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PARTIALLY HYPERBOLIC DIFFEOMORPHISMS AND

LAGRANGIAN CONTACT STRUCTURES

MARTIN MION-MOUTON

Abstract. In this paper, we classify the three-dimensional partially hyperbolic dif-
feomorphisms whose stable, unstable, and central distributions Es, Eu, and Ec are
smooth, such that Es

⊕ Eu is a contact distribution, and whose non-wandering set
equals the whole manifold. We prove that up to a finite quotient or a finite power,
they are smoothly conjugated either to a time-map of an algebraic contact-Anosov
flow, or to an affine partially hyperbolic automorphism of a nil-Heis(3)-manifold. The
rigid geometric structure induced by the invariant distributions plays a fundamental
role in the proof.

1. Introduction

In a lot of natural situations, a differentiable dynamical system on a smooth manifold
preserves a geometric structure on the tangent bundle, defined by invariant distributions.
For instance, if it preserves a Borel measure, then Oseledet’s theorem provides an almost-
everywhere defined splitting of the tangent bundle, given by the rates of expansion or
contraction of the tangent vectors by the differentials of the dynamics.

Although invariant geometric structures naturally arise, they are in general highly
non-regular (Oseledet’s decomposition is for instance only measurable), and this lack of
regularity allows a lot of flexibility of the dynamics: former examples can be deformed
in order to produce a lot of new ones. In contrast, the smoothness of the invariant
distributions puts a strong restriction on the system, and the known examples with
smooth (i.e. C∞) distributions are in general “very symmetric”: typically, they arise
from compact quotient of Lie groups, with action by affine automorphisms.

It is thus natural to ask to what extent the geometric structure preserved by the dy-
namics makes the situation rigid, and especially why.

Let us give a paradigmatic example of rigidity with the following result of Étienne Ghys
concerning three-dimensional Anosov flows (the statement proved by Ghys in [Ghy87] is
more precise than the one given below).

Theorem 1.1 ([Ghy87]). Let (ϕt) be an Anosov flow of a three-dimensional closed
connected manifold. If the stable and unstable distributions of (ϕt) are smooth, then:

– either (ϕt) is smoothly conjugated to the suspension flow of a hyperbolic auto-
morphism of the two-torus,

– or (ϕt) is smoothly orbit equivalent to a finite covering of the geodesic flow of a
compact hyperbolic surface.

1
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We recall that a smooth non-singular flow (ϕt) of a compact manifold M is Anosov
if its differentials preserve two distributions Es and Eu, respectively called the stable
and unstable distribution of (ϕt), satisfying TM = Es ⊕Rdϕt

dt
⊕Eu and such that Es is

uniformly contracted by (ϕt), and Eu uniformly expanded by (ϕt).
Under the smoothness assumption of Es and Eu, Ghys notices that the plane distri-

bution Es ⊕ Eu can only have two extreme geometrical behaviours: either it integrates
into a foliation, or it is a contact distribution (i.e. it is locally the kernel of a contact one-
form). In the first case, former results of Plante and Franks conclude the proof, and lead
to the suspension examples. The work of Ghys in [Ghy87] is therefore almost entirely
devoted to three-dimensional contact-Anosov flows, i.e. when Es and Eu are smooth,
and Es ⊕ Eu is contact. Under these geometrical assumptions, the pair (Es, Eu) is a
rigid geometric structure preserved by the Anosov flow, which makes the classification
possible and leads to the finite coverings of geodesic flows.

In this paper, we investigate the same kind of geometrical rigidity conditions, but
for the discrete-time analogs of Anosov flows that are the partially hyperbolic diffeomor-
phisms.

1.1. Principal results. We refer to [CP15] for a very complete introduction to partially
hyperbolic diffeomorphisms, for which we use the following definition.

Definition 1.2. A smooth diffeomorphism f of a compact manifold M is partially
hyperbolic if it preserves a splitting TM = Es ⊕ Eu ⊕ Ec of the tangent bundle into
three non-zero continuous distributions, satisfying the following dynamical conditions
with respect to some Riemannian metric on M .

– The stable distribution Es is uniformly contracted by f , i.e. for any x ∈ M and
any unit vector vs ∈ Es(x), ‖Dxf(vs)‖ < 1.

– The unstable distribution Eu is uniformly expanded by f , i.e. uniformly con-
tracted by f−1.

– The splitting is dominated, i.e. for any x ∈ M , and any unit vectors vs ∈ Es(x),
vc ∈ Ec(x), and vu ∈ Eu(x), ‖Dxf(vs)‖ < ‖Dxf(vc)‖ < ‖Dxf(vu)‖ (Ec is called
the central distribution).

The three invariant distributions of a partially hyperbolic diffeomorphism have in gen-
eral no reasons to be differentiable, but we study in this paper the particular case when
they are smooth, i.e. C∞, and when Es ⊕ Eu is furthermore a contact distribution.

The (non-zero) time maps of the contact-Anosov flows appearing in Ghys Theorem
1.1 give us the first examples satisfying these geometrical conditions. They have the
following nice algebraic description (see [Ghy87] for more details). Let us denote by Ã =
{at}t∈R the one-parameter subgroup of the universal cover S̃L2(R) of SL2(R) generated
by

(
1 0
0 −1

)
∈ sl2. Then for any cocompact lattice Γ0 of S̃L2(R), the flow (Rat) of right

translations by Ã on the quotient Γ0\S̃L2(R) is a finite covering of the geodesic flow
of a compact hyperbolic surface (up to a constant rescaling of the time by a factor 1

2),
and is thus Anosov. Moreover, if a morphism u : Γ0 → Ã is such that the graph-group
Γ = {(γ, u(γ)) | γ ∈ Γ0} acts freely, properly and cocompactly on S̃L2(R) by the action
(g, a) ·x = gxa, then (Rat) still induces an Anosov flow of the quotient Γ\S̃L2(R), which
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is a time-change of the former one (non-trivial if u 6= id). We will call these flows the
three-dimensional algebraic contact-Anosov flows.

In contrast, the following algebraic examples are the time-map of none Anosov flow.
For (λ, µ) ∈ R∗2, we consider the automorphism

(1.1) ϕλ,µ :




1 x z
0 1 y
0 0 1


 ∈ Heis(3) 7→




1 λx λµz
0 1 µy
0 0 1


 ∈ Heis(3)

of the Heisenberg group. If ϕ = ϕλ,µ, g ∈ Heis(3), Γ is a cocompact lattice of Heis(3),
and gϕ(Γ)g−1 = Γ, then Lg ◦ ϕ(Γx) = Γ(gϕ(x)) is a well-defined diffeomorphism of the
nil-Heis(3)-manifold Γ\Heis(3). If we moreover assume that either |λ| < 1 and |µ| > 1,
or the opposite, then Lg ◦ ϕ is a partially hyperbolic diffeomorphism, whose invariant
distributions are smooth, and such that Es ⊕Eu is contact (see Paragraph 4.1.2). Con-
crete examples of cocompact lattices preserved by such automorphisms indeed exist, and
we will call Lg ◦ ϕ a partially hyperbolic affine automorphism.

The principal result of this paper is that, assuming all points are non-wandering, there
are no other examples than the two families we described precedently.

Theorem A. Let M be a closed, connected and orientable three-dimensional manifold,
and f be a partially hyperbolic diffeomorphism of M such that

– the stable, unstable, and central distributions Es, Eu and Ec of f are smooth,
– Es ⊕ Eu is a contact distribution,
– and the non-wandering set NW (f) equals M .

Then we have the following description.

(1) Either some finite power of f is smoothly conjugated to a non-zero time-map of
a three-dimensional algebraic contact-Anosov flow,

(2) or f lifts by a covering of order at most 4 to a partially hyperbolic affine auto-
morphism of a nil-Heis(3)-manifold.

Actually, our geometrical conditions are so rigid that the uniformity of the contraction
and the expansion of the diffeomorphism will be obtained as a byproduct.

Definition 1.3. We will say that a distribution E of a compact manifold M is weakly
contracted by a diffeomorphism f , if for some Riemannian metric on M , we have for any
x ∈ M :

lim
n→+∞

‖Dxf
n|E‖ = 0 or lim

n→−∞
‖Dxf

n|E‖ = 0.

We emphasize that the “direction” of weak contraction can a priori change from point
to point, and that this notion is unchanged when replacing f by f−1.

Theorem B. Let M be a closed, connected and orientable three-dimensional manifold,
endowed with a smooth splitting TM = Eα ⊕ Eβ ⊕ Ec such that Eα ⊕ Eβ is a contact
distribution. Let f be a smooth diffeomorphism of M that preserves this splitting, and
such that

– each of the distributions Eα and Eβ is weakly contracted by f ,
– and f has a dense orbit.
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Then the conclusions of Theorem A hold. In particular, f is a partially hyperbolic
diffeomorphism.

Theorem A will directly follow from Theorem B by an argument of Brin, as explained
in Paragraph 8.2 at the end of this paper. We also give in this paragraph the precise
satement of Theorem A, that does not use any domination hypothesis on Ec (see Corol-
lary 8.2). The rest of the paper is devoted to the proof of Theorem B.

The classification question for partially hyperbolic diffeomorphisms in dimension three
has led to a lot of works in the recent years, and significant progress has been made
concerning the general case, as can be seen for instance in the survey [HP18]. Recently,
different additional rigidity conditions have also been studied.

Carrasco, Pujals and Rodriguez-Hertz obtain in [CPRH19] a classification result under
the smoothness assumption of invariant distributions. On the contrary of Theorem A, no
additional geometrical condition is assumed, but the authors assume that the differential
of the partially hyperbolic diffeomorphism is constant when read in the global frame given
by three smooth vector fields generating these distributions. The geometric structure
(Es, Eu, Ec) defined by such a partially hyperbolic diffeomorphism is in general not rigid,
and their result is obtained through dynamical arguments.

Beside the smoothness assumption on invariant distributions, Bonatti and Zhang ob-
tain in [BZ19] different rigidity results in the continuous category, under specific dynam-
ical assumptions.

1.2. A rigid geometric structure preserved by partially hyperbolic diffeomor-
phisms. Roughly speaking, a rigid geometric structure is a structure with “few au-
tomorphisms”. More precisely, they are those smooth geometric structures whose Lie
algebra of local Killing fields (i.e. local vector fields whose flow preserves the structure)
is everywhere finite-dimensional.

As d’Ambra and Gromov pointed out in [GD91], it is natural to believe that rigid
geometric structures preserved by rich dynamical systems have to be particularly pecu-
liar: “one does not expect rigid geometry to be accompanied by rich dynamics” ([GD91,
§0.3 p.21]). It seems thus reasonable to look for classification results in these situations.
The general idea is that rich dynamical properties will imply strong restrictions on the
rigid geometric structure, inducing in return a rigidity of the dynamical system itself.

Several rigid geometric structures can be preserved by a contact-Anosov flow (ϕt).
First of all, (ϕt) always preserves a contact one-form α, and the induced volume form
α ∧ dα is thus also preserved, i.e. contact-Anosov flows are conservative. For contact-
Anosov flows of any odd dimension, (ϕt) moreover preserves a natural linear connection
on the tangent bundle, initially defined by Kanai in [Kan88]. An invariant connection
of this kind allowed for example Benoist, Foulon and Labourie to obtain a classification
result for contact-Anosov flows of any odd dimension in [BFL92].

While these invariant rigid geometric structures require the existence of a continu-
ous one-parameter flow, we study in this paper rigid geometric structures preserved by
discrete-time dynamics.
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The transition from a flow to a diffeomorphism completely changes the situation.
From a dynamical point of view, partially hyperbolic diffeomorphisms of “contact” type
do not anymore preserve a contact one-form, and are thus (a priori) not conservative
(which explains the extra hypothesis on non-wandering points). From a geometrical
point of view, the difficulties that appear are analog to the ones of a conformal geometry
in contrast with a metric geometry, for example the invariant Kanai connection does not
anymore exist. This situation requires to look for a new rigid geometric structure.

A contact plane distribution is far from being rigid: according to Darboux’s theo-
rem, they are all locally isomorphic. A single smooth one-dimensional distribution in
a contact plane distribution is still not sufficient to make it rigid. But if the stable
and unstable distributions of the partially hyperbolic diffeomorphism are smooth and of
contact sum, then the pair (Es, Eu) is a rigid geometric structure, called a Lagrangian
contact structure.

For this structure, the invariant Kanai connection will be replaced by another type
of connection called a Cartan connection, that defines a Cartan geometry (actually,
this Cartan geometry partially appears in [Ghy87], but under the disguised form of
“the geometry of second-order ordinary differential equations”). The strength of Cartan
geometries is to link the Lagrangian contact structures with the homogeneous model
space X = PGL3(R)/Pmin of complete flags of R3 (where Pmin is the subgroup of upper-
triangular matrices). In particular, the flat Lagrangian contact structures, i.e. the ones
whose curvature identically vanishes, are locally isomorphic to X (see Paragraphs 2.2.2
and 2.3.2). The geometry of X will thus play a prominent role in this paper.

In [Bar10], Barbot also studies the geometry of X and the dynamics of PGL3(R), but
with a different approach. His purpose is among others to construct Anosov representa-
tions in PGL3(R), and compact quotients of open subsets of X.

1.3. Organization of the paper. This paper is organised in the following way. Section
2 introduces several notions and results about three-dimensional Lagrangian contact
structures, that will be used in the whole paper. At the end of the paper in Paragraph
8.2, we prove Theorem A from Theorem B, and the rest of the paper is devoted to
the proof of Theorem B. In Section 3, we begin this proof by showing that the triplet
S = (Eα, Eβ , Ec) is quasi-homogeneous, i.e. locally homogeneous in restriction to a
dense open subset Ω of M , and that its isotropy on Ω is non-trivial. This implies that
the Lagrangian contact structure (Eα, Eβ) is flat, i.e. that M has a (PGL3(R),X)-
structure. In Section 4, we refine this description, proving that S|Ω is locally isomorphic
to one of two possible homogeneous models (Yt,St) or (Ya,Sa). This relies on a technical
classification of the underlying infinitesimal model, done in Section 5. A critical step
is to show in Section 6 that the open dense subset Ω is actually equal to M , implying
that M has a (H,Y )-structure, with two possible models (Ht, Yt) or (Ha, Ya). We prove
in Section 7 that this (H,Y )-structure is complete, implying that (M,S) is a compact
quotient Γ\Y of one of these two models, with Γ a discrete subgroup of H = Aut(Y ).
This description allows us to conclude the proof of Theorem B in Paragraph 8.1.

Conventions and notations. From now on, every differential geometric object will
be supposed to be smooth (i.e. C∞) if nothing is precised, and the manifolds will be
supposed to be boundaryless.
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The flow of a vector field X is denoted by (ϕt
X ). The Lie algebra of a Lie group G

is denoted by g, and for any v ∈ g, we denote by ṽ the left-invariant vector field of G
generated by v. If Θ: G × M → M is a smooth group action (on the left or the right)
of G on a manifold M , then the orbital map of the action at x ∈ M is denoted by
θx = Θ(·, x), and we denote by Lg = Θ(g, ·) the translation by g ∈ G if the action is
on the left (respectively by Rg if the action is on the right). For any v ∈ g we denote
by v† the fundamental vector field of the action generated by v, defined for x ∈ M by
v†(x) = Deθx(v).

Acknowledgments. I would like to thank Charles Frances for proposing this subject
to me, and for the precious advices that he offers me.

2. Three-dimensional Lagrangian contact structures

The rigid geometric structures that will be studied in the rest of this paper are the
following.

Definition 2.1. A Lagrangian contact structure L on a three-dimensional manifold M
is a pair L = (Eα, Eβ) of transverse one-dimensional smooth distributions, such that
Eα ⊕ Eβ is a contact distribution. An enhanced Lagrangian contact structure S on
M is a triplet S = (Eα, Eβ , Ec) of one-dimensional smooth distributions such that
TM = Eα ⊕ Eβ ⊕ Ec, and Eα ⊕ Eβ is a contact distribution.
A (local) isomorphism between two Lagrangian contact structures is a (local) diffeomor-
phism that individually preserves the distributions α and β, and the (local) isomorphisms
of enhanced Lagrangian contact structures preserve in addition the central distribution
Ec.

We first define what will be for us the most important example of three-dimensional
Lagrangian contact structure.

2.1. Homogeneous model space. We will call projective line the projection in RP2

of a plane of R3, and we denote by RP2
∗ the set of projective lines of RP2 (called the

dual projective plane). For any subset Q of Rn+1 we denote by [Q] the projection in RPn

of the linear subspace of Rn+1 generated by Q.
A pointed projective line is a pair (m,D) with D ∈ RP2

∗ and m ∈ D, and we denote
by

X =
{

(m,D)
∣∣∣ D ∈ RP2

∗,m ∈ D
}

⊂ RP2 × RP2
∗

the space of pointed projective lines. In other words, X is the space of complete flags of
R3. We will denote in the whole paper by

G = PGL3(R)

the group of projective transformations of RP2. As the projective action of G on RP2

and RP2
∗ preserves the incidence relation m ∈ D, it induces a natural diagonal action of

G on X ⊂ RP2 × RP2
∗. The action of G on X is transitive, and the stabilizer in G of

the base-point o = ([e1], [e1, e2]) of X is the subgroup

StabG(o) = Pmin =








∗ ∗ ∗
0 ∗ ∗
0 0 ∗






 < G
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of upper-triangular matrices. From now on, we will identify X and G/Pmin by the
orbital map θ̄o : G/Pmin → X at o. The homogeneous space X is a RP1-bundle over
RP2 and RP2

∗ through the coordinate projections

(2.1) πα : (m,D) ∈ X 7→ m ∈ RP2 and πβ : (m,D) ∈ X 7→ D ∈ RP2
∗.

For x = (m,D) ∈ X, we will denote by Cα(x) = Cα(m) (respectively Cβ(x) = Cβ(D))
the fiber of x with respect to πα (resp. πβ), and we will call it the α-circle (resp. the
β-circle) of x. We denote by

Eα = Ker(Dπα) and Eβ = Ker(Dπβ),

the one-dimensional vertical distributions of these bundles, tangent respectively to the
foliations by α and β-circles. The sum Eα ⊕ Eβ is contact and we will call LX = (Eα, Eβ)
the standard Lagrangian contact structure of X.

Lemma 2.2. The group G is the group of automorphisms of the standard Lagrangian
contact structure LX. In particular, the structure (X,LX) is homogeneous.

Proof. First of all, the action of G preserves the foliations of X by α and β-circles, i.e.
preserves the structure LX = (Eα, Eβ). Conversely, if f is a diffeomorphism of X that
preserves LX, the fact that f preserves the foliation by α-circles simply means that it
induces a diffeomorphism f̄ of RP2 for which f is a lift through the projection πα. As f
moreover preserves the foliation by β-circles, f̄ maps any projective line to a projective
line. This implies that f̄ is a projective transformation according to a classical result
of projective geometry (proved for example in [Sam89, Theorem 7 p.32]), i.e. that f is
induced by the action of an element of G. �

2.2. Lagrangian contact structures as Cartan geometries. We now introduce the
Cartan geometries modelled on the homogeneous space G/Pmin, and make the link with
Lagrangian contact structures. This notion will be our principal technical tool to deal
with Lagrangian contact structures. We refer the reader to [Sha97] or [ČS09] for further
details about Cartan geometries in a more general context.

2.2.1. Cartan geometries modelled on G/Pmin.

Definition 2.3. A Cartan geometry C = (M̂, ω) modelled on G/Pmin on a three-
dimensional manifold M is the data of a Pmin-principal bundle over M denoted by
π : M̂ → M and called the Cartan bundle, together with a sl3-valued one-form ω : TM̂ →
sl3 on M̂ called the Cartan connection, that satisfies the three following properties:

(1) ω defines a parallelism of M̂ , i.e. for any x̂ ∈ M̂ , ωx̂ is a linear isomorphism
from Tx̂M̂ to sl3,

(2) ω reproduces the fundamental vector fields of the right action of Pmin, i.e. for
any v ∈ sl3 and x̂ ∈ M̂ we have: v†(x̂) = d

dt
|t=0x̂ · etv = ω−1

x̂ (v),
(3) and ω is Pmin-equivariant, i.e. for any p ∈ Pmin and x̂ ∈ M̂ we have: R∗

pω =
Ad(p)−1 ◦ ω (where Ad(p) stands for the adjoint action of p).

A (local) automorphism f of the Cartan geometry C between two open sets U and V of
M is a (local) diffeomorphism from U to V that lifts to a Pmin-equivariant (local) diffeo-
morphism f̂ between π−1(U) and π−1(V ), such that f̂ preserves the Cartan connexion
ω (i.e. f̂∗ω = ω).
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Example 2.4. The homogeneous model space X is endowed with the Cartan geometry of
the model CX = (G, ωG), given by the canonical Pmin-bundle πG : G → G/Pmin = X
over X, together with the Maurer-Cartan one-form ωG : TG → sl3 defined by ωG(ṽ) ≡ v
on the left-invariant vector fields of G).

We consider for the rest of the subsection a Cartan geometry (M, C) = (M,M̂, ω)
modelled on G/Pmin.

2.2.2. Curvature of a Cartan geometry. The following definition replaces the curvature
of a Riemannian metric in the case of Cartan geometries.

Definition 2.5. The curvature form of C is the sl3-valued two-form Ω of M̂ defined by
the following relation for two vector fields X and Y on M̂ :

(2.2) Ω(X,Y ) = dω(X,Y ) + [ω(X), ω(Y )].

Thanks to the connection ω, the curvature form Ω is equivalent to a curvature map
K : M̂ → End(Λ2sl3, sl3) on M̂ (that we will often simply call the curvature of C),
having values in the vector space of sl3-valued alternated bilinear maps on sl3, and
defined by the following relation for x̂ ∈ M̂ and v,w ∈ sl3:

(2.3) Kx̂(v,w) = Ω(ω−1
x̂ (v), ω−1

x̂ (w)).

We will say that the Cartan geometry C (or the Cartan connection ω) is torsion-free if
Kx̂(v,w) ∈ pmin for any x̂ ∈ M̂ and v,w ∈ sl3.

If v or w is tangent to the fiber of the principal bundle M̂ , then the curvature form
satisfies Ω(v,w) = 0 (this is proved in [Sha97, Chapter 5 Corollary 3.10]). As ω maps
the tangent space of the fibers to pmin (because the fundamental vector fields are ω-
invariant), this implies that the curvature K(v,w) vanishes whenever v or w is in pmin.
As a consequence at any point x̂ ∈ M̂ , Kx̂ induces a sl3-valued alternated bilinear map
on sl3/pmin, and we will identify in the sequel K with the induced map

(2.4) K : M̂ → End(Λ2(sl3/pmin), sl3).

The adjoint action of Pmin induces a linear left action on End(Λ2(sl3/pmin), sl3) defined
for p ∈ Pmin and K ∈ End(Λ2(sl3/pmin), sl3) by

(2.5) p ·K : u ∧ v 7→ Ad(p) · (K(Ad(p)−1 · u,Ad(p)−1 · v)).

Using the linear right action of Pmin on End(Λ2(sl3/pmin), sl3) defined by K ·p := p−1 ·K,
K is Pmin-equivariant (this is proved in [Sha97, Chapter 5 Lemma 3.23]), and K is
moreover preserved by any local automorphism f of the Cartan geometry (i.e K ◦ f̂ = K
for any automorphism).

2.2.3. Lagrangian contact structure induced by a Cartan geometry. At any point x ∈ M
and for any x̂ ∈ π−1(x), we denote by ix̂ : TxM → sl3/pmin the unique isomorphism
satisfying

(2.6) ix̂ ◦ Dx̂π = ωx̂,
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where ω denotes the projection of ω on sl3/pmin. As the adjoint action of Pmin preserves
pmin, it induces a representation Ad: Pmin → GL(sl3/pmin) on the quotient, and the
equivariance of ω implies the following relation for any p ∈ Pmin:

(2.7) ix̂·p = Ad(p)−1 ◦ ix̂.

This relation shows that any Ad(Pmin)-invariant object on sl3/pmin gives rise, through
the isomorphisms ix̂, to a well-defined object on the tangent bundle of M . Let us
apply this idea to define a Lagrangian contact structure on M associated to the Cartan
geometry C. We introduce

(2.8) eα =
(

0 0 0
0 0 0
0 1 0

)
, eβ =

(
0 0 0
1 0 0
0 0 0

)
, e0 =

(
0 0 0
0 0 0
1 0 0

)
,

defining a basis (ēα, ēβ , ē0) of sl3/pmin, in which the matrix of the adjoint action of

p =



a x z
0 a−1b−1 y
0 0 b


 ∈ Pmin

is equal to

(2.9) Mat(ēα,ēβ ,ē0)(Ad(p)) =



a−2b−1 0 a−1y

0 ab2 −b2x
0 0 a−1b


 .

In particular, the adjoint action of Pmin individually preserves the lines Rēα and Rēβ of
sl3/pmin. Together with the relation (2.7), this shows that for x ∈ M , the lines i−1

x̂ (Rēα)
and i−1

x̂ (Rēβ) of TxM do not depend on the lift x̂ of x. The Cartan geometry C induces
thus two one-dimensional distributions Eα

C (x) = i−1
x̂ (Rēα) and Eβ

C (x) = i−1
x̂ (Rēβ) on M ,

and the curvature of C will say when do those distributions define a Lagrangian contact
structure.

Lemma 2.6. Any torsion-free Cartan geometry (M, C) modelled on G/Pmin induces a

Lagrangian contact structure (Eα
C , E

β
C ) on the three-dimensional base manifold M .

Sketch of proof. For x ∈ M , considering a local section of the Cartan bundle over x,
we can push down by π the ω-constant vector fields ẽα and ẽβ of M̂ (characterized by
ω(ẽε) ≡ eε) to local vector fields Xα and Xβ of M defined on a neighbourhood of x, that
respectively generate the distributions Eα

C and Eβ
C . If K has values in pmin, the identity

ω([ẽα, ẽβ ]) = [eα, eβ ] − K(eα, eβ) (deduced from Cartan’s formula for the differential of
a one-form) implies easily that [Xα,Xβ ] /∈ Vect(Xα,Xβ) in the neighbourhood of x,
finishing the proof. �

Remark 2.7. In the case of the Cartan geometry of the model, it is easy to check that
(Eα

CX
, Eβ

CX
) is the standard Lagrangian contact structure LX of X.

2.3. Normal Cartan geometry of a Lagrangian contact structure. Any three-
dimensional Lagrangian contact structure is actually induced by a torsion-free Cartan
geometry modelled on G/Pmin. This equivalence between three-dimensional Lagrangian
contact structures and Cartan geometries modelled on G/Pmin was discovered by Élie
Cartan, who developped this notion and after whom these geometries are named.
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2.3.1. Equivalence problem for Lagrangian contact structures. A given three-dimensional
Lagrangian contact structure is induced by several Cartan connections, and to obtain
an equivalence between both formulations, we have to choose a particular one. This
choice will be done through a normalisation condition on the curvature. Using the basis
(ēα ∧ ē0, ēβ ∧ ē0, ēα ∧ ēβ) of Λ2(sl3/pmin), we consider the following four-dimensional
subspace of End(Λ2(sl3/pmin), sl3):

(2.10) WK =
{
K : ēα ∧ ē0 7→

(
0 0 Kα

0 0 Kα

0 0 0

)
, ēβ ∧ ē0 7→

(
0 Kβ Kβ

0 0 0
0 0 0

)
, ēα ∧ ēβ 7→ 0

}
.

The linear action of Pmin preserves WK , that will be called the space of normal cur-
vatures. Theorem 2.8 below is proved in [DK16, Theorem 3 p.14], where the normal-
isation condition is explicitely calculated through Cartan’s method of equivalence (see
also [ČS09, Theorem 3.1.14 p.271 and Paragraph 4.2.3] that makes the link with general
parabolic Cartan geometries).

Theorem 2.8 (E. Cartan, [DK16], [ČS09]). For any Lagrangian contact structure L on
a three-dimensional manifold M , there exists a torsion-free Cartan geometry modelled
on G/Pmin inducing L on M , and whose curvature map has values in the space WK

of normal curvatures. Such a Cartan geometry is unique (up to action of principal
bundle automorphisms covering the identity on M), and will be called the normal Cartan
geometry of L.

Furthermore, if (M1,L1) and (M2,L2) are two three-dimensional Lagrangian contact
structures, and C1, C2 are the associated normal Cartan geometries, then the (local)
isomorphisms between L1 and L2 and the (local) isomorphism between C1 and C2 are
the same. This a direct consequence of the unicity of the normal Cartan geometry. The
curvature map K : M̂ → WK of the normal Cartan geometry of a three-dimensional
Lagrangian contact structure L will simply be called the curvature of L.

2.3.2. Flat Lagrangian contact structures. The homogeneous model space (X,LX) veri-
fies the following analog of Liouville’s theorem.

Theorem 2.9. For any connected open subsets U and V of the homogeneous model
space X, and any diffeomorphism f from U to V that preserves its standard Lagrangian
contact structure LX, there exists g ∈ G such that f is the restriction to U of the
translation by g.

Proof. The Maurer-Cartan form ωG satisfies for any tangent vectors v and w the struc-
tural equation dωG(v,w) + [ωG(v), ωG(w)] = 0 (see [Sha97, §3.3 p.108]), implying that
the curvature of the Cartan connection ωG is zero. Therefore, the curvature satisfies
the normalisation condition of Theorem 2.8, and CX is a normal Cartan geometry on X
modelled on G/Pmin and associated to LX (see Remark 2.7). According to Theorem
2.8, any local isomorphism of LX between two connected open subset U and V of X
lifts therefore to a local isomorphism of the Cartan geometry CX between π−1

G
(U) and

π−1
G

(V ), and such an automorphism is the left translation by an element of G according
to [Sha97, Chapter 5 Theorem 5.2]. �

A three-dimensional Lagrangian contact structure (M,L) is flat if the curvature of the
normal Cartan geometry of L vanishes identically. According to the proof of Theorem
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2.9, the model space is flat, and since this property is local, any Lagrangian contact
structure locally isomorphic to (X,LX) is flat.

The power of Cartan geometries lies in the converse of this statement: any flat three-
dimensional Lagrangian contact structure L is locally isomorphic to the homogeneous
model space (see [Sha97, Theorem 5.1 and Theorem 5.2 p. 212]). There exists in this
case an atlas of charts from M to X consisting of local isomorphisms of Lagrangian
contact structures from L to LX, and whose transition maps are restrictions of left
translations by elements of G (according to Theorem 2.9). A maximal atlas satisfying
these conditions is called a (G,X)-structure on M . Any (G,X)-structure conversely
induces on M a Lagrangian contact structure L locally isomorphic to LX, whose charts
are local isomorphisms from L to LX.

Theorem 2.10. Any flat three-dimensional Lagrangian contact structure (M,L) is in-
duced by a (G,X)-structure on M .

Denoting by πM : M̃ → M the universal cover of M , we recall that any (G,X)-
structure on M is described by a local diffeomorphism δ : M̃ → X called the developping
map, that is equivariant for a morphism ρ : π1(M) → G called the holonomy mor-
phism (see for example [Thu97, §3.4 p.139-141]). Moreover for any g ∈ G, the pair
(g ◦ δ, gρg−1) of developping map and holonomy morphism describes the same (G,X)-
structure. The Lagrangian contact structure L induced by a (G,X)-structure is charac-
terized by: δ∗LX = π∗

ML.

2.3.3. Harmonic curvature. For K ∈ WK an element of the space of normal curvatures
defined by

K : ēα ∧ ē0 7→

(
0 0 Kα

0 0 Kα

0 0 0

)
, ēβ ∧ ē0 7→

(
0 Kβ Kβ

0 0 0
0 0 0

)
, ēα ∧ ēβ 7→ 0,

and

p =



a x z
0 a−1b−1 y
0 0 b


 ∈ Pmin,

the adjoint action (2.9) of Pmin given in Paragraph 2.3 enables to compute the compo-
nents ·α and ·β of p ·K ∈ WK :

(2.11) (p ·K)α = a5bKα, (p ·K)β = a−1b−5Kβ.

These expressions show in particular that the two-dimensional subspace WH = {K ∈
WK | Kα = Kβ = 0} of WK is preserved by the linear action of Pmin.

Proposition 2.11. If the curvature map of a three-dimensional Lagrangian contact
structure L has values in the subspace WH ( i.e. if Kα and Kβ identically vanish), then
L is flat.

The following remark will be useful in the proof of this result: sl3 is a two-graded Lie
algebra, the graduation being defined by the following subspaces (sl3)i for i = −2, · · · , 2:

(2.12) sl3 =




(sl3)0 (sl3)1 (sl3)2

(sl3)−1 (sl3)0 (sl3)1

(sl3)−2 (sl3)−1 (sl3)0


 .
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The graduation property of sl3 simply means that for any i and j we have [(sl3)i, (sl3)j ] ⊂
(sl3)i+j, (where (sl3)i = {0} for any |i| > 2). This graduation of sl3 gives rise to a
filtration defined by sl3

i = ⊕j≥i(sl3)j , with respect to which sl3 is a filtered Lie algebra,
i.e. [sl3i, sl3

j ] ⊂ sl3
i+j (with sl3

i = sl3 for i ≤ −2 and sl3
i = {0} for i > 2).

Proof of Proposition 2.11. Let (M,M̂, ω) be a normal Cartan geometry modelled on
G/Pmin. We introduce the following basis of sl3:

e0 =
(

0 0 0
0 0 0
1 0 0

)
, eα =

(
0 0 0
0 0 0
0 1 0

)
, eβ =

(
0 0 0
1 0 0
0 0 0

)
, e1 =

(
1 0 0
0 −1 0
0 0 0

)
, e2 =

(
0 0 0
0 1 0
0 0 −1

)
, eα =

(
0 0 0
0 0 1
0 0 0

)
, eβ =

(
0 1 0
0 0 0
0 0 0

)
, e0 =

(
0 0 1
0 0 0
0 0 0

)
, that we denote B. We denote the coordinate of

the Cartan connection ω with respect to an element e of the basis B as a real-valued
one-form ωe on M̂ , such that ω =

∑
e∈B ωee. In the same way, the curvature form Ω of ω

will be denoted as Ω =
∑

e∈B Ωee, where the Ωe’s are real-valued two-forms on M̂ . Ac-
cording to the form (2.10) of the curvature map stated in Theorem 2.8, if Kα = Kβ = 0
identically, then the only non-zero two-form Ωe is Ω0 = Kαωα ∧ ω0 + Kβωβ ∧ ω0. The
Bianchi identity proved in [Sha97, Chapter 5 Lemma 3.30] gives dΩ = [Ω, ω], where
[Ω, ω] = L ◦ (Ω ∧ ω) with L : v ⊗ w ∈ sl3 ⊗ sl3 7→ [v,w] ∈ sl3 (see [Sha97, Chapter
1.5 p.61] for this definition). The graduation property of sl3 exposed in the beginning
of the paragraph implies [e0, sl+3 ] = {0}, and we have the following Lie brackets re-
lations between the elements of B: [e0, e0] = e1 + e2, [e0, eα] = eβ, [e0, eβ ] = −eα,
[e0, e1] = [e0, e2] = −e0. We finally obtain the following equalities by projecting the
Bianchi identity to Reβ and Reα:

0 = −Kαωα ∧ ω0 ∧ ωβ, 0 = Kβωβ ∧ ω0 ∧ ωα.

As (ωα, ω0, ωβ) is at each point x̂ ∈ M̂ a basis of the dual space (ω−1
x̂ ((sl3)−2⊕(sl3)−1)))∗,

the three-form ωα ∧ ω0 ∧ ωβ does not vanish, and the above equalities imply therefore
Kα = Kβ = 0 identically, i.e. K = 0 as announced. �

Remark 2.12. The components Kα andKβ of the curvature actually encode the harmonic
curvature of a normal Cartan geometry modelled on G/Pmin, that is known to be the
only obstruction to the flatness for parabolic Cartan geometries. With this point of
view, the above Proposition 2.11 is the manifestation in the specific case of Lagrangian
contact structures of a general phenomena arising for any parabolic geometry (see for
example [ČS09, Theorem 3.1.12]).

2.3.4. Normal generalized Cartan geometry of an enhanced Lagrangian contact struc-
ture. Let S = (Eα, Eβ , Ec) be an enhanced Lagrangian contact structure on a three-
dimensional manifold M , and C = (M̂ , ω) be the normal Cartan geometry of the un-
derlying Lagrangian contact structure (Eα, Eβ). Using the isomorphisms ix̂ defined in
(2.6), the transverse distribution Ec is encoded by the map

ϕ : x̂ ∈ M̂ 7→ ix̂(Ec
π(x̂)) ∈ V,

having values in the open subset

V = {L ∈ P(sl3/pmin) | L 6⊂ Vect(ēα, ēβ)}

of P(sl3/pmin). Endowing V with the right Pmin-action defined by L · p = Ad(p)−1(L),
ϕ is Pmin-equivariant. Conversely, any Pmin-equivariant application ϕ : M̂ → V defines
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a transverse distribution Ec
π(x̂) = i−1

x̂ (ϕ(x̂)) compatible with the Lagrangian contact

structure (Eα, Eβ).

Definition 2.13. (C, ϕ) = (M̂ , ω, ϕ) will be called the normal generalized Cartan geom-
etry of the enhanced Lagrangian contact structure S.

2.4. Killing fields of (enhanced) Lagrangian contact structures.

2.4.1. Some classical properties of Killing fields. A (local) Killing field of a Lagrangian
contact structure (M,L) is a (local) vector field X of M whose flow preserves L. The
Killing fields of an enhanced Lagrangian contact structure S are defined in the same
way. We will denote by Kill(U,L) the subalgebra of Killing fields of L defined on an
open subset U ⊂ M , and by killloc

L (x) the Lie algebra of germs of Killing fields of L
defined on a neighbourhood of x.

The following statement summarizes important properties of Killing fields, coming
from their description through Cartan geometries and well-known in this context. The
results are stated for Lagrangian contact structures, but are true as well for enhanced
Lagrangian contact structures.

Lemma 2.14. Let M be a three-dimensional connected manifold endowed with a La-
grangian contact structure L, and C = (M̂ , ω) be a normal Cartan geometry on M
associated to L.

(1) If f̂ is a Pmin-equivariant diffeomorphism of M̂ that covers idM and preserves ω,

then f̂ = id
M̂

. If X̂ is a Pmin-invariant vector field on M̂ whose flow preserves

ω and whose projection on M vanishes, then X̂ = 0. As a consequence, the lift of
a local automorphism f (respectively Killing field X) of L to a Pmin-equivariant

diffeomorphism f̂ of M̂ that preserves ω (resp. to a Pmin-invariant vector field

X̂ on M̂ whose flow preserves ω), is unique.

(2) If the lift X̂ of a Killing field X of L vanishes at some point x̂, then X = 0. In

other words, the linear map X ∈ Kill(M,L) 7→ ωx̂(X̂x̂) ∈ sl3 is injective.

(3) The Lie algebra morphism X ∈ Kill(M,L) 7→ [X]x ∈ killloc
L (x) sending a Killing

field of L to its germ at x is injective.

Sketch of proof. 1. The first assertion is a direct consequence of [ČS09, Proposition 1.5.3]
for Cartan geometries modelled on G/Pmin, and implies the second one.
2. Let us assume that a local automorphism f̂ of C fixes a point x̂ ∈ M̂ . Then as f̂
preserves the parallelism defined by ω, a classical argument implies that f̂ is trivial on
the connected component of x̂. This remark easily implies the assertion about Killing
fields.
3. According to [BFM09, Lemma 7.1], a local automorphism that is trivial in the neigh-
bourhood of x is trivial on the connected component of its domain of definition that
contains x. This result easily implies the statement concerning Killing fields. �

Remark 2.15. The third statement of the previous lemma shows in particular that for
any connected open neighbourhood U of x ∈ M , the dimension of Kill(U,L) is bounded
from above by dim sl3 = 8. Therefore, if we consider a decreasing sequence of connected
open neighbourhoods Ui of x such that ∩iUi = {x}, then dimKill(Ui,L) is constant for i
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large enough. This proves the existence of a connected open neighbourhood U of x such
that

X ∈ Kill(U,L) 7→ [X]x ∈ killloc
L (x)

is a Lie algebra isomorphism.

The following Lemma is the translation of Theorem 2.9 for Killing fields of (X,LX).

Lemma 2.16. (1) At any point x ∈ X, the Lie algebra of local Killing fields of LX

at x is identified with sl3 through the fundamental vector fields of the action. In
other words, the application v ∈ sl3 7→ [v†]x ∈ killloc

LX
(x) sending v ∈ sl3 to the

germ of v† at x, is an anti-isomorphism of Lie algebras.
(2) Any local Killing field of (X,LX) defined on a connected neighbourhood of a point

x ∈ X is the restriction of a global Killing field defined on X. In other words,
X ∈ Kill(X,LX) 7→ [X]x ∈ killloc

LX
(x) is a Lie algebra isomorphism.

Proof. 1. If v† is trivial in the neighbourhood of x, then for any t ∈ R, etv acts trivially
on an open neighbourhood of x. But the action of G on X is analytic: if g and h in G
have the same action on some non-empty open subset of X, then g = h (because the
linear subspace generated by the pre-image in R3 of a non-empty open subset of RP2 is
equal to R3). Therefore, etv = id for any t ∈ R and v = 0. The application v 7→ [v†]x is
thus injective, and as dim killloc

LX
(x) ≤ dim sl3 according to the third assertion of Lemma

2.14, it is an isomorphism. Finally, v 7→ v† is known to be an anti-morphism of Lie
algebras.
2. Any local Killing field at x is the restriction of v† for some v ∈ sl3 according to the
first assertion, and extends therefore to a Killing field defined on X. �

2.4.2. Total curvature map of an enhanced Lagrangian contact structure. Let (C, ϕ) =
(M̂ , ω, ϕ) be the normal Cartan geometry of a three-dimensional enhanced Lagrangian
contact structure (M,S). With K : M̂ → WK the curvature map of C, we define the
curvature map

K := (K,ϕ) : M̂ → WK := WK × V,

of the enhanced Lagrangian contact structure (M,S), which is Pmin-equivariant for the
right diagonal action of Pmin on WK.

If W is any manifold endowed with a right action of Pmin, we define B(W ) := {(w, l) |
w ∈ W, l ∈ End(sl3,TwW )} (this is a vector bundle over W ), that we endow with the
right Pmin-action (w, l) · p = (w · p,DwRp ◦ l ◦ Ad(p)). For any smooth Pmin-equivariant
map ψ : M̂ → W , we define a Pmin-equivariant map D1ψ : M̂ → B(W ) encoding the
differential of ψ as follows: D1ψ(x̂) = (ψ(x̂),Dx̂ψ ◦ ω−1

x̂ ). We also define inductively
Bk+1(W ) = B(Bk(W )) and Dk+1ψ = D(Dkψ) : M̂ → Bk+1(W ) for any k ∈ N (with
B0(W ) = W and D0φ = φ).

Denoting m = dim sl3 = 8, we define WKtot := Bm(WK), and the total curvature

Ktot := DmK : M̂ → WKtot

of the enhanced Lagrangian contact structure S. The total curvature Ktot is Pmin-
equivariant and preserved by local automorphisms of S (i.e. for any such local auto-
morphism f we have Ktot ◦ f̂ = Ktot). We also define for k ∈ N∗ the space of Killing
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generators of order k by Killk(x̂) = ωx̂(Ker(Dx̂D
k−1K)) ⊂ sl3, and the space of Killing

generators of total order by Killtot(x̂) = Killm+1(x̂) = ωx̂(Ker(Dx̂Ktot)) ⊂ sl3.

2.4.3. Gromov’s theory. The integrability locus of M̂ is defined as the set M̂ int of those
points x̂ ∈ M̂ such that for any v ∈ Killtot(x̂), there exists a local Killing field X of
S defined around π(x̂) and such that ωx̂(X̂x̂) = v. It is easy to check that M̂ int is a
Pmin-equivariant set, and we define the integrability locus of M as M int = π(M̂ int).

Theorem 2.17 (Integrability theorem). Let (M,S) be a three-dimensional enhanced

Lagrangian contact structure of total curvature Ktot, and M̂ be its normal Cartan bundle.
Then the integrability locus M̂ int of M̂ is equal to the set of points x̂ ∈ M̂ where the
rank of Dx̂Ktot is locally constant. In particular, M̂ int is open and dense, and so is the
integrability locus M int of M .

Gromov investigates in [Gro88] the integration of “jets” of Killing fields for very general
rigid geometric structures, and proves results related to the above Theorem. In the
case of three-dimensional enhanced Lagrangian contact structures, the equivalence with
normal generalized Cartan geometries allows to avoid the notion of jets of Killing fields,
replaced by the one of Killing generators of total order. In this setting, Theorem 2.17
is a consequence of [Pec16, Theorem 4.19]. We use here a modification of the statement
of Pecastaing proved by Frances in [Fra16, Theorem 2.2]. The proof of the statement of
Frances for generalized Cartan geometries is straightforward by following the lines of the
proof he does for Cartan geometries, and using [Pec16, Lemma 4.20 and Lemma 4.9].

3. Quasi homogeneity and flatness of the structure

From now on and until Paragraph 8.2, we are under the hypotheses of Theorem B and
we adopt its notations. M is thus a three-dimensional compact connected and orientable
manifold, S = (Eα, Eβ , Ec) is an enhanced Lagrangian contact structure on M , and we
denote by L = (Eα, Eβ) its underlying Lagrangian contact structure. Finally, f is an
orientation-preserving automorphism of (M,S) such that:

– each of the distributions Eα and Eβ is weakly contracted by f (see Definition
1.3),

– and f has a dense orbit.

In particular, the non-wandering set NW (f) = NW (f−1) equals M . We recall that in
this case, the set Rec(f) (respectively Rec(f−1)) of recurrent points of f (respectively
f−1) is a dense Gδ-subset of M . Therefore, Rec(f) ∩ Rec(f−1) is dense in M as well.

3.1. Quasi homogeneity of the enhanced Lagrangian contact structure. At a
point x ∈ M , we introduce the subalgebra

(3.1) isloc
S (x) =

{
X ∈ killloc

S (x)
∣∣∣ X(x) = 0

}

of local Killing fields vanishing at x, that we call the isotropy subalgebra of S.

Definition 3.1. The Killloc-orbit (for S, respectively L) of a point x ∈ M is the set of
points that can be reached from x by flowing along finitely many local Killing fields of S
(respectively L). An enhanced Lagrangian contact structure (M,S) (resp. a Lagrangian
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contact structure (M,L)) is locally homogeneous if any connected component of M is a
Killloc-orbit.

The first claim of the following Proposition is a consequence of Gromov’s “open-
dense orbit theorem”, and the second one is a reformulation in the context of enhanced
Lagrangian contact structures of a work done by Frances in [Fra16, Proposition 5.1] for
pseudo-Riemannian structures.

Proposition 3.2. There exists an open and dense subset Ω of M , such that the enhanced
Lagrangian contact structure S is locally homogeneous in restriction to Ω. Moreover for
any x ∈ Ω, the isotropy subalgebra isloc

S (x) is non-trivial.

Proof. Since S has an automorphism f with a dense orbit, Gromov’s dense orbit theorem
directly implies the first claim (see [Gro88, Corollary 3.3.A], and [Pec16, Theorem 4.13]
for a proof in the case of generalized Cartan geometries). Since the integrability locus
M int is open and dense (see Theorem 2.17), and Rec(f) ∩ Rec(f−1) is dense in M , there
finally exists a point x ∈ Ω ∩ M int ∩ Rec(f) ∩ Rec(f−1). We show now that isloc

S (x) is
non-zero.

Let us denote by (M̂, ω, ϕ) the normal generalized Cartan geometry of S (see Defi-
nition 2.13), and choose a lift x̂ ∈ π−1(x) in the Cartan bundle. Possibly replacing f
by f−1, we have lim

n→+∞
‖Dxf

n|Eα‖ = 0, and by hypothesis on x, there exists a strictly

increasing sequence nk of integers such that fnk(x) converges to x, implying the exis-
tence of a sequence pk ∈ Pmin such that f̂nk(x̂) · p−1

k converges to x̂. We claim that the
sequence f̂nk(x̂) has to leave every compact subset of M̂ , implying that pk also leaves
every compact subset of Pmin. In fact, if not, some subsequence (f̂n′

k(x̂)) converges in
M̂ , implying that (f̂n′

k) converges to some diffeomorphism of M̂ for the C∞-topology, be-
cause f̂ preserves the parallelism defined by ω (see [Kob95, Theorem I.3.2]). Therefore,
(fn′

k) also converges for the C∞-topology to some diffeomorphism of M , contradicting
lim

k→+∞

∥∥∥Dxf
n′

k |Eα

∥∥∥ = 0.

The sequel of the proof of [Fra16, Proposition 5.1] will enable us to conclude, using
the total curvature Ktot : M̂ → WKtot of the generalized Cartan geometry associated to S
(see Paragraph 2.4.3). By Pmin-equivariance of the total curvature and its invariance by
automorphisms, pk·Ktot(x̂) = Ktot(f̂nk(x̂)·p−1

k ) converges to Ktot(x̂). The manifold WKtot

has a canonical structure of algebraic variety for which the action of Pmin is algebraic
(because its action on the space WK of normal curvatures and on the algebraic variety
V ⊂ P(sl3/pmin) are algebraic, see [Pec16, Remark 4.16] for more details). Therefore,
the orbits of the action of Pmin on WKtot are locally closed, and are thus imbedded
submanifolds. In particular, there exists a sequence εk ∈ Pmin converging to the identity
and such that pk · Ktot(x̂) = εk · Ktot(x̂), i.e. such that ε−1

k pk ∈ StabPmin
(Ktot(x̂)). As

ε−1
k pk leaves every compact subset of Pmin, StabPmin

(Ktot(x̂)) < Pmin is non-compact.
But StabPmin

(Ktot(x̂)) is an algebraic subgroup of Pmin and has thus a finite number of
connected components, finally implying that its identity component is also non-compact.

There exists thus a non-zero vector v ∈ pmin in the Lie algebra of StabPmin
(Ktot(x̂)).

For any t ∈ R we have by hypothesis Ktot(x̂ · exp(tv)) = Ktot(x̂) · exp(tv) = Ktot(x̂), and
deriving this equality at t = 0 we obtain Dx̂Ktot(ω−1

x̂ (v)) = 0, i.e. v ∈ ωx̂(Ker(Dx̂Ktot)) =
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Killtot(x̂). As x̂ is in the integrability locus M̂ int of M̂ , there exists a local Killing field
X ∈ killloc

S (x) such that ωx̂(X̂x̂) = v 6= 0, implying in particular that X 6= 0 and
X(x) = 0, i.e. that X ∈ isloc

S (x) \ {0}.
The isotropy subalgebra at any point y ∈ Ω being linearly isomorphic to the one at

x because Ω is an Autloc-orbit, isloc
S (y) is finally non-zero at any point y ∈ Ω, which

finishes the proof of the corollary. �

3.2. Flatness of the Lagrangian contact structure. In particular, the underlying
Lagrangian contact structure L = (Eα, Eβ) is also locally homogeneous with non-zero
isotropy in restriction to the open and dense subset Ω. The following result due to Tresse
in [Tre96] (see also [KT17, §4.5.2]) implies that L|Ω is flat.

Theorem 3.3 (Tresse [Tre96]). Any three-dimensional locally homogeneous connected
Lagrangian contact structure with non-zero isotropy is flat.

By density of Ω and continuity of the curvature, the Lagrangian contact structure
(M,L) is therefore flat, and according to Paragraph 2.3.2, we obtain the following.

Corollary 3.4. The Lagrangian contact structure L is described by a (G,X)-structure
on M .

The rest of this paragraph is devoted to give a self-contained proof of Tresse’s Theorem
3.3. We consider a locally homogeneous Lagrangian contact structure L with non-zero
isotropy defined on a three-dimensional connected manifold M . We denote by (M, C) =
(M,M̂, ω) the normal Cartan geometry of L, and by K : M̂ → WK its curvature map.
Choosing x ∈ M and x̂ ∈ M̂ , it suffices to prove that K(x̂) = 0 by local homogeneity of
C. We will denote by

h = killloc
L (x) and i = isloc

L (x)

the algebra of local Killing fields of L at x and its isotropy subalgebra. As L is locally
homogeneous, evx(h) := {X(x) | X ∈ h} = TxM , and in particular dim h − dim i = 3.
The following result gives us a sufficient condition for the vanishing of the curvature.

Lemma 3.5. Let f be a local automorphism of a locally homogeneous three-dimensional
Lagrangian contact structure (M,L) fixing a point x ∈ M , let x̂ ∈ π−1(x) be a lift of

x in the normal Cartan bundle of L, and let p ∈ Pmin be the holonomy of f̂ at x̂,
characterized by f̂(x̂) = x̂ · p−1. If p = exp(v) with

(3.2) v =



a ∗ ∗
0 −a− b ∗
0 0 b


 ∈ pminsuch that b 6= −5a and a 6= −5b,

then L is flat.

Proof. Since the curvature K is preserved by f̂ and Pmin-equivariant (see paragraph
2.3), we obtain p · K(x̂) = K(x̂ · p−1) = K(f̂(x̂)) = K(x̂), where the holonomy p is of
the form

p =



λ ∗ ∗
0 λ−1µ−1 ∗
0 0 µ
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with µ 6= λ−5 and λ 6= µ−5 by hypothesis. According to the expression of the compo-
nents (p.K)α and (p.K)β of the curvature given in (2.11), we have λ5µK(x̂)α = K(x̂)α

and λµ5K(x̂)β = K(x̂)β , implying K(x̂)α = K(x̂)β = 0. The structure being locally ho-
mogeneous and the subspace WH = {K ∈ WK | Kα = Kβ = 0} being Pmin-invariant, K
has values in WH on a neighbourhood of x̂, and therefore K = 0 on this neighbourhood
according to Proposition 2.11. By local homogeneity, L is flat. �

We introduce the Cartan subalgebra a ≃ R2 of diagonal matrices of pmin, and the
projection p : pmin → a on a parallel to heis(3), which is a Lie algebra morphism. The
following linear map will play an important role in the proof:

φ : X ∈ i 7→ p(ωx̂(X̂x̂)) ∈ a.

Fact 3.6. If there exists X ∈ i such that φ(X) satisfies the hypotheses (3.2) of Lemma
3.5, then L is flat.

Proof. We have the following relation for any t ∈ R

(3.3) ϕt
X̂

(x̂) = x̂ · exp(tωx̂(X̂x̂)).

Denoting by p(t) the element of Pmin such that ϕt
X̂

(x̂) = x̂ · p(t), {p(t)}t∈R is a one-
parameter subgroup. There exists thus w ∈ pmin such that p(t) = exp(tw), and deriving
the relation ϕt

X̂
(x̂) = x̂ · exp(tw) at t = 0 we obtain ωx̂(X̂x̂) = w (because the Cartan

connection ω reproduces the fundamental vector fields of the action of Pmin). There
exists thus an automorphism ϕ of (M,L) fixing x and such that ϕ̂(x̂) = x̂·exp(ωx̂(X̂x̂))−1.
As φ(X) = p(ωx̂(X̂x̂)) satisfies the conditions (3.2), ωx̂(X̂x̂) also does, and Lemma 3.5
implies that L is flat. �

Fact. If Ker(φ) 6= {0} then L is flat.

Proof. There exists then X ∈ i such that v := ωx̂(X̂x̂) ∈ heis(3) = (sl3)1, i.e.

v =
(

0 a c
0 0 b
0 0 0

)
6= 0.

We first assume that (a, b) 6= (0, 0). For an element of the form w =
(

0 0 0
a′ 0 0
0 b′ 0

)
in sl3,

we have [v,w] =
(

aa′ ∗ 0
0 bb′−aa′ ∗
0 0 −bb′

)
, and as a 6= 0 or b 6= 0, there exists such an element

w ∈ sl3 satisfying [v,w] =
( 1 ∗ 0

0 −1 ∗
0 0 0

)
or [v,w] =

( 0 ∗ 0
0 1 ∗
0 0 −1

)
. As L is locally homogeneous,

there exists a Killing field Y ∈ h such that Yo = Dx̂π(ω−1
x̂ (w)), implying ωx̂(Ŷx̂) = w+w0

with w0 ∈ pmin = (sl3)0. We now use the relation

(3.4) ω([X̂, Ŷ ]) = −[ω(X̂), ω(Ŷ )] +K(ω(X̂), ω(Ŷ )).

verified for any Killing fields of the Cartan geometry C, that will be proved at the end
of this demonstration. We obtain ωx̂([X̂, Ŷ ]x̂) = −[v,w] + [v,w0 ] +K(v,w+w0) ∈ pmin,
where [v,w0] ∈ (sl3)1 according to the filtration property of sl3, and K(v,w + w0) = 0
because v ∈ pmin (see Paragraph 2.3). In particular [X,Y ] ∈ i, and φ([X,Y ]) is equal to
one of the diagonal matrices [1,−1, 0] or [0, 1,−1], that both satisfy the condition (3.2).
Therefore L is flat according to Fact 3.6.
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If a = b = 0, we can find an element w ∈ sl3 such that [v,w] =
(

1 0 0
0 0 0
0 0 −1

)
, and by the

same argument as above we find Y ∈ h such that [X,Y ] ∈ i and φ([X,Y ]) =
(

1 0 0
0 0 0
0 0 −1

)
.

As this element of a satisfies the conditions (3.2), L is flat by Fact 3.6.
We now prove the relation (3.4) for two Killing fields X and Y of the Cartan geometry

C. Since the flow of X preserves ω, the Lie derivative LXω vanishes identically, and
applying Cartan’s formula LX = d◦ιX + ιX ◦d to Y , we obtain Y ·ω(X)+dω(X,Y ) = 0.
Cartan’s formula dω(X,Y ) = X ·ω(Y )−Y ·ω(X)−ω([X,Y ]) impliesX ·ω(Y ) = ω([X,Y ]),
and as LY ω = 0 as well, we also have −Y ·ω(X) = ω([X,Y ]). Equation (3.4) then follows
from the definition of the curvature. �

Fact. If φ(i) = a then L is flat.

Proof. There exists in this case a Killing field X ∈ i such that φ(X) =
( 1 0 0

0 0 0
0 0 −1

)
, which

satisfies the hypotheses (3.2), implying that L is flat according to Fact 3.6. �

It remains to handle the case when φ is injective, and φ(i) is one-dimensional. There
exists then V ∈ i such that i = RV , and we can moreover assume without lost of
generality that v := ωx̂(V̂x̂) ∈ pmin does not verify the condition (3.2) (if it does, then L
is flat according to Fact 3.6). In other words, denoting the components of v in a by

φ(V ) = p(v) =



a 0 0
0 −a− b 0
0 0 b


 ∈ a,

with (a, b) ∈ R2, we assume that

(3.5) either a = −5b 6= 0, or b = −5a 6= 0.

Since v ∈ pmin, the curvature part of the relation (3.4) vanishes, and for any X ∈ h

we have:

(3.6) ωx̂([̂V,X]x̂) = −[v, ωx̂(X̂x̂)].

The linear map
ϕ : X ∈ h 7→ ωx̂(X̂x̂) ∈ sl3

is injective according to Lemma 2.14, and as evx(h) = TxM by local homogeneity,
ϕ induces an isomorphism ϕ̄ between h/i and sl3/pmin. Using the notations (2.8) in
Paragraph 2.2.3 for the basis (ēα, ēβ , ē0) of sl3/pmin, there exists X, Y , and Z in h such
that ϕ(X) ∈ eα + pmin, ϕ(Y ) ∈ eβ + pmin, and ϕ(Z) ∈ e0 + pmin. According to (3.6),
ϕ̄ intertwines the adjoint action of V on h/i and the adjoint action of −v on sl3/pmin,
implying

(3.7) Mat(X̄,Ȳ ,Z̄)(ad(V )) = Mat(ēα,ēβ ,ē0)(ad(−v)) =




−a− 2b 0 ∗
0 2a+ b ∗
0 0 a− b


 .

We will denote by A = −a− 2b and B = 2a+ b the eigenvalues of ad(V ) with respect
to X̄ and Ȳ . Our hypotheses (3.5) on a and b imply A 6= 0 and B 6= 0, allowing us to
choose X and Y in h satisfying

[V,X] = AX and [V, Y ] = BY.
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In fact, if X ∈ h satisfies ϕ̄(X + i) = ēα, there exists λ ∈ R such that [V,X] = aX + λV
according to (3.7), and X ′ = X + λ

A
V satisfies then [V,X ′] = AX ′. We deal with the

case of Y by the same computations.
The Jacobi identity yields [V, [X,Y ]] = (A + B)[X,Y ], implying in particular that

[X,Y ] /∈ Vect(X,Y, V ) since A + B is distinct from A, B and 0. A second application
of the same identity gives [V, [X, [X,Y ]]] = (2A + B)[X, [X,Y ]] and [V, [Y, [X,Y ]]] =
(A + 2B)[Y, [X,Y ]]. Furthermore, if [X, [X,Y ]] 6= 0, then 2A + B is an eigenvalue of
ad(V ) ∈ End(h), and is thus equal to one of the eigenvalues A, B, or A + B (since
dim h = 4 and 2A+B 6= 0). But the equalities 2A+B = A+B or 2A+B = B would
contradict A 6= 0, and the equality 2A+B = A would likewise contradict our hypotheses
on a and b. Consequently, [X, [X,Y ]] = 0, and for the same reasons [Y, [X,Y ]] = 0.

As a consequence, E := Vect(X,Y, [X,Y ]) is a subalgebra of h isomorphic to heis(3).
There is a connected open neighbourhood U of x such that the injective linear map
X ∈ Kill(U,L) 7→ [X]x ∈ killloc

L (x) is an isomorphism (see Remark 2.15), and there is
thus an injective Lie algebra morphism ι : heis(3) → Kill(U,L) of image E . According
to the work of Palais in [Pal57], chapter II Theorem XI and its corollary, there exists a
(unique) local action of Heis(3) on U that integrates this infinitesimal action, i.e. such
that X† = ι(X)|U for any X ∈ heis(3). In particular, the local action of Heis(3) on U
preserves L, and as ι(heis(3)) ∩ i = {0}, the orbital map at x is a Heis(3)-equivariant
embedding. The Lagrangian contact structure L is thus locally isomorphic to a left-
invariant Lagrangian contact structure on Heis(3). The following lemma implies then
that L is flat, finishing the proof of Theorem 3.3.

Lemma 3.7. Any left-invariant Lagrangian contact structure on Heis(3) is flat.

Proof. The left-invariant Lagrangian contact structure M0 = (RX̃,RỸ ) of Heis(3) gen-

erated by X =
(

0 1 0
0 0 0
0 0 0

)
and Y =

(
0 0 0
0 0 1
0 0 0

)
is flat. In fact, we will see in Paragraph 4.2.3

that (Heis(3),M0) is isomorphic to an open subset of the homogeneous model space
(X,LX). Considering a left-invariant Lagrangian contact structure M on Heis(3), it
suffices thus to find an isomorphism of Lagrangian contact structures from M0 to M to
prove our claim.

There exists v,w ∈ heis(3) such that M = (Rṽ,Rw̃), and as Rṽ ⊕ Rw̃ is a con-

tact distribution, [v,w] /∈ Vect(v,w). Denoting Z =
(

0 0 1
0 0 0
0 0 0

)
, v = aX + bY + cZ, and

w = a′X + b′Y + c′Z, we have [v,w] = (ab′ − ba′)Z, which implies ab′ − ba′ 6= 0. The Lie

algebra automorphism ϕ of heis(3) whose matrix in the basis (X,Y,Z) is
(

a a′ 0
b b′ 0
c c′ ab′−ba′

)

sends (X,Y ) to (v,w), and as Heis(3) is simply-connected, there exists a Lie group
automorphism φ of Heis(3) whose differential at identity is ϕ. Since φ is an automor-
phism, Deφ(X,Y ) = (v,w) implies φ∗ṽ = X̃ and φ∗w̃ = Ỹ , i.e. φ is an isomorphism of
Lagrangian contact structures from M0 to M. �

4. Local model of the enhanced Lagrangian contact structure

In the previous section, we proved that the Lagrangian contact structure L is locally
isomorphic to the homogeneous model space (X,LX), and thus described by a (G,X)-
structure on M . The classical strategy is then to reduce the possibilities for the images
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of the developping map δ : M̃ → M and of the holonomy morphism ρ : π1(M) → G of
this structure.

In the case studied by Ghys in [Ghy87] of an Anosov flow preserving the structure, the
holonomy group ρ(π1(M)) ⊂ G is centralized by a one-parameter subgroup of G, which
reduce dramatically the possibilities for ρ(π1(M)). But in the case of a discrete-time
dynamics, we do not have any relevant algebraic restriction of this kind on ρ(π1(M)).

For this reason, we have to look not only at the local homogeneity of L on Ω, but at the
local homogeneity of the whole enhanced Lagrangian contact structure S = (Eα, Eβ , Ec)
on this open dense subset. In this section, we will show that in restriction to Ω, S is
locally isomorphic to an infinitesimal homogeneous model, that preserves a distribution
transverse to the contact plane.

4.1. Two algebraic models. We begin by describing this models in an algebraic way.

4.1.1. Left-invariant structure on SL2(R). We will use the following basis for the Lie
algebra sl2 of SL2(R):

(4.1) E = ( 0 1
0 0 ) , F = ( 0 0

1 0 ) , and H =
(

1 0
0 −1

)
.

The Lie bracket relation [E,F ] = H between these three vectors shows that they de-
fine a left-invariant enhanced Lagrangian contact structure SSL2(R) = (RẼ,RF̃ ,RH̃) on
SL2(R). Moreover, the right action of the one-parameter subgroup A generated by H

preserves SSL2(R). We endow the universal cover S̃L2(R) of SL2(R) with the pullback of

SSL2(R), so that the right action of the one-parameter subgroup Ã of S̃L2(R) generated
by H preserves S

S̃L2(R)
.

Let Γ0 be a cocompact lattice of S̃L2(R), and u : Γ0 → Ã be a morphism whose graph-
group Γ = {(γ, u(γ)) | γ ∈ Γ0} acts freely, properly, and cocompactly on S̃L2(R), via the
action (g, a) · x = gxa (these morphisms are called admissible by Salein and studied in
detail in his thesis [Sal99]). Then the standard structure of S̃L2(R) is preserved by Γ, and
Γ\S̃L2(R) is endowed with the induced enhanced Lagrangian contact structure S, whose
distributions are exactly the invariant distributions of the algebraic contact-Anosov flow
(Rat) on Γ\S̃L2(R).

4.1.2. Left-invariant structure on Heis(3). We will use the following basis for the Lie
algebra heis(3) of Heis(3):

X =
(

0 1 0
0 0 0
0 0 0

)
, Y =

(
0 0 0
0 0 1
0 0 0

)
, Z =

(
0 0 1
0 0 0
0 0 0

)
.

According to the Lie bracket relation [X,Y ] = Z, SHeis(3) = (RX̃,RỸ ,RZ̃) is a left-
invariant enhanced Lagrangian contact structure on Heis(3). The subgroup

A =
{
ϕλ,µ

∣∣∣ (λ, µ) ∈ R∗2
}

of automorphisms introduced in the introduction (see (1.1)) is exactly the subgroup of
Aut(Heis(3)) preserving SHeis(3).

Any cocompact lattice Γ of Heis(3) preserves SHeis(3), and the quotient Γ\Heis(3) will
always be endowed with the induced enhanced Lagrangian contact structure S. The
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invariant distributions of a partially hyperbolic affine automorphism Lg ◦ϕ of Γ\Heis(3),
with g ∈ Heis(3) and ϕ ∈ A, are precisely given by S.

4.2. Two homogeneous open subsets of X. The left-invariant structures of SL2(R)
and Heis(3) can be geometrically imbedded in X as homogeneous open subsets, that will
be the local models of the enhanced Lagrangian contact structure S in restriction to Ω.

4.2.1. Some specific surfaces of X, and one affine chart. For D a projective line of RP2,
we define the β − α surface

Sβ,α(D) = π−1
α (D) = ∪y∈Cβ(D)C

α(y),

and for m ∈ RP2, the analog α− β surface

Sα,β(m) = π−1
β (

{
L ∈ RP2

∗

∣∣∣ m ∈ L
}

) = ∪y∈Cα(m)C
β(y).

The open subset
Ωa := X \ Sβ,α([e1, e2])

of X, composed by pointed projective lines (m,D) for whichm /∈ [e1, e2], will be identified
with the set Xa of pointed affine lines of R2 as follows:

(4.2) φa : (m,D) ∈ Ωa 7→ (m ∩ P,D ∩ P ) ∈ Xa,

where Vect(e1, e2)+ (0, 0, 1) is identified with R2 by translation. The diffeomorphism φa

is moreover equivariant for the canonical identification

(4.3)
[
A X
0 1

]
∈ StabG(Ωa) 7→ A+X ∈ Aff(R2)

of StabG(Ωa) with the group of affine transformations of R2.

4.2.2. The open subset Yt. We will embed SL2(R) in G as follows:

ι : g ∈ SL2(R) 7→

[
g 0
0 1

]
∈ G.

The resulting copy S0 of SL2(R) acts simply transitively at ot = ([1, 0, 1], [(1, 0, 1), e2 ]) =
φ−1

a (e1 + Re2) ∈ Ωa, and its orbit Yt = S0 · ot can be described as

Yt = Ωa \ Sα,β[e3] = φ−1
a

({
m+ L

∣∣∣ m ∈ R2 \ {(0, 0)}, L ∈ RP1 \ {Rm}
})

.

The left-invariant structure of SL2(R) induces on Yt a S0-invariant enhanced Lagrangian
contact structure

(4.4) St = (θot
◦ ι)∗SSL2(R),

which is compatible with LX in the sense that its α and β-distributions coincide with the
ones of LX, and whose central distribution is entirely described by its value at ot:

(4.5) Ec
t (ot) = RH†

0(ot),where H0 =
( 1 0 0

0 −1 0
0 0 0

)
.

We denote by A± the subgroup of SL2(R) composed by diagonal matrices. The right
action of A± preserves SSL2(R), and the direct product SL2(R) ×A± acts on SL2(R) by
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(g, a) · h = gha. The isomorphism from SL2(R) to (Yt,St) given by the orbital map at
ot is equivariant for the identification

(
g,

(
λ 0
0 λ−1

))
∈ SL2(R) ×A± 7→ λg ∈ GL2(R).

In particular,

Ht :=
[
GL2(R) 0

0 1

]

is contained in the automorphism group of (Yt,St).

4.2.3. The open subset Ya. The action of Heis(3) at oa = ([e3], [e3, e2]) = φ−1
a ((0, 0) +

Re2) ∈ Ωa is simply transitive, and its orbit Ya = Heis(3) · oa can be described as

Ya = Ωa \ Sα,β[e1] = φ−1
a

({
m+ L

∣∣∣ m ∈ R2, L ∈ RP1 \ {Re1}
})

.

We endow Ya with the Heis(3)-invariant enhanced Lagrangian contact structure

(4.6) Sa = (θoa
|Heis(3))∗SHeis(3)

which is compatible with LX, and whose central distribution is entirely determined by

(4.7) Ec
a(oa) = RZ†(oa).

Let us recall that A is the subgroup of automorphisms of Heis(3) that moreover
preserve SHeis(3) (see Paragraph 4.1.2). The group of affine automorphisms Lg ◦ ϕ of
Heis(3), where g ∈ Heis(3) and ϕ ∈ A, will be seen as a semi-direct subgroup Heis(3)⋊A.
With this notation, the isomorphism from (Ya,Sa) to Heis(3) given by the orbital map
at oa is equivariant for the identification

(4.8)
[

λ x z
0 λ−1µ−1 y
0 0 µ

]
∈ Pmin 7→

((
1 λµx µ−1z

0 1 µ−1y
0 0 1

)
, ϕλ2µ,λ−1µ−2

)
∈ Heis(3) ⋊ A,

and in particular, Ha := Pmin is contained in the automorphism group of (Ya,Sa).

4.3. From the infinitesimal model to the local model. We take back the notations
of Theorem B. We recall that πM : M̃ → M denotes the universal cover of M and that Ω
is a dense and open subset of M where S is locally homogeneous (see Proposition 3.2).
We will denote S̃ = π∗

M S = (Ẽα, Ẽβ , Ẽc), Ω̃ = π−1
M (Ω), and δ : M̃ → X a developping

map of the (G,X)-structure of M describing the Lagrangian contact structure L (see
Corollary 3.4 and Paragraph 2.3.2). We finally choose for this whole section a connected
component O of Ω̃, i.e. an open Killloc-orbit of S̃.

Our goal in this section is to describe the local model of S̃ in restriction to O.

4.3.1. Infinitesimal model. At any point of X, we will identify the Lie algebra of local
Killing fields of LX with sl3 through the fundamental vector fields of the action of G
(see Lemma 2.16). Since the developping map δ is a local isomorphism from L̃ to LX,
it induces at each point x ∈ M̃ an isomorphism

(4.9) δ∗ : v ∈ sl3 = killloc
LX

(δ(x)) 7→ δ∗v ∈ killloc

L̃
(x),

of Lie algebras, whose inverse will be denoted by δ∗ : killloc

L̃
(x) → sl3. For X ∈ killloc

L̃
(x)

and t ∈ R for which ϕt
X(x) exists, denoting v = δ∗[X]x ∈ sl3, we have

(4.10) δ(ϕt
X (x)) = etv · δ(x).
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Lemma 4.1. There exists a subalgebra h of sl3 such that

Kill(O, S̃ |O) = (δ∗h)|O= {(δ∗v)|O| v ∈ h} .

Moreover, any local Killing field of S̃ on O extends to the whole Killloc-orbit O.

Proof. It suffices to show that the subalgebra h(x) = δ∗kill
loc
S̃

(x) is locally constant on O.
This will in fact imply by connexity of O that h(x) is constant equal to some Lie subal-
gebra h on O, and then (δ∗h)|O⊂ Kill(O, S̃|O). But for x ∈ O, dim h = dim killloc

S̃
(x) ≥

Kill(O, S̃ |O) (see Lemma 2.14), and this inclusion is thus an equality.
For any x ∈ O there exists an open connected neighbourhood U of x such that any

local Killing field of S̃ at x extends to a Killing field defined on U (see Remark 2.15), and
for any y ∈ U we have thus h(x) ⊂ h(y). But h(x) and h(y) have the same dimension
since x and y are in the same Killloc-orbit of S̃, and this inclusion is thus an equality.
This shows that h(x) is locally constant and finishes the proof. �

We denote from now on by H the connected Lie subgroup of G of subalgebra h. It
is not necessarily closed in G, but the action of H on X is smooth for the structure of
immersed submanifold of H.

Lemma 4.2. All the points of δ(O) are in the same orbit Y under the action of H. In
particular, Y is open.

Proof. We consider x and y in O, and we want to find h ∈ H such that δ(y) = h · δ(x).
By hypothesis, as x and y are in the same Killloc-orbit of S̃, there exists a finite number
of points x1 = x, . . . , xn = y such that for any i ≤ n− 1 there exists a local Killing field
Xi of S̃ satisfying xi+1 = ϕ1

Xi
(xi). According to Lemma 4.1, there exists for each i an

element vi ∈ h such that Xi = δ∗vi, and we have δ(xi+1) = eviδ(xi) according to the
equation (4.10), implying δ(y) = evn−1 . . . ev1x0 ∈ H · δ(x). �

We choose from now on a point x ∈ O, we denote x0 = δ(x) ∈ Y , and we consider the
isotropy subalgebra

(4.11) i = stabh(x0) := {v ∈ h | v(x0) = 0}

of h at x0, characterized by δ∗i = isloc
S̃

(x). Since the orbit Y of x0 under H is open,
dim h − dim i = 3, and i is non-trivial according to Proposition 3.2. We also denote
Ec(x0) = Dxδ(Ẽc(x)), and h/i = Dα ⊕Dβ ⊕Dc the splitting sent to Tx0

Y = (Eα ⊕ Eβ ⊕
Ec)(x0) by the isomorphism Deθx0

induced by the orbital map at x0.

Lemma 4.3. (1) The adjoint representation ad: i → End(h/i) preserves the line Dc

in h/i, i.e. for any v ∈ i we have ad(v)(Dc) ⊂ Dc.
(2) There exists in the neighbourhood of x0 an unique H-invariant germ of a smooth

one-dimensional distribution Ec that extends Ec(x0) on a neighbourhood of x0,
and this distribution is everywhere transverse to Eα ⊕ Eβ.

(3) The developping map δ is an isomorphism between the enhanced Lagrangian con-
tact structures S̃ and SY := (Eα, Eβ, Ec), from a neighbourhood of x to a neigh-
bourhood of x0.

(4) h = killloc
SY

(x0) and i = isloc
SY

(x0).
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(5) If I = StabH(x0) is a connected subgroup of H, then there exists an unique
H-invariant smooth one-dimensional distribution Ec that extends Ec(x0) on the
whole open orbit Y , and Ec is transverse to Eα ⊕ Eβ. Furthermore, δ|O is a local
isomorphism from (O, S̃ |O) to (Y,SY ).

Proof. 1. For v ∈ i, denoting X = δ∗v ∈ isloc
S̃

(x), equation (4.10) implies Ec(x0) =
Dx0

etv(Ec(x0)) for any t ∈ R, and thus Dc = Ad(etv) ·Dc = exp(tad(v)) ·Dc. Derivating
this last equality at t = 0, we obtain ad(v) ·Dc ⊂ Dc.
2. The group I = StabH(x0) and its identity component I0 are closed in H for its
topology of immersed submanifold, and the orbital map at x0 induces a local diffeo-
morphism θ̄x0

: H/I0 → Y , equivariant for the action of H. We saw previously that
Ad(exp(i)) preserves Dc, implying that the subgroup

{
i ∈ I0

∣∣∣ Ad(i) ·Dc = Dc
}

is equal

to I0 by connexity, i.e. that I0 preserves Dc. Therefore, H/I0 supports an unique
H-invariant smooth one-dimensional distribution extending Dc, that can be pushed by
θ̄x0

: H/I0 → Y , to a H-invariant distribution extending Ec(x0) on a neighbourhood
of x0. Conversely, the pullback of any H-invariant distribution extending Ec(x0) on a
neighbourhood of x0 is H-invariant on H/I0, which proves the unicity of the germ of Ec.
As it is preserved by H, it must remain transverse to Eα ⊕ Eβ.
3. For y sufficiently close to x, there exists X ∈ Kill(O, S̃ |O) such that y = ϕ1

X(x).
Denoting y0 = δ(y) and v ∈ h such that δ∗v = X, we have Dy0

e−v ◦ Dyδ(Ẽc(y)) =
Dxδ ◦ Dyϕ

−1
X (Ẽc(y)) = Ec(x0), implying Dyδ(Ẽc(y)) = Ec(y0) by H-invariance of Ec.

4. This is a direct consequence of δ∗h = killloc
S̃

(x), δ∗i = isloc
S̃

(x), and of the fact that δ
is a local isomorphism from S̃ to SY at x.
5. Concerning the first assertion, the orbital map at x0 induces a H-equivariant dif-
feomorphism from H/I to Y , and we saw in the proof of the second assertion that
H/I0 = H/I supports an unique H-invariant distribution extending Dc on H/I0, which
stays transverse to the contact plane.

The set E of points y ∈ O such that δ is a local isomorphism in the neighbourhood
of y is open and non-empty, and we only have to prove that E is closed to conclude by
connexity of O. Let z ∈ O be an adherent point of E , and let us denote z0 = δ(z).
There exists a point y ∈ E sufficiently close to z such that, for some Killing field X of
S̃, z = ϕ1

X(y). Denoting v ∈ h such that X = δ∗v, we have Dz0
e−v ◦ Dzδ(Ẽc(z)) =

Dyδ ◦ Dzϕ
−1
X (Ẽc(z)) = Ec(y0), implying Dzδ(Ẽc(z)) = Ec(z0) by H-invariance of Ec. By

local homogeneity of S|O, we can reach all the points of some neighbourhood U of z
in O by a Killing field, and the same computation as before shows that δ|U is a local
isomorphism, i.e. that z ∈ E . �

4.3.2. Local model of an open Killloc-orbit. We will call

(4.12) κ : (m,D) ∈ X 7→ (D⊥,m⊥) ∈ X

the flip diffeomorphism of the homogeneous model space. This involution switches the
distributions Eα and Eβ of the standard Lagrangian contact structure, and is moreover
equivariant for the Lie group morphism κG : g 7→ tg−1 of G.

Consequently, interverting the distributions Eα and Eβ of the Lagrangian contact
structure of M is equivalent to composing the developping map δ with κ. At the level
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of the subalgebra h introduced in the previous paragraph, it is equivalent to apply the
Lie algebra morphism DeκG = κsl3 : A 7→ − tA.

Denoting

(4.13)





ht =
{(

A 0
0 − tr(A)

) ∣∣∣∣ A ∈ gl2

}
,

ha = pmin,

we will prove in the next section that:

Proposition 4.4. Up to conjugacy in G or image by κsl3 = − t·, h is equal to ht or ha.

To deduce a local information about S̃|O from this infinitesimal classification, it only
remains to look at the action of the connected Lie subgroups H0

t
:= GL+

2 (R) and H0
a =

P+
min of G, of respective Lie algebras ht and ha.

Proposition 4.5. (1) Yt (respectively Ya) is the only open orbit of H0
t (resp. of

H0
a) on X.

(2) St (respectively Sa) is the only H0
t -invariant (resp. H0

a-invariant) enhanced La-
grangian contact structure of Yt (resp. Ya) that is compatible with LX.

Proof. 1. Both of these groups are contained in StabG[e1, e2] = {
[

A X
0 1

]
| A ∈ GL2(R),X ∈

R2}, that preserves the surface Sβ,α[e1, e2], and whose only open orbit is thus Ωa =
X \ Sβ,α[e1, e2]. Any open orbit of one these groups is therefore contained in Ωa.
Since H0

t preserves the surface Sα,β[e3], any open orbit of H0
t is contained in Yt =

X \ (Sβ,α[e1, e2] ∪ Sα,β[e3]) = H0
t · ot. In the same way, since H0

a preserves Sα,β[e1], any
open orbit of H0

a is contained in Ya = X \ (Sβ,α[e1, e2] ∪ Sα,β[e1]) = H0
a · oa.

2. We start with Yt, and we denote

it = Lie(StabH0

t

(ot)) =
{(

a 0 0
0 −2a 0
0 0 a

) ∣∣∣ a ∈ R
}
,

and
E =

(
0 1 0
0 0 0
0 0 0

)
, F =

(
0 0 0
1 0 0
0 0 0

)
,H =

(
1 0 0
0 −1 0
0 0 0

)
.

The standard Lagrangian contact structure of X satisfies RE†(ot) = Eα(ot) and RF †(ot) =
Eβ(ot), and for a ∈ R, the adjoint action of the diagonal element [a,−2a, a] of it has the
following diagonal matrix in the basis (Ē, F̄ , H̄) of h/i:

Mat(Ē,F̄ ,H̄)(ad([a,−2a, a])) = [3a,−3a, 0].

Any line Dc of ht/it that is transverse to Vect(Ē, F̄ ) has projective coordinates [x, y, 1] in
the basis (Ē, F̄ , H̄) for some (x, y) ∈ R2, and ad([a,−2a, a])(Dc) is therefore generated
by the vector of coordinates (3ax,−3ay, 0). The only transverse line stabilized by ad(it)
is therefore RH̄, and Ec

t is the only H0
t -invariant distribution of Yt transverse to LX.

Let us denote

ia = Lie(StabH0
a
(oa)) =

{(
a 0 0
0 −a−b 0
0 0 b

) ∣∣∣∣ (a, b) ∈ R2
}
.

and

(4.14) X =
(

0 1 0
0 0 0
0 0 0

)
, Y =

(
0 0 0
0 0 1
0 0 0

)
, Z =

(
0 0 1
0 0 0
0 0 0

)
.
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We have RX†(oa) = Eα(oa), RY †(oa) = Eβ(oa), and for (a, b) ∈ R2, the adjoint action
of the diagonal element [a,−a− b, b] of ia has the following diagonal matrix in the basis
(X̄, Ȳ , Z̄) of pmin/ia

(4.15) Mat(X̄,Ȳ ,Z̄)(ad([a,−a− b, b])) = [2a+ b,−a− 2b, a − b].

Any line Dc of pmin/ia that is transverse to Vect(X̄, Ȳ ) has projective coordinates of
the form [x, y, 1] in the basis (X̄, Ȳ , Z̄) for some (x, y) ∈ R2, and ad([a,−a − b, b])(Dc)
is therefore generated by the vector of coordinates ((2a + b)x, (−a − 2b)y, a − b). The
only transverse line stabilized by ad(ia) is therefore RZ̄, and Ec

a is the only H0
a-invariant

distribution of Ya transverse to LX. �

We can finally describe the local geometry of O, which is a connected component of
Ω̃ = π−1

M (Ω).

Corollary 4.6. Up to inversion of the distributions Eα and Eβ, the restriction δ|O of
the developping map to O is a local isomorphism from (O, S̃ |O) to (Yt,St), or to (Ya,Sa).

Proof. The inversion of the distributions Eα and Eβ is equivalent to apply κsl3 to h, and
the conjugation of h by g ∈ G is equivalent to replace the developping map δ by g ◦ δ
(that describes the same (G,X)-structure on M). According to Proposition 4.4, we can
thus assume that h is equal to ht or ha, and the open orbit Y is therefore equal to Yt

(respectively Ya) according to Proposition 4.5. Since the isotropy subgroups StabH0

t

(ot)
and StabH0

a
(oa) are connected, there exists a H0

t -invariant (resp. H0
a-invariant) enhanced

Lagrangian contact structure SY on Y that is compatible with LX and such that δ|O is a
local isomorphism from (O, S̃|O) to (Y,SY ) (see Lemma 4.3). According to Proposition
4.5, SY is equal to St (resp. Sa). �

5. Classification of the infinitesimal model

The goal of this section is to prove Proposition 4.4. Let us recall that the Lie subal-
gebras i ⊂ h of sl3 are characterized by (δ∗h)|O= Kill(O, S̃|O) and [δ∗i]x = isloc

S̃
(x) (see

Lemma 4.1 and (4.11)).

5.1. Algebraic reduction. We first prove some purely algebraic restrictions on h.

Lemma 5.1. The dimension of h is either 4 or 5.

Proof. Possibly translating the developping map by an element of G, we can assume
that x0 = o = ([e1], [e1, e2]) ∈ X, and since the adjoint action of Pmin on the lines of
sl3/pmin transverse to Vect(ēα, ēβ) is transitive (see Paragraph 2.2), we can moreover

assume that Dc = Deθo(Rē0) with e0 =
(

0 0 0
0 0 0
1 0 0

)
. As a consequence, i = h ∩ pmin is

contained in

(5.1) o =
{
v ∈ pmin

∣∣∣ ad(v)(Rē0) ⊂ Rē0

}
=

{(
a 0 z
0 −a−b 0
0 0 b

)
| (a, b, z) ∈ R3

}
.

Denoting e0 =
(

0 0 1
0 0 0
0 0 0

)
∈ o, we now prove that i ∩ Re0 = {0}, implying dim i ≤ 2 and

finishing the proof of the Lemma, since i is non-zero and dim h − dim i = 3.
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Let us assume by contradiction that e0 ∈ i. As h + pmin = sl3 (because the orbit of
o under H is open), there exists v ∈ h and w ∈ pmin such that eβ =

(
0 0 0
1 0 0
0 0 0

)
= v + w.

But [v, e0] ∈ h, and [w, e0] ∈ Re0 ⊂ i since w ∈ pmin, finally implying that
(

0 0 0
0 0 1
0 0 0

)
=

[eβ , e
0] = [v, e0] + [w, e0] ∈ h ∩ pmin = i ⊂ o, which contradicts the description of o in

(5.1). �

Let

(5.2) h = s⋉φ r,

be the Levi decomposition of h, where s is a semi-simple subalgebra of h (or is trivial if
h is solvable), r is the solvable radical of h (it is an ideal of h), and φ is the restriction
of the adjoint representation ad: h → Der h (φ : s → Der r describes the bracket in h by
[v,w] = φ(v)(w) for v ∈ s and w ∈ r).

A proper semi-simple subalgebra of sl3 of dimension less than 5 is three-dimensional,
and is thus isomorphic to sl2 or to so(3). Moreover, up to conjugacy in SL3(R), the only
embedding of so(3) in sl3 is the inclusion, and the only embeddings of sl2 in sl3 are

(5.3) s0 :=
{(

A 0
0 0

) ∣∣∣∣ A ∈ sl2

}
and so(1, 2).

If h is not solvable, s is thus equal to s0, so(1, 2) or so(3) up to conjugacy in SL3(R).
The centralizers of these subalgebras in sl3 are

(5.4)





Csl3(so(1, 2)) = Csl3(so(3)) = {0},

Csl3(s0) =
{(

x 0 0
0 x 0
0 0 −2x

) ∣∣∣ x ∈ R
}
.

Lemma 5.2. Up to conjugacy in SL3(R) or image by κsl3 = − t·, we have the following
results.

(1) If h is not solvable, then
(a) s is equal to s0,
(b) and h is equal to ht or to

(5.5) h1 = R2 ⋊ sl2 =
{(

A X
0 0

) ∣∣∣ A ∈ sl2,X ∈ R2
}
.

(2) If h is solvable, then either h is contained in ha = pmin, or equal to

(5.6) h2 = R2 ⋊ sim(R2) =
{(

A X
0 − tr A

) ∣∣∣ A ∈ sim(R2),X ∈ R2
}
,

where sim(R2) =
{(

a b
−b a

) ∣∣∣ (a, b) ∈ R2
}

.

Proof. 1.a) Let us assume by contradiction that s is conjugated to so(1, 2) or so(3),
implying that Csl3 s = {0} according to (5.4). Since s is simple, if the Lie algebra
morphism φ is not injective then it is trivial, implying r ⊂ Csl3 s = {0} and thus dim h =
dim s = 3 which contradicts Lemma 5.1. Our hypothesis on s implies therefore that φ
is injective, and in particular that dim Der r ≥ dim s = 3.

Since dim s = 3, the solvable radical r is of dimension 1 or 2 according to Lemma
5.1, and is thus isomorphic to R, aff(R), or R2. But if r is isomorphic to R or aff(R),
then Der r is of dimension 1 or 2 which contradicts the injectivity of φ, and r is thus
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isomorphic to R2. Since so(3) has no non-zero two-dimensional representation, this im-
plies that s is conjugated to so(1, 2). The connected Lie subgroup H of SL3(R) of Lie
algebra h contains then SO0(1, 2), and its adjoint action induces thus by restriction a
two-dimensional representation φ of SO0(1, 2) on r (because r is an ideal of h). Since
SO0(1, 2) is isomorphic to PSL2(R), φ is trivial, implying that φ is trivial as well, which
contradicts the injectivity of φ. Finally, s is conjugated to s0.
1.b) Let us assume by contradiction that r is isomorphic to aff(R). Then Der r is two-
dimensional and φ is thus non-injective, i.e. trivial by simplicity of s0. But r is then
contained in the centralizer of s0 which is one-dimensional according to (5.4), contra-
dicting the original hypothesis. Therefore, r is isomorphic to R2 or R.

We first assume that r is isomorphic to R2, implying that φ is injective (otherwise
r ⊂ Csl3 s0 which is one-dimensional). We use the linear mapping eve3

|r : M ∈ r 7→
M(e3) ∈ R3 and discuss according to the dimension of its image r(e3). Let us emphasize
that r is normalized by the connected Lie subgroup S0 of SL3(R) of Lie algebra s0, and
that r(e3) is thus preserved by S0. If r(e3) is a plane then r(e3) = Vect(e1, e2) since
it is preserved by S0, and eve3

|r is moreover injective. There exists v ∈ r such that
eve3

(v) = e1, and with A =
(

1 0
0 −1

)
∈ sl2 and u =

(
A 0
0 0

)
∈ s0 we have eve3

([u, v]) = e1 =

eve3
(v). This implies [u, v] = v by injectivity of eve3

|r, and finally v =
(

0 0 1
0 0 0
0 x 0

)
for some

x ∈ R. The same reasoning with w ∈ r such that eve3
(w) = e2 and A =

(
−1 0
0 1

)
∈ sl2,

implies that w =
(

0 0 0
0 0 1
y 0 0

)
for some y ∈ R. Since r is abelian we have [v,w] = 0, which

implies x = y = 0 and proves that r =
(

0 R2

0 0

)
, i.e. that h = R2 ⋊ sl2. If r(e3) = {0},

then p|r is injective, implying p(r) = R2. Therefore dim(κsl3(r))(e3) = 2 which brings
us back to the first case, and κsl3(h) = R2 ⋊ sl2. Finally, dim r(e3) = 1 is impossible.
Otherwise, r′ = ker eve3

∩r is one-dimensional, and since p :
(

B 0
X 0

)
∈ r′ 7→ X ∈ R2 is

injective (because r ∩ s0 = {0}), p(r′) is a line of R2. But for w ∈ r′ and v =
(

A 0
0 0

)
∈ s0

we have p([v,w]) = −p(w)A, i.e. p(r′) is preserved by sl2 and cannot be a line.
We now assume that r is isomorphic to R. Then φ is non-injective and thus trivial,

implying r ⊂ Csl3 s0. This inclusion is an equality by equality of dimensions, proving
h = ht.
2. As h is solvable, it preserves a complex line in C3 according to Levi’s theorem.
More precisely, either h preserves a real line, or it preserves a plane on which it acts
by similarities. The second case implies h ⊂ R2 ⋊ sim(R2) = h2 up to conjugacy in
SL3(R). In the first case we can assume that h preserves Re1, and if the representation
( ∗ ∗

0 A ) ∈ h 7→ A ∈ gl2 also preserves a real line, then h ⊂ pmin = ha up to conjugacy. If
not, then κsl3(h) ⊂

{(
− tr A 0

X A

) ∣∣∣ A ∈ sim(R2),X ∈ R2
}

, according to the same remark

than before. This last subalgebra being conjugated to R2⋊ sim(R2) = h2, this concludes
the proof of the lemma. �

5.2. Two further properties of the infinitesimal model. We now prove two further
properties of the infinitesimal model (h, i), in order to eliminate the “exotic” cases h1

and h2 that appeared in the algebraic clasification of Lemma 5.2.
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Lemma 5.3. Let l be a subalgebra of sl3 containing h, j = stabl(x0) be the isotropy at
x0, and Dc be the line of l/j sent to Ec(x0) by the orbital map at x0. If ad(j)(Dc) ⊂ Dc,
then l = h.

Proof. Let us denote by L the connected subgroup of G of Lie algebra l, and by J0 the
identity component of J = StabL(x0). As ad(j) preserves Dc, Ad(exp(j)) preserves Dc,
and the subgroup of elements j ∈ J0 such that Ad(j) preserves Dc is thus equal to J0 by
connexity. The construction made in the second assertion of Lemma 4.3 is thus valid for
L/J0, and proves the existence of an unique L-invariant enhanced Lagrangian contact
structure S ′

Y extending (Eα(x0), Eβ(x0), Ec(x0)) in the neighbourhood of x0. As h ⊂ l,
H ⊂ L, and S ′

Y is thus H-invariant, implying S ′
Y = SY by the unicity of such a tructure.

Therefore l ⊂ killloc
SY

(x0) = h, which concludes the proof. �

Lemma 5.4. Let us assume that i is one-dimensional, and let v be a non-zero element
of i. Then the eigenvalues of ad(v) ∈ End(h/i) with respect to the eigenlines Dα and Dβ

are non-zero.

Proof. We already know that ad(i) is diagonalizable with eigenlines Dα, Dβ, and Dc (see
Lemma 4.3). The proof is the same for the eigenvalues of both eigenlines Dα and Dβ,
and we only do it for Dα. By density of Rec(f)∩Rec(f−1) in M (see the introduction of
Section 3), there exists x ∈ O such that x̄ = πM (x) ∈ Rec(f) ∩ Rec(f−1), and possibly
replacing f by f−1, we have lim

n→+∞

∥∥∥Dx̄f
n|Eα(x̄)

∥∥∥
M

= 0 for a given Riemannian metric

that we fix on M .
By hypothesis on x̄, there exists a sequence (γk) in π1(M) and a strictly increas-

ing sequence (nk) of integers such that γkf̃
nk(x) converges to x, and we can more-

over assume up to extraction that xk ∈ O for any k, implying that γkf̃
nk preserves

O. Endowing M̃ with the pullback µ̃M of the Riemannian metric of M , we have
lim

k→+∞

∥∥∥Dx(γkf̃
nk)|Ẽα(x)

∥∥∥
µ̃M

= 0 (since π1(M) acts by isometries).

Liouville’s theorem 2.9 for the homogeneous model space (X,LX) implies the existence
of a unique sequence (gk) in G satisfying

(5.7) δ ◦ γkf̃
nk = gk ◦ δ on a neighbourhood of x.

Denoting x0 = δ(x), gk ·x0 = δ ◦γkf̃
nk(x) ∈ Y = H ·x0 converges to x0, and there exists

thus a sequence hk ∈ H converging to the identity in G and such that hk · x0 = gk · x0.
Since δ is a local isomorphism from S̃|O to SY on a neighbourhood of x, the equation
(5.7) defining gk shows that gk preserves SY on a neighbourhood of x0. By H-invariance
of SY , ik = h−1

k gk also preserves SY , and ik is thus contained in the closed subgroup

I := {i ∈ StabG(x0) | i preserves SY on a neighbourhood of x0}

of G. The Lie algebra of I is equal to i because isloc
SY

(x0) = i (see Lemma 4.3).

Fact. I =
{
i ∈ StabG(x0)

∣∣∣ Ad(i) · h = h and Ad(i) ·Dc = Dc
}

. In particular I is alge-

braic and has a finite number of connected components.

Proof. For i ∈ I and v ∈ h, the relation Dx0
i ◦ Deθx0

= Deθx0
◦ Ad(i) implies i−1∗

v† =
(Ad(i) ·v)†. Since i is a local automorphism of SY and v† a Killing field of SY , (Ad(i) ·v)†
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is also a Killing field of SY , implying Ad(i) ·v ∈ h since killloc
SY

(x0) = h† (see Lemma 4.3).
Moreover, Dx0

i(Ec
x0

) = Ec
x0

implies Ad(i) ·Dc = Dc.
Let us conversely assume that i ∈ StabG(x0) satisfies Ad(i) · h = h and Ad(i) ·

Dc = Dc. We consider v ∈ h sufficiently close to 0, such that with h = ev ∈ H and
y = h · x0 ∈ Y , SY is defined at y. Since Ad(i) · Dc = Dc, Dx0

Li(Ec(x0)) = Ec(x0),
and h′ := ihi−1 = eAd(i)·v ∈ H because Ad(i) · h = h. By H-invariance of Ec, we obtain
Dyi(Ec(y)) = Dx0

h′ ◦ Dx0
i(Ec(x0)) = Ec(i · y), proving that i ∈ I. �

We can thus assume up to extraction that (ik) lies in a given connected component of
I, and there exists then g ∈ I such that jk = gik is contained in the identity component
I0. We endow X with a Riemannian metric µX, and denote by µ̃X = δ∗µX its pullback on
M̃ . Since (γkf̃

nk(x)) is relatively compact in M̃ , the metrics µ̃M and µ̃X are equivalent
in restriction to (γk f̃

nk(x)), and the limit stated above for µ̃M is thus valid for µ̃X,
implying lim

∥∥∥Dx0
gk|Eα(x0)

∥∥∥
µX

= 0. As jk = gh−1
k gk with (gh−1

k ) relatively compact in

G, we also have lim
∥∥∥Dx0

jk|Eα(x0)

∥∥∥
µX

= 0.

I0 being connected and one-dimensional, there exists a non-zero v ∈ i and a sequence
tk ∈ R such that ik = exp(tkv), implying that Dx0

jk is conjugated by the orbital map
to exp(tkad(v)), and thus lim

∥∥∥exp(tkad(v))|Dα

∥∥∥ = 0. Denoting by λα the eigenvalue of

ad(v) with respect to Dα, exp(tkad(v))|Dα = exp(λαtk) idDα implies then λα 6= 0. �

5.3. End of the classification. We now put into our analysis the geometrical and
dynamical properties of h proved above.

Lemma 5.5. h1 = R2 ⋊ sl2 does not satisfy the geometrical conditions of Lemma 4.3.

Proof. The only open orbit of the connected Lie subgroup H1 of G of Lie algebra h1 is
the open subset Ωa defined in Paragraph 4.2.1. If H1 ·x0 is open for some point x0 ∈ X,
we can thus assume that x0 = ([e3], [e3, e1]) ∈ Ωa up to conjugacy in H1, implying that
i1 = Lie(StabH1

(x0)) =
{(

a b
0 −a

) ∣∣ a, b ∈ R2
}
. Denoting vα = ( 0 0

1 0 ) and vβ = ( 1
0 ) ∈ h1, we

have Rv†
α(x0) = Eα(x0) and Rv†

β(x0) = Eβ(x0), and defining vc = ( 0
1 ) and i = ( 0 1

0 0 ) ∈ i1,
the matrix of ad(i) in the basis (v̄α, v̄β , v̄c) of h1/i1 is

Mat(v̄α,v̄β ,v̄c) ad(i) =
(

0 0 0
0 0 1
0 0 0

)
.

Any line of h1/i1 that is transverse to Vect(v̄α, v̄β) has projective coordinates [a, b, 1] in
the basis (v̄α, v̄β , v̄c) for some (a, b) ∈ R2, and ad(i)(Dc) has thus coordinates [0, 1, 0].
This proves that ad(i)(Dc) 6⊂ Dc, i.e. that h1 does not satisfy the geometrical conditions
of Lemma 4.3. �

Lemma 5.6. If h is a four-dimensional subalgebra of ha = pmin, or is equal to h2 =
R2 ⋊ sim(R2), then h does not respect both the geometrical conditions of Lemma 4.3 and
the dynamical condition of Lemma 5.4.

Proof. We first assume that h is a four-dimensional subalgebra of pmin. Therefore H ⊂
Pmin, and if H · x0 is open then x0 ∈ Ya according to Proposition 4.5. We can thus
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assume up to conjugacy in H that x0 = oa = ([e3], [e3, e2]) ∈ Ya, implying that

i = stabh(oa) ⊂ ia = stabpmin
(oa) =

{(
a 0 0
0 −a−b 0
0 0 b

) ∣∣∣∣ (a, b) ∈ R2
}
.

Let Dc ⊂ h/i be a line preserved by ad(i), and such that Deθoa
(Dc) is transverse to (Eα ⊕

Eβ)(oa). Since h is a proper subalgebra of pmin, Lemma 5.3 implies that ad(ia)(Dc) 6⊂ Dc,
and thus that stabia(Dc) =

{
v ∈ ia

∣∣∣ ad(v)(Dc) ⊂ Dc
}

= i is one-dimensional. Any
line Dc of pmin/ia which is transverse to the contact plane has projective coordinates
[x, y, 1] in the basis (X̄, Ȳ , Z̄) of pmin/ia, for some (x, y) ∈ R2 (see Proposition 4.6), and
according to (4.15), we have:

– if x = y = 0, i.e. Dc = RZ̄, then stabia(RZ̄) = ia;
– if x = 0 and y 6= 0, i.e. Dc = Dc

Y (t) := R(Z̄ + tȲ ) for some t ∈ R, then
stabia(Dc

Y (t)) is equal to the line iY generated by the diagonal matrix [1, 1,−2] =( 1 0 0
0 1 0
0 0 −2

)
;

– if x 6= 0 and y = 0, i.e. Dc = Dc
X(t) := R(Z̄ + tX̄) for some t ∈ R, then

stabia(Dc
X(t)) is equal to the line iX generated by the diagonal matrix [−2, 1, 1] =(

−2 0 0
0 1 0
0 0 1

)
;

– if x 6= 0 and y 6= 0, then stabia(Dc) = {0}.

The only transverse lines with a one-dimensional stabilizer being Dc
X(t) and Dc

Y (t), i is
equal to iX or iY . But Mat(X̄,Ȳ ,Z̄) ad([1, 1,−2]) = [0, 3, 3] and Mat(X̄,Ȳ ,Z̄) ad([−2, 1, 1]) =
[−3, 0,−3] according to (4.15), i.e. the elements of iX and iY have zero eigenvalue with
respect to either the α or the β-direction, proving that h does not satisfy the dynamical
condition of Lemma 5.4.

In the same way, if h = h2, then we can assume that x0 = oa ∈ Ωa up to conjugacy
in H2 = R2 ⋊ Sim(R2), implying i2 = stabh2

(oa) = iY defined above. We saw that the
elements of iY have zero eigenvalue with respect to the α-direction, proving that h2 does
not satisfy the dynamical condition of Lemma 5.4. �

Proposition 4.4 now directly follows from Lemmas 5.2, 5.5 and 5.6.

6. Global structure

From the local model that we determined for the enhanced Lagrangian contact struc-
ture S, we will now deduce a global information.

6.1. Local homogeneity of the enhanced Lagrangian contact structure. So far,
we only have informations on a dense and open subset Ω of M (see Propositions 3.2 and
4.6), and the first step to obtain a global information is to prove the following.

Proposition 6.1. The open dense subset Ω equals M , i.e. S is locally homogeneous on
M .

We will denote in this paragraph by (C, ϕ) = (M̂ , ω, ϕ) the normal generalized Car-
tan geometry of the enhanced Lagrangian contact structure S̃ = π∗

MS of M̃ , and by
Ktot : M̂ → WKtot its total curvature (see Paragraphs 2.3.4 and 2.4.2). We recall
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that Ω̃ = π−1
M (Ω) ⊂ M̃ , and that the projection of the Cartan bundle is denoted by

π : M̂ → M̃ .
We also recall that the local homogeneity of S̃|Ω̃ means that the connected components

of Ω̃ are exactly its Killloc-orbits (see Definition 3.1). Since the rank of DKtot is invariant
by the right action of Pmin and by the flow of Killing fields, this shows that rk(DKtot)
is constant over any connected component of Ω̃.

We choose for this whole paragraph a connected component O of Ω̃ (i.e. a Killloc-orbit
of S̃) such that rk(Dx̂Ktot) for x̂ ∈ π−1(O) is maximal among rk(Dx̂Ktot) for x̂ ∈ π−1(Ω̃).
We will denote by (Y,SY ) the local model of S̃|O, equal to (Yt,St) or (Ya,Sa) and such
that δ|O : (O, S̃|O) → (Y,SY ) is a local isomorphism (see Corollary 4.6). We still denote
by h the subalgebra of Killing fields of SY , respectively equal to ht or ha (see Proposition
4.4), and by H the corresponding Lie connected subgroup

H0
t =

[
GL+

2 (R) 0
0 1

]
or H0

a = P+
min,

of G of Lie algebra h, preserving SY .
We recall that δ : M̃ → X denotes the developping map of the (G,X)-structure of M

describing the flat Lagrangian contact structure L (see Proposition 3.4).

Lemma 6.2. The boundary of O is mapped to X \ Y by the developping map: δ(∂O) ⊂
X \ Y .

Proof. Let us assume by contradiction that there exists x ∈ ∂O such that x0 = δ(x) ∈ Y .
The pullback h̃ := δ∗h = {δ∗v | v ∈ h} is a subalgebra of vector fields on M̃ , such
that Kill(O, S̃|O) = h̃|O according to Lemma 4.1. As x0 ∈ Y , there exists an open
and convex neighbourhood W0 of 0 in h such that V = exp(W0) · x0 ⊂ Y is an open
neighbourhood of x0. Denoting W = δ∗W0 ⊂ h̃, U =

{
ϕ1

X(x)
∣∣ X ∈ W

}
is thus an open

neighbourhood of x, and possibly shrinking W0, we can moreover assume that δ|U is a
diffeomorphism from U to V . As x ∈ ∂O, there exists y ∈ U ∩O, and X ∈ W such that
x = ϕ1

X(y), implying that ϕt
X(y) ∈ U for any t ∈ [0 ; 1], and thus δ(ϕt

X (y)) ∈ V ⊂ Y .
Denoting t0 = inf

{
t ∈ [0 ; 1]

∣∣ ϕt
X(y) ∈ ∂O

}
, t0 > 0 because O is open, and ϕt0

X(y) ∈ ∂O

because ∂O is closed. Replacing x by ϕt0

X(y) and X by X
t0

∈ W , we finally have y ∈ O,
x = ϕ1

X(y) ∈ ∂O, and for any t ∈ [0 ; 1[, ϕt
X(y) ∈ O, with X|O∈ Kill(O, S̃|O).

Choosing ŷ ∈ π−1(y), the invariance of D1Ktot by local automorphisms and the fact
that ϕt

X is a local automorphism of (C, ϕ) on the neighbourhood of y for any t ∈ [0 ; 1[
implies D1Ktot(ϕ̂t

X(ŷ)) = D1Ktot(ŷ) for any t ∈ [0 ; 1[. Denoting x̂ = ϕ̂1
X(ŷ), we obtain

D1Ktot(x̂) = D1Ktot(ŷ) by continuity, i.e. Ktot(x̂) = Ktot(ŷ) and Dx̂Ktot ◦ω−1
x̂ = DŷKtot ◦

ω−1
ŷ .

This implies x̂ ∈ M̂ int. In fact as the rank of DKtot can only increase locally, there is
an open neighbourhood U of x̂ where the rank of DKtot is greater than rk(Dx̂Ktot). Let
us assume by contradiction that the open subset of U where rk(Dx̂′Ktot) > rk(Dx̂Ktot) is
non-empty. Then by density of π−1(Ω̃), there exists ẑ ∈ π−1(Ω̃) such that rk(DẑKtot) >
rk(Dx̂Ktot). But rk(Dx̂Ktot) = rk(DŷKtot) because D1Ktot(x̂) = D1Ktot(ŷ), and thus
rk(DẑKtot) > rk(DŷKtot) with ŷ ∈ π−1(O), wich contradicts our hypothesis of maximal-
ity of rk(DKtot) on O. Therefore rk(DKtot) is constant on the open neighbourhood U of
x̂, proving that x̂ ∈ M̂ int according to Integrability theorem 2.17.
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As the Killloc-orbit O of y is open, ω−1
ŷ (pmin) + Ker(DŷKtot) = TŷM̂ , and therefore

ω−1
x̂ (pmin)+Ker(Dx̂Ktot) = Tx̂M̂ because Dx̂Ktot ◦ω−1

x̂ = DŷKtot ◦ω−1
ŷ . Since x̂ ∈ M̂ int,

for any v ∈ Ker(Dx̂Ktot) there is a local Killing field X of S̃ defined in the neighbourhood
of x such that X̂x̂ = v. But ω−1

x̂ (pmin) + Ker(Dx̂Ktot) = Tx̂M̂ , and we thus have{
Xx

∣∣∣ X ∈ killloc
S̃

(x)
}

= TxM̃ , implying that the Killloc-orbit of x is open. Since x ∈ ∂O,

the Killloc-orbit of x intersects thus the Killloc-orbit O, i.e. x ∈ O, which contradicts
our initial hypothesis. This contradiction concludes the proof of the lemma. �

Lemma 6.2 allows us to reduce the study of the central direction Ẽc on the boundary
of O, to the study of the central direction Ec on the boundary of Y . We first do some
geometrical remarks about the open subsets Ya and Yt of X, defined in Paragraphs 4.2.2
and 4.2.3.

Let us recall that, denoting D∞ = [e1, e2], mt = [e3] and ma = [e1], we have

Yt = X \ (Sβ,α(D∞) ∪ Sα,β(mt)) and Ya = X \ (Sβ,α(D∞) ∪ Sβ,α(ma)).

In particular, for ε = a and t: X \ Yε = ∂Yε = Sβ,α(D∞) ∪ Sα,β(mε).
We define in both cases

G :=
{
x ∈ ∂Y

∣∣∣ Cα(x) * ∂Y or Cβ(x) * ∂Y
}
.

It is easy to check that for ε = a and t, we have

Gε = ∂Yε \ {Cβ(D∞) ∪ Cα(mε) ∪ (Sβ,α(D∞) ∩ Sα,β(mε))},

and that for any x ∈ G, if Cε(x) * ∂Y for ε = α or β, then Cε(x) \ {x} ⊂ Y .
We have Sβ,α(D∞)∩Sα,β(ma) = Cβ(D∞)∪Cα(ma), and Sβ,α(D∞)∩Sα,β(mt) is equal

to the chain defined by (mt,D∞), denoted by C(mt,D∞) and defined as follows:

C(mt,D∞) := {(m, [m,mt]) | m ∈ D∞} .

Finally, we will use the following description of the respective orbits of H on G:
(1) the orbits of H0

t on Gt are G1
t = Sα,β(mt) \ (Cα(mt) ∪ C(mt,D∞)) where Cα(x) \

{x} ⊂ Yt, and G2
t = Sβ,α(D∞) \ (Cβ(D∞) ∪ C(mt,D∞)) where Cβ(x) \ {x} ⊂ Yt;

(2) the orbits of H0
a on Ga are G1

a = Sα,β(ma) \ (Cα(ma) ∪ Cβ(D∞)) where Cα(x) \

{x} ⊂ Ya and G2
a = Sβ,α(D∞) \ (Cα(ma) ∪ Cβ(D∞)) where Cβ(x) \ {x} ⊂ Ya.

We will now prove that the central direction Ec degenerates along the α and β-circles
when converging to a point of G.

Lemma 6.3. Let γ : [0 ; 1] → X be a smooth path such that γ(]0 ; 1]) ⊂ Y , x = γ(0) ∈ G,
and γ([0 ; 1]) is entirely contained in Cα(x), or entirely contained in Cβ(x). Then Ec(γ(t))
converges at t = 0 to a line contained in (Eα ⊕ Eβ)(x).

Proof. As the action of H on Y preserves Ec, it will be sufficient to prove this result
for one point of each of the two orbits of H on G described above, in each of the two
cases Yt or Ya. We thus have only four cases to handle, and we saw that in each case,
either Cα(x) \ {x} ⊂ Y and Cβ(x) ⊂ ∂Y , or the contrary. We thus have only one
possibility to consider for γ in each of these four cases, either that γ([0 ; 1]) ⊂ Cα(x), or
that γ([0 ; 1]) ⊂ Cβ(x). To clarify our strategy, let x be a point of Gi

µ for µ = t or a and
i = 1 or 2, and let us consider the following data:
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– a one-parameter subgroup {gt}t∈R of G such that, denoting x(t) = gt · x, we
have {x(t) | t ∈ R} = Cε(x) \ {y}, with y ∈ Cε(x) ∩ Y , and ε = α or β according
to the case considered,

– a one-parameter subgroup {ht}t∈R of H such that gt · x = x(t) = ht−1

· y for any
t ∈ R∗,

– A in sl3 such that Deθy(RA) = Ec(y), where θy : G → X is the orbital map at y,
– and g0 ∈ G such that g0 · x = o where o = ([e1], [e1, e2]) is the usual base-point

of X.

Then for any t ∈ R∗ we have Dx(t)(g0g
−t)(Ec(x(t))) = Deθo(RAd(g0g

−tht−1

)·A)). Denot-

ing by p : sl3 → sl3/pmin the canonical projection, let us assume that p(RAd(g0g
−tht−1

) ·

A) converges at t = 0 to a line contained in Vect(ēα, ēβ). Then Deθo(RAd(g0g
−tht−1

) ·

A) ⊂ ToX converges to a line L ⊂ (Eα ⊕ Eβ)(o), and as gtg−1
0 converges to g−1

0 at t = 0,
we deduce by continuity that Ec(x(t)) converges at t = 0 to Dog

−1
0 (L), contained in

(Eα ⊕ Eβ)(x), because g−1
0 preserves Eα ⊕ Eβ.

In conclusion, we only have to find, in each of the four cases µ = t or a and i = 1 or
2, a point x ∈ Gi

µ, together with gt, ht, A, and g0 satisfying the above conditions, and to

prove that p(RAd(g0g
−tht−1

) ·A) converges at t = 0 to a line contained in Vect(ēα, ēβ).
We begin with Yt, for which we choose for both orbits G1

t
and G2

t
the point y :=

ot = ([1, 0, 1], [(1, 0, 1), e2 ]) ∈ Yt. Let us recall that in this case, A =
(

1 0 0
0 −1 0
0 0 0

)
satisfies

Ec(ot) = Deθot
(RA) (see Paragraph 4.2.2).

– For G1
t , choosing x = ([1, 0, 1], [(1, 0, 1), e1 ]) = ([1, 0, 1], [e1 , e3]), g0 =

(
1 0 0
1 0 −1
0 1 0

)
,

and the one-parameter subgroups gt =
(

1 0 0
t 1 −t
0 0 1

)
of G and ht =

(
1 t 0
0 1 0
0 0 1

)
of H0

t

such that gt · x = ht−1

· ot ∈ Cα(x), we obtain:

Ad(g0g
−tht−1

) ·A =
(

1 −2 −2t−1

1 −2 −2t−1

−t t 1

)
,

and thus p(RAd(g0g
−tht−1

) · A) converges at t = 0 to Rēβ.

– For G2
t
, choosing x = ([e2], [e2, (1, 0, 1)]), g0 =

(
0 1 0
1 0 0
1 0 −1

)
, and the one-parameter

subgroups gt =
(

1 t 0
0 1 0
0 t 1

)
of G and ht =

(
1 0 0
t 1 0
0 0 1

)
of H0

t such that gt ·x = ht−1

· ot ∈

Cβ(x), we obtain

Ad(g0g
−tht−1

) ·A =
(

1 2t−1 0
0 −1 0
t 1 0

)
,

and thus p(RAd(g0g
−tht−1

) · A) converges at t = 0 to Rēα.

We now consider the case of Ya, for which we choose for both orbits G1
a and G2

a the
point y := oa = ([e3], [e3, e2]) ∈ Ya, and we recall that in this case A =

(
0 0 1
0 0 0
0 0 0

)
satisfies

the above condition Ec(oa) = Deθoa
(RA) (see Paragraph 4.2.3).

– For G1
a, choosing x = ([e3], [e3, e1]), g0 =

(
0 0 1
1 0 0
0 1 0

)
, and the one-parameter sub-

groups gt =
(

1 0 0
t 1 0
0 0 1

)
of G and ht =

(
1 t 0
0 1 0
0 0 1

)
of H0

a such that gt · x = ht−1

· oa ∈
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Cα(x), we obtain:

Ad(g0g
−tht−1

) ·A =
( 0 0 0

1 0 0
−t 0 0

)
,

and thus p(RAd(g0g
−tht−1

) · A) converges at t = 0 to Rēβ.

– For G2
a, choosing x = ([e2], [e2, e3]), g0 =

(
0 1 0
0 0 1
1 0 0

)
, and the one-parameter sub-

groups gt =
(

1 0 0
0 1 0
0 t 1

)
of G and ht =

(
1 0 0
0 1 t
0 0 1

)
of H0

a such that gt · x = ht−1

· oa ∈

Cβ(x), we obtain

Ad(g0g
−tht−1

) ·A =
(

0 0 0
0 0 0
t 1 0

)
,

and thus p(RAd(g0g
−tht−1

) · A) converges at t = 0 to Rēα.

According to the discussion above, this concludes the proof of the lemma. �

We are now able to prove the proposition 6.1.

Proof of the proposition 6.1. Let us assume by contradiction that Ω 6= M . We choose
a connected component O of Ω̃ such that the rank of Dx̂Ktot for x̂ ∈ π−1(O) is max-
imal among the rank of Dx̂Ktot for x̂ ∈ π−1(Ω̃). As ∅ 6= O 6= M̃ by hypothesis,
there exists x ∈ ∂O, and as Ẽα ⊕ Ẽβ is contact, [Sus73, Theorem 4.1] implies the ex-
istence of a piecewise smooth path γ : [0 ; 1] → M̃ constituted of a finite concatenation
of segments of α and β-leaves, joining x = γ(1) to a point y = γ(0) ∈ O. Denoting
t0 = inf {t ∈ [0 ; 1] | γ(t) ∈ ∂O}, t0 > 0 and γ(t0) ∈ ∂O. Replacing x by γ(t0), keeping
only the last smooth arc of γ, replacing y by the origin of this arc, and choosing a
parametrization of this arc by [0 ; 1], we finally end with a smooth path γ : [0 ; 1] → M̃
such that γ([0 ; 1[) ⊂ O, x = γ(1) ∈ ∂O, and γ([0 ; 1]) is entirely contained in a same α or
β-leaf. The proof being the same in the two cases, we assume that γ([0 ; 1]) ⊂ F̃α(x) to fix
the ideas. Denoting x0 = δ(x), x0 ∈ X\Y according to Lemma 6.2, and δ(γ([0 ; 1[)) ⊂ Y
because δ(O) ⊂ Y (see Lemma 4.2). Finally δ(γ([0 ; 1[)) is an open interval of Cα(x0)
contained in Y , and x0 ∈ X \ Y , i.e. x0 ∈ G. Denoting γ0(t) = δ(γ(t)), Lemma 6.3
implies therefore that Ec(γ0(t)) converges to a line Dc

0 ⊂ (Eα ⊕ Eβ)(x0) at t = 1. As δ|O
is a local isomorphism between S̃|O and SY , we have Ẽc(γ(t)) = (Dγ(t)δ)−1(Ec(γ0(t)))
for any t ∈ [0 ; 1[, implying Ẽc(x) = (Dxδ)−1(Dc

0) by continuity. Since δ is a local
isomorphism between the Lagrangian contact structures L̃ and LX, this implies that
Ẽc(x) ⊂ (Ẽα ⊕ Ẽβ)(x), which contradicts the definition of the transverse distribution
Ẽc. This contradiction concludes the proof of the proposition. �

6.2. Reduction of the holonomy group. We first describe the global and local au-
tomorphisms of the models (Yt,St) and (Ya,Sa).

Proposition 6.4. (1) Aut(Yt,St) = Ht =
[
GL2(R) 0

0 1

]
and Aut(Ya,Sa) = Ha =

Pmin.
(2) Let (Y,SY ) be one of the two models (Yt,St) or (Ya,Sa). Then any local isomor-

phism of SY between two connected open subsets of Y is the restriction of the
action of a global automorphism of Aut(Y,SY ).
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Proof. 1. The inclusionsHt ⊂ Aut(Yt,St) and Ha ⊂ Aut(Ya,Sa) were explained in Para-
graphs 4.2.2 and 4.2.3. Since the automorphism groups are contained in the stabilizers
of the open subsets, the equalities follow because Ht = StabG(Yt) and Ha = StabG(Ya).
2. Let us emphasize that Aut(Y,SY ) is precisely the normalizer of h in G. Let ϕ be a
local automorphism of SY between two connected open subsets U and V of Y . For any
v ∈ h, since v|V is a Killing field of SY , ϕ∗(v|V ) is a Killing field of SY , and therefore
ϕ∗(v|V ) = w|U for some w ∈ h. But ϕ is in particular a local automorphism of the
Lagrangian contact structure LX of X, and is thus the restriction to an open subset
U ⊂ Y of the left translation by an element g ∈ G, according to Theorem 2.9. Therefore
w|U = ϕ∗(v|V ) = (Ad(g) · v)|U , implying that Ad(g) · v = w ∈ h since the action of G is
analytic (see Lemma 2.16). Consequently, g ∈ NorG(h) = Aut(Y,SY ). �

Let us recall that ρ : π1(M) → G denotes the holonomy morphism associated to
the developping map δ : M̃ → X of the (G,X)-structure of M (see Corollary 3.4 and
Paragraph 2.3.2).

Proposition 6.5. The holonomy group ρ(π1(M)) is contained in Aut(Y,SY ). Conse-
quently, M has either a (Ht, Yt)-structure or a (Ha, Ya)-structure, and its developping
map is a local isomorphism of enhanced Lagrangian contact structures from S̃ to St

(respectively Sa).

Proof. According to Proposition 6.1, S is locally homogeneous, and we thus deduce from
Proposition 4.6 that, up to interversion of the distributions Eα and Eβ , the developping
map δ of the (G,X)-structure of M can be chosen to be a local isomorphism from (M̃ , S̃)
to one of the two models (Yt,St) or (Ya,Sa). According to Liouville’s theorem 6.4 proved
for these two models, the holonomy morphism has moreover values in the correspond-
ing automorphism group Ht (respectively Ha) described in the same result, and M is
finally endowed with a (Ht, Yt)-structure (resp. (Ha, Ya)-structure). Concerning the
interversion of Eα and Eβ , it is easy to construct for both models (Yt,St) and (Ya,Sa),
a diffeomorphism of Y interverting the distributions Eα and Eβ and fixing the transverse
distribution Ec

Y . In other words for these both models, the structures (Eα, Eβ, Ec
Y ) and

(Eβ , Eα, Ec
Y ) are isomorphic, so that a posteriori, the order of the distributions Eα and

Eβ in the statement of Proposition 6.5 does not matter. �

7. Completeness of the structure

We will denote by (H, Y ) the local model of S, which is either (Ht, Yt) or (Ha, Ya),
and by δ : M̃ → Y and ρ : π1(M) → H the developping map and holonomy morphism of
the (H, Y )-structure of M . The goal of this section is to prove that:

Proposition 7.1. The developping map δ is a covering map from M̃ to Y .

It is a known fact that a local diffeomorphism satisfying the path-lifting property is a
covering map (the reader can for example look for a proof in [DC76, §5.6, Proposition
6 p. 383]). According to the following statement, it will actually be sufficient to prove
the path-lifting property in the α, β, and central directions to prove that δ is a covering
map.
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Lemma 7.2. Let h : N → B be a local diffeomorphism between two smooth three-
dimensional manifolds, B being connected. We assume that there is a smooth splitting
E1 ⊕ E2 ⊕ E3 = TB of the tangent bundle of B into three one-dimensional smooth dis-
tributions, such that for any i ∈ {1, 2, 3}, x ∈ Im(h), and x̃ ∈ h−1(x), any path tangent
to Ei and starting from x entirely lifts through h to a path starting from x̃. Then h is a
covering map from N to B (and in particular, h is surjective).

Proof. Since h is a local diffeomorphism, it suffices to prove that our hypothesis implies
the lift of any path. By compactness, it is sufficient to locally lift the paths in B, around
any point. We choose x ∈ B and a sufficiently small open neighbourhood U of x, such
that there are three smooth vector fields X, Y and Z generating E1, E2 and E3 on U , and
ε > 0 such that (t, u, v) ∈ ]−ε ; ε[3 7→ φ(t, u, v) := ϕt

X ◦ ϕu
Y ◦ ϕv

Z(x) ∈ U is well-defined,
and is a diffeomorphism (this exists according to Inverse mapping theorem). Let us
choose x̃ ∈ h−1(x). Then, denoting by X̃ = h∗X, Ỹ = h∗Y and Z̃ = h∗Z the pullbacks,
the property of path-lifting in the directions E1, E2 and E3, and from any point, implies
that φ̃(t, u, v) := ϕt

X̃
◦ ϕu

Ỹ
◦ ϕv

Z̃
(x̃) is well-defined on ]−ε ; ε[3. If γ : [0 ; 1] → U is a

continuous path starting from x and contained in U , there are three continuous maps
t, u and v from [0 ; 1] to ]−ε ; ε[ such that γ(s) = φ(t(s), u(s), v(s)). Since h ◦ φ̃ = φ by
construction, γ̃(s) := φ̃(t(s), u(s), v(s)) is then a lift of γ starting from x̃, which finishes
the proof. �

Remark 7.3. In our case, proving that the paths in δ(M̃ ) in the α-direction (respectively
β or central direction) lift to M̃ is equivalent to prove that for any x ∈ δ(M̃ ) and
x̃ ∈ δ−1(x), we have the following equality:

δ(F̃α(x̃)) = Cα(x) ∩ δ(M̃ ),

(respectively the same equality for β-leaves and circes, or for central leaves).

We start by proving that the image of any α (respectively β) leaf in M̃ miss exactly
one point in the associated α-circle (respectively β-circle). We recall that ∂Y = X \ Y ,
as explained before Lemma 6.3.

Lemma 7.4. For any x̃ ∈ M̃ , denoting x = δ(x̃), there exists x∗ ∈ Cβ(x) ∩ ∂Y such
that δ(F̃β(x̃)) = Cβ(x) \ {x∗} = Cβ(x) ∩ Y . The same happens for α-leaves and their
associated α-circles.

Proof. We will only write the proof for β-leaves and β-circles as in the statement, the
case of the α-direction being the same. Denoting x̄ = πM (x̃), and possibly replacing f
by f−1, we have lim

n→+∞

∥∥∥Dx̄f
n|Eα(x̄)

∥∥∥
M

= 0 for some fixed Riemannian metric on M .

The description of the open subsets Yt and Ya in Paragraphs 4.2.2 and 4.2.3 easily
shows that in these both cases, the intersection of any β-circle (respectively α-circle)
with Y miss exactly one point of the circle. In other words, the intersection Cβ(x) ∩ ∂Y
is a single point {x∗}, and as a consequence δ(F̃β(x̃)) ⊂ Cβ(x) \ {x∗} = Cβ(x) ∩ Y . To
finish the proof of the lemma, we only have to prove that δ(F̃β(x̃)) cannot miss more
than one point of Cβ(x). To achieve this, we assume by contradiction that there exists
x− 6= x+ ∈ Cβ(x) \ {x, x∗} such that:

(7.1) δ(F̃β(x̃)) = ]x− ;x+[ ( Cβ(x) \ {x∗},



CONTACT PARTIALLY HYPERBOLIC DIFFEOMORPHISMS 39

where ]x− ;x+[ is the connected component of Cβ(x) \ {x−, x+} that contains x.
Since M is compact, there exists a strictly increasing sequence (nk) of positive integers

such that, denoting x̄ = πM (x̃), x̄k = fnk(x̄) converges to a point x̄∞ ∈ M , and as M =
π1(M)\M̃ , there furthermore exists a sequence γk ∈ π1(M) such that x̃k := γk · f̃nk(x̃)
converges to a lift x̃∞ of x̄∞. As γkf̃

nk is an automorphism of the Lagrangian contact
structure L̃ and δ a local isomorphism from L̃ to LX, Theorem 2.9 implies the existence
of a unique sequence gk ∈ G satisfying

δ(γk · f̃nk(x̃)) = gk · δ(x̃).

We denote xk = δ(x̃k) = gk(x), that converges to x∞ := δ(x̃∞). Denoting x−
k = gk(x−)

and x+
k = gk(x+), xk, x−

k and x+
k are three distincts points of Cβ(xk) for any k. By

compactness of X, we can assume up to extraction that x−
k and x+

k respectively converge
to points x−

∞ and x+
∞ of Cβ(x∞), and the hypothesis (7.1) allows us to obtain the following

crucial statement.

Fact 7.5. x∞ 6= x−
∞, and x∞ 6= x+

∞.

Proof. Let us assume by contradiction that x−
∞ = x∞. Considering a neighbourhood U

of x̃∞ such that δ|U is injective, we can choose ỹ∞ ∈ (F̃β(x̃∞) ∩U) \ {x̃∞}. There exists
a sequence ỹk ∈ F̃β(x̃k) converging to ỹ∞, and possibly changing ỹ∞, we can moreover
assume that δ(ỹk) ∈ ]x−

k ;xk[, implying that δ(ỹ∞) ∈ [x−
∞ ;x∞] by continuity. But as

x−
∞ = x∞, [x−

∞ ;x∞] = {x∞}, and therefore δ(ỹ∞) = x∞ = δ(x̃∞), implying ỹ∞ = x̃∞ by
injectivity of δ|U , which contradicts our hypothesis on ỹ∞. In the same way, we obtain
x∞ 6= x+

∞. �

The subgroup SO(3) of G acts transitively on X, and we can thus choose φ ∈ SO(3)
and a sequence (φk) in SO(3), satisfying φ(x) = o and φk(xk) = o for any k (we recall that
o = ([e1], [e1, e2])). Since StabSO(3)(Cβ(o)) =

[
SO(2) 0

0 1

]
acts transitively on Cβ(o), we can

moreover assume that φ(x+) = o+ and φk(x+
k ) = o+, where o+ = ([e2], [e1, e2]) ∈ Cβ(o).

For any k, φk ◦ gk ◦ φ−1 is an element of StabG(o) ∩ StabG(o+), i.e. is of the form[
1 0 x
0 λk y
0 0 µk

]
. But

[
1 0 ∗
0 1 ∗
0 0 ∗

]
acts trivially in restriction to Cβ(o), and Ak :=

[
1 0 0
0 λk 0
0 0 1

]
satisfies

thus:
gk|Cβ(x)= φ−1

k ◦Ak ◦ φ|Cβ(x).

The following commutative diagram summarizes the situation.

(7.2)

Cβ(o) Cβ(x) F̃β(x̃) Fβ(x̄)

Cβ(o) Cβ(xk) F̃β(x̃k) Fβ(x̄k)

Ak

φ

gk

δ

γk f̃nk

πM

fnk

φk δ

πM

The action of Ak ∈ G on Cβ(o) is conjugated to the action of the projective trans-
formations

[
1 0
0 λk

]
∈ PGL2(R) on RP1, i.e. to the action of the homotheties of ra-

tio λk on R ∪ {∞}. By this conjugation, o corresponds to 0, o+ to ∞, and o− :=
φ(x−) ∈ Cβ(o) \ {o, o+} corresponds to a non-zero point of R. Fact 7.5 implies that
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Ak(o−) = φk(x−
k ) ∈ Cβ(o) stays bounded away from o (since φk ∈ SO(3)), and therefore

that λk is bounded away from 0.
On the other hand, endowing M̃ with the pullback of the Riemannian metric of

M , the diagramm (7.2) implies lim
k→+∞

∥∥∥Dx̃(γkf̃
nk)|Ẽβ(x̃)

∥∥∥
M̃

= 0 (since π1(M) acts by

isometries). Fixing any Riemannian metric on X, as (x̃k) is relatively compact we also
have lim

∥∥∥Dxgk|Eβ(x)

∥∥∥
X

= 0, and since (φk) and (xk) are relatively compact as well, we

finally obtain lim
∥∥∥DoAk|Eβ(x)

∥∥∥
X

= 0.
This contradicts the fact that λk is bounded away from 0, and this contradiction

concludes the proof of the lemma. �

Lemma 7.4 allows us to easily infer the path-lifting property in the α and β-directions.

Corollary 7.6. (1) For any x ∈ δ(M̃ ), Cα(x) ∩ δ(M̃ ) = Cα(x) ∩ Y and Cβ(x) ∩
δ(M̃ ) = Cβ(x) ∩ Y .

(2) The paths in δ(M̃ ) in the α and β-directions lift to M̃ from any point.

Proof. We only write the proof of the statements for the α-direction, the case of the
β-direction being formally the same.
1. For any x̃ ∈ M̃ , denoting δ(x̃) = x, we know that ∂Y ∩Cα(x) is equal to a single point
{x∗} that satisfies Cα(x) \ {x∗} = Cα(x) ∩ Y . Furthermore, δ(F̃α(x̃)) = Cα(x) \ {x∗} =
Cα(x) ∩Y according to Lemma 7.4. As Cα(x) ∩ δ(M̃ ) ⊂ ∪x̃∈δ−1(x)δ(F̃α(x̃)) = Cα(x) ∩Y ,
we finally obtain Cα(x) ∩ δ(M̃ ) = Cα(x) ∩ Y .
2. Together with Lemma 7.4, we finally have δ(F̃ (x̃)) = Cα(x)∩ δ(M̃ ), for any x ∈ δ(M̃ )
and x̃ ∈ δ−1(x). According to the remark 7.3, this proves that any path starting from x
in the α-direction lifts to M̃ from x̃. �

The accessibility property of Lagrangian contact structures allows us to deduce that:

Corollary 7.7. The developping map is surjective: δ(M̃ ) = Y .

Proof. Let x be a point of the non-empty subset δ(M̃ ), and y be any point in Y . Restrict-
ing the Lagrangian contact structure LX = (Eα, Eβ) of X to the connected open subset
Y , [Sus73, Theorem 4.1] implies the existence of a finite number x = x1, . . . , xn = y of
points of Y such that for any i = 1, . . . , n − 1, xi+1 ∈ Cα(xi) ∩ Y or xi+1 ∈ Cβ(xi) ∩ Y .
Applying the first statement of Corollary 7.6, we deduce by a direct finite recurrence
that for any i, xi ∈ δ(M̃ ), so that y ∈ δ(M̃ ). �

We finally prove that the central paths also lift, by a specific method for each model.

Lemma 7.8. In the case of Yt, any central path starting at any point x ∈ Yt lifts in M̃
from any point x̃ ∈ δ−1(x).

Proof. Let us recall thatHt =
[

GL2(R) 0
0 1

]
= Aut(Yt,St) and ot = ([1, 0, 1], [(1, 0, 1), e2 ]) ∈

Yt. Since Z =
(

1 0 0
0 1 0
0 0 −2

)
is central in ht, the Killing field Z† of St associated to Z is Ht-

invariant. As Ec
t (ot) = RZ†(ot) (see Paragraph 4.2.2) and Ec is Ht-invariant as well, Z†

actually generates the transverse distribution on Yt. At any point x ∈ Yt, we thus have
Fc

t (x) = exp(RZ)·x. Now, as the holonomy group ρ(π1(M)) is contained in Ht according
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to Proposition 6.5, it leaves Z† invariant, and the pullback X̃ := δ∗Z† is thus preserved
by the fundamental group π1(M). This allows us to push X̃ down on M , to a Killing field
X generating the central direction Ec. As M is compact, X is a complete vector field,
and as πM : M̃ → M is a covering map, the pullback π∗

MX = X̃ is also complete, imply-
ing that for any x̃ ∈ M̃ , the central leaf at x̃ is simply the integral curve of X̃ = δ∗Z†

at x̃. For any x ∈ Yt and x̃ ∈ δ−1(x) (which is non-empty because δ(M̃ ) = Yt according
to Corollary 7.7) we thus have δ(F̃c(x̃)) =

{
δ(ϕt

X̃
(x̃))

∣∣∣ t ∈ R
}

= exp(RZ) · x = Fc
t (x).

This finishes the proof of the lemma according to Remark 7.3. �

Lemma 7.9. In the case of Ya, any central path starting at any point x ∈ Ya lifts in M̃
from any point x̃ ∈ δ−1(x).

Proof. Let us first emphasize that the argument used in the previous lemma for the case
of Yt does not work here, because the center of ha is trivial.

We identify Ya with R3 through (x, y, z) ∈ R3 7→ ([x, y, 1], [(x, y, 1), (z, 1, 0)]) ∈ Ya,
and we consider the following vector fields of Ya in these global coordinates:

Xα(x, y, z) = e3,X
β(x, y, z) = (z, 1, 0),Xc(x, y, z) = e1.

These vector fields are complete and generate the enhanced Lagrangian contact structure
Sa = (Eα, Eβ, Ec

a) on Ya (see Paragraph 4.2.3). Since the paths tangent to the α and β-
distributions entirely lift to M̃ according to Corollary 7.6, we deduce that the pullbacks
X̃α = δ∗Xα and X̃β = δ∗Xβ are complete as well. We can furthermore realize the flow
of the central vector field Xc by α− β curves through the following equalities:

{
ϕ−t

Xβ ◦ ϕ−t
Xα ◦ ϕt

Xβ ◦ ϕt
Xα(x) = x+ t2e1 = ϕt2

Xc(x),

ϕt
Xβ ◦ ϕ−t

Xα ◦ ϕ−t
Xβ ◦ ϕt

Xα(x) = x− t2e1 = ϕ−t2

Xc (x).

The same equalities are thus true for the pullbacks X̃α, X̃β , and X̃c = δ∗Xc, and since
the flows of X̃α and X̃β are defined for all times, these equalities show that X̃c is also
complete. The completeness of X̃c allows us to lift any central path of Ya from any point
of M̃ , and concludes the proof of the lemma. �

End of the proof of Proposition 7.1. According to Corollary 7.6 and to Lemmas 7.8 and
7.9, the local diffeomorphism δ satisfies the path-lifting property on Y in the α, β, and
central directions, and is thus a covering map from M̃ to Y according to Lemma 7.2. �

8. Conclusion

8.1. End of the proof of Theorem B. The work that has been done so far tells us
that for one of the two models (H, Y,SY ) = (Ht, Yt,St) or (Ha, Ya,Sa), M is a (H, Y )-
manifold whose developping map δ : M̃ → Y is a covering map satisfying δ∗SY = S̃.
With these informations, we will finish the proof of Theorem B. We will use the link
between the geometrical and algebraic point of views on the models (Yt,St) and (Ya,Sa),
explained in Paragraphs 4.1 and 4.2.

8.1.1. Case of (Ya,Sa). We first assume that (M,S) is locally isomorphic to (Ya,Sa).
Since Ya is simply connected (because homeomorphic to Heis(3)), the covering map
δ : M̃ → Ya is actually a diffeomorphism in this case. Since the developping map conju-
gates the action of π1(M) on M̃ to the action of the holonomy group Γ = ρ(π1(M)) ⊂ Ha
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on Ya, we can assume without lost of generality that M is a compact quotient Γ\Ya,
with Γ a discrete subgroup of Ha acting freely, properly, and cocompactly. Since f is an
automorphism of (M,S), we moreover deduce from Proposition 6.4 that f ∈ NorHa

(Γ).
We saw in Paragraph 4.2.3 that the identification between Heis(3) and Ya given by the

orbital map at oa conjugates the action of Ha on Ya, and the action of the semi-direct
product Heis(3) ⋊ A of affine automorphisms of Heis(3) preserving its left-invariant
structure. We can thus assume that M is a quotient Γ\Heis(3), with Γ a discrete
subgroup of Heis(3) ⋊ A acting freely, properly, and cocompactly on Heis(3), and that
f ∈ NorHeis(3)⋊A(Γ).

Denoting [x, y, z] =
(

1 x z
0 1 y
0 0 1

)
, the identification [x, y, z] ∈ Heis(3) 7→ (x, y, z) ∈ R3 of

Heis(3) with R3 is equivariant for the following injective morphism from Heis(3) ⋊ A to
the affine transformations of R3:

Θ: ([x, y, z], ϕλ,µ) ∈ Heis(3) ⋊ A 7→



λ 0 0
0 µ 0
0 µx λµ


 +



x
y
z


 ∈ Aff(R3).

M is thus diffeomorphic to the quotient Λ\R3, where Λ := Θ(Γ) is a discrete subgroup
of affine transformations of R3 contained in S := Θ(Heis(3)⋊A), acting freely, properly
and cocompactly on R3. Since S is solvable (because Heis(3) ⋊ A ≃ Pmin is), the work
of Fried and Goldmann in [FG83] (more precisely Theorem 1.4, Corollary 1.5 and Para-
graphs 3 and 4 of this paper) implies the existence of a so-called crystallographic hull C of
Λ. This group C is a closed subgroup of S containing Λ, and whose identity component
C0 satisfies the following assumptions: Λ ∩C0 has finite index in Λ and is cocompact in
C0, C0 acts simply transitively on R3, and C0 is isomorphic to R3, Heis(3), or Sol. One
can easily check that S does not contain any subgroup isomorphic to R3, that the sub-
groups of S isomorphic to Sol do not act simply transitively on R3, and that Θ(Heis(3))
is the only subgroup of S isomorphic to Heis(3). Finally, C0 is equal to Θ(Heis(3)), and
therefore, Λ ∩ Θ(Heis(3)) has finite index in Λ and is cocompact in Θ(Heis(3)). As a
consequence, Γ0 := Γ∩Heis(3) has finite index in Γ and is a cocompact lattice of Heis(3).

The morphism p : (g, ϕ) ∈ Heis(3) ⋊ A 7→ ϕ ∈ A having a kernel equal to Heis(3),
Γ/Γ0 is isomorphic to p(Γ) ⊂ A. But A is isomorphic to (R∗)2, and a finite subgroup
of A is thus contained in the subgroup {ϕ±1,±1} of cardinal 4, implying that Γ0 is a
subgroup of Γ of index at most 4. As (g, ϕ) ∈ NorHeis(3)⋊A(Γ), we have gϕ(Γ0)g−1 = Γ0,
and the affine automorphism x 7→ gϕ(x) induces therefore a diffeomorphism f̌ of M̌ :=
Γ0\Heis(3) through f̌(xΓ0) = gϕ(x)Γ0. The canonical projection π̌ : M̌ = Γ0\Heis(3) →
M = Γ\Heis(3) is a covering of finite order equal to the index of Γ0 in Γ, and we have
π̌ ◦ f̌ = f ◦ π̌.

It only remains to show that λ < 1 and µ > 1, or the contrary, to conclude that f̌ is
a partially hyperbolic affine automorphism of Heis(3). Let us assume by contradiction
that λ < 1 and µ < 1. Choosing a left-invariant volume form ν on Heis(3), we have
((Deϕ)∗ν)e = λ2µ2νe, and ν induces a volume form ν̄ on M̌ = Γ0\Heis(3) such that
f̌∗ν̄ = λ2µ2ν̄, because Lg preserves ν. As f̌ is a diffeomorphism of the compact manifold
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M̌ , we must have
∫

M̌
ν̄ =

∫
M̌
f̌∗ν̄ = λ2µ2

∫
M̌
ν̄, which is a contradiction because

∫
M̌
ν̄ 6= 0

and λ2µ2 < 1. The same argument shows that we cannot have λ > 1 and µ > 1 neither,
which finishes the proof of Theorem B in the case of the local model (Ya,Sa).

8.1.2. Case of (Yt,St). We now assume that S is locally isomorphic to (Yt,St). Iden-
tifying Yt with SL2(R) as explained in Paragraph 4.2.2, we can lift the developping
map δ : M̃ → Yt to a map δ̃ : M̃ → S̃L2(R) through the universal cover morphism
πSL2(R) : S̃L2(R) → SL2(R). As δ is a covering map according to Proposition 7.1, δ̃ is

a diffeomorphism because S̃L2(R) is simply connected. As M is supposed to be ori-
entable, π1(M) preserves its orientation, implying that the holonomy group ρ(π1(M)) is
contained in the subgroup H+

t
= GL+

2 (R) of elements of positive determinant. We saw
in Paragraph 4.2.2 that the diffeomorphism θot

◦ ι : SL2(R) → Yt conjugates the action
of GL+

2 (R) on Yt and the action of SL2(R) ×A on SL2(R). As πSL2(R) is equivariant for

the projection S̃L2(R) × Ã → SL2(R) × A, we finally conclude that the diffeomorphism
δ̃ : M̃ → S̃L2(R) is equivariant for a morphism ρ̃ : π1(M) → S̃L2(R) × Ã. We can thus
assume that M is a quotient Γ̃\S̃L2(R), with Γ̃ a discrete subgroup of S̃L2(R)× Ã acting
freely, properly, and cocompactly on S̃L2(R). Possibly replacing f by f2, we can assume
that f preserves the orientation of M , and Proposition 6.4 implies then that f = Lg ◦Rat

with (g, at) ∈ Nor
S̃L2(R)×Ã

(Γ̃).

Denoting by r1 : S̃L2(R) × Ã → S̃L2(R) the projection on the first factor, and Γ̃0 :=
r1(Γ̃) ⊂ S̃L2(R), we now prove the following result.

Fact 8.1. Γ̃0 is a cocompact lattice of S̃L2(R), and Γ̃ is the graph-group gr(ũ, Γ̃0) of a
morphism ũ : Γ̃ → Ã.

Proof. Choosing a generator z of the center Z̃ of S̃L2(R), the finiteness of the level
proved by Salein in [Sal99, Theorem 3.3.2.3] implies the existence of a non-zero integer
k ∈ N∗ such that Γ̃ ∩ (Z̃ × {e}) = 〈(zk, e)〉. We will denote by 〈g〉 the group generated
by an element g, and we introduce the group PSL(k)

2 (R) := S̃L2(R)/〈zk〉 and denote by
pk : S̃L2(R) → PSL(k)

2 (R) its universal cover. Then, denoting Ak = pk(Ã) and Γk := (pk×

pk)(Γ̃) < PSL(k)
2 (R) × Ak, pk induces a diffeomorphism p̄k : Γ̃\S̃L2(R) → Γk\PSL(k)

2 (R)
(because Ker pk = 〈zk〉 and (zk, e) ∈ Γ̃), implying in particular that Γk acts freely,
properly, and cocompactly on PSL(k)

2 (R).
We can now apply the work of Kulkarni-Raymond in [KR85] to Γk. We denote by

π : S̃L2(R) → PSL2(R) the universal cover morphism of PSL2(R) (of kernel Z̃), and
by πk : PSL(k)

2 (R) → PSL2(R) the induced k-fold covering by PSL(k)
2 (R). Then, with

Γ = (π × π)(Γ̃) and Γ0 = r1(Γ) < PSL2(R) the projection on the first factor, the form
[Tho14, Lemma 4.3.1] of Kulkarni-Raymond’s results proved by Tholozan implies that
Γ0 is a cocompact lattice of PSL2(R), and that πk ◦ r1|Γk

is injective.
The first assertion ensures that Γ̃0 is discrete in S̃L2(R). The second one implies that

Γ = gr(u,Γ0) is the graph-group of a morphism u : Γ0 → A = π(Ã). Since r1|Γ̃ is also
injective, this implies that Γ̃ is the graph of a morphism ũ : Γ̃0 → Ã, trivial on Γ̃0 ∩ Z̃.
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Since Z̃ ∩ Γ̃0 = 〈zk〉 is finite, the projection Γ̃0\S̃L2(R) → Γ0\PSL2(R) has finite
fibers, implying that Γ̃ is a cocompact lattice as Γ0\PSL2(R) is compact. �

The projection Γ0 = π(Γ̃0) is a cocompact lattice of PSL2(R) according to the proof
of Fact 8.1, and Γ0\ NorPSL2(R)(Γ0) is thus finite. Therefore, Γ̃0\ Nor

S̃L2(R)
(Γ̃0) is finite

as well since the projection Γ̃0\ Nor
S̃L2(R)

(Γ̃0) → Γ0\ NorPSL2(R)(Γ0) has finite fibers

(Z̃ ∩ Γ̃0 = 〈zk〉 is finite according to the finiteness of the level).
Recall that f = Lg ◦Ra, where (g, at) ∈ Nor

S̃L2(R)×Ã
(Γ̃). Therefore g ∈ Nor

S̃L2(R)
(Γ̃0),

and since Γ̃0\ Nor
S̃L2(R)

(Γ̃0) is finite, there exists n ∈ N∗ such that γ := gn ∈ Γ̃0.

Denoting a := anũ(γ)−1, we have fn = Lγ ◦Ran = Ra ◦ (Lγ ◦Rũ(γ)). But Lγ ◦Rũ(γ) acts

trivially on the quotient Γ̃\S̃L2(R), and therefore f = Ra is a non-zero time-map of the
algebraic contact-Anosov flow (Rat) on Γ̃\S̃L2(R).

Let us underline that (Rat) is indeed Anosov, because the work of Zeghib in [Zeg96,
Prop. 4.2 p.868] proves that (Rat) is quasi-Anosov with the definition of Mañé, and Mañé
proves in [Mañ77, Theorem A] that three-dimensional quasi-Anosov flows are Anosov.

This concludes the proof of Theorem B in the case where S is locally isomorphic to
(Yt,St), and concludes thus its whole proof.

8.2. Proof of Theorem A. Theorem B directly implies Theorem A stated in the intro-
duction thanks to an argument of Brin. More precisely, we obtain the following refined
version of Theorem A, where no domination is required on the central direction, and
where the two remaining directions can a priori be both contracted, or both expanded.

Corollary 8.2. Let M be a closed, connected and orientable three-dimensional manifold,
endowed with a smooth splitting TM = Eα ⊕ Eβ ⊕ Ec such that Eα ⊕ Eβ is a contact
distribution. Let f be a diffeomorphism of M that preserves this splitting, and such that

– each of the distributions Eα and Eβ is either uniformly contracted, or uniformly
expanded by f ,

– and NW (f) = M .

Then the conclusions of Theorem A hold. In particular, f is a partially hyperbolic
diffeomorphism.

Proof. Since Eα ⊕ Eβ is contact and M connected, any two points of M are linked by
the concatenation of a finite number of paths, tangent either to Eα or to Eβ (this is
for example a consequence of the work of Sussmann in [Sus73, Theorem 4.1]). In other
words, the pair (Fα,Fβ) of foliations associated to (Eα, Eβ) is topologically transitive in
the terminology of Brin in [Bri75]. Our hypothesis of uniform contraction or expansion
of the distributions Eα and Eβ directly implies that Fα and Fβ are uniformly contracted
or expanded in the terminology of [Bri75]. Since NW (f) = M by hypothesis, [Bri75,
Theorem 1.1] implies that f is topologically transitive. In fact, although Brin states his
result assuming that one of the distributions is contracted, and the other one expanded,
it is easy to see that his proof does in fact not use this assumption, and that the same
proof works if both distributions are expanded, or both contracted.

We are now under the hypotheses of Theorem B, and its conclusions hold. �
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