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PARTIALLY HYPERBOLIC DIFFEOMORPHISMS AND
LAGRANGIAN CONTACT STRUCTURES

MARTIN MION-MOUTON

ABSTRACT. In this paper, we classify the three-dimensional partially hyperbolic dif-
feomorphisms whose stable, unstable, and central distributions E°, E*, and E¢ are
smooth, such that E° @& E“ is a contact distribution, and whose non-wandering set
equals the whole manifold. We prove that up to a finite quotient or a finite power,
they are smoothly conjugated either to the time-one map of an algebraic contact-
Anosov flow, or to an affine partially hyperbolic automorphism of a nil-manifold. The
rigid geometric structure induced by the invariant distributions plays a fundamental
role in the proof.

1. INTRODUCTION

In a lot of natural situations, a differentiable dynamical system on a smooth manifold
preserves a geometric structure on the tangent bundle, defined by invariant distributions.
For instance, if it preserves a Borel measure, then Oseledet’s theorem provides an almost-
everywhere defined splitting of the tangent bundle, given by the rates of expansion or
contraction of the tangent vectors by the differentials of the dynamics.

Although invariant geometric structures naturally arise, they are in general highly
non-regular (Oseledet’s decomposition is for instance only measurable), and this lack of
regularity allows a lot of flexibility of the dynamics: former examples can be deformed
in order to produce a lot of new ones. In contrast, the smoothness of the invariant
distributions puts a strong restriction on the system, and the known examples with
smooth (i.e. C™) distributions are in general “very symmetric”: typically, they arise
from compact quotient of Lie groups, with action by affine automorphisms.

It is thus natural to ask to what extent the geometric structure preserved by the dy-
namics makes the situation rigid, and especially why.

Let us give a paradigmatic example of rigidity with the following result of Etienne Ghys
concerning three-dimensional Anosov flows (the statement proved by Ghys in [Ghy87] is
more precise than the one given below).

Theorem 1.1 ([Ghy87]). Let (¢') be an Anosov flow of a three-dimensional closed
connected manifold. If the stable and unstable distributions of (p') are smooth, then:

— either (') is smoothly conjugated to the suspension flow of a hyperbolic auto-
morphism of the two-torus,

— or (¢!) is smoothly orbit equivalent to a finite covering of the geodesic flow of a
compact hyperbolic surface.

Date: February 24, 2020 (last revision: January 4, 2021).
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We recall that a smooth non-singular flow (¢') of a compact manifold M is Anosov
if its differentials preserve two distributions E° and E“, respectively called the stable
and unstable distribution of ('), satisfying TM = E* & Rid%t @ E* and such that E* is
uniformly contracted by ('), and E* uniformly expanded by (¢!).

Under the smoothness assumption of £¥ and E*, Ghys notices that the plane distri-
bution E* @& E¥ can only have two extreme geometrical behaviours: either it integrates
into a foliation, or it is a contact distribution (i.e. it is locally the kernel of a contact one-
form). In the first case, former results of Plante and Franks conclude the proof, and lead
to the suspension examples. The work of Ghys in [Ghy87] is therefore almost entirely
devoted to three-dimensional contact-Anosov flows, i.e. when E® and E" are smooth,
and E* @ E" is contact. Under these geometrical assumptions, the pair (E®, E") is a
rigid geometric structure preserved by the Anosov flow, which makes the classification
possible and leads to the finite coverings of geodesic flows.

In this paper, we investigate the same kind of geometrical rigidity conditions, but
for the discrete-time analogs of Anosov flows that are the partially hyperbolic diffeomor-
phisms.

1.1. Principal results. We refer to [CP15] for a very complete introduction to partially
hyperbolic diffeomorphisms, for which we use the following definition.

Definition 1.2. A smooth diffeomorphism f of a compact manifold M is partially
hyperbolic if it preserves a splitting TM = E° & E* @ E° of the tangent bundle into
three non-zero continuous distributions, satisfying the following dynamical conditions
with respect to some Riemannian metric on M.

— The stable distribution E° is uniformly contracted by f, i.e. there is a non-zero
integer N such that for any € M and any unit vector v°® € E*(x),

Do (%)

— The unstable distribution E“ is uniformly expanded by f, i.e. uniformly con-
tracted by fL.

— The splitting is dominated, i.e. there is a non-zero integer N such that for any
x € M, and any unit vectors v® € E*(x), v¢ € E°(x), and v* € E%(x),

HDfo(vs) < HDfo(vc) < HDfo(v“)

FE*€ is called the central distribution.

<1

The three invariant distributions of a partially hyperbolic diffeomorphism have in gen-
eral no reasons to be differentiable, but we study in this paper the particular case when
they are smooth, i.e. C*°, and when E® @ E“ is furthermore a contact distribution.

The (non-zero) time maps of the contact-Anosov flows appearing in Ghys Theorem
1.1 give us the first examples satisfying these geometrical conditions. They have the
following nice algebraic description (see [Ghy87] for more details). Let us denote by A =

{a'}+cr the one-parameter subgroup of the universal cover SLy(R) of SLy(R) generated
by (%) € sla. Then for any cocompact lattice I'g of SLa(R), the flow (R,:) of right

translations by A on the quotient Fo\é\f;Q(R) is a finite covering of the geodesic flow
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of a compact hyperbolic surface (up to a constant rescaling of the time by a factor %),

and is thus Anosov. Moreover, if a morphism u: Iy — A is such that the graph-group
I'={(v,u(v)) | v € To} acts freely, properly and cocompactly on SLy(R) by the action
(9,a)-x = gxa, then (Ry:) still induces an Anosov flow of the quotient I'\SLy(R), which
is a time-change of the former one (non-trivial if u # id). We will call these flows the
three-dimensional algebraic contact-Anosov flows.

In contrast, the following algebraic examples are the time-map of none Anosov flow.
For (A, u) € R*2, we consider the automorphism

1 =z =z 1 Az Auz
(1.1) oxp: [0 1 y| €Heis(3) — |0 1 uy | € Heis(3)

0 0 1 0 0 1

of the Heisenberg group. If ¢ = ¢, ,, g € Heis(3), I' is a cocompact lattice of Heis(3),
and gp(I)g~t =T, then L, o p(I'z) = I'(gp(x)) is a well-defined diffeomorphism of the
nil-Heis(3)-manifold T\Heis(3). If we moreover assume that either |A| < 1 and |u| > 1,
or the opposite, then L, o ¢ is a partially hyperbolic diffeomorphism, whose invariant
distributions are smooth, and such that E% @ E" is contact (see Paragraph 4.1.2). Con-
crete examples of cocompact lattices preserved by such automorphisms indeed exist, and
we will call Ly o ¢ a partially hyperbolic affine automorphism.

The principal result of this paper is that, assuming all points are non-wandering, there
are no other examples than the two families we described precedently.

Theorem A. Let M be a closed, connected and orientable three-dimensional manifold,
and f be a partially hyperbolic diffeomorphism of M such that

— the stable, unstable, and central distributions E°, E* and E° of f are smooth,
— E%® E" is a contact distribution,
— and the non-wandering set NW(f) equals M.

Then we have the following description.

(1) Either some finite power of f is smoothly conjugated to a non-zero time-map of
a three-dimensional algebraic contact-Anosov flow,

(2) or f lifts by a smooth covering of order at most 4 to a partially hyperbolic affine
automorphism of a nil-Heis(3)-manifold.

Actually, our geometrical conditions are so rigid that the uniformity of the contraction
and the expansion of the diffeomorphism will be obtained as a byproduct.

Definition 1.3. We will say that a distribution E of a compact manifold M is weakly
contracted by a diffeomorphism f, if for some Riemannian metric on M, we have for any
€ M:
li D, f"Eel = li D, f"|g| = 0.
Jm Dy f*[pll =0or lim [|Dyf"|gll =0
We emphasize that the “direction” of weak contraction can a priori change from point
to point, and that this notion is unchanged when replacing f by f~1.

Theorem B. Let M be a closed, connected and orientable three-dimensional manifold,
endowed with a smooth splitting TM = E* @ EP & E° such that E® & EP is a contact
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distribution. Let f be a smooth diffeomorphism of M that preserves this splitting, and
such that

— each of the distributions E® and EP is weakly contracted by f,
— and f has a dense orbit.

Then the conclusions of Theorem A hold. In particular, [ is a partially hyperbolic
diffeomorphism.

Theorem A will directly follow from Theorem B by an argument of Brin, as explained
in Paragraph 8.2 at the end of this paper. We also give in this paragraph the precise
satement of Theorem A, that does not use any domination hypothesis on E¢ (see Corol-
lary 8.2). The rest of the paper is devoted to the proof of Theorem B.

The classification question for partially hyperbolic diffeomorphisms in dimension three
has led to a lot of works in the recent years, and significant progress has been made
concerning the general case, as can be seen for instance in the survey [HP18]. Recently,
different additional rigidity conditions have also been studied.

Carrasco, Pujals and Rodriguez-Hertz obtain in [CPRH19] a classification result under
the smoothness assumption of invariant distributions. On the contrary of Theorem A, no
additional geometrical condition is assumed, but the authors assume that the differential
of the partially hyperbolic diffeomorphism is constant when read in the global frame given
by three smooth vector fields generating these distributions. The geometric structure
(E®, E*, E°) defined by such a partially hyperbolic diffeomorphism is in general not rigid,
and their result is obtained through dynamical arguments.

Beside the smoothness assumption on invariant distributions, Bonatti and Zhang ob-
tain in [BZ19] different rigidity results in the continuous category, under specific dynam-
ical assumptions.

1.2. A rigid geometric structure preserved by partially hyperbolic diffeomor-
phisms. Roughly speaking, a rigid geometric structure is a structure with “few au-
tomorphisms”. More precisely, they are those smooth geometric structures whose Lie
algebra of local Killing fields (i.e. local vector fields whose flow preserves the structure)
is everywhere finite-dimensional.

As d’Ambra and Gromov pointed out in [GD91], it is natural to believe that rigid
geometric structures preserved by rich dynamical systems have to be particularly pecu-
liar: “one does not expect rigid geometry to be accompanied by rich dynamics” (|[GDI1,
§0.3 p.21]). It seems thus reasonable to look for classification results in these situations.
The general idea is that rich dynamical properties will imply strong restrictions on the
rigid geometric structure, inducing in return a rigidity of the dynamical system itself.

Several rigid geometric structures can be preserved by a contact-Anosov flow (¢!).

First of all, (¢!) always preserves a contact one-form « defined by a(%‘i—t) = 1 and
a|psgpe= 0. If the dimension is 2n + 1, the induced volume form a A (da)™ is then
preserved by (¢'), i.e. contact-Anosov flows are always conservative. For contact-Anosov
flows of any odd dimension, (¢') moreover preserves a natural linear connection on the
tangent bundle, initially defined by Kanai in [Kan88]. An invariant connection of this
kind allowed for example Benoist, Foulon and Labourie to obtain a classification result

for contact-Anosov flows of any odd dimension in [BFL92].



CONTACT PARTIALLY HYPERBOLIC DIFFEOMORPHISMS 5

While these invariant rigid geometric structures require the existence of a continu-
ous one-parameter flow, we study in this paper rigid geometric structures preserved by
discrete-time dynamics.

The transition from a flow to a diffeomorphism completely changes the situation.
From a dynamical point of view, partially hyperbolic diffeomorphisms of “contact” type
do not anymore preserve a contact one-form, and are thus (a priori) not conservative
(which explains the extra hypothesis on non-wandering points). From a geometrical
point of view, the difficulties that appear are analog to the ones of a conformal geometry
in contrast with a metric geometry, for example the invariant Kanai connection does not
anymore exist. This situation requires to look for a new rigid geometric structure.

A contact plane distribution is far from being rigid: according to Darboux’s theo-
rem, they are all locally isomorphic. A single smooth one-dimensional distribution in
a contact plane distribution is still not sufficient to make it rigid. But if the stable
and unstable distributions of the partially hyperbolic diffeomorphism are smooth and of
contact sum, then the pair (E*, E*) is a rigid geometric structure, called a Lagrangian
contact structure.

For this structure, the invariant Kanai connection will be replaced by another type
of connection called a Cartan connection, that defines a Cartan geometry (actually,
this Cartan geometry partially appears in [Ghy87], but under the disguised form of
“the geometry of second-order ordinary differential equations”). The strength of Cartan
geometries is to link the Lagrangian contact structures with the homogeneous model
space X = PGL3(R) /P, of complete flags of R3 (where P,,,;, is the subgroup of upper-
triangular matrices). In particular, the flat Lagrangian contact structures, i.e. the ones
whose curvature identically vanishes, are locally isomorphic to X (see Paragraphs 2.2.2
and 2.3.2). The geometry of X will thus play a prominent role in this paper.

In [Bar10], Barbot also studies the geometry of X and the dynamics of PGL3(R), but
with a different approach. His purpose is among others to construct Anosov representa-
tions in PGL3(R), and compact quotients of open subsets of X.

1.3. Organization of the paper. This paper is organised in the following way. Section
2 introduces several notions and results about three-dimensional Lagrangian contact
structures, that will be used in the whole paper. At the end of the paper in Paragraph
8.2, we prove Theorem A from Theorem B, and the rest of the paper is devoted to
the proof of Theorem B. In Section 3, we begin this proof by showing that the triplet
S = (EQ,EB , E€) is quasi-homogeneous, i.e. locally homogeneous in restriction to a
dense open subset €2 of M, and that its isotropy on €2 is non-trivial. This implies that
the Lagrangian contact structure (E®, E®) is flat, i.e. that M has a (PGL3(R),X)-
structure. In Section 4, we refine this description, proving that S|q is locally isomorphic
to one of two possible homogeneous models (Y%, St) or (Ya, Sa). This relies on a technical
classification of the underlying infinitesimal model, done in Section 5. A critical step
is to show in Section 6 that the open dense subset () is actually equal to M, implying
that M has a (H,Y)-structure, with two possible models (Hy, Y;) or (Ha, Ya). We prove
in Section 7 that this (H,Y)-structure is complete, implying that (M,S) is a compact
quotient I'\Y" of one of these two models, with I" a discrete subgroup of H = Aut(Y).
This description allows us to conclude the proof of Theorem B in Paragraph 8.1.
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Conventions and notations. From now on, every differential geometric object will
be supposed to be smooth (i.e. C*°) if nothing is precised, and the manifolds will be
supposed to be boundaryless.

The flow of a vector field X is denoted by (% ). The Lie algebra of a Lie group G
is denoted by g, and for any v € g, we denote by ¢ the left-invariant vector field of G
generated by v. If ©: G x M — M is a smooth group action (on the left or the right)
of G on a manifold M, then the orbital map of the action at x € M is denoted by
0, = O(-,x), and we denote by Ly, = O(g,-) the translation by g € G if the action is
on the left (respectively by R, if the action is on the right). For any v € g we denote
by v' the fundamental vector field of the action generated by v, defined for x € M by
vl (z) = Db, (v).

Acknowledgments. I would like to thank Charles Frances for proposing this subject
to me, and for the precious advices that he offers me.

2. THREE-DIMENSIONAL LAGRANGIAN CONTACT STRUCTURES

The rigid geometric structures that will be studied in the rest of this paper are the
following.

Definition 2.1. A Lagrangian contact structure £ on a three-dimensional manifold M
is a pair £L = (E, EP) of transverse one-dimensional smooth distributions, such that
E® @ EP is a contact distribution. An enhanced Lagrangian contact structure S on
M is a triplet S = (E®, E®, E°) of one-dimensional smooth distributions such that
TM = E*® EP @ E¢, and E* @ E” is a contact distribution.

A (local) isomorphism between two Lagrangian contact structures is a (local) diffeomor-
phism that individually preserves the distributions « and /3, and the (local) isomorphisms
of enhanced Lagrangian contact structures preserve in addition the central distribution
E-.

We first define what will be for us the most important example of three-dimensional
Lagrangian contact structure.

2.1. Homogeneous model space. We will call projective line the projection in RP?
of a plane of R3, and we denote by RP? the set of projective lines of RP? (called the
dual projective plane). For any subset Q of R"*! we denote by [@Q] the projection in RP™
of the linear subspace of R™*! generated by Q.

A pointed projective line is a pair (m, D) with D € RP? and m € D, and we denote
by

X = {(m, D) \ D € RP?,m € D} C RP? x RP?

the space of pointed projective lines. In other words, X is the space of complete flags of
R3. We will denote in the whole paper by

G = PGL;3(R)

the group of projective transformations of RP2. As the projective action of G on RP?
and RP? preserves the incidence relation m € D, it induces a natural diagonal action of
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G on X C RP? x RP2. The action of G on X is transitive, and the stabilizer in G of
the base-point o = ([e1], [e1, e2]) of X is the subgroup
x ok ok
Stabg(0) = Ppin =14 [0 * x| 3 < G
0 0

of upper-triangular matrices. From now on, we will identify X and G /P, by the
orbital map 6,: G/P,;, — X at 0. The homogeneous space X is a RP!-bundle over
RP? and RP? through the coordinate projections

(2.1) To: (m, D) € X+ m € RP? and 75: (m, D) € X = D € RP2.

For z = (m, D) € X, we will denote by C®(z) = C*(m) (respectively C?(x) = C#(D))
the fiber of z with respect to m, (resp. mg), and we will call it the a-circle (resp. the
B-circle) of z. We denote by

£% = Ker(Dm,) and £° = Ker(Dmg),

the one-dimensional vertical distributions of these bundles, tangent respectively to the
foliations by a and B-circles. The sum %@ P is contact and we will call Lx = (£2,EP)
the standard Lagrangian contact structure of X.

Lemma 2.2. The group G is the group of automorphisms of the standard Lagrangian
contact structure Lx. In particular, the structure (X, Lx) is homogeneous.

Proof. First of all, the action of G preserves the foliations of X by « and S-circles, i.e.
preserves the structure Lx = (£%,E7). Conversely, if f is a diffeomorphism of X that
preserves Lx, the fact that f preserves the foliation by a-circles simply means that it
induces a diffeomorphism f of RP? for which f is a lift through the projection 7. As f
moreover preserves the foliation by fS-circles, f maps any projective line to a projective
line. This implies that f is a projective transformation according to a classical result
of projective geometry (proved for example in [Sam89, Theorem 7 p.32]), i.e. that f is
induced by the action of an element of G. O

2.2. Lagrangian contact structures as Cartan geometries. We now introduce the
Cartan geometries modelled on the homogeneous space G /P, and make the link with
Lagrangian contact structures. This notion will be our principal technical tool to deal
with Lagrangian contact structures. We refer the reader to [Sha97] or [CS09] for further
details about Cartan geometries in a more general context.

2.2.1. Cartan geometries modelled on G /P pn.

Definition 2.3. A Cartan geometry C = (M,w) modelled on G /P, on a three-
dimensional manifold M is the data of a P,,;,-principal bundle over M denoted by
7: M — M and called the Cartan bundle, together with a sls-valued one-form w: TM —
sl3 on M called the Cartan connection, that satisfies the three following properties:
(1) w defines a parallelism of M, i.e. for any & € M, w; is a linear isomorphism
from T3 M to sls,
(2) w reproduces the fundamental vector fields of the right action of Py, i.e. for
any v € sly and & € M we have: vf(2) = %h:oaﬁ“ et = wil(v),
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(3) and w is Py -equivariant, i.e. for any p € Py and & € M we have: R;w =
Ad(p)~! ow (where Ad(p) stands for the adjoint action of p).
A (local) automorphism f of the Cartan geometry C between two open sets U and V' of
M is a (local) diffeomorphism from U to V' that lifts to a Py,,-equivariant (local) diffeo-
morphism f between 7~ 1(U) and 71 (V), such that f preserves the Cartan connexion
w (ie. f*w=w).

Ezample 2.4. The homogeneous model space X is endowed with the Cartan geometry of
the model Cx = (G,wg), given by the canonical P,,;,-bundle 7g: G — G/Pn = X
over X, together with the Maurer-Cartan one-form wg : TG — sl3 defined by wg(0) = v
on the left-invariant vector fields of G).

We consider for the rest of the subsection a Cartan geometry (M,C) = (M, M, w)
modelled on G/P,,p,.

2.2.2. Curvature of a Cartan geometry. The following definition replaces the curvature
of a Riemannian metric in the case of Cartan geometries.

Definition 2.5. The curvature form of C is the slg-valued two-form Q of M defined by
the following relation for two vector fields X and Y on M:

(2.2) QX,Y) = dw(X,Y) + [w(X),w(Y)].

Thanks to the connection w, the curvature form 2 is equivalent to a curvature map
K: M — L(A2sl3,5l3) on M (that we will often simply call the curvature of C), having
values in the vector space of slz-valued alternated bilinear maps on sls, and defined by
the following relation for & € M and v, w € sl3:

(2.3) Ki(v,w) = Qwz ' (v), w5 (w)).

We will say that the Cartan geometry C (or the Cartan connection w) is torsion-free if
K;(v,w) € ppn for any & € M and v,w € sls.

If v or w is tangent to the fiber of the principal bundle M, then the curvature form
satisfies (v, w) = 0 (this is proved in [Sha97, Chapter 5 Corollary 3.10]). As w maps
the tangent space of the fibers to pin (because the fundamental vector fields are w-
invariant), this implies that the curvature K (v, w) vanishes whenever v or w is in pn.
As a consequence at any point & € M, K; induces a slg-valued alternated bilinear map
on sl3/Pmin, and we will identify in the sequel K with the induced map

(2.4) K: M — L(AQ(E[g/pmm),ﬁ[g).

The adjoint action of P,,;, induces a linear left action on L(A%(sl3/pmin),sl3) defined
for p € Pyin and K € L(A2(5[3/pmin)a5[3) by

(2.5) p-K:uhver Ad(p) - (K(Ad(p)™" - u, Ad(p) ™" - v)).
Using the linear right action of P, on L(A2(sl3/pmin),sl3) defined by K -p:=p~!- K,
K is Pn-equivariant (this is proved in [Sha97, Chapter 5 Lemma 3.23]), and K is

moreover preserved by any local automorphism f of the Cartan geometry (i.e Ko f = K
for any automorphism).
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2.2.3. Lagrangian contact structure induced by a Cartan geometry. At any point x € M
and for any # € 7~ !(z), we denote by iz: ToM — 5l3/pmin the unique isomorphism
satisfying

(2.6) i3 o Dapm = W;,

where @ denotes the projection of w on sl3 /. As the adjoint action of P,,;, preserves
Pmin, it induces a representation Ad: Py, — GL(8[3/pmin) on the quotient, and the
equivariance of w implies the following relation for any p € Pn:

(2.7) izp = Ad(p) " ois.

This relation shows that any Ad(P,,;,)-invariant object on sl3/pmin gives rise, through
the isomorphisms iz, to a well-defined object on the tangent bundle of M. Let us
apply this idea to define a Lagrangian contact structure on M associated to the Cartan
geometry C. We introduce

09 = (B4R s = (24) o = (280)
' @a=\010/"P 000/ \lo0/"

defining a basis (éq,€s, €g) of sl3/Pmin, in which the matrix of the adjoint action of

a x z
p=1|0 a bt Y| € Pmin

0 0 b
is equal to
L a2t 0 aly
(29) Mat(éa7éﬁ7éo)(Ad(p)) = 0 ab2 —b2x .
0 0 a'b

In particular, the adjoint action of P,,;, individually preserves the lines Re, and Reg of
513 /Pmin. Together with the relation (2.7), this shows that for z € M, the lines i ' (Re,)
and igl(Rég) of T, M do not depend on the lift & of . The Cartan geometry C induces
thus two one-dimensional distributions Eg () = i ' (Ré,) and Eg (z) =i (Rég) on M,
and the curvature of C will say when do those distributions define a Lagrangian contact
structure.

Lemma 2.6. Any torsion-free Cartan geometry (M,C) modelled on G /Py induces a
Lagrangian contact structure (Eg, Eg) on the three-dimensional base manifold M.

Sketch of proof. For x € M, considering a local section of the Cartan bundle over x,
we can push down by 7 the w-constant vector fields €, and ég of M (characterized by
w(é:) = e.) to local vector fields X, and Xg of M defined on a neighbourhood of x, that
respectively generate the distributions Eg and Eg . If K has values in p,n;n, the identity
w([€a,€8]) = [ea,es] — K(€q,eg) (deduced from Cartan’s formula for the differential of
a one-form) implies easily that [X,, X] ¢ Vect(X,, X3) in the neighbourhood of z,
finishing the proof. O

Remark 2.7. In the case of the Cartan geometry of the model, it is easy to check that
(B¢ ng) is the standard Lagrangian contact structure Lx of X.
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2.3. Normal Cartan geometry of a Lagrangian contact structure. Any three-
dimensional Lagrangian contact structure is actually induced by a torsion-free Cartan
geometry modelled on G/P,,,;,,. This equivalence between three-dimensional Lagrangian
contact structures and Cartan geometries modelled on G/P,,;, was discovered by Elie
Cartan, who developped this notion and after whom these geometries are named.

2.3.1. FEquivalence problem for Lagrangian contact structures. A given three-dimensional
Lagrangian contact structure is induced by several Cartan connections, and to obtain
an equivalence between both formulations, we have to choose a particular one. This
choice will be done through a normalisation condition on the curvature. Using the basis
(€a A €0,€5 A €0,q N €g) of A%(sl3/Pmin), We consider the following four-dimensional
subspace of L(A?(sl3/pmin), 53):
(2.10)  Wg = {K: € A o (885&) 65 A Eo (8? Iff) JEa A Eg 0}.

00 O 00 O
The linear action of P,,;, preserves Wy, that will be called the space of normal cur-
vatures. Theorem 2.8 below is proved in [DK16, Theorem 3 p.14], where the normal-
isation condition is explicitely calculated through Cartan’s method of equivalence (see
also [CS09, Theorem 3.1.14 p.271 and Paragraph 4.2.3] that makes the link with general
parabolic Cartan geometries).

Theorem 2.8 (E. Cartan, [DK16], [CS09]). For any Lagrangian contact structure L on
a three-dimensional manifold M, there exists a torsion-free Cartan geometry modelled
on G/P i inducing L on M, and whose curvature map has values in the space Wi
of mormal curvatures. Such a Cartan geometry is unique (up to action of principal
bundle automorphisms covering the identity on M ), and will be called the normal Cartan
geometry of L.

Furthermore, if (M;, £1) and (Ms, L) are two three-dimensional Lagrangian contact
structures, and C;, Cy are the associated normal Cartan geometries, then the (local)
isomorphisms between £ and L5 and the (local) isomorphism between C; and Cy are
the same. This a direct consequence of the unicity of the normal Cartan geometry. The
curvature map K: M — Wi of the normal Cartan geometry of a three-dimensional
Lagrangian contact structure £ will simply be called the curvature of L.

2.3.2. Flat Lagrangian contact structures. The homogeneous model space (X, Lx) veri-
fies the following analog of Liouville’s theorem.

Theorem 2.9. For any connected open subsets U and V of the homogeneous model
space X, and any diffeomorphism f from U to V that preserves its standard Lagrangian
contact structure Lx, there exists g € G such that f is the restriction to U of the
translation by g.

Proof. The Maurer-Cartan form wg satisfies for any tangent vectors v and w the struc-
tural equation dwg (v, w) + [wa(v),wa(w)] = 0 (see [Sha97, §3.3 p.108]), implying that
the curvature of the Cartan connection wg is zero. Therefore, the curvature satisfies
the normalisation condition of Theorem 2.8, and Cx is a normal Cartan geometry on X
modelled on G/P,,;, and associated to Lx (see Remark 2.7). According to Theorem
2.8, any local isomorphism of Lx between two connected open subset U and V of X
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lifts therefore to a local isomorphism of the Cartan geometry Cx between wél(U ) and

wél(V), and such an automorphism is the left translation by an element of G according
to [Sha97, Chapter 5 Theorem 5.2]. O

A three-dimensional Lagrangian contact structure (M, £) is flat if the curvature of the
normal Cartan geometry of £ vanishes identically. According to the proof of Theorem
2.9, the model space is flat, and since this property is local, any Lagrangian contact
structure locally isomorphic to (X, £x) is flat.

The power of Cartan geometries lies in the converse of this statement: any flat three-
dimensional Lagrangian contact structure L is locally isomorphic to the homogeneous
model space (see [Sha97, Theorem 5.1 and Theorem 5.2 p. 212]). There exists in this
case an atlas of charts from M to X consisting of local isomorphisms of Lagrangian
contact structures from £ to Lx, and whose transition maps are restrictions of left
translations by elements of G (according to Theorem 2.9). A maximal atlas satisfying
these conditions is called a (G, X)-structure on M. Any (G, X)-structure conversely
induces on M a Lagrangian contact structure £ locally isomorphic to L£x, whose charts
are local isomorphisms from £ to Lx.

Theorem 2.10. Any flat three-dimensional Lagrangian contact structure (M, L) is in-
duced by a (G, X)-structure on M.

Denoting by mar: M — M the universal cover of M, we recall that any (G, X)-
structure on M is described by a local diffeomorphism §: M — X called the developping
map, that is equivariant for a morphism p: 7 (M) — G called the holonomy mor-
phism (see for example [Thu97, §3.4 p.139-141]). Moreover for any g € G, the pair
(g 0d,gpg™") of developping map and holonomy morphism describes the same (G, X)-
structure. The Lagrangian contact structure £ induced by a (G, X)-structure is charac-
terized by: 6*Lx = 7}, L.

2.3.3. Harmonic curvature. For K € W an element of the space of normal curvatures

defined by

_ _ 00K\ _ _ 0Kg K8\ _ _
K:e,Negr | 00Ks |,egANeg—= (00 o0 ).€aNegr 0,
00 0 00 O
and
a x z
p= 0 a_lb_l Y| e Pmiru
0 0 b

the adjoint action (2.9) of Py, given in Paragraph 2.3 enables to compute the compo-
nents -, and -g of p- K € Wg:

(2.11) (p-K)o=0a 0 K,,(p- K)s = a’bKp.

These expressions show in particular that the two-dimensional subspace Wy = {K €
Wk | Ko = Kz = 0} of Wi is preserved by the linear action of Pp,.

Proposition 2.11. If the curvature map of a three-dimensional Lagrangian contact
structure L has values in the subspace Wy (i.e. if Ko and Kg identically vanish), then
L is flat.
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The following remark will be useful in the proof of this result: sl3 is a two-graded Lie
algebra, the graduation being defined by the following subspaces (sl3); for i = =2, -, 2:

(sl3)o  (sl3)1 (sl3)2
(2.12) 5[3 = ((5[3)1 (5[3)0 (5[3)1) .
(sl3)—2 (sl3)-1 (sl3)o

The graduation property of sl simply means that for any ¢ and j we have [(sl3);, (sl3);] C
(sl3)itj, (where (sl3); = {0} for any |i| > 2). This graduation of sl3 gives rise to a
filtration defined by sl3" = @®;>i(sl3);, with respect to which sl3 is a filtered Lie algebra,

i.e. [sl3, 5137 C sl3"7 (with sl3” = sl3 for i < —2 and sl3’ = {0} for i > 2).

Proof of Proposition 2.11. Let (M,M,w) be a normal Cartan geometry modelled on
G/P,in. We introduce the following basis of sls:

o 000 N 000 . 000 N 190 N 00 O o

0 = (988) ex = (§98).c0 = (§88)-er = (§50) e = (§5.5) " =

000 010 001 .
(8 0 (1]) ,eP = (8 0 8) el = (8 0 8), that we denote B. We denote the coordinate of
the Cartan connection w with respect to an element e of the basis B as a real-valued

one-form w, on M, such that w = > ecBWwee. In the same way, the curvature form 2 of w

[e=]

will be denoted as 2 = > .5 Qce, where the €).’s are real-valued two-forms on M. Ac-
cording to the form (2.10) of the curvature map stated in Theorem 2.8, if K, = Kz =0
identically, then the only non-zero two-form €2, is Q0 = K%, A wo + K ng A wg. The
Bianchi identity proved in [Sha97, Chapter 5 Lemma 3.30] gives dQ) = [Q,w|, where
[Qw = Lo (QAw) with L: v®@w € sl3 ® slz — [v,w] € sl3 (see [Sha97, Chapter
1.5 p.61] for this definition). The graduation property of sls exposed in the beginning

of the paragraph implies [e?,s[3] = {0}, and we have the following Lie brackets re-
lations between the elements of B: [e¥,eq] = €1 + e2, [€¥,eq] = €7, [e¥,e5] = —e?,
[V, e1] = [€°,ea] = —e". We finally obtain the following equalities by projecting the

Bianchi identity to Re” and Re®:
0=—-K%qa AwyAwg,0= Kﬂwg A wgy A We.

As (wa, w0, wp) is at each point # € M a basis of the dual space (w3 !((sl3) 2 ®(sl3)-1)))",
the three-form wy A wg A wg does not vanish, and the above equalities imply therefore
K® = KP = 0 identically, 7.e. K =0 as announced. O

Remark 2.12. The components K, and Kz of the curvature actually encode the harmonic
curvature of a normal Cartan geometry modelled on G/P,,p, that is known to be the
only obstruction to the flatness for parabolic Cartan geometries. With this point of
view, the above Proposition 2.11 is the manifestation in the specific case of Lagrangian
contact structures of a general phenomena arising for any parabolic geometry (see for
example [CS09, Theorem 3.1.12]).

2.3.4. Normal generalized Cartan geometry of an enhanced Lagrangian contact struc-
ture. Let S = (E®, E®, E°) be an enhanced Lagrangian contact structure on a three-
dimensional manifold M, and C = (M ,w) be the normal Cartan geometry of the un-
derlying Lagrangian contact structure (E®, ). Using the isomorphisms iz defined in
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(2.6), the transverse distribution E° is encoded by the map

p: &€ M izg(Egy) €V,

(@
having values in the open subset
V ={L € P(sl3/pmin) | L ¢ Vect(en,es)}

of P(sl3/pmin). Endowing V with the right P,,;,-action defined by L -p = Ad(p)~*(L),
@ is Ppin-equivariant. Conversely, any P,,;,-equivariant application ¢: M — V defines
a transverse distribution E7 ;) = iz '(¢(#)) compatible with the Lagrangian contact

(&
structure (E%, ES).

Definition 2.13. (C,¢) = (M,w, ¢) will be called the normal generalized Cartan geom-
etry of the enhanced Lagrangian contact structure S.

2.4. Killing fields of Lagrangian contact structures.

2.4.1. Some classical properties of Killing fields. A (local) Killing field of a Lagrangian
contact structure (M, L) is a (local) vector field X of M whose flow preserves £. The
Killing fields of an enhanced Lagrangian contact structure S are defined in the same
way. We will denote by Rill(U, £) the subalgebra of Killing fields of £ defined on an
open subset U C M, and by &illl%¢(x) the Lie algebra of germs of Killing fields of £
defined on a neighbourhood of x.

The following statement summarizes important properties of Killing fields, coming
from their description through Cartan geometries and well-known in this context. The
results are stated for Lagrangian contact structures, but are true as well for enhanced
Lagrangian contact structures.

Lemma 2.14. Let M be a three-dimensional connected manifold endowed with a La-
grangian contact structure L, and C = (M,w) be a normal Cartan geometry on M
associated to L.
(1) If f s a Pmm—equwarmnt diffeomorphism of M that covers idys and preserves w,
then f id IfX 1s a Pn-tnvariant vector field on M whose flow preserves
w and whose projection on M wvanishes, then X =0. 4sa consequence, the lift of
a local automorphism f (respectively Killing field X ) of L to a Ppn-equivariant
diffeomorphism f of M that preserves w (resp. to a Pin-invariant vector field
X on M whose flow preserves w), is unique.
(2) If the lift X of a Killing field X of £ vanishes at some point &, then X = 0. In
other words, the linear map X € Kill(M, L) — wz(Xz) € sl3 is injective.
(3) The Lie algebra morphism X € Rill(M, L) — [X], € lle°(z) sending a Killing
field of L to its germ at x is injective.

Sketch of proof. 1. The first assertion is a direct consequence of [CS09, Proposition 1.5.3]
for Cartan geometries modelled on G /P, and implies the second one.

2. Let us assume that a local automorphism f of C fixes a point & € M. Then as f
preserves the parallelism defined by w, a classical argument implies that f is trivial on
the connected component of Z. This remark easily implies the assertion about Killing

fields.
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3. According to [BFM09, Lemma 7.1], a local automorphism that is trivial in the neigh-
bourhood of z is trivial on the connected component of its domain of definition that
contains x. This result easily implies the statement concerning Killing fields. O

Remark 2.15. The second statement of the previous lemma shows in particular that for
any connected open neighbourhood U of z € M, the dimension of Kill(U, £) is bounded
from above by dim sl3 = 8. Therefore, if we consider a decreasing sequence of connected
open neighbourhoods U; of x such that N;U; = {z}, then dim Rill(U;, £) is constant for i
large enough. This proves the existence of a connected open neighbourhood U of = such
that

X € Rill(U, £) — [X], € &illge(x)
is a Lie algebra isomorphism.

The following Lemma is the translation of Theorem 2.9 for Killing fields of (X, £x).

Lemma 2.16. (1) At any point x € X, the Lie algebra of local Killing fields of Lx
at x is identified with slg through the fundamental vector fields of the action. In
other words, the application v € slz — [vf], € Pi[[lf;(x) sending v € sl3 to the
germ of vl at x, is an anti-isomorphism of Lie algebras.

(2) Any local Killing field of (X, Lx) defined on a connected neighbourhood of a point
x € X 1is the restriction of a global Killing field defined on X. In other words,
X € Rill(X, Lx) — [X], € Ei[[l[f; (x) is a Lie algebra isomorphism.

Proof. 1. If v’ is trivial in the neighbourhood of z, then for any ¢ € R, e’ acts trivially
on an open neighbourhood of z. But the action of G on X is analytic: if g and h in G
have the same action on some non-empty open subset of X, then g = h (because the
linear subspace generated by the pre-image in R? of a non-empty open subset of RP? is
equal to R3). Therefore, e’ = id for any t € R and v = 0. The application v — [v], is

thus injective, and as dim {%i[[l[f; (z) < dim sl according to the third assertion of Lemma

2.14, it is an isomorphism. Finally, v — o' is known to be an anti-morphism of Lie

algebras.
2. Any local Killing field at z is the restriction of v for some v € sl3 according to the
first assertion, and extends therefore to a Killing field defined on X. O

2.4.2. Total curvature map of an enhanced Lagrangian contact structure. Let (C, ) =
(]\2[ ,w, ) be the normal Cartan geometry of a three-dimensional enhanced Lagrangian
contact structure (M,S). With K: M — W the curvature map of C, we define the
curvature map

K= (K,p): M — Wi =Wk xV,

of the enhanced Lagrangian contact structure (M, S), which is P,,;,-equivariant for the
right diagonal action of P,,;, on W.

If W is any manifold endowed with a right action of P,,;,,, we define B(W) := {(w, ) |
w € W, € L(sl3, T, W)} (this is a vector bundle over W), that we endow with the right
Pin-action (w,l) -p = (w - p,DyRy ol o Ad(p)). For any smooth P,,;,-equivariant
map : M — W, we define a P,,;,-equivariant map D'4): M — B(W) encoding the
differential of 1 as follows: D (%) = (¥(#),Dstb o w; ). We also define inductively
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B¥Y (W) = B(B¥(W)) and D¥tly = D(DFip): M — B¥*Y(W) for any k € N (with
B°(W) =W and D% = ¢).
Denoting m = dim sls = 8, we define Wyctor := B™(Wx), and the total curvature

’Cmt =D"K: M — W]Ctot

of the enhanced Lagrangian contact structure S. The total curvature K is P,,in-
equivariant and preserved by local automorphisms of S (i.e. for any such local auto-
morphism f we have K% o f = K'!). We also define for k € N* the space of Killing
generators of order k by Kill*(2) = w;(Ker(DzD*~1K)) C sl3, and the space of Killing
generators of total order by Kill®!(z) = Kill"™ (%) = w;(Ker(DzK™)) C sls.

2.4.3. Gromov’s theory. The integrability locus of M is defined as the set M of those
points 2 € M such that for any v € Kill®! (), there exists a local Killing field X of
S defined around 7(z) and such that wz(X;) = v. It is easy to check that M™ is a
P,.in-equivariant set, and we define the integrability locus of M as M = W(M i”t).

Theorem 2.17 (Integrability theorem). Let (M,S) be a three-dimensional enhanced
Lagrangian contact structure of total curvature K, and M be its normal Cartan bundle.
Then the integrability locus M™ of M is equal to the set of points & € M where the

rank of DzKt is locally constant. In particular, Nt g open and dense, and so is the
integrability locus M of M.

Gromov investigates in [Gro88] the integration of “jets” of Killing fields for very general
rigid geometric structures, and proves results related to the above Theorem. In the
case of three-dimensional enhanced Lagrangian contact structures, the equivalence with
normal generalized Cartan geometries allows to avoid the notion of jets of Killing fields,
replaced by the one of Killing generators of total order. In this setting, Theorem 2.17
is a consequence of [Pec16, Theorem 4.19]. We use here a modification of the statement
of Pecastaing proved by Frances in [Fral6, Theorem 2.2]. The proof of the statement of
Frances for generalized Cartan geometries is straightforward by following the lines of the
proof he does for Cartan geometries, and using [Pec16, Lemma 4.20 and Lemma 4.9].

3. QUASI HOMOGENEITY AND FLATNESS OF THE STRUCTURE

From now on and until Paragraph 8.2, we are under the hypotheses of Theorem B and
we adopt its notations. M is thus a three-dimensional compact connected and orientable
manifold, § = (E°, EP, E¢) is an enhanced Lagrangian contact structure on M, and we
denote by £ = (E<, EP ) its underlying Lagrangian contact structure. Finally, f is an
orientation-preserving automorphism of (M, S) such that:

— each of the distributions £ and E? is weakly contracted by f (see Definition
1.3),
— and f has a dense orbit.
In particular, the non-wandering set NW (f) = NW(f~!) equals M. We recall that in

this case, the set Rec(f) (respectively Rec(f~!)) of recurrent points of f (respectively
1) is a dense Gs-subset of M. Therefore, Rec(f) N Rec(f~!) is dense in M as well.
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3.1. Quasi homogeneity of the enhanced Lagrangian contact structure. At a
point € M, we introduce the subalgebra

(3.1) isle°(z) = { X € bl (2) | X () = 0}
of local Killing fields vanishing at x, that we call the isotropy subalgebra of S.

Definition 3.1. The Kill"“-orbit (for S, respectively £) of a point z € M is the set of
points that can be reached from z by flowing along finitely many local Killing fields of S
(respectively £). An enhanced Lagrangian contact structure (M, S) (resp. a Lagrangian
contact structure (M, L)) is locally homogeneous if any connected component of M is a
Kill’“orbit.

The first claim of the following Proposition is a consequence of Gromov’s “open-
dense orbit theorem”, and the second one is a reformulation in the context of enhanced
Lagrangian contact structures of a work done by Frances in [Fral6, Proposition 5.1] for
pseudo-Riemannian structures.

Proposition 3.2. There exists an open and dense subset Q of M, such that the enhanced
Lagrangian contact structure S is locally homogeneous in restriction to ). Moreover for

any x € ), the isotropy subalgebra isg)c(x) is mon-trivial.

Proof. Since § has an automorphism f with a dense orbit, Gromov’s dense orbit theorem
directly implies the first claim (see [Gro88, Corollary 3.3.A], and [Pecl16, Theorem 4.13]
for a proof in the case of generalized Cartan geometries). Since the integrability locus
M is open and dense (see Theorem 2.17), and Rec(f) NRec(f~1) is dense in M, there
finally exists a point z € QN M™ N Rec(f) NRec(f~!). We show now that is/¢°(z) is
non-zero.

Let us denote by (M ,w, ) the normal generalized Cartan geometry of S (see Defi-
nition 2.13), and choose a lift # € 7~!(z) in the Cartan bundle. Possibly replacing f
by f~!, we have nll)IjILloo IID,f"|ge|| = 0, and by hypothesis on x, there exists a strictly

increasing sequence ny of integers such that f"k(z) converges to x, implying the exis-
tence of a sequence pi € P, such that f”k (2) -plzl converges to . We claim that the
sequence f"’f () has to leave every compact subset of M , implying that pj also leaves
every compact subset of P,,;,. In fact, if not, some subsequence ( fri (Z)) converges in
M, implying that ( f ”2) converges to some diffeomorphism of M for the C®°-topology, be-
cause f preserves the parallelism defined by w (see [Kob95, Theorem 1.3.2]). Therefore,
( f"k) also converges for the C*-topology to some diffeomorphism of M, contradicting
lim HDxf"HEa = 0.

k—+o00

The sequel of the proof of [Fral6, Proposition 5.1] will enable us to conclude, using
the total curvature K : N — Wictot of the generalized Cartan geometry associated to S
(see Paragraph 2.4.3). By P,n-equivariance of the total curvature and its invariance by
automorphisms, py,-Kt (&) = Kot (fre (2)-py ) converges to K*°!(2). The manifold Wictor
has a canonical structure of algebraic variety for which the action of P,,;, is algebraic
(because its action on the space Wi of normal curvatures and on the algebraic variety
V C P(sl3/pmin) are algebraic, see [Pecl6, Remark 4.16] for more details). Therefore,
the orbits of the action of P,,;, on Wit are locally closed, and are thus imbedded
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submanifolds. In particular, there exists a sequence ¢, € P,,;, converging to the identity
and such that py - K'(2) = e - K'°%(2), 4.e. such that &, 'py € Stabp,,, (K(#)). As
Elzlpk leaves every compact subset of P, Stabp, . (K (2)) < P, is non-compact.
But Stabp, . (K'!(%)) is an algebraic subgroup of P,,,;;, and has thus a finite number of
connected components, finally implying that its identity component is also non-compact.

There exists thus a non-zero vector v € Py, in the Lie algebra of Stabp, . (K™ (2)).
For any t € R we have by hypothesis K (2 - exp(tv)) = K!(%) - exp(tv) = K!(2), and
deriving this equality at ¢ = 0 we obtain Dz K" (w; *(v)) = 0, i.e. v € wz(Ker(DzK!)) =
Kill*!(). As  is in the integrability locus M of M, there exists a local Killing field
X e til%°(z) such that wz(Xz) = v # 0, implying in particular that X # 0 and
X(x) =0, i.e. that X €is'¢°(z) \ {0}.

The isotropy subalgebra at any point y € € being linearly isomorphic to the one at
x because Q is an Aut'°“-orbit, iﬁfggc(y) is finally non-zero at any point y € €0, which
finishes the proof of the corollary. O

3.2. Flatness of the Lagrangian contact structure. In particular, the underlying
Lagrangian contact structure £ = (E®, E®) is also locally homogeneous with non-zero
isotropy in restriction to the open and dense subset 2. The following result due to Tresse
in [Tre96] (see also [KT17, §4.5.2]) implies that L]|q is flat.

Theorem 3.3 (Tresse [Tre96]). Any three-dimensional locally homogeneous connected
Lagrangian contact structure with non-zero isotropy is flat.

By density of 2 and continuity of the curvature, the Lagrangian contact structure
(M, L) is therefore flat, and according to Paragraph 2.3.2, we obtain the following.

Corollary 3.4. The Lagrangian contact structure L is described by a (G, X)-structure
on M.

The rest of this paragraph is devoted to give a self-contained proof of Tresse’s Theorem
3.3. We consider a locally homogeneous Lagrangian contact structure £ with non-zero
isotropy defined on a three-dimensional connected manifold M. We denote by (M,C) =
(M, M ,w) the normal Cartan geometry of £, and by K: M — Wi its curvature map.
Choosing r € M and % € M, it suffices to prove that K (%) = 0 by local homogeneity of
C. We will denote by

b = El°(z) and i = is'°(z)
the algebra of local Killing fields of £ at z and its isotropy subalgebra. As L is locally
homogeneous, ev,(h) = {X(z) | X € b} = T, M, and in particular dimbh — dimi = 3.
The following result gives us a sufficient condition for the vanishing of the curvature.

Lemma 3.5. Let f be a local automorphism of a locally homogeneous three-dimensional
Lagrangian contact structure (M, L) fizing a point x € M, let & € 7~ 1(x) be a lift of
x in the normal Cartan bundle of L, and let p € P, be the holonomy of f at &,
characterized by f(:ﬁ) =2-p L. If p = exp(v) with

a * *
(3.2) v = (O —a—2b *) € Pminsuch that b # —5a and a # —5b,
0 0 b
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then L is flat.

Proof. Since the curvature K is preserved by f and P,,;,-equivariant (see paragraph
2.3), we obtain p- K(#) = K(2-p~!) = K(f(2)) = K(2), where the holonomy p is of

the form
A * *
0 X! ’1 *
0 O W

with o # A7® and A # p~° by hypothesis. According to the expression of the compo-
nents (p.K), and (p.K)g of the curvature given in (2.11), we have A\’ K (2)q = K(%£)q
and NSuK (2)s = K(&)s, implying K (2)a = K(%)s = 0. The structure being locally ho-
mogeneous and the subspace Wy = {K € Wy | K, = Kg = 0} being P,;,-invariant, K
has values in W on a neighbourhood of &, and therefore K = 0 on this neighbourhood
according to Proposition 2.11. By local homogeneity, £ is flat. U

We introduce the Cartan subalgebra a ~ R? of diagonal matrices of P,in, and the
projection p: P — a on a parallel to heis(3), which is a Lie algebra morphism. The
following linear map will play an important role in the proof:

$: X €ir plws(Xz)) € a.
Fact 3.6. If there exists X € i such that ¢(X) satisfies the hypotheses (3.2) of Lemma
3.5, then L is flat.
Proof. We have the following relation for any ¢t € R
(3.3) P (@) = 2 - exp(tws(Xz)).
Denoting by p(t) the element of P,,;, such that gth(A) =2 - p(t), {p(t)}+er is a one-
parameter subgroup. There exists thus w € Py, such that p(t) exp(tw), and deriving
the relation ch( #) = & -exp(tw) at t = 0 we obtain w;(X;) = w (because the Cartan
connection w reproduces the fundamental vector fields of the action of P,,;,). There
exists thus an automorphism ¢ of (M, £) fixing = and such that $(z) = Frexp(ws(X3)) L.

As ¢(X) = p(w;z(X;)) satisfies the conditions (3.2), wz(X;) also does, and Lemma 3.5
implies that £ is flat. O

Fact. If Ker(¢) # {0} then L is flat.
Proof. There exists then X € i such that v == wz(X;) € heis(3) = (sl3)!, i.e.

(00b)7é0

We first assume that (a,b) # (0,0). For an element of the form w = (
0
b

!

0

000 .
a 00 | in sls,
0

oo

aa *
we have [v,w] = ( 0 bb'—aa’
0 0 —
c e 1 % 0 0% 0 X
w € sl satisfying [v, w] = (8 —01 8) or [v,w| = (8 ! _*1). As L is locally h(jmogeneous,
there exists a Killing field Y € b such that Y, = Dam(w; ! (w)), implying wz (Vz) = w-+wy
with wg € Pmin = (5[3)0. We now use the relation

(3.4) W([X,Y]) = ~[w(X),wT)] + K (w(X),w(Y)).

), and as a # 0 or b # 0, there exists such an element
b/
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verified for any Killing fields of the Cartan geometry C, that will be proved at the end
of this demonstration. We obtain wz([X,Y]z) = —[v, w] + [v, wo] + K (v, w + wo) € Prmin,
where [v,wo] € (sl3)! according to the filtration property of sl3, and K (v, w + wg) = 0
because v € Pyin (see Paragraph 2.3). In particular [X,Y] € i, and ¢([X,Y]) is equal to
one of the diagonal matrices [1,—1,0] or [0, 1, —1], that both satisfy the condition (3.2).
Therefore L is flat according to Fact 3.6.

If a = b =0, we can find an element w € sl3 such that [v,w] = (é(g] 0 ), and by the

-1
same argument as above we find Y € b such that [X,Y] € iand ¢([X,Y]) = (é(g] 81).
As this element of a satisfies the conditions (3.2), £ is flat by Fact 3.6.

We now prove the relation (3.4) for two Killing fields X and Y of the Cartan geometry
C. Since the flow of X preserves w, the Lie derivative Lxw vanishes identically, and
applying Cartan’s formula Lx = dotx +txod to Y, we obtain Y- w(X)+dw(X,Y) = 0.
Cartan’s formula dw(X,Y) = X-w(Y)—-Y -w(X)—w([X,Y]) implies X -w(Y) = w([X,Y]),
and as Lyw = 0 as well, we also have —Y -w(X) = w([X,Y]). Equation (3.4) then follows
from the definition of the curvature. O

Fact. If ¢(i) = a then L is flat.

[elelen)

Proof. There exists in this case a Killing field X € i such that ¢(X) = (é ,81 ), which
satisfies the hypotheses (3.2), implying that £ is flat according to Fact 3.6. (]

It remains to handle the case when ¢ is injective, and ¢(i) is one-dimensional. There
exists then V' € i such that i = RV, and we can moreover assume without lost of

generality that v == wz(V;) € ppmin does not verify the condition (3.2) (if it does, then £
is flat according to Fact 3.6). In other words, denoting the components of v in a by

a 0 0
(V) =pv) = (O —a—1» 0) €a,
0 0 b

with (a,b) € R?, we assume that
(3.5) either a = —5b # 0,0r b = —5a # 0.

Since v € Ppin, the curvature part of the relation (3.4) vanishes, and for any X € b
we have:

(3.6) wi([V, X]3) = —[v, wa (Xa)].

The linear map

©: Xeph— wi(Xfc) € slg
is injective according to Lemma 2.14, and as ev,(h) = T,M by local homogeneity,
¢ induces an isomorphism ¢ between h/i and sl3/p,in. Using the notations (2.8) in
Paragraph 2.2.3 for the basis (€, €g, €9) 0of 5l3/Pmin, there exists X, Y, and Z in b such
that ¢(X) € eq + Pmin, ¢(Y) € €3 + Pmin, and ¢(Z) € €y + Pmin. According to (3.6),
¢ intertwines the adjoint action of V' on h/i and the adjoint action of —v on sl3/Pmin,
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implying

—a—2b 0 *
(37) Mat(ij)(a(V)) = Mat(éméﬁ’éo)(ﬁ(—v)) = ( 0 2a + b * b) .
0 0 a—

We will denote by A = —a —2b and B = 2a + b the eigenvalues of ad(V') with respect
to X and Y. Our hypotheses (3.5) on a and b imply A # 0 and B # 0, allowing us to
choose X and Y in b satisfying

[V,X] = AX and [V, Y] = BY.

In fact, if X € b satisfies ¢(X + 1) = e,, there exists A € R such that [V, X] = aX + AV
according to (3.7), and X’ = X + 4V satisfies then [V, X'] = AX’. We deal with the
case of Y by the same computations.

The Jacobi identity yields [V, [X,Y]] = (A + B)[X,Y], implying in particular that
[X,Y] ¢ Vect(X,Y,V) since A+ B is distinct from A, B and 0. A second application
of the same identity gives [V, [X,[X,Y]]] = (24 + B)[X,[X,Y]] and [V,[Y,[X,Y]]] =
(A+2B)[Y,[X,Y]]. Furthermore, if [X,[X,Y]] # 0, then 2A + B is an eigenvalue of
ad(V') € L(h), and is thus equal to one of the eigenvalues A, B, or A+ B (since dim b = 4
and 2A + B # 0). But the equalities 2A + B = A+ B or 24 + B = B would contradict
A # 0, and the equality 2A + B = A would likewise contradict our hypotheses on a and
b. Consequently, [X,[X,Y]] =0, and for the same reasons [Y,[X,Y]] = 0.

As a consequence, £ := Vect(X,Y,[X,Y]) is a subalgebra of h isomorphic to heis(3).
There is a connected open neighbourhood U of x such that the injective linear map
X € Rill(U, L) = [X], € til(z) is an isomorphism (see Remark 2.15), and there is
thus an injective Lie algebra morphism ¢: heis(3) — Rill(U, £) of image £. According
to the work of Palais in [Pal57], chapter II Theorem XI and its corollary, there exists a
(unique) local action of Heis(3) on U that integrates this infinitesimal action, i.e. such
that XT = (X)|y for any X € beis(3). In particular, the local action of Heis(3) on U
preserves £, and as ¢(heis(3)) Ni = {0}, the orbital map at x is a Heis(3)-equivariant
embedding. The Lagrangian contact structure £ is thus locally isomorphic to a left-
invariant Lagrangian contact structure on Heis(3). The following lemma implies then
that £ is flat, finishing the proof of Theorem 3.3.

Lemma 3.7. Any left-invariant Lagrangian contact structure on Heis(3) is flat.

Proof. The left-invariant Lagrangian contact structure Mo = (RX,RY") of Heis(3) gen-
erated by X = (§ é §) and Y = (§ § ((1:) is flat. In fact, we will see in Paragraph 4.2.3
that (Heis(3), M) is isomorphic to an open subset of the homogeneous model space
(X, Lx). Considering a left-invariant Lagrangian contact structure M on Heis(3), it
suffices thus to find an isomorphism of Lagrangian contact structures from Mg to M to

prove our claim.
There exists v,w € heis(3) such that M = (Ro,Rw), and as R0 & Rw is a con-

tact distribution, [v,w] ¢ Vect(v,w). Denoting Z = (§ § é), v=aX+bY +cZ, and

w=adX~+VY +Z, we have [v,w] = (ab' —ba’)Z, which implies ab’ — ba’ # 0. The Lie
! 0

algebra automorphism ¢ of heis(3) whose matrix in the basis (X,Y, 7) is <?§ ¥ o0 )

c c ab’—ba’
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sends (X,Y) to (v,w), and as Heis(3) is simply-connected, there exists a Lie group
automorphism ¢ of Heis(3) whose differential at identity is . Since ¢ is an automor-
phism, D.¢(X,Y) = (v, w) implies ¢* = X and ¢*w =Y, i.e. ¢ is an isomorphism of
Lagrangian contact structures from Mg to M. O

4. LOCAL MODEL OF THE ENHANCED LAGRANGIAN CONTACT STRUCTURE

In the previous section, we proved that the Lagrangian contact structure £ is locally
isomorphic to the homogeneous model space (X, Lx), and thus described by a (G, X)-
structure on M. The classical strategy is then to reduce the possibilities for the images
of the developping map d: M — M and of the holonomy morphism p: m (M) = G of
this structure.

In the case studied by Ghys in [Ghy87] of an Anosov flow preserving the structure, the
holonomy group p(m(M)) C G is centralized by a one-parameter subgroup of G, which
reduce dramatically the possibilities for p(m1(M)). But in the case of a discrete-time
dynamics, we do not have any relevant algebraic restriction of this kind on p(m (M)).

For this reason, we have to look not only at the local homogeneity of £ on §2, but at the
local homogeneity of the whole enhanced Lagrangian contact structure S = (E®, E?. E°)
on this open dense subset. In this section, we will show that in restriction to €2, S is
locally isomorphic to an infinitesimal homogeneous model, that preserves a distribution
transverse to the contact plane.

4.1. Two algebraic models. We begin by describing this models in an algebraic way.

4.1.1. Left-invariant structure on SLa(R). We will use the following basis for the Lie
algebra sly of SLa(R):

(4.1) E=(§6).F=(98), and H=(55).

The Lie bracket relation [E, F] = H between these three vectors shows that they de-
fine a left-invariant enhanced Lagrangian contact structure Sgr,r) = (RE, RF,RH ) on
SLa(R). Moreover, the right action of the one-parameter subgroup A generated by H
preserves Sgp,,(r)- We endow the universal cover SLy(R) of SLy(R) with the pullback of
SsL,(R), S0 that the right action of the one-parameter subgroup A of éig (R) generated
by H preserves Séfg ®)"

Let Ty be a cocompact lattice of SLy (R), and u: I'y — A be a morphism whose graph-
group I' = {(7,u(7)) | v € To} acts freely, properly, and cocompactly on SLy(R), via the
action (g,a) - x = gra (these morphisms are called admissible by Salein and studied in
detail in his thesis [Sal99]). Then the standard structure of SLy(R) is preserved by I', and

F\éig(R) is endowed with the induced enhanced Lagrangian contact structure S, whose
distributions are exactly the invariant distributions of the algebraic contact-Anosov flow
(R4t) on T'\SLy(R).

4.1.2. Left-invariant structure on Heis(3). We will use the following basis for the Lie
algebra heis(3) of Heis(3):
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According to the Lie bracket relation [X,Y] = Z, Speis3) = (RX,RY,RZ) is a left-
invariant enhanced Lagrangian contact structure on Heis(3). The subgroup

A= {@A,u ’ (A ) € R*z}

of automorphisms introduced in the introduction (see (1.1)) is exactly the subgroup of
Aut(Heis(3)) preserving Sgeig(s)-

Any cocompact lattice I' of Heis(3) preserves Speig(3), and the quotient I'\Heis(3) will
always be endowed with the induced enhanced Lagrangian contact structure S. The
invariant distributions of a partially hyperbolic affine automorphism Lg o of I'\Heis(3),
with g € Heis(3) and ¢ € A, are precisely given by S.

4.2. Two homogeneous open subsets of the model space. The left-invariant struc-
tures of SLa(R) and Heis(3) can be geometrically imbedded in X as homogeneous open
subsets, that will be the local models of the enhanced Lagrangian contact structure S
in restriction to €.

4.2.1. Some specific surfaces of X, and one affine chart. For D a projective line of RP?,
we define the 5 — « surface

Spa(D) =7, (D) = Uyeesp)C*(y),
and for m € RP?, the analog o — 8 surface

Sap(m) = 75" ({L € RP?

m e L}) = Uyece(m)C’ (¥)-
The open subset
Qg =X\ Sa.a(le1,€2])
of X, composed by pointed projective lines (m, D) for which m ¢ [e1, e2], will be identified
with the set X, of pointed affine lines of R? as follows:

(4.2) ¢q: (M, D) € Qg — (mNP,DNP) eX,,

where Vect (e, e2) + (0,0, 1) is identified with R? by translation. The diffeomorphism ¢,
is moreover equivariant for the canonical identification

{AX

(4.3) 0

] € Stabg () — A+ X € Aff(R?)

of Stabg (€2,) with the group of affine transformations of R2.
4.2.2. The open subset Yy. We will embed SLy(R) in G as follows:

0 1

The resulting copy Sp of SLo(R) acts simply transitively at o = ([1,0,1],[(1,0,1),e3]) =
o, (e1 + Reg) € Qg, and its orbit Yy = Sp - 0y can be described as

Vi =0\ Sagles] = 07" ({m+ L | m e B2\ {(0,0)}, L € RP\ {Rm} }).

The left-invariant structure of SLy(R) induces on Y; a Sp-invariant enhanced Lagrangian
contact structure

(44) St - (901; o L)*SSLQ(R)7

t: g € SLa(R) — [g 0} € G.
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which is compatible with Lx in the sense that its a and S-distributions coincide with the

ones of Lx, and whose central distribution is entirely described by its value at oy:
1 00

(4.5) E(oy) = RHg(ot),Where Hy = (8 e 8) .

We denote by AT the subgroup of SLy(RR) composed by diagonal matrices. The right
action of A* preserves Sgp,(r), and the direct product SLy(R) x A* acts on SLy(R) by
(g9,a) - h = gha. The isomorphism from SLy(R) to (Y3, S¢) given by the orbital map at
ot is equivariant for the identification

(4.6) (9:(3,%)) € SLa(R) x A% 1 Ag € GLs(R).

In particular,

o [GLS (R) (1)]

is contained in the automorphism group of (Y, St).

4.2.3. The open subset Ya. The action of Heis(3) at 0a = ([e3], [e3,e2]) = ¢51((0,0) +
Rey) € Q, is simply transitive, and its orbit Y, = Heis(3) - 04 can be described as

Ya =0\ Sasler] = ¢;' ({m+L|me R LeRP {Re1}}).

We endow Y, with the Heis(3)-invariant enhanced Lagrangian contact structure

(47) Sa = (003’H618(3))*SH618(3)
which is compatible with Lx, and whose central distribution is entirely determined by
(4.8) Eal0a) = RZT(Oa)-

Let us recall that A is the subgroup of automorphisms of Heis(3) that moreover
preserve Syeis(3) (see Paragraph 4.1.2). The group of affine automorphisms L, o ¢ of
Heis(3), where g € Heis(3) and ¢ € A, will be seen as a semi-direct subgroup Heis(3) x.A.
With this notation, the isomorphism from (Ya,Sa) to Heis(3) given by the orbital map
at o0, is equivariant for the identification

A T z 1 px p=lz X
(4,9) {0 Ayl y] € Poin — <<0 1 “1y) ,SD)\Q#,)\—I“—2> € Hels(3) X ./4,
0 0 “w 00 1

and in particular, H, := P, is contained in the automorphism group of (Ya,Sa,).

4.3. From the infinitesimal model to the local model. We take back the notations
of Theorem B. We recall that 75, : M — M denotes the universal cover of M and that
is a dense and open subset of M where S is locally homogeneous (see Proposition 3.2).
We will denote S = TS = (E~,EP E%), Q = 77541((2), and 6: M — X a developping
map of the (G, X)-structure of M describing the Lagrangian contact structure £ (see
Corollary 3.4 and Paragraph 2.3.2). We finally choose for this whole section a connected
component O of Q, i.e. an open Kill®“-orbit of S.
Our goal in this section is to describe the local model of S in restriction to O.
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4.3.1. Infinitesimal model. At any point of X, we will identify the Lie algebra of local
Killing fields of £Lx with sl through the fundamental vector fields of the action of G
(see Lemma 2.16). Since the developping map ¢ is a local isomorphism from L to Lx,
it induces at each point € M an isomorphism

(4.10) 0" v € sly = RS (0(x)) = 6" € &Il (x),

of Lie algebras, whose inverse will be denoted by J,: Ei[[lgc(x) — sl3. For X € Ei[[lz"c(x)
and t € R for which % () exists, denoting v = §,[X], € sl3, we have

(4.11) §(¢l () = e - 6(x).
Lemma 4.1. There exists a subalgebra by of sl3 such that
Ril(0,80) = (8"h)|o= {(6*v)|o| v € b}
Moreover, any local Killing field of S on O extends to the whole Kill'**-orbit O.

Proof. 1t suffices to show that the subalgebra h(x) = 5*{&[[?6(3:) is locally constant on O.
This will in fact imply by connexity of O that h(z) is constant equal to some Lie subal-
gebra b on O, and then (5*h)|oC Rill(O,S|p). But for z € O, dimh = dim?i[[?c(x) >
Rill(0,S|o) (see Lemma 2.14), and this inclusion is thus an equality.

For any x € O there exists an open connected neighbourhood U of = such that any
local Killing field of S at 2 extends to a Killing field defined on U (see Remark 2.15), and
for any y € U we have thus h(x) C h(y). But h(z) and h(y) have the same dimension
since  and y are in the same Kill'*“-orbit of S, and this inclusion is thus an equality.
This shows that h(z) is locally constant and finishes the proof. O

We denote from now on by H the connected Lie subgroup of G of subalgebra h. It
is not necessarily closed in G, but the action of H on X is smooth for the structure of
immersed submanifold of H.

Lemma 4.2. All the points of §(O) are in the same orbit Y under the action of H. In
particular, Y is open.

Proof. We consider z and y in O, and we want to find h € H such that 6(y) = h - d(z).
By hypothesis, as 2 and y are in the same Kill'°-orbit of S, there exists a finite number
of points 1 = z,...,x, = y such that for any 7« < n — 1 there exists a local Killing field
X; of S satisfying z; 41 = gp}(i (). According to Lemma 4.1, there exists for each i an
element v; € b such that X; = 6*v;, and we have §(x;41) = €"d(z;) according to the
equation (4.11), implying 0(y) = e ...e"xy € H - §(x). O

We choose from now on a point = € O, we denote 29 = 0(z) € Y, and we consider the
isotropy subalgebra

(4.12) i = staby (o) = {v € h | v(zg) =0}
of h at xg, characterized by 0*i = isfggc(x). Since the orbit Y of x¢ under H is open,

dimbh — dimi = 3, and i is non-trivial according to Proposition 3.2. We also denote
E(z0) = De6(E(x)), and b/i = D* @ DB @ D¢ the splitting sent to T, Y = (@ &P @
E°)(xp) by the isomorphism D.6;, induced by the orbital map at xo.
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Lemma 4.3. (1) The adjoint representation ad: i — L(h/i) preserves the line D¢
in b/i, i.e. for any v € i we have ad(v)(D¢) C DC.

(2) There exists in the neighbourhood of xy an unique H-invariant germ of a smooth
one-dimensional distribution E¢ that extends £(xg) on a neighbourhood of x,
and this distribution is everywhere transverse to £ @ EP.

(3) The developping map ¢ is an isomorphism between the enhanced Lagrangian con-
tact structures S and Sy = (2,E8,£°), from a neighbourhood of x to a neigh-
bourhood of x.

(4) b = ElI)° (20) and i = is'g° (xo).

(5) If I = Stabg(xg) is a connected subgroup of H, then there exists an unique
H -invariant smooth one-dimensional distribution E¢ that extends E°(xg) on the
whole open orbit Y, and E° is transverse to £* @ EP. Furthermore, §|o is a local
isomorphism from (0,S|o) to (Y,Sy).

Proof. 1. For v € i, denoting X = 6*v € isfgc(x), equation (4.11) implies £%(xg) =
D, e (E%(xg)) for any t € R, and thus D¢ = Ad(e'’) - D¢ = exp(tad(v)) - D°. Derivating
this last equality at ¢ = 0, we obtain ad(v) - D¢ C D¢.

2. The group I = Stabp(zo) and its identity component I° are closed in H for its
topology of immersed submanifold, and the orbital map at xy induces a local diffeo-
morphism éxoz H/I° — Y, equivariant for the action of H. We saw previously that
Ad(exp(i)) preserves D¢, implying that the subgroup {Z el ‘ Ad(i) - D¢ = DC} is equal
to I° by connexity, i.e. that I preserves D°. Therefore, H/I? supports an unique
H-invariant smooth one-dimensional distribution extending D¢, that can be pushed by
Op: H/I = Y, to a H-invariant distribution extending £°(zo) on a neighbourhood
of zp. Conversely, the pullback of any H-invariant distribution extending £¢(z¢) on a
neighbourhood of x¢ is H-invariant on H/I°, which proves the unicity of the germ of £°.
As it is preserved by H, it must remain transverse to £ @ &£P.

3. For y sufficiently close to x, there exists X € Rill(O,S|o) such that y = % (z).
Denoting yo = 6(y) and v € b such that §*v = X, we have Dye™ o D,d(E(y)) =
D6 o Dyt (E(y)) = £°(x), implying D, 6(E°(y)) = £%(yo) by H-invariance of £°.

4. This is a direct consequence of §*h = Ei[[g’c(x), 0% = isfgc(x), and of the fact that §

is a local isomorphism from S to Sy at .

5. Concerning the first assertion, the orbital map at xg induces a H-equivariant dif-
feomorphism from H/I to Y, and we saw in the proof of the second assertion that
H/I° = H/I supports an unique H-invariant distribution extending D¢ on H/I°, which
stays transverse to the contact plane.

The set £ of points y € O such that ¢ is a local isomorphism in the neighbourhood
of y is open and non-empty, and we only have to prove that £ is closed to conclude by
connexity of O. Let z € O be an adherent point of £, and let us denote zy = ().
There exists a point y € £ sufficiently close to z such that, for some Killing field X of
S, z = p&(y). Denoting v € h such that X = §*v, we have D,,e™¥ o D,§(E°(2)) =
D, oD,y (E(2)) = E%(yo), implying D,6(E°(2)) = £%(29) by H-invariance of £¢. By
local homogeneity of S|p, we can reach all the points of some neighbourhood U of z
in O by a Killing field, and the same computation as before shows that J|y is a local
isomorphism, 7.e. that z € £. O
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4.3.2. Local model of an open Kill'*-orbit. We will call
(4.13) ki (m,D) e X — (DF,mt)eX

the flip diffeomorphism of the homogeneous model space. This involution switches the
distributions £* and £? of the standard Lagrangian contact structure, and is moreover
equivariant for the Lie group morphism ©: g + ‘g~ ! of G.

Consequently, interverting the distributions E“ and E? of the Lagrangian contact
structure of M is equivalent to composing the developping map ¢ with x. At the level
of the subalgebra b introduced in the previous paragraph, it is equivalent to apply the
Lie algebra morphism D,© = 6: A — —'A.

Denoting
<4.14>{ ={(5 —uta) |40}

ha = Pmin,

we will prove in the next section that:
Proposition 4.4. Up to conjugacy in G or image by @ = — -, b is equal to by or ha.

To deduce a local information about S|o from this infinitesimal classification, it only
remains to look at the action of the connected Lie subgroups HY := GLJ (R) and H? =
P:;m of G, of respective Lie algebras by and b,.

Proposition 4.5. (1) Yi (respectively Ya) is the only open orbit of HY (resp. of
HY) on X.
(2) St (respectively Sa) is the only HQ-invariant (resp. HQ-invariant) enhanced La-
grangian contact structure of Yy (resp. Ya) that is compatible with Lx.

Proof. 1. Both of these groups are contained in Stabg[e1,e2] = {[4 Y] | A € GL2(R), X €
R?}, that preserves the surface Sgaler,es2], and whose only open orbit is thus Q, =
X\ Sgale1,e2]. Any open orbit of one these groups is therefore contained in (.
Since HY preserves the surface Sa,ples], any open orbit of HY is contained in Y; =
X\ (Sgaler,ea] U Sy ples]) = HY - op. In the same way, since HY preserves S, gle1], any
open orbit of HY is contained in Yo = X\ (Sg.ale1, 2] U Sa ler]) = HY - 0a.

2. We start with Y;, and we denote

. . a 0 0
it = Lie(Stabpo(ot)) = {(8 ~2a 2) ‘ a€ R} ,
and oo
010 000
= (887 =(880) 7= (4 20)-
The standard Lagrangian contact structure of X satisfies RET(0¢) = £%(0¢) and RF(0g) =
E8(o), and for a € R, the adjoint action of the diagonal element [a, —2a, a] of iy has the

following diagonal matrix in the basis (E, F', H) of b/i:
Mat g 7 i) (ad([a, —2a,a))) = [3a, —3a,0].

Any line D¢ of by /it that is transverse to Vect(
the basis (E, F, H) for some (z,y) € R?, and

) has projective coordinates [z, y, 1] in

E,
ad([a, —2a, a])(D°) is therefore generated
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by the vector of coordinates (3ax, —3ay,0). The only transverse line stabilized by ad(i¢)
is therefore RH, and &f is the only Hp-invariant distribution of Y transverse to Lx.
Let us denote

ia = Lie(Stabpo(0a)) = { (§ e g])

0
and
010 000 001
(415) x=(886) v =(888).2= (§88)-
We have RX(0,) = £%(0a), RYT(04) = £%(0a), and for (a,b) € R?, the adjoint action

of the diagonal element [a, —a — b, b] of i, has the following diagonal matrix in the basis

(X, }77 Z) of pmin/ia
(4.16) Mat g v 7 (ad([a, —a — b,b])) = [2a + b, —a — 2b,a — b].

Any line D° of p,,in/ia that is transverse to Vect(X,Y) has projective coordinates of
the form [z,y,1] in the basis (X,Y, Z) for some (z,y) € R?, and ad([a, —a — b, b])(D®)
is therefore generated by the vector of coordinates ((2a + b)z, (—a — 2b)y,a — b). The
only transverse line stabilized by ad(ia) is therefore RZ, and &£ is the only HZ-invariant
distribution of Y, transverse to Lx. U

_ We can finally describe the local geometry of O, which is a connected component of
Q= m/ (D).

Corollary 4.6. Up to inversion of the distributions E* and EP, the restriction 8|0 of
the developping map to O is a local isomorphism from (O,S|o) to (Yt,St), or to (Ya, Sa).

Proof. The inversion of the distributions E® and E? is equivalent to apply € to b, and
the conjugation of h by g € G is equivalent to replace the developping map § by g o d
(that describes the same (G, X)-structure on M). According to Proposition 4.4, we can
thus assume that b is equal to bhg or h,, and the open orbit Y is therefore equal to Y
(respectively Ya) according to Proposition 4.5. Since the isotropy subgroups Stab HO (o)
and Stab o (0a) are connected, there exists a HP-invariant (resp. HQ-invariant) enhanced
Lagrangian contact structure Sy on Y that is compatible with £x and such that J|p is a

local isomorphism from (O, S|o) to (Y, Sy) (see Lemma 4.3). According to Proposition
4.5, Sy is equal to Sg (resp. Sa). O

5. CLASSIFICATION OF THE INFINITESIMAL MODEL

The goal of this section is to prove Proposition 4.4. Let us recall that the Lie subal-
gebras i C b of sl3 are characterized by (6*h)|o= Rill(O,S|o) and [0*i], = isfgc(x) (see
Lemma 4.1 and (4.12)).

5.1. Algebraic reduction. We first prove some purely algebraic restrictions on §.
Lemma 5.1. The dimension of b is either 4 or 5.

Proof. Possibly translating the developping map by an element of G, we can assume
that zo = o = ([e1], [e1,e2]) € X, and since the adjoint action of P, on the lines of
sl3/pmin transverse to Vect(eq,€g) is transitive (see Paragraph 2.2), we can moreover
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assume that D¢ = D.0,(Rey) with eg = (Ef] (8] §). As a consequence, i = h N Ppin iS
contained in

_ 0
(5.0) 0= {v € puin | 2d() (Re0) € Rey) = {<§ o 2) | (a,b,2) € R3} .

001 . . . o
Denoting e = (8 g 8) € 0, we now prove that i N Re” = {0}, implying dimi < 2 and

finishing the proof of the Lemma, since i is non-zero and dim ) — dimi = 3.
Let us assume by contradiction that e’ € i. As b + Pmin = Sl3 (because the orbit of

o under H is open), there exists v € h and w € Py, such that eg = (g (8] §) = v+ w.

But [v,e%] € b, and [w,e’] € Re® C i since w € Ppin, finally implying that (§ § ((1:) =

leg, e%] = [v,€°] + [w, €] € h N pmin =i C o, which contradicts the description of o in

(5.1). 0
Let

(5.2) h=sxyt,

be the Levi decomposition of h, where s is a semi-simple subalgebra of f (or is trivial if
b is solvable), v is the solvable radical of h (it is an ideal of h), and ¢ is the restriction
of the adjoint representation ad: h — Derbh (¢: s — Der v describes the bracket in h by
[v,w] = ¢(v)(w) for v € s and w € t).

A proper semi-simple subalgebra of sl3 of dimension less than 5 is three-dimensional,
and is thus isomorphic to sly or to so(3). Moreover, up to conjugacy in SL3(R), the only
embedding of s0(3) in sl3 is the inclusion, and the only embeddings of sly in sl3 are

(5.3) 50 = {<61 8> ‘ Ae 5[2} and so0(1,2).

If b is not solvable, s is thus equal to sp, s0(1,2) or so(3) up to conjugacy in SL3(R).
The centralizers of these subalgebras in slg are
{ Caty (50(1,2)) = Cayy (50(3)) = {0},
z0 0
C5[3(50) - {(8 :(l): 70 ) ’ T E R}'

2x

(5.4)

Lemma 5.2. Up to conjugacy in SL3(R) or image by 6 = —*

results.
(1) If b is not solvable, then
(a) s is equal to sp,
(b) and b is equal to by or to

-, we have the following

(5.5) b =R?xsh = {({ )] A€sh, X eR.
(2) If b is solvable, then either by is contained in ha = Pmin, or equal to
(5.6) ho = R? 3 sim(R?) = { (4 _¥,) | A € sim(R?), X € R?},

where sim(R?) = {(fb 2) ‘ (a,b) € RQ}.
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Proof. 1.a) Let us assume by contradiction that s is conjugated to so(1,2) or so(3),
implying that Cs,s = {0} according to (5.4). Since s is simple, if the Lie algebra
morphism ¢ is not injective then it is trivial, implying v C Cg, 6 = {0} and thus dimbh =
dims = 3 which contradicts Lemma 5.1. Our hypothesis on s implies therefore that ¢
is injective, and in particular that dim Dert > dims = 3.

Since dims = 3, the solvable radical v is of dimension 1 or 2 according to Lemma

5.1, and is thus isomorphic to R, aff(R), or R?. But if ¢ is isomorphic to R or aff(R),
then Dert is of dimension 1 or 2 which contradicts the injectivity of ¢, and t is thus
isomorphic to R2. Since s0(3) has no non-zero two-dimensional representation, this im-
plies that s is conjugated to so(1,2). The connected Lie subgroup H of SL3(R) of Lie
algebra h contains then SOO(l, 2), and its adjoint action induces thus by restriction a
two-dimensional representation ¢ of SO°(1,2) on t (because t is an ideal of h). Since
S0°(1,2) is isomorphic to PSLy(R), ¢ is trivial, implying that ¢ is trivial as well, which
contradicts the injectivity of ¢. Finally, s is conjugated to sp.
1.b) Let us assume by contradiction that t is isomorphic to aff(R). Then Dert is two-
dimensional and ¢ is thus non-injective, i.e. trivial by simplicity of sg. But v is then
contained in the centralizer of sy which is one-dimensional according to (5.4), contra-
dicting the original hypothesis. Therefore, t is isomorphic to R? or R.

We first assume that v is isomorphic to R?, implying that ¢ is injective (otherwise
t C Cgy 80 which is one-dimensional). We use the linear mapping eve,|e: M € v —
M (e3) € R? and discuss according to the dimension of its image t(e3). Let us emphasize
that v is normalized by the connected Lie subgroup Sy of SL3(R) of Lie algebra sg, and
that t(es) is thus preserved by Spy. If t(e3) is a plane then t(e3) = Vect(ey, e2) since it is
preserved by Sy, and ev,,|, is moreover injective. There exists v € v such that eve,(v) =
er, and with A = (§ %) € sly and u = (4 J) € 50 we have eve,([u,v]) = e1 = eve,(v).

This implies [u,v] = v by injectivity of eve,|,, and finally v = (§ for some x € R.

01
00
z 0
The same reasoning with w € t such that eve,(w) = ez and A (_01 ?) € sly, implies

000
that w = (2 g (1)) for some y € R. Since v is abelian we have [v,w] = 0, which implies

x =y = 0 and proves that v = (8]%2), i.e. that h = R? x sly. If t(e3) = {0}, then
p|. is injective, implying p(r) = R2. Therefore dim(#(x))(e3) = 2 which brings us back
to the first case, and 6(h) = R? x sly. Finally, dimt(e3) = 1 is impossible. Otherwise,
¢ = kerev,, Nt is one-dimensional, and since p: (£9) € ¢ = X € R? is injective
(because t M sy = {0}), p(t') is a line of R But for w € ¢ and v = (4 9) € 50 we have
p([v,w]) = —p(w)A, i.e. p(t') is preserved by sly and cannot be a line.

We now assume that v is isomorphic to R. Then ¢ is non-injective and thus trivial,
implying v C Cs, 59. This inclusion is an equality by equality of dimensions, proving
b = be.

2. As b is solvable, it preserves a complex line in C? according to Levi’s theorem.
More precisely, either h preserves a real line, or it preserves a plane on which it acts
by similarities. The second case implies h C R? x sim(R?) = by up to conjugacy in
SL3(R). In the first case we can assume that b preserves Req, and if the representation
(6 4) € h— A € gly also preserves a real line, then h C P, = ba up to conjugacy.

If not, then 6(h) C {(*3?4 g) ‘ A€ sim(R?), X € RQ}, according to the same remark
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than before. This last subalgebra being conjugated to R? x sim(R?) = ha, this concludes
the proof of the lemma. O

5.2. Two further properties of the infinitesimal model. We now prove two further
properties of the infinitesimal model (h,1i), in order to eliminate the “exotic” cases h;
and ho that appeared in the algebraic clasification of Lemma 5.2.

Lemma 5.3. Let [ be a subalgebra of sl3 containing b, j = stab(xg) be the isotropy at
xg, and D¢ be the line of I/j sent to £°(xg) by the orbital map at zo. If ad(j)(D¢) C D¢,
then [ =1.

Proof. Let us denote by L the connected subgroup of G of Lie algebra [, and by J° the
identity component of J = Staby(zq). As ad(j) preserves D¢, Ad(exp(j)) preserves D¢,
and the subgroup of elements j € JY such that Ad(j) preserves D¢ is thus equal to J° by
connexity. The construction made in the second assertion of Lemma 4.3 is thus valid for
L/JY, and proves the existence of an unique L-invariant enhanced Lagrangian contact
structure S extending (£%(x), £ (x0), £(x0)) in the neighbourhood of zg. As b C I,
H C L, and Sy is thus H-invariant, implying S§, = Sy by the unicity of such a tructure.
Therefore | C Ei[[?}f (x9) = b, which concludes the proof. O

Lemma 5.4. Let us assume that i is one-dimensional, and let v be a non-zero element
of i. Then the eigenvalues of ad(v) € L(b/i) with respect to the eigenlines D* and DP
are non-zero.

Proof. We already know that ad(i) is diagonalizable with eigenlines D®, D?, and D° (see

Lemma 4.3). The proof is the same for the eigenvalues of both eigenlines D and D?,

and we only do it for D% By density of Rec(f)NRec(f~!) in M (see the introduction of

Section 3), there exists z € O such that z = my;(z) € Rec(f) NRec(f~ 1), and possibly

replacing f by f~!, we have lim HD;C [ Ee@)||,, = 0 for a given Riemannian metric
n—+o00 M

that we fix on M.

By hypothesis on z, there exists a sequence (v) in 71 (M) and a strictly increas-
ing sequence (ny) of integers such that ~f™ (x) converges to z, and we can more-
over assume up to extraction that x; € O for any k, implying that ~;f™* preserves
O. Endowing M with the pullback fip; of the Riemannian metric of M, we have

lim HDx(%fnkHEa(x) =0 (since m (M) acts by isometries).
k—+o00 A

Liouville’s theorem 2.9 for the homogeneous model space (X, £x) implies the existence

of a unique sequence (gx) in G satisfying

(5.7) 6 0vef™ = g 0 8 on a neighbourhood of z.

Denoting o = 0(z), gk -xo = 8oy f1 () € Y = H -z converges to xp, and there exists
thus a sequence hy € H converging to the identity in G and such that hg - g = g - zg.
Since 4 is a local isomorphism from S |o to Sy on a neighbourhood of z, the equation
(5.7) defining g shows that g preserves Sy on a neighbourhood of zy. By H-invariance
of Sy, i), = h,;l gk also preserves Sy, and iy is thus contained in the closed subgroup

I == {i € Stabg(x¢) | i preserves Sy on a neighbourhood of xy}

of G. The Lie algebra of I is equal to i because i5°(z9) = i (see Lemma 4.3).
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Fact. I = {Z € Stabg (7o) ‘ Ad(i) - h = b and Ad(i) - D¢ = Dc}. In particular I is alge-
braic and has a finite number of connected components.

Proof. For ¢ € I and v € b, the relation Dy i 0 D.6,, = Dc0y, o Ad(i) implies it =
(Ad(i)-v)T. Since i is a local automorphism of Sy and v' a Killing field of Sy, (Ad(i)-v)!
is also a Killing field of Sy, implying Ad(7)-v € b since El[[?}f (z0) = b (see Lemma 4.3).
Moreover, Dy, i(E5) = £S5, implies Ad(i) - D¢ = D°.

Let us conversely assume that i € Stabg(z) satisfies Ad(i) - h = b and Ad(i) -
D¢ = D¢. We consider v € h sufficiently close to 0, such that with h = ¥ € H and
y=h-x9 €Y, Sy is defined at y. Since Ad(i) - D¢ = D¢, Dy, L;(E¢(z0)) = E(20),
and b/ = ihi~! = 2 ¢ H because Ad(i) - h = h. By H-invariance of £¢, we obtain
Dyi(E°(y)) = Dayh’ 0 Dyyi(E(x0)) = E°(3 - y), proving that i € I. O

We can thus assume up to extraction that (i) lies in a given connected component of
I, and there exists then g € I such that j; = gij is contained in the identity component
I". 0 We endow X with a Riemannian metric px, and denote by fix = 6*ux its pullback on
M. Since (y;f™(z)) is relatively compact in M, the metrics fip; and fix are equivalent
in restriction to (v,/™(z)), and the limit stated above for fip; is thus valid for fix,

= 0. As jp = gh; g with (gh;') relatively compact in

implying lim Hongk‘ga

(mo) 1354

G, we also have lim Honjk|ga(x0) =0.
X

I9 being connected and one-dimensional, there exists a non-zero v € i and a sequence
t € R such that i, = exp(txv), implying that D, ji is conjugated by the orbital map
to exp(trad(v)), and thus lim Hexp trad( ))]DaH = 0. Denoting by A, the eigenvalue of
ad(v) with respect to D%, exp(trad(v))|pe= exp(Aatr) idpa implies then A, # 0. O

5.3. End of the classification. We now put into our analysis the geometrical and
dynamical properties of h proved above.

Lemma 5.5. h; = R? x sly does not satisfy the geometrical conditions of Lemma 4.3.

Proof. The only open orbit of the connected Lie subgroup H; of G of Lie algebra b is
the open subset Q, defined in Paragraph 4.2.1. If Hy - xg is open for some point zy € X,
we can thus assume that xo = ([es], [es, e1]) € Q4 up to conjugacy in Hi, implying that

= Lie(Stabg, (z0)) = {(& %,) | a,b € R?}. Denoting v, = (§9) and vg = (}) € by, we
have Rl (z0) = £%(x) and Rvﬁ(xo) = £P(z), and defining v. = (9) and i = () € i1,
the matrix of ad(4) in the basis (va, Vs, v.) of b1 /iy is

Mat(l—,a,gﬁﬂ—,c) ad(i) = <(8) § g) .

Any line of by /i that is transverse to Vect(v,,v3) has projective coordinates [a,b,1] in
the basis (4, Vg, V) for some (a,b) € R% and ad(i)(D) has thus coordinates [0, 1,0].
This proves that ad(i)(D¢) ¢ D¢, i.e. that h; does not satisfy the geometrical conditions
of Lemma 4.3. 0

Lemma 5.6. If b is a four-dimensional subalgebra of ha = Pmin, or is equal to ho =
R? x sim(R?), then b does not respect both the geometrical conditions of Lemma 4.3 and
the dynamical condition of Lemma 5.4.
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Proof. We first assume that § is a four-dimensional subalgebra of p,,;,. Therefore H C
P,in, and if H - 2y is open then zg € Y, according to Proposition 4.5. We can thus
assume up to conjugacy in H that xo = 0a = ([es], [e3, €2]) € Ya, implying that

i = staby(0a) C ia = staby, . (0a) = {(8 —ab 8) (a,b) € RQ} .

0 0 b
Let D¢ C /i be a line preserved by ad(i), and such that D.0,, (D) is transverse to (£ ®
£8)(0a). Since b is a proper subalgebra of P, Lemma 5.3 implies that ad (i) (D¢) ¢ D¢,
and thus that stab; (D°) = {v € ia ’ﬁ(v)(Dc) C Dc} = i is one-dimensional. Any
line D¢ of Pyin/ia which is transverse to the contact plane has projective coordinates
[z,y,1] in the basis (X,Y, Z) of pin/ia, for some (z,y) € R? (see Proposition 4.6), and
according to (4.16), we have:
—ifz =y =0, ie D°=RZ, then stab; (RZ) = ia;
~if x = 0and y # 0, i.e. D¢ = D§(t) == R(Z + tY) for some t € R, then
stab;_ (D5 (1)) is equal to the line iy generated by the diagonal matrix [1,1, —2] =
10 0

01 0 );
00 -2

~ifx #0and y = 0, i.e. D® = D%(t) = R(Z + tX) for some t € R, then
stab;, (D% (1)) is equal to the line ix generated by the diagonal matrix [-2,1,1] =
(#09),
001
— if x # 0 and y # 0, then stab;_ (D) = {0}.
The only transverse lines with a one-dimensional stabilizer being DS (t) and D5 (1), i is
equal to ix oriy. But Mat g y 7 ad([1,1,-2]) = [0,3, 3] and Mat g v 7 ad([-2,1,1]) =
[—3,0, —3] according to (4.16), i.e. the elements of ix and iy have zero eigenvalue with
respect to either the a or the S-direction, proving that h does not satisfy the dynamical
condition of Lemma 5.4.

In the same way, if h = ho, then we can assume that zg = 05 € €, up to conjugacy
in Hy = R? x Sim(R?), implying iy = staby,(0a) = iy defined above. We saw that the
elements of iy have zero eigenvalue with respect to the a-direction, proving that hs does
not satisfy the dynamical condition of Lemma 5.4. U

Proposition 4.4 now directly follows from Lemmas 5.2, 5.5 and 5.6.

6. GLOBAL STRUCTURE

From the local model that we determined for the enhanced Lagrangian contact struc-
ture S, we will now deduce a global information.

6.1. Local homogeneity of the enhanced Lagrangian contact structure. So far,
we only have informations on a dense and open subset Q of M (see Propositions 3.2 and
4.6), and the first step to obtain a global information is to prove the following.

Proposition 6.1. The open dense subset ) equals M, i.e. S is locally homogeneous on
M.

We will denote in this paragraph by (C,¢) = (M ,w, ) the normal generalized Car-
tan geometry of the enhanced Lagrangian contact structure & = 73,S of M, and by
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Kot M — Wictor its total curvature (see Paragraphs 2.3.4 and 2.4.2). We recall
that Q = 7, (Q) C M, and that the projection of the Cartan bundle is denoted by
m: M — M.

We also recall that the local homogeneity of S | means that the connected components
of Q are exactly its Kill”-orbits (see Definition 3.1). Since the rank of DK is invariant
by the right action of P,,;, and by the flow of Killing fields, this shows that rk(DiCt!)
is constant over any connected component of €.

We choose for this whole paragraph a connected component O of (i.e. a Kill’°-orbit
of §) such that rk(D;K!") for 2 € 7~ (0) is maximal among rk(D; ) for & € 7=1(Q).
We will denote by (Y, Sy) the local model of S|o, equal to (¥;,S;) or (Ya,Sa) and such
that d|o: (O, S|o) — (Y,Sy) is a local isomorphism (see Corollary 4.6). We still denote
by b the subalgebra of Killing fields of Sy, respectively equal to b or ha (see Proposition
4.4), and by H the corresponding Lie connected subgroup

GLI(R) 0

Hy = 0 1

min’

} or H) =P}

of G of Lie algebra b, preserving Sy.
We recall that §: M — X denotes the developping map of the (G, X)-structure of M
describing the flat Lagrangian contact structure £ (see Proposition 3.4).

Lemma 6.2. The boundary of O is mapped to X \'Y by the developping map: 6(00) C
X\Y.

Proof. Let us assume by contradiction that there exists z € 9O such that g = d(z) € Y.
The pullback h = §*h = {6*v | v € h} is a subalgebra of vector fields on M, such
that Rill(O,S|o) = b|o according to Lemma 4.1. As z¢ € Y, there exists an open
and convex neighbourhood Wy of 0 in h such that V' = exp(Wp) - zp C Y is an open
neighbourhood of . Denoting W = §*Wy C b, U = {4 () | X € W} is thus an open
neighbourhood of z, and possibly shrinking Wj, we can moreover assume that d|y is a
diffeomorphism from U to V. As x € 0O, there exists y € U N O, and X € W such that
r = ¥ (y), implying that ¢% (y) € U for any t € [0;1], and thus 6(p% (y)) € V C Y.
Denoting to = inf {t € [0;1] | ¢’ (y) € IO}, to > 0 because O is open, and 2 (y) € JO
because JO is closed. Replacing = by apg(}(y) and X by % € W, we finally have y € O,
x = ¢ (y) € 90, and for any t € [0;1], v (y) € O, with X|o€ Kill(O,S|o).

Choosing ¢ € 7~ !(y), the invariance of D' by local automorphisms and the fact
that ¢’ is a local automorphism of (C,¢) on the neighbourhood of y for any ¢ € [0;1]
implies DIC! (54 (7)) = DK () for any t € [0;1]. Denoting & = ¢ (§), we obtain
DKt () = DKt (§) by continuity, i.e. K°(2) = K () and Dz Kt ow; ! = DyKto

—1

wg.

This implies & € Mt In fact as the rank of DK can only increase locally, there is
an open neighbourhood U of # where the rank of DK is greater than rk(DzK""). Let
us assume by contradiction that the open subset of & where rk(Dz K%!) > rk(D; %) is
non-empty. Then by density of 71 (), there exists 2 € 7~ 1() such that rk(D;Kt) >
rk(DzKC™t). But rk(DzK™) = rk(DyK™") because DK(2) = DY (§), and thus
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k(D) > rk(DyKtt) with § € 771(0), wich contradicts our hypothesis of maximal-
ity of rk(DK'™") on O. Therefore tk(DK!) is constant on the open neighbourhood U of

Z, proving that & € Nint according to Integrability theorem 2.17.

As the Kill“-orbit O of y is open, wg_l(pmm) + Ker(DyK™"") = TQM, and therefore
w;l(pmm) +Ker(DzKtot) = T; M because Dzt owgl = DyKtet owgl. Since & € Mi"t,
for any v € Ker(DzK'!) there is a local Killing field X of S defined in the neighbourhood
of z such that X; = v. But w;l(pmm) + Ker(Dg ) = T;M, and we thus have
{Xx X e Ei[[fgc(x)} = T, M, implying that the Kill"®“-orbit of z is open. Since z € 9O,
the Kill'®-orbit of z intersects thus the Kill’“-orbit O, i.e. z € O, which contradicts
our initial hypothesis. This contradiction concludes the proof of the lemma. O

Lemma 6.2 allows us to reduce the study of the central direction E¢ on the boundary
of O, to the study of the central direction £ on the boundary of Y. We first do some
geometrical remarks about the open subsets Y, and Y; of X, defined in Paragraphs 4.2.2
and 4.2.3.

Let us recall that, denoting Dy, = [e1, e2], m¢ = [e3] and ma = [e1], we have

Ve =X\ (88,0(Doc) U Sa,p(my)) and Ya = X\ (93,0(Doo) U Sp,a(ma))-
In particular, for e = a and t: X\ Yz = 0Y: = S3,4(Doo) U Sy g(me).
We define in both cases
G = {x €y ‘ Cz) ¢ OY or CP(x) ¢ 8Y}.
It is easy to check that for ¢ = a and t, we have
Ge = 0Y: \ {C7(Doo) U C¥(me) U (Sp,a(Doc) N Sap(me))},
and that for any = € G, if C¢(x) € 9Y for e = a or 3, then C¢(z) \ {z} C Y.

We have S5 o(Doo)NSa.5(Ma) = CP (Do) UCY (ma), and Sp o (Doc) NSy, g(ms) is equal
to the chain defined by (mg, Do), denoted by C(myg, Doo) and defined as follows:
C(mg, Do) == {(m,[m,m¢]) | m € Duo} -
Finally, we will use the following description of the respective orbits of H on G:
(1) the orbits of HY on Gy are Gf = S, g(my) \ (C*(m¢) UC(my, Dso)) where C*(x) \
{2} C V4, and G2 = S5.4(Deo) \ (C°(Doo) UC(mt, D)) where CP () \ {2} C Y;
(2) the orbits of HY on G, are GL = S, 5(ma) \ (C%(ma) U CP (D)) where C¥(x) \
{2} C Ya and G2 = S5,4(Dwo) \ (C%(ma) UCP(Ds)) where CP(z) \ {z} C Ya.
We will now prove that the central direction £¢ degenerates along the o and S-circles
when converging to a point of G.

Lemma 6.3. Let v: [0;1] — X be a smooth path such that v(]0;1]) C Y, z =~(0) € G,
and ([0 1]) is entirely contained in C*(z), or entirely contained in C®(x). Then E¢(v(t))
converges at t = 0 to a line contained in (£¢ @ EP)(x).

Proof. As the action of H on Y preserves £¢, it will be sufficient to prove this result
for one point of each of the two orbits of H on G described above, in each of the two
cases Y; or Y. We thus have only four cases to handle, and we saw that in each case,
either C%(z) \ {#} C Y and C’(z) C Y, or the contrary. We thus have only one
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possibility to consider for v in each of these four cases, either that v([0;1]) C C*(x), or
that v([0;1]) C C#(x). To clarify our strategy, let = be a point of g; for 4 =t or a and
it =1 or 2, and let us consider the following data:

— a one-parameter subgroup {g'};cr of G such that, denoting z(t) = ¢ -z, we
have {z(t) | t € R} =C%(z) \ {y}, with y € C°(x) NY, and € = « or § according
to the case considered,

— a one-parameter subgroup {h'};cr of H such that ¢' -z = z(t) = Rt~ .y for any
t € R*,

— Ain sl3 such that D.0,(RA) = £°(y), where 6,: G — X is the orbital map at y,

— and gy € G such that go - © = o where o = ([e1], [e1, e2]) is the usual base-point
of X.

Then for any ¢ € R* we have Dy (gog ") (E°(2(t))) = Deo(R Ad(gog~tht')-A)). Denot-
ing by p: sls — sl3/pmn the canonical projection, let us assume that p(R Ad(gog_tht_l)-
A) converges at t = 0 to a line contained in Vect(€q,&3). Then D.f,(R Ad(gog'h'" ") -
A) € T,X converges to a line L C (£ @ £°)(0), and as g’fga1 converges to gal at t =0,
we deduce by continuity that £°(z(t)) converges at t = 0 to D,gy ' (L), contained in
(£ @ £P)(x), because gy ! preserves £* @ EF.
In conclusion, we only have to find, in each of the four cases p =t or a and i =1 or
2, a point x € G, together with g', ht, A, and gg satisfying the above conditions, and to
prove that p(R Ad(gog'h'" ") - A) converges at t = 0 to a line contained in Vect(é, eg).
We begin with Y;, for which we choose for both orbits G and G the point y =
ot = ([1,0,1],[(1,0,1),e2]) € Yi. Let us recall that in this case, A = (é —21 §) satisfies
E(0t) = Debo, (RA) (see Paragraph 4.2.2).
— For G{, choosing = = ([1,0,1],[(1,0,1),e1])

10
t1

(1,0,1], e1, es)), g0 = (
and the one-parameter subgroups ¢g' = (0 ! %

t) of G and hf = (éé

o

such that g - & = k' - oy € C%(z), we obtain:

_ 1 —2 —2¢t71
Ad(gog~th* ") - A= ( e _Qfl),
—t t

and thus p(R Ad(gogth' ') - A) converges at ¢t = 0 to Reg.

— For G2, choosing = = ([ea], [e2, (1,0,1)]), go = ((%] é i) , and the one-parameter

subgroups ¢t = (é ;15 %) of G and h! = (é ((1; ?) of HY such that g' -z = Rt -0g €
CP(z), we obtain

_ -1
Ad(gogth!) - A= (5231 8),
t 1 0
and thus p(R Ad(gog~th!™") - A) converges at t = 0 to Ré,.
We now consider the case of Y, for which we choose for both orbits g; and gg the
point y := 05 = ([es], [e3, €2]) € Ya, and we recall that in this case A = (8 0 (%) satisfies

000
the above condition £¢(0a) = Deb,, (RA) (see Paragraph 4.2.3).
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(

) of HY such that ¢' -z = R 0n €

— For G, choosing z = ([es], [e3,e1]), 9o
C ot — t_ (Lt
groups g _(650) of G and h (85
C*(x), we obtain:

oo

01
(1)8), and the one-parameter sub-

—oOo

i1 /000
Ad(gog™) - A= (1,8)
and thus p(R Ad(gogtht ') - A) converges at ¢t = 0 to Reg.
— For G2, choosing = = ([ez], [e2, e3]), ((lgég) , and the one-parameter sub-

90
groups ¢’ = (8(1]0) of G and h! = (ég of HY such that ¢' -2 = Rt <04 €

CP(x), we obtain
—ty¢1 _ (000
Ad(gog~"h )-A—(ggg),

and thus p(R Ad(gogtht ') - A) converges at t = 0 to Ré,.

According to the discussion above, this concludes the proof of the lemma. O
We are now able to prove the proposition 6.1.

Proof of the proposition 6.1. Let us assume by contradiction that €2 # M. We choose
a connected component O of € such that the rank of DzK!* for 2 € 7~ (0) is max-
imal among the rank of DK for # € 7= 1(Q). As @ # O # M by hypothesis,
there exists € 00, and as E“ @ EP is contact, [Sus73, Theorem 4.1] implies the ex-
istence of a piecewise smooth path v: [0;1] — M constituted of a finite concatenation
of segments of a and [-leaves, joining z = (1) to a point y = v(0) € O. Denoting
to = inf {t € [0;1] | v(¢) € DO}, to > 0 and y(tg) € JO. Replacing x by (), keeping
only the last smooth arc of «, replacing y by the origin of this arc, and choosing a
parametrization of this arc by [0;1], we finally end with a smooth path v: [0;1] — M
such that v([0;1]) C O, x = (1) € 90, and v([0; 1]) is entirely contained in a same « or
fB-leaf. The proof being the same in the two cases, we assume that v([0;1]) C F(z) to fix
the ideas. Denoting xop = §(x), zo € X\ Y according to Lemma 6.2, and §(y([0;1])) C Y
because 0(0) C Y (see Lemma 4.2). Finally 6(v([0;1[)) is an open interval of C*(zg)
contained in Y, and 29 € X\ Y, i.e. 29 € G. Denoting vo(t) = J(7y(t)), Lemma 6.3
implies therefore that £°(y(t)) converges to a line Df C (€% & EP)(xo) at t = 1. As 6|o
is a local isomorphism between S|o and Sy, we have E°(y(t)) = (D) H(E(10(1)))
for any t € [0;1[, implying E°(z) = (D,6)"'(D§) by continuity. Since § is a local
isomorphism between the Lagrangian contact structures £ and Lx, this implies that
E¢(z) C (E* @ EP)(z), which contradicts the definition of the transverse distribution
E*. This contradiction concludes the proof of the proposition. O

6.2. Reduction of the holonomy group. We first describe the global and local au-
tomorphisms of the models (Y3, St) and (Ya, Sa).

GLy(R) 0

Proposition 6.4. (1) Aut(Ys, St) = Hy = [ 0 1

Pmin .

] and Aut(Ya,Sa) = Ha =
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(2) Let (Y,Sy) be one of the two models (Ys,St) or (Ya,Sa). Then any local isomor-
phism of Sy between two connected open subsets of Y is the restriction of the
action of a global automorphism of Aut(Y,Sy).

Proof. 1. The inclusions Hy C Aut(Y;, S¢) and H, C Aut(Ya, Sa) were explained in Para-
graphs 4.2.2 and 4.2.3. Since the automorphism groups are contained in the stabilizers
of the open subsets, the equalities follow because Hy = Stabg(Y;) and H, = Stabg(Ya).
2. Let us emphasize that Aut(Y,Sy) is precisely the normalizer of h in G. Let ¢ be a
local automorphism of Sy between two connected open subsets U and V of Y. For any
v € b, since v|y is a Killing field of Sy, ¢*(v|y) is a Killing field of Sy, and therefore
©*(v|ly) = w|y for some w € h. But ¢ is in particular a local automorphism of the
Lagrangian contact structure L£x of X, and is thus the restriction to an open subset
U C Y of the left translation by an element g € G, according to Theorem 2.9. Therefore
w|y= p«(v|y) = (Ad(g) - v)|u, implying that Ad(g) - v = w € b since the action of G is
analytic (see Lemma 2.16). Consequently, g € Norg(h) = Aut(Y, Sy). O

Let us recall that p: (M) — G denotes the holonomy morphism associated to
the developping map 6: M — X of the (G, X)-structure of M (see Corollary 3.4 and
Paragraph 2.3.2).

Proposition 6.5. The holonomy group p(mi(M)) is contained in Aut(Y,Sy). Conse-
quently, M has either a (Hg, Yi)-structure or a (Ha, Ya)-structure, and its developping
map is a local isomorphism of enhanced Lagrangian contact structures from S to Sy
(respectively Sa ).

Proof. According to Proposition 6.1, S is locally homogeneous, and we thus deduce from
Proposition 4.6 that, up to interversion of the distributions E“ and E?, the developping
map 6 of the (G, X)-structure of M can be chosen to be a local 1somorphlsm from (M, S)
to one of the two models (Y%, St) or (Ya, Sa). According to Liouville’s theorem 6.4 proved
for these two models, the holonomy morphism has moreover values in the correspond-
ing automorphism group Hy (respectively H,) described in the same result, and M is
finally endowed with a (Ht, Yy)-structure (resp. (Ha, Ya)-structure). Concerning the
interversion of E* and E?, it is easy to construct for both models (Y3, St) and (Ya, Sa),
a diffeomorphism of Y interverting the distributions £* and £? and fixing the transverse
distribution &£. In other words for these both models, the structures (£¢, EB, &y ) and
(&8, &, &y) are isomorphic, so that a posteriori, the order of the distributions E* and
E? in the statement of Proposition 6.5 does not matter. O

7. COMPLETENESS OF THE STRUCTURE

We will denote by (#,Y’) the local model of S, which is either (Hg,Y:) or (Ha, Ya),
and by §: M — Y and p: m (M) — H the developping map and holonomy morphism of
the (H,Y)-structure of M. The goal of this section is to prove that:

Proposition 7.1. The developping map & is a covering map from M to Y.

It is a known fact that a local diffeomorphism satisfying the path-lifting property is a
covering map (the reader can for example look for a proof in [DC76, §5.6, Proposition
6 p. 383]). According to the following statement, it will actually be sufficient to prove
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the path-lifting property in the «, 8, and central directions to prove that ¢ is a covering
map.

Lemma 7.2. Let h: N — B be a local diffeomorphism between two smooth three-
dimensional manifolds, B being connected. We assume that there is a smooth splitting
Ey® Ey @& E3 = TB of the tangent bundle of B into three one-dimensional smooth dis-
tributions, such that for any i € {1,2,3}, € Im(h), and & € h~'(x), any path tangent
to E; and starting from x entirely lifts through h to a path starting from &. Then h is a
covering map from N to B (and in particular, h is surjective).

Proof. Since h is a local diffeomorphism, it suffices to prove that our hypothesis implies
the lift of any path. By compactness, it is sufficient to locally lift the paths in B, around
any point. We choose x € B and a sufficiently small open neighbourhood U of z, such
that there are three smooth vector fields X, Y and Z generating 1, F»s and F3 on U, and
e > 0 such that (¢t,u,v) € ]—8;5[3 = ot u,v) = @l o Y% o pY(x) € U is well-defined,
and is a diffeomorphism (this exists according to Inverse mapping theorem). Let us
choose Z € h~!(x). Then, denoting by X = h*X, Y = h*Y and Z = h*Z the pullbacks,
the property of path-lifting in the directions 1, Fs and E3, and from any point, implies
that ¢(t,u,v) = go} o ¢y o pZ(Z) is well-defined on |—e;el’. If4:[0;1] — Uis a
continuous path starting from x and contained in U, there are three continuous maps
t, w and v from [0;1] to |—e ;e[ such that v(s) = ¢(t(s), u(s),v(s)). Since ho ¢ = ¢ by
construction, (s) = ¢(t(s), u(s),v(s)) is then a lift of v starting from &, which finishes
the proof. O

Remark 7.3. In our case, proving that the paths in ) (M ) in the a-direction (respeN(:tively
B or central direction) lift to M is equivalent to prove that for any x € §(M) and
# € 6~ 1(z), we have the following equality:

§(F (7)) = C*(x) N 6(M),
(respectively the same equality for S-leaves and circes, or for central leaves).

We start by proving that the image of any « (respectively /) leaf in M miss exactly
one point in the associated a-circle (respectively S-circle). We recall that Y = X\ 'Y,
as explained before Lemma 6.3.

Lemma 7.4. For any & € M, denoting x = 0(%&), there exists z* € C?(x) N Y such
that 6(F5(z)) = CP(x) \ {z*} = CP(x) NY. The same happens for a-leaves and their
associated a-circles.

Proof. We will only write the proof for S-leaves and fS-circles as in the statement, the
case of the a-direction being the same. Denoting z = m/(%), and possibly replacing f

= 0 for some fixed Riemannian metric on M.

—1 : _fm B
by f~*, we have ngrfm“Dxf | Be(z) u

The description of the open subsets Y; and Y, in Paragraphs 4.2.2 and 4.2.3 easily
shows that in these both cases, the intersection of any [S-circle (respectively a-circle)
with ¥ miss exactly one point of the circle. In other words, the intersection C(z) N dY
is a single point {2*}, and as a consequence §(F?(&)) C CP(x) \ {z*} = CP(x) NY. To

finish the proof of the lemma, we only have to prove that §(F”(Z)) cannot miss more



CONTACT PARTIALLY HYPERBOLIC DIFFEOMORPHISMS 39

than one point of C#(z). To achieve this, we assume by contradiction that there exists

v~ #at € C8(x)\ {z,2*} such that:
(7.1) §(F(&)) =2~ 52 [ & CPa) \ {a"},

where |z~ ;27| is the connected component of C%(z)\ {z~,z*} that contains z.

Since M is compact, there exists a strictly increasing sequence (ny) of positive integers
such that, denoting & = mps(Z), T, = f™ (Z) converges to a point Zo, € M, and as M =
71 (M)\M, there furthermore exists a sequence v € m1(M) such that & == v - f™(Z)
converges to a lift oo Of Tog. As 7, f™ is an automorphism of the Lagrangian contact
structure £ and § a local isomorphism from L to Lx, Theorem 2.9 implies the existence
of a unique sequence g, € G satisfying

S(yk - [ (%)) = gr - ().

We denote zj, = 0(Z) = gr(x), that converges to Too = §(Zs). Denoting x, = gi(z7)
and zf = gp(zt), zy, ¥ and x{ are three distincts points of C%(x) for any k. By
compactness of X, we can assume up to extraction that x; and x; respectively converge
to points 23, and x%, of C#(24), and the hypothesis (7.1) allows us to obtain the following
crucial statement.

Fact 7.5. 2o # 75, and Too # 1.

Proof. Let us assume by contradiction that o, = z. Considering a neighbourhood U
of Zoo such that §|y is injective, we can choose foo € (F?(Zoo) NU) \ {Zoo }- There exists
a sequence § € FP (Zx) converging to ¥, and possibly changing ., we can moreover
assume that 6(Jx) € |x) ;ox[, implying that 0(Joo) € [T ;%] by continuity. But as
T = Tooy [T 3 Too)] = {Teo}, and therefore 6(Joo) = Too = 0(Zoo), iIMplying Joo = T by
injectivity of d|y7, which contradicts our hypothesis on 7. In the same way, we obtain
Too # TL. O

The subgroup SO(3) of G acts transitively on X, and we can thus choose ¢ € SO(3)
and a sequence (¢) in SO(3), satisfying ¢(z) = o and ¢y (x) = o for any k (we recall that
o = ([e1], [e1,e2])). Since Stabgo(s) (CP(0)) = [SOO(Q) ﬂ acts transitively on C?(0), we can
moreover assume that ¢(zF) = o and ¢y (2]) = 0T, where o™ = ([e2], [e1, e2]) € CP(0).
For any k, ¢ o g o ¢~ ! is an element of Stabg (o) N Stabg(o™), d.e. is of the form

10 x 10 * L. . L. 38 100 .
0Xr v |. But [0 1 *} acts trivially in restriction to C”(0), and Ay := | 0 X 0 | satisfies
00 w 00 x 001

thus:
-1
Jklcs @)= 91 © Ak 0 les
The following commutative diagram summarizes the situation.

Ch(0) +—— CP(z) «—— FP(z) —— FP(z)

(7.2) JA;C Jgk J/'yk frk Jf"k

CP(0) +—— CP(xy) — Fo(ar) — FP(x)
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The action of A, € G on C?(0) is conjugated to the action of the projective trans-
formations {(1) fk} € PGL2(R) on RP!, j.e. to the action of the homotheties of ra-
tio Ay on R U {co}. By this conjugation, o corresponds to 0, ot to oo, and o~ =
d(z~) € CP(0) \ {0,07} corresponds to a non-zero point of R. Fact 7.5 implies that
Ag(07) = ¢r(z;) € CP(0) stays bounded away from o (since ¢y € SO(3)), and therefore
that Ay is bounded away from 0.

On the other hand, endowing M with the pullback of the Riemannian metric of

0 0 (since mi (M) acts by

isometries). Fixing any Riemannian metric on X, as (Zj) is relatively compact we also

M, the diagramm (7.2) implies REIJIrloo HDi(%f"’fNEﬂ(j)

have lim Hngk|g;a(m) ’ = 0, and since (¢y) and (zy) are relatively compact as well, we

finally obtain lim HDOAk|g;a(m)HX = 0.
This contradicts the fact that A\; is bounded away from 0, and this contradiction
concludes the proof of the lemma. O

Lemma 7.4 allows us to easily infer the path-lifting property in the o and §-directions.

Corollary 7.6. (1) For any x € §(M), C*(z) N d(M) = C*(x) NY and CP(z) N
§(M) =CP(z)nY. )
(2) The paths in 6(M) in the a and B-directions lift to M from any point.

Proof. We only write the proof of the statements for the a-direction, the case of the
[-direction being formally the same.

1. For any # € M, denoting §() = z, we know that Y NC*(x) is equal to a single point
{z*} that satisfies C®(z) \ {z*} = C%(z) N'Y. Furthermore, §(F*(Z)) = C*(x) \ {z*} =
C*(z)NY according to Lemma 7.4. As C*(z)Nd(M) C Uje(;fl(x)(S(J:"a(i)) =Cx)NY,
we finally obtain C®(z) N§(M) = C*(z) NY.

2. Together with Lemma 7.4, we finally have 6(F (%)) = C*(z)N&(M), for any € §(M)
and # € 5~ 1(x). According to the remark 7.3, this proves that any path starting from
in the a-direction lifts to M from Z. O

The accessibility property of Lagrangian contact structures allows us to deduce that:
Corollary 7.7. The developping map is surjective: §(M) =Y.

Proof. Let x be a point of the non-empty subset § (M ), and y be any point in Y. Restrict-
ing the Lagrangian contact structure Lx = (£%,EP) of X to the connected open subset
Y, [Sus73, Theorem 4.1] implies the existence of a finite number x = z1,...,z, =y of
points of Y such that for any i =1,...,n — 1, ;41 € C*(z;) NY or x4 € CP(z;) NY.
Applying the first statement of Corollary 7.6, we deduce by a direct finite recurrence
that for any i, 2; € 6(M), so that y € 6(M). O

We finally prove that the central paths also lift, by a specific method for each model.

Lemma 7.8. In the case of Yy, any central path starting at any point x € Yy lifts in M
from any point & € 6~ (x).
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Proof. Let usrecall that Hy = [GL%(R) ﬂ = Aut(Y:, S¢) and oy = ([1,0,1],[(1,0,1),e2]) €
Y:. Since Z = (é g _82) is central in b, the Killing field Zt of S associated to Z is Hy-

invariant. As £¢(oy) = RZT(0t) (see Paragraph 4.2.2) and £ is Hi-invariant as well, ZT
actually generates the transverse distribution on Y;. At any point z € Y;, we thus have
Fi(x) = exp(RZ)-x. Now, as the holonomy group p(m1(M)) is contained in H¢ according
to Proposition 6.5, it leaves ZT invariant, and the pullback X := §*ZT is thus preserved
by the fundamental group 71 (M). This allows us to push X down on M, to a Killing field
X generating the central direction E¢. As M is compact, X is a complete vector field,
and as 7y : M — M is a covering map, the pullback TyX = X is also complete, imply-
ing that for any & € M, the central leaf at # is simply the integral curve of X = §*ZT
at Z. For any = € Y; and & € 6! (z) (which is non-empty because §(M) = Y; according
to Corollary 7.7) we thus have 6(F¢(2)) = {5(@%(%)) ’ te ]R} =exp(RZ) -z = F{(x).
This finishes the proof of the lemma according to Remark 7.3. O

Lemma 7.9. In the case of Ya, any central path starting at any point x € Ya lifts in M
from any point ¥ € 5~ ().

Proof. Let us first emphasize that the argument used in the previous lemma for the case
of Y; does not work here, because the center of b, is trivial.

We identify Y, with R? through (z,y,2) € R® — ([2,9,1],[(2,9,1),(2,1,0)]) € Ya,
and we consider the following vector fields of Y, in these global coordinates:

Xa(x, y? Z) = 637Xﬁ(x7 y? Z) = (27 1?0)?Xc('1"’ y’ Z) = 61'

These vector fields are complete and generate the enhanced Lagrangian contact structure
Sa = (2,88 ,5) on Y, (see Paragraph 4.2.3). Since the paths tangent to the a and j-
distributions entirely lift to M according to Corollary 7.6, we deduce that the pullbacks
X = §*X* and XP = §*XP are complete as well. We can furthermore realize the flow
of the central vector field X¢ by a — 3 curves through the following equalities:

— — 2
P50 Pxa 0 Pls 0 Pia(r) = 2 + t7er = Phee (),
t —t —t t _ 2, _ 2
Pxs 0 Pxa 0 Pxs 0 Pyal(T) =z —1%e1 = pxe (2).
The same equalities are thus true for the pullbacks X X8 and X¢ = §*X¢, and since
the flows of X® and X? are defined for all times, these equalities show that X¢ is also

complete. The completeness of X¢ allows us to lift any central path of Y, from any point
of M, and concludes the proof of the lemma. O

End of the proof of Proposition 7.1. According to Corollary 7.6 and to Lemmas 7.8 and
7.9, the local diffeomorphism ¢ satisfies the path-lifting property on Y in the «, 8, and
central directions, and is thus a covering map from M to Y according to Lemma 7.2. [

8. CONCLUSION

8.1. End of the proof of Theorem B. The work that has been done so far tells us
that for one of the two models (H,Y,Sy) = (Hg, Y;, St) or (Ha,Ya,Sa), M is a (H,Y)-
manifold whose developping map d: M — Y is a covering map satisfying 0*Sy = S.
With these informations, we will finish the proof of Theorem B. We will use the link
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between the geometrical and algebraic point of views on the models (Y, S¢) and (Ya, Sa),
explained in Paragraphs 4.1 and 4.2.

8.1.1. Case of (Ya,Sa). We first assume that (M,S) is locally isomorphic to (Ya,Sa).
Since Y, is simply connected (because homeomorphic to Heis(3)), the covering map
§: M — Y, is actually a diffeomorphism in this case. Since the developping map conju-
gates the action of 1 (M) on M to the action of the holonomy group I' = p(71(M)) C Hy
on Y,, we can assume without lost of generality that M is a compact quotient I'\Y,,
with I a discrete subgroup of H, acting freely, properly, and cocompactly. Since f is an
automorphism of (M, S), we moreover deduce from Proposition 6.4 that f € Norg, (T').

We saw in Paragraph 4.2.3 that the identification between Heis(3) and Y, given by the
orbital map at 0, conjugates the action of H, on Y,, and the action of the semi-direct
product Heis(3) x A of affine automorphisms of Heis(3) preserving its left-invariant
structure. We can thus assume that M is a quotient I'\Heis(3), with T" a discrete
subgroup of Heis(3) x A acting freely, properly, and cocompactly on Heis(3), and that

f € NorHeis(3)><.A(P)'
1
Denoting [z,y, z] = (8 ilz z?), the identification [z,v,2] € Heis(3) — (z,y,2) € R? of

Heis(3) with R? is equivariant for the following injective morphism from Heis(3) x A to
the affine transformations of R3:

A0 0 x
O: ([z,y, 2], or,) € Heis(3) x A — (0 w0 ) + |y| € Aff(R?).
0 px Au z

M is thus diffeomorphic to the quotient A\R?, where A := O(I') is a discrete subgroup
of affine transformations of R? contained in S := ©(Heis(3) x .A), acting freely, properly
and cocompactly on R3. Since S is solvable (because Heis(3) x A =~ P, is), the work
of Fried and Goldmann in [FG83] (more precisely Theorem 1.4, Corollary 1.5 and Para-
graphs 3 and 4 of this paper) implies the existence of a so-called crystallographic hull C of
A. This group C is a closed subgroup of S containing A, and whose identity component
CY satisfies the following assumptions: A N CY has finite index in A and is cocompact in
CP, CP acts simply transitively on R3, and C? is isomorphic to R?, Heis(3), or Sol. One
can easily check that S does not contain any subgroup isomorphic to R3, that the sub-
groups of S isomorphic to Sol do not act simply transitively on R?, and that ©(Heis(3))
is the only subgroup of S isomorphic to Heis(3). Finally, C" is equal to ©(Heis(3)), and
therefore, A N ©(Heis(3)) has finite index in A and is cocompact in ©(Heis(3)). As a
consequence, I'g := I'MHeis(3) has finite index in I" and is a cocompact lattice of Heis(3).

The morphism p: (g,¢) € Heis(3) x A — ¢ € A having a kernel equal to Heis(3),
I'/Ty is isomorphic to p(I') C A. But A is isomorphic to (R*)?, and a finite subgroup
of A is thus contained in the subgroup {¢+1+1} of cardinal 4, implying that Ty is a
subgroup of I' of index at most 4. Let us denote f = (g,9) € Norgeig(3)xa(l’). Then
we have gp(I'g)g~! = Ty, and the affine automorphism = +— gy(x) induces therefore
a diffeomorphism f of M := Tg\Heis(3) through f(2T'g) = ge(z)To. The canonical
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projection 7: M = I'g\Heis(3) — M = T'\Heis(3) is a covering of finite order equal to
the index of I'g in I', and we have 7 o f = for.

We know that ¢ is equal to ¢y, for some (A, u) € (R*)? (see (1.1)), and it only
remains to show that |A| < 1 and |u| > 1, or the contrary, to conclude that f is a
partially hyperbolic affine automorphism of Heis(3). Let us assume by contradiction
that |A] < 1 and |u| < 1. Choosing a left-invariant volume form v on Heis(3), we
have ((De@)*v)e = A2u2ve, and v induces a volume form 7 on M = I'g\Heis(3) such
that f*l? = A?1%0, because L, preserves v. As f is a diffeomorphism of the compact
manifold M, we must have [ V=l =227 17 V, which is a contradiction because
[y 7 # 0 and A?p? < 1. The same argument shows that we cannot have [A| > 1 and

|ge| > 1 neither, which finishes the proof of Theorem B in the case of the local model
(Ya, Sa).

8.1.2. Case of (Yt,St). We now assume that S is locally isomorphic to (Yi,S¢). Iden-
tifying Y; with SLo(R) as explained in Paragraph 4.2.2, we can lift the developping
map 6: M — Y; to a map 6: M — SAfQ(]R) through the universal cover morphism
TSLy(R) * éig(]R) — SLy(R). As ¢ is a covering map according to Proposition 7.1, § is
a diffeomorphism because S\]ZQ(R) is simply connected. As M is supposed to be ori-
entable, m (M) preserves its orientation, implying that the holonomy group p(m1(M)) is
contained in the subgroup H;" = GLJ (R) of elements of positive determinant. We saw
in Paragraph 4.2.2 that the diffeomorphism 6,, o ¢: SLa(R) — Y; conjugates the action
of GLJ (R) on Y; and the action of SLy(R) x A on SLa(R). As TSL,(R) 1S equivariant for
the projection SLy(R) x A — SLy(R) x A, we finally conclude that the diffeomorphism
§: M — SLy(R) is equivariant for a morphism g: m (M) — SLa(R) x A. We can thus
assume that M is a quotient I'\SLy(R), with I a discrete subgroup of SLy(R) x A acting
freely, properly, and cocompactly on SL, (R). Possibly replacing f by f?, we can assume
that f preserves the orientation of M, and Proposition 6.4 implies then that f = Lo R
with (g,a?) € Noréfg(R)xA(F)'

Denoting by rq: SAIZQ(IR{) x A — éig(R) the projection on the first factor, and Ty ==
(D) C SL, (R), we now prove the following result.

Fact 8.1. T s a cocompact lattice of §£2(R), and T is the graph-group gr(ii,To) of a
morphism o: I' — A.

Proof. Choosing a generator z of the center Z of Sig(R), the finiteness of the level
proved by Salein in [Sal99, Theorem 3.3.2.3] implies the existence of a non-zero integer
k € N* such that I' N (Z x {e}) = ((2*,¢)). We will denote by (g) the group generated

by an element g, and we introduce the group PSLgk) (R) := SLy(R)/(z*) and denote by
pr: SLo(R) — PSLgC) (R) its universal cover. Then, denoting Ay = py(A) and T'y, == (pj, X
i) (D) < PSLgk) (R) x Ay, pi induces a diffeomorphism 7 : I'\SLy(R) — I‘k\PSL;k)(R)
(because Kerp, = (2*) and (2¥,e) € I'), implying in particular that I'y acts freely,
properly, and cocompactly on PSLgk) (R).
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We can now apply the work of Kulkarni-Raymond in [KR85] to I'y,. We denote by
7: SLy(R) — PSLy(R) the universal cover morphism of PSLy(R) (of kernel Z), and
by mi: PSLYY(R) — PSLy(R) the induced k-fold covering by PSLY”(R). Then, with
I'=(m x7)(T) and 'y = m(I') < PSLy(R) the projection on the first factor, the form
[Thol4, Lemma 4.3.1] of Kulkarni-Raymond’s results proved by Tholozan implies that
I’y is a cocompact lattice of PSLy(R), and that 7, o r1|p, is injective.

The first assertion ensures that Ty is discrete in §f42( R). The second one implies that
' = gr(u,T) is the graph-group of a morphism u: I'g — A = 7T(A) Since rl\r is also
injective, this implies that I is the graph of a morphism @: Lo — A, trivial on Ty N Z.

Since Z N Ty = (z*) is finite, the projection I'o\SLy(R) — T'o\PSLy(R) has finite
fibers, implying that I is a cocompact lattice as To\PSLy(R) is compact. O

The projection Ty = 7(T) is a cocompact lattice of PSLy(R) according to the proof
of Fact 8.1, and I'o\ Norpgr,r)(I'o) is thus finite. Therefore, Fo\Nor§E2 (R)(FO) is finite

as well since the projection FO\NorSL ®) (Ty) — Lo\ Norpgr,r) (o) has finite fibers

(ZNTo = (%) is finite according to the finiteness of the level).
Recall that f = LyoR,, where (g,a") € Norgr Ta(R)x A( ). Therefore g € Norg+ (R)( 0),

and since PO\NorSL (R)(f’o) is finite, there ex1sts n € N* such that v == ¢g" € Ty.
Denoting a := a”(y) !, we have f" = L, o Rgn = Ry0 (Lo Ry()). But Ly o Ry, acts
trivially on the quotient I'\SL2(RR), and therefore f = R, is a non-zero time-map of the
algebraic contact-Anosov flow (R,¢) on I'\SLa(R).

Let us underline that (R,t) is indeed Anosov, because the work of Zeghib in [Zeg96,

Prop. 4.2 p.868] proves that (R,t) is quasi-Anosov with the definition of Mané, and Mafié
proves in [Man77, Theorem A] that three-dimensional quasi-Anosov flows are Anosov.

This concludes the proof of Theorem B in the case where S is locally isomorphic to
(Y%, St), and concludes thus its whole proof.

8.2. Proof of Theorem A. Theorem B directly implies Theorem A stated in the intro-
duction thanks to an argument of Brin. More precisely, we obtain the following refined
version of Theorem A, where no domination is required on the central direction, and
where the two remaining directions can a priori be both contracted, or both expanded.

Corollary 8.2. Let M be a closed, connected and orientable three-dimensional manifold,
endowed with a smooth splitting TM = E* @& EP @ E° such that E* & E® is a contact
distribution. Let f be a diffeomorphism of M that preserves this splitting, and such that

— each of the distributions E* and EP is either uniformly contracted, or uniformly
expanded by f,
—and NW(f)=M.
Then the conclusions of Theorem A hold. In particular, [ is a partially hyperbolic
diffeomorphism.

Proof. Since E“ @ E? is contact and M connected, any two points of M are linked by
the concatenation of a finite number of paths, tangent either to E* or to EP (this is
for example a consequence of the work of Sussmann in [Sus73, Theorem 4.1]). In other
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words, the pair (F®, F?) of foliations associated to (E, E?) is topologically transitive in
the terminology of Brin in [Bri75]. Our hypothesis of uniform contraction or expansion
of the distributions E* and E? directly implies that F* and F? are uniformly contracted
or expanded in the terminology of [Bri75]. Since NW (f) = M by hypothesis, [Bri75,
Theorem 1.1] implies that f is topologically transitive. In fact, although Brin states his
result assuming that one of the distributions is contracted, and the other one expanded,
it is easy to see that his proof does in fact not use this assumption, and that the same
proof works if both distributions are expanded, or both contracted.

We are now under the hypotheses of Theorem B, and its conclusions hold. O
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