedding iL2(Ω) : W 1,2(Ω) → L2(Ω) by Proposition 3, we also have the
compactness of the operator B : f ∈ L2(Ω) 7→ B(f) = u ∈ W 1,2(Ω) mapping a source
term f to the weak solution of the Poisson problem (1) (see for instance Theorem 3.6 [5]).
The compactness of the embedding iL2(Ω) allows also to apply the spectral Hilbert-Schmidt
theorem for a self-adjoint compact operator on a Hilbert space to obtain the usual properties
of the spectral problem for the −∆ on the Sobolev admissible domains:

Theorem 13. Let Ω be a bounded W 1,2-Sobolev admissible domain. The weak eigenvalue
problem

∀v ∈ W 1,2(Ω) (u, v)Tr = λ(u, v)L2(Ω)

has a countable number of strictly positive eigenvalues of finite multiplicity, which is possible
to numerate in the non-decreasing way:

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · , λj → +∞ j → +∞.

In addition the corresponding eigenfunctions forms an orthonormal basis of L2(Ω) and an
orthogonal basis of W 1,2(Ω).
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Proof. It is sufficient to notice that the eigenvalue problem is equivalent to the spectrum
problem Tu = 1

λu for the operator T = A ◦ iL2(Ω) : W 1,2(Ω) → W 1,2(Ω) which is linear
compact and self-adjoint on the Hilbert space W 1,2(Ω). Here A is the linear bounded
operator (existing by the Riesz representation theorem) which maps v ∈ L2(Ω) to Av ∈
W 1,2(Ω) such that

∀φ ∈ W 1,2(Ω) (v, φ)L2(Ω) = (Av, φ)Tr.
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