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Partially hyperbolic diffeomorphisms and Lagrangean contact

structures

Martin Mion-Mouton

February 26, 2020

Abstract

In this paper, we classify the three-dimensional contact partially hyperbolic diffeo-
morphisms whose stable, unstable and central distributions are smooth, and whose non-
wandering set equals the whole manifold. We prove that up to a finite quotient or a finite
power, they are smoothly conjugated either to a time-map of an algebraic contact-Anosov
flow, or to an affine partially hyperbolic automorphism of a nil-Heis(3)-manifold. The rigid
geometric structure induced by the three dynamical distributions plays a fundamental role
in the proof.

1 Introduction

In a lot of natural situations, a differentiable dynamical system on a smooth manifold preserves
a geometric structure on the tangent bundle coming from invariant distributions. For instance,
if it preserves a borelian measure, then Oseledet’s theorem provides an almost-everywhere
defined splitting of the tangent bundle, given by the rates of expansion or contraction of the
tangent vectors by the differentials of the dynamic.

Although invariant geometric structures naturally arise, they are in general highly non-
regular (Oseledet’s decomposition is for instance only measurable), and this lack of regularity
allows a lot of flexibility of the dynamic: former examples can be deformed in order to produce
a lot of new ones. In contrast, the smoothness of the dynamical distributions puts a strong
restriction on the system, and the known examples with C∞ distributions are in general “very
symmetric”: typically, they arise from compact quotients of Lie groups, with action by affine
automorphisms.

It is thus natural to ask to what extent the geometric structure preserved by the dynamic
makes the situation rigid, and especially why.

Let us give a paradigmatic example of rigidity with the following result of Étienne Ghys
concerning three-dimensional Anosov flows (the statement proved by Ghys in [Ghy87] is more
precise than the one given below).

Theorem 1.1 ([Ghy87]). Let (ϕt) be an Anosov flow of a three-dimensional closed connected
manifold. If the stable and unstable distributions of (ϕt) are C∞, then up to a finite covering:

– either (ϕt) is smoothly conjugated to the suspension flow of a hyperbolic automorphism
of the two-torus,

– or (ϕt) is smoothly orbitally equivalent to the geodesic flow of a compact hyperbolic surface.

We recall that a smooth non-singular flow (ϕt) of a compact manifold M is Anosov if Dϕt

preserves two distributions Es and Eu (respectively called the stable and unstable distribution)
satisfying TM = Es ⊕E0 ⊕ Eu, where E0 denotes the direction of the flow, and such that:
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– Es is uniformly contracted by ϕt, i.e. there are constants C > 0 and 0 < λ < 1 such that
for some Riemannian metric on M , we have for any x ∈ M and t ∈ R+:

∥∥Dxϕ
t|Es

∥∥ ≤ Cλt;

– and Eu is uniformly expanded by ϕt, i.e. uniformly contracted by ϕ−t.

Under the smoothness assumption of Es and Eu, Ghys notices that the smooth plane dis-
tribution Es ⊕Eu can only have two extreme geometrical behaviours: either it integrates into
a foliation, or it is a contact distribution (i.e. it is locally the kernel of a contact one-form).
In the first case, former results of Plante and Franks conclude the proof. The work of Ghys in
[Ghy87] is therefore entirely devoted to three-dimensional contact-Anosov flows, i.e. when Es

and Eu are smooth, and Es ⊕Eu is contact. Under this assumption, the Anosov flow preserves
a rigid geometric structure that makes the classification possible.

Roughly speaking, a rigid geometric structure is a structure with “few automorphisms”.
More precisely, they are those smooth geometric structures whose Lie algebra of local Killing
fields (vector fields whose flow preserves the structure) is everywhere finite-dimensional.

As d’Ambra and Gromov pointed out in [GD91], it is natural to believe that rigid geometric
structures preserved by rich dynamical systems have to be particularly special: “one does not
expect rigid geometry to be accompanied by rich dynamics” ([GD91, §0.3 p.21]), and it seems
thus reasonable to look for classification results in these situations. The general idea is that rich
dynamical properties will imply strong restrictions on the rigid geometric structure, inducing
in return a rigidity of the dynamical system itself.

Several rigid geometric structures can be preserved by a contact-Anosov flow (ϕt). First of
all, (ϕt) always preserves a contact one-form α, and the induced volume form α ∧ dα is thus
also preserved, i.e. the contact-Anosov flows are conservative. For contact-Anosov flows of
any odd dimension, (ϕt) moreover preserves a natural linear connection on the tangent bundle,
initially defined by Kanai in [Kan88]. The invariant Kanai connection allowed for example
Benoist, Foulon and Labourie to obtain a classification result for contact-Anosov flows of any
odd dimension in [BFL92].

While these invariant rigid geometric structures require the existence of a one-parameter
flow of diffeomorphisms, this paper investigates rigid geometric structures preserved by the
discrete-time analogs of contact-Anosov flows that are the contact partially hyperbolic diffeo-
morphisms.

1.1 Three-dimensional contact partially hyperbolic diffeomorphisms

Let us recall the definition of a partially hyperbolic diffeomorphism.

Definition 1.2. A diffeomorphism f of a compact manifold M is partially hyperbolic if it
preserves a splitting TM = Es⊕Eu⊕Ec of the tangent bundle into three non-trivial continuous
distributions, satisfying the following conditions with respect to some Riemannian metric on
M :

– the stable distribution Es is uniformly contracted by f , i.e. for any x ∈ M and any unit
vector vs ∈ Es(x), ‖Dxf(vs)‖ < 1;

– the unstable distribution Eu is uniformly expanded by f , i.e. uniformly contracted by
f−1;

– the splitting is dominated, i.e. for any x ∈ M , and any unit vectors vs ∈ Es(x), vc ∈
Ec(x), and vu ∈ Eu(x), ‖Dxf(vs)‖ < ‖Dxf(vc)‖ < ‖Dxf(vu)‖ (Ec is called the central
distribution).
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We refer to [CP15] for a very complete introduction to partially hyperbolic diffeomorphisms.
A lot of progress has been made in the recent years concerning their classification in dimension
three (see for example the survey [HP18]). Let us quote the recent work of Bonatti and Zhang
in [BZ19], who obtain rigidity results for partially hyperbolic diffeomorphisms in the continuous
category under specific dynamical conditions.

In this paper, we investigate the particular case when the three distributions Es, Eu, and
Ec are smooth. Carrasco, Pujals and Rodriguez-Hertz obtain in [CPRH19] a classification
result under this smoothness assumption, assuming moreover that the differential of the dif-
feomorphism is constant when read in the global frame given by three smooth vector fields
generating these distributions. The geometric structure (Es, Eu, Ec) defined by such a par-
tially hyperbolic diffeomorphism is in general not rigid, and their result is obtained through
dynamical arguments.

We will not be interested in this paper in additional assumptions on the partially hyperbolic
diffeomorphism, but in geometrical conditions, beside the smoothness of Es, Eu and Ec. The
generic case for the plane distribution Es ⊕ Eu is to be contact on a non-empty open subset
of the manifold, and we assume in this paper that Es ⊕ Eu is everywhere contact. The
partially hyperbolic diffeomorphisms satisfying these assumptions are the discrete-time analogs
of contact-Anosov flows, and will be called contact partially hyperbolic diffeomorphisms. Let
us recall two well-known families of examples, easily described in an algebraic way.

1.1.1 Three-dimensional algebraic contact-Anosov flows

These first examples are the deformations of geodesic flows of hyperbolic surfaces appearing in
[Ghy87] (see Theorem 1.1).

With H =
(

1 0
0 −1

)
∈ sl2 and at = exp(tH) ∈ S̃L2(R), we denote by Ã = {at}t∈R the

one-parameter subgroup of the universal cover S̃L2(R) of SL2(R) generated by H. For any
cocompact lattice Γ0 of S̃L2(R), the right hyperbolic flow (Rat) on the left compact quotient
Γ0\S̃L2(R) is a finite covering of the geodesic flow of a compact hyperbolic surface (up to a
constant rescaling of the time by a factor 1

2), and is thus Anosov.
Following the terminology of Salein in [Sal99], we will say that a morphism u : Γ0 → Ã is

admissible if the graph-group Γ := gr(u,Γ0) = {(γ, u(γ)) | γ ∈ Γ0} acts freely, properly and
cocompactly on S̃L2(R) by the action (g, a) · x = gxa. We can then look at the action of the
right hyperbolic flow (Rat) on the new quotient Γ\S̃L2(R), defined by Rat(Γ · x) = Γ · (xat).
This flow is still Anosov (see for example [Zeg96, Prop. 4.2 p.868] and [Mañ77, Theorem A]),
and we will call these flows the three-dimensional algebraic contact-Anosov flows.

We will be interested in the sequel with the contact partially hyperbolic diffeomorphisms
given by any non-zero time-map of these flows.

1.1.2 Partially hyperbolic affine automorphisms of nil-Heis(3)-manifolds

For (λ, µ) ∈ R∗2, let us introduce the following automorphism of the Heisenberg group:

ϕλ,µ :




1 x z
0 1 y
0 0 1


 ∈ Heis(3) 7→




1 λx λµz
0 1 µy
0 0 1


 ∈ Heis(3).

Let Γ be a cocompact lattice of Heis(3), g ∈ Heis(3) and (λ, µ) ∈ R∗2. If gϕλ,µ(Γ)g−1 = Γ,
then the affine automorphism Lg ◦ϕλ,µ of Heis(3) induces a diffeomorphism of the nil-Heis(3)-
manifold Γ\Heis(3), defined by Lg ◦ ϕλ,µ(Γx) = Γ(gϕλ,µ(x)). If we moreover assume that
either |λ| < 1 and |µ| > 1, or the opposite, then Lg ◦ ϕλ,µ is a contact partially hyperbolic
diffeomorphism of Γ\Heis(3), that we will call a partially hyperbolic affine automorphism.
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1.2 Principal results

Having in mind these examples, we obtain the following result.

Theorem A. Let M be a closed, connected and orientable three-dimensional manifold, and f
be a contact partially hyperbolic diffeomorphism of M , i.e.:

– the stable, unstable, and central distributions Es, Eu and Ec of f are smooth,

– and Es ⊕ Eu is a contact distribution.

If the non-wandering set NW (f) equals M , then we have the following description:

1. either some finite power of f is smoothly conjugated to a non-zero time-map of a three-
dimensional algebraic contact-Anosov flow,

2. or f lifts by a covering of order at most 4 to a partially hyperbolic affine automorphism
of a nil-Heis(3)-manifold.

The class of diffeomorphisms that we will consider is actually wider than the partially
hyperbolic diffeomorphisms. In fact, our geometrical condition is so rigid that the uniformity
of the contraction and the expansion will be obtained as a byproduct, without being assumed.

Definition 1.3. A distribution E of a compact manifold M is weakly contracted by a diffeo-
morphism f of M , if for some Riemannian metric on M , and for any x ∈ M , we have:

either lim
n→+∞

‖Dxf
n|E‖ = 0, or lim

n→−∞
‖Dxf

n|E‖ = 0.

We emphasize that the “direction” of weak contraction can a priori change from point to
point, and that the notion of weak contraction is unchanged when replacing f by f−1.

With this definition, the main result of this paper is the following.

Theorem B. Let M be a closed, connected and orientable three-dimensional manifold, endowed
with a smooth splitting TM = Eα ⊕Eβ ⊕Ec, such that Eα ⊕Eβ is a contact distribution. Let
f be a diffeomorphism of M that preserves this splitting, and such that:

– each of the distributions Eα and Eβ is weakly contracted by f ,

– and f has a dense orbit.

Then the conclusions of Theorem A hold. In particular, f is a partially hyperbolic diffeomor-
phism.

Theorem A stated above for partially hyperbolic diffeomorphisms will directly follow from
Theorem B by an argument of Brin. This argument is explained in Paragraph 8.2 at the end
of the paper, where a refined version of Theorem A is stated that does not use any domination
hypothesis on the central direction (see Corollary 8.2). The rest of the paper is devoted to the
proof of Theorem B.

1.3 A rigid geometric structure preserved by contact partially hyperbolic
diffeomorphisms

Theorem A is a discrete-time analog of Theorem 1.1, and the general strategy of its proof shares
a lot with the one of Ghys in [Ghy87]. However, the transition from a continuous dynamic to
a discrete one will completely change the situation. First of all, contact partially hyperbolic
diffeomorphisms do not anymore preserve a contact one-form, and are thus (a priori) not
conservative. From a geometrical point of view, the difficulties that appear are analog to the
ones of a conformal geometry, with contrast to a metric geometry.
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In the discrete-time case, an invariant Kanai connection does not anymore exist, which
requires to look for less common rigid geometric structures. A contact plane distribution is
far from being rigid: according to Darboux’s theorem, they are all locally isomorphic. A sin-
gle smooth one-dimensional distribution in a contact plane distribution is still not sufficient
to make it rigid. But in the case of three-dimensional contact partially hyperbolic diffeomor-
phisms, the pair (Es, Eu) of transverse smooth one-dimensional distributions whose sum is
contact happens to be a rigid geometric structure, called a Lagrangean contact structure.

The usual machinery of differential geometry being not available, this uncommon structure
requires specific tools. The usual invariant linear connection will be replaced by another type of
connection called a Cartan connection, that does unfortunately not live on the base manifold
but on a principal bundle called the Cartan bundle. The data of this bundle together with
its connection define a Cartan geometry, invented by Élie Cartan. This Cartan geometry is
implicitly used by Ghys in [Ghy87] under the form of the geometry of second-order ordinary
differential equations.

The strength of Cartan geometries is to link the Lagrangean contact structures with the
homogeneous model space X = PGL3(R)/Pmin of complete flags of R3 (where Pmin is the
subgroup of upper-triangular matrices). In particular, the flat Lagrangean contact structures,
i.e. the ones whose curvature identically vanishes, are locally isomorphic to X (see Paragraphs
2.2.2 and 2.3.2). The geometry of X will thus play a prominent role in our proof.

Let us quote the work of Barbot in [Bar10], where the geometry of X and the dynamic of
PGL3(R) are studied with a different approach, the purpose being among others to construct
Anosov representations in PGL3(R) and compact quotients of open subsets of X.

1.4 Organization of the paper

This paper is organised in the following way. Section 2 introduces several notions and results
about the geometric structures that will be used in the whole paper. At the end of the paper
in Paragraph 8.2, we prove Theorem A from Theorem B, and the rest of the paper is devoted
to the proof of Theorem B. In Section 3, we begin this proof by showing that the triplet
S = (Eα, Eβ , Ec) is quasi-homogeneous, i.e. locally homogeneous in restriction to a dense open
subset Ω of M , and that its isotropy on Ω is non-trivial. This implies that the Lagrangean
contact structure (Eα, Eβ) is flat, i.e. described by a (PGL3(R),X)-structure on M . In Section
4, we refine this description, proving that S|Ω is locally isomorphic to one of two possible
homogeneous models (Yt,St) or (Ya,Sa), defined in Paragraphs 4.2.2 and 4.2.3. This relies on
a technical classification of the underlying infinitesimal model, done in Section 5. A critical
step of the proof of Theorem B is to show in Section 6 that the open dense subset Ω is actually
equal to M , implying that M has a (H, Y )-structure, with two possible models (Ht, Yt) or
(Ha, Ya). We prove in Section 7 that this (H, Y )-structure is complete, implying that M is a
compact quotient Γ\Y of one of these two models, with Γ a discrete subgroup of H = Aut(Y ).
This description allows us to conclude the proof of Theorem B in Paragraph 8.1.

1.5 Conventions and notations

From now on, every differential geometric object will be supposed to be smooth (i.e. C∞) if
nothing is precised, and the manifolds will be supposed to be boundaryless. We denote by
πM : M̃ → M the universal cover of a manifold M . The flow of a vector field X ∈ X(M)
is denoted by (ϕt

X). The Lie algebra of a Lie group G is denoted by g, and for any v ∈ g,
we denote by ṽ the left-invariant vector field of G generated by v. If Θ: G × M → M is a
smooth group action (on the left or the right) of G on M , then the orbital map of the action
at x ∈ M is denoted by θx = Θ(·, x), and we denote by Lg = Θ(g, ·) the translation by g ∈ G
if the action is on the left (respectively by Rg if the action is on the right). For any v ∈ g

we denote by v† ∈ X(M) the fundamental vector field of the action generated by v, defined by
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v†(x) = Deθx(v). Finally, for any subset Q of Rn+1 we denote by [Q] the projection in RPn of
the linear subspace of Rn+1 generated by Q.

Acknowledgments
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2 Three-dimensional Lagrangean contact structures

The rigid geometric structures that will be studied in the rest of this paper are the following.

Definition 2.1. A Lagrangean contact structure L on a three-dimensional manifold M is a
pair L = (Eα, Eβ) of transverse one-dimensional smooth distributions, such that Eα ⊕ Eβ

is a contact distribution. An enhanced Lagrangean contact structure S on M is a triplet
S = (Eα, Eβ , Ec) of one-dimensional smooth distributions such that TM = Eα ⊕Eβ ⊕Ec, and
Eα ⊕ Eβ is a contact distribution.
A (local) isomorphism between two Lagrangean contact structures is a (local) diffeomorphism
that preserves individually the distributions α and β, and the (local) isomorphisms of enhanced
Lagrangean contact structures preserve in addition the central distribution Ec.

We first define what will be for us the most important example of three-dimensional La-
grangean contact structure.

2.1 Homogeneous model space

We will call projective line the projection in RP2 of a plane of R3, and we denote by RP2
∗ the

set of projective lines of RP2 (called the dual projective plane). A pointed projective line is a
pair (m,D) with D ∈ RP2

∗ and m ∈ D, and we denote by

X =
{

(m,D)
∣∣∣ D ∈ RP2

∗,m ∈ D
}

⊂ RP2 × RP2
∗

the space of pointed projective lines. In other words, X is the space of complete flags of R3.
We will denote in the whole paper by

G = PGL3(R)

the group of projective transformations of RP2. As the projective action of G on RP2 and
RP2

∗ preserves the incidence relation m ∈ D, it induces a natural diagonal action of G on
X ⊂ RP2 ×RP2

∗. The action of G on X is transitive, and the stabilizer in G of the base-point
o = ([e1], [e1, e2]) of X is the subgroup

StabG(o) = Pmin =








∗ ∗ ∗
0 ∗ ∗
0 0 ∗







< G

of upper-triangular matrices. From now on, we will identify X and G/Pmin by the orbital
map θ̄o : G/Pmin → X at o. The space X is a RP1-bundle over RP2 and RP2

∗ through the
projections

πα : (m,D) ∈ X 7→ m ∈ RP2 and πβ : (m,D) ∈ X 7→ D ∈ RP2
∗. (2.1)

For x = (m,D) ∈ X, we will denote by Cα(x) = Cα(m) (resp. Cβ(x) = Cβ(D)) the fiber of x
with respect to πα (resp. πβ) and call it the α-circle (resp. β-circle) of x. We denote by

Eα = Ker(Dπα) and Eβ = Ker(Dπβ)
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the one-dimensional distributions of X respectively tangent to the foliations by α and β-circles.
The sum Eα ⊕ Eβ is contact and we will call LX = (Eα, Eβ) the standard Lagrangean contact
structure of X.

Lemma 2.2. The group of automorphisms of the standard Lagrangean contact structure LX

is equal to G. In particular, the structure (X,LX) is homogeneous.

Proof. First of all, the action of G preserves the foliations of X by α and β-circles, i.e. preserves
LX. Conversely, if f is a diffeomorphism of X preserving LX, the fact that f preserves the
foliation by α-circles shows that f can be pushed down by πα to a a diffeomorphism f̄ of
RP2. Since f moreover preserves the foliation by β-circles, f̄ maps any projective line to a
projective line. This implies that f̄ is a projective transformation according to a classical result
of projective geometry (proved for example in [Sam89, Theorem 7 p.32]), i.e. that f is induced
by the action of an element of G.

2.2 Lagrangean-contact structures as Cartan geometries

We now introduce the Cartan geometries modelled on the homogeneous space X = G/Pmin,
and make the link with Lagrangean contact structures. This notion will be our principal
technical tool to deal with Lagrangean contact structures. We refer the reader to [Sha97] or
[ČS09] for further details about Cartan geometries in a more general context.

2.2.1 Cartan geometries modelled on G/Pmin

Definition 2.3. A Cartan geometry C = (M̂ , ω) modelled on G/Pmin on a three-dimensional
manifold M is the data of a Pmin-principal bundle over M denoted by π : M̂ → M and called
the Cartan bundle, together with a sl3-valued one-form ω : TM̂ → sl3 on M̂ called the Cartan
connection, that satisfies the three following properties:

1. ω defines a parallelism of M̂ , i.e. for any x̂ ∈ M̂ , ωx̂ is a linear isomorphism from Tx̂M̂
to sl3,

2. ω reproduces the fundamental vector fields of the right action of Pmin, i.e. for any v ∈ sl3
and x̂ ∈ M̂ we have: v†(x̂) = d

dt
|t=0x̂ · etv = ω−1

x̂ (v),

3. and ω is Pmin-equivariant, i.e. for any p ∈ Pmin and x̂ ∈ M̂ we have: R∗
pω = Ad(p)−1 ◦ω

(where Ad(p) stands for the adjoint action of p on sl3).

A (local) automorphism f of the Cartan geometry C between two open sets U and V of M is
a (local) diffeomorphism from U to V that lifts to a Pmin-equivariant (local) diffeomorphism
f̂ between π−1(U) and π−1(V ), such that f̂ preserves the Cartan connexion ω (i.e. f̂∗ω = ω).

Example 2.4. The homogeneous model space X is endowed with the Cartan geometry of the
model CX = (G, ωG), given by the canonical Pmin-bundle πG : G → G/Pmin = X over X,
together with the Maurer-Cartan form ωG : TG → sl3 (defined by ωG(ṽ) ≡ v on the left-
invariant vector fields of G).

We fix for the rest of this subsection a Cartan geometry (M, C) = (M,M̂, ω) modelled on
G/Pmin.

2.2.2 Curvature of a Cartan geometry

The following definition replaces the curvature of a Riemannian metric in the case of Cartan
geometries.
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Definition 2.5. The curvature form of C is the sl3-valued two-form Ω of M̂ defined by the
following relation for two vector fields X and Y on M̂ :

Ω(X,Y ) = dω(X,Y ) + [ω(X), ω(Y )]. (2.2)

Thanks to the Cartan connection, the curvature form Ω is equivalent to a curvature map
K : M̂ → End(Λ2sl3, sl3) on M̂ (that we will often simply call the curvature of C), having
values in the vector space of sl3-valued alternated bilinear maps on sl3, and defined by the
following relation for x̂ ∈ M̂ and v,w ∈ sl3:

Kx̂(v,w) = Ω(ω−1
x̂ (v), ω−1

x̂ (w)). (2.3)

We will say that the Cartan geometry C (or the Cartan connection ω) is torsion-free if
Kx̂(v,w) ∈ pmin for any x̂ ∈ M̂ and v,w ∈ sl3.

If v or w is tangent to the fiber of the principal bundle M̂ , then the curvature form satisfies
Ω(v,w) = 0 (this is proved in [Sha97, Chapter 5 Corollary 3.10]). Since ω maps the tangent
space of the fibers of M̂ to pmin (because the fundamental vector fields are ω-invariant), this
implies that the curvature K(v,w) vanishes whenever v or w is in pmin. As a consequence at
any point x̂ ∈ M̂ , Kx̂ induces a sl3-valued alternated bilinear map on sl3/pmin, and we will
identify in the sequel K with the induced map

K : M̂ → End(Λ2(sl3/pmin), sl3). (2.4)

The adjoint action of Pmin induces a linear left action on End(Λ2(sl3/pmin), sl3) defined for
p ∈ Pmin and K ∈ End(Λ2(sl3/pmin), sl3) by

p ·K : u ∧ v 7→ Ad(p) · (K(Ad(p)−1 · u,Ad(p)−1 · v)). (2.5)

Using the linear right action of Pmin on End(Λ2(sl3/pmin), sl3) defined by K · p := p−1 · K,
K is Pmin-equivariant (this is proved in [Sha97, Chapter 5 Lemma 3.23]). Moreover, K is
preserved by any local automorphism f of the Cartan geometry (i.e. K ◦ f̂ = K for any such
local automorphism).

2.2.3 Lagrangean-contact structure induced by a Cartan geometry

At any point x ∈ M and for any x̂ ∈ π−1(x), we denote by ix̂ : TxM → sl3/pmin the unique
isomorphism satisfying

ix̂ ◦ Dx̂π = ωx̂, (2.6)

where ω denotes the projection of ω on sl3/pmin. Since the adjoint action of Pmin preserves
pmin, it induces a representation Ad: Pmin → GL(sl3/pmin) on sl3/pmin, and the Pmin-
equivariance of ω implies the following relation for any p ∈ Pmin:

ix̂·p = Ad(p)−1 ◦ ix̂. (2.7)

This relation shows that any Ad(Pmin)-invariant object on sl3/pmin gives rise, through the
isomorphisms ix̂, to a well-defined object on the tangent bundle of M . Let us apply this idea
to define a Lagrangean contact structure on M associated to the Cartan geometry C. We
introduce

eα =
(

0 0 0
0 0 0
0 1 0

)
, eβ =

(
0 0 0
1 0 0
0 0 0

)
, and e0 =

(
0 0 0
0 0 0
1 0 0

)
, (2.8)

defining a basis (ēα, ēβ , ē0) of sl3/pmin, in which the matrix of the adjoint action of

p =



a x z
0 a−1b−1 y
0 0 b


 ∈ Pmin
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is equal to:

Mat(ēα,ēβ ,ē0)(Ad(p)) =



a−2b−1 0 a−1y

0 ab2 −b2x
0 0 a−1b


 . (2.9)

In particular, the adjoint action of Pmin individually preserves the lines Rēα and Rēβ of
sl3/pmin. Together with the relation (2.7), this shows that for x ∈ M , the lines i−1

x̂ (Rēα)
and i−1

x̂ (Rēβ) of TxM do not depend on the lift x̂ of x. The Cartan geometry C induces thus
two one-dimensional distributions Eα

C (x) = i−1
x̂ (Rēα) and Eβ

C (x) = i−1
x̂ (Rēβ) on M .

Lemma 2.6. Any torsion-free Cartan geometry (M, C) modelled on G/Pmin induces a La-
grangean contact structure (Eα

C , E
β
C ) on the three-dimensional base manifold M .

Sketch of proof. For x ∈ M , considering a local section of the Cartan bundle over x, we can
push down by π the ω-constant vector fields ẽα and ẽβ of M̂ (characterized by ω(ẽε) ≡ eε)
to local vector fields Xα and Xβ of M defined on a neighbourhood of x, that respectively
generate the distributions Eα

C and Eβ
C . If the curvature of C has values in pmin, then the

identity ω([ẽα, ẽβ ]) = [eα, eβ ] − K(eα, eβ) (deduced from Cartan’s formula for the differential
of a one-form) implies that [Xα,Xβ ] /∈ Vect(Xα,Xβ) in the neighbourhood of x. This shows
that Eα

C ⊕ Eβ
C is contact, and concludes the proof of the lemma.

Remark 2.7. In the case of the homogeneous model space, the Lagrangean contact structure
(Eα

CX
, Eβ

CX
) induced by CX is the standard Lagrangean contact structure LX.

2.3 Normal Cartan geometry of a Lagrangean contact structure

Actually, any three-dimensional Lagrangean contact structure is induced by a torsion-free Car-
tan geometry modelled on G/Pmin. This equivalence between three-dimensional Lagrangean
contact structures and Cartan geometries modelled on G/Pmin was discovered by Élie Cartan,
who developped this notion and after whom these geometries are named.

2.3.1 Equivalence problem for Lagrangean contact structures

A given three-dimensional Lagrangean-contact structure is induced by several Cartan connec-
tions, but to obtain an equivalence between both formulations, we have to choose a particular
one. This choice will be done through a normalisation condition on the curvature. Using the
basis (ēα ∧ ē0, ēβ ∧ ē0, ēα ∧ ēβ) of Λ2(sl3/pmin), we define the following four-dimensional subspace
of End(Λ2(sl3/pmin), sl3):

WK =
{
K : ēα ∧ ē0 7→

(
0 0 Kα

0 0 Kα

0 0 0

)
, ēβ ∧ ē0 7→

(
0 Kβ Kβ

0 0 0
0 0 0

)
, ēα ∧ ēβ 7→ 0

∣∣∣∣ (Kα,K
α,Kβ ,K

β) ∈ R4
}
.

(2.10)
The linear action of Pmin preserves WK , that will be called the space of normal curvatures.
Theorem 2.8 below is proved in [DK16, Theorem 3 p.14], where the normalisation condition is
explicitely calculated through Cartan’s method of equivalence (see also [ČS09, Theorem 3.1.14
p.271 and Paragraph 4.2.3] that makes the link with general parabolic Cartan geometries).

Theorem 2.8 (É. Cartan, [DK16], [ČS09]). For any Lagrangean contact structure L on a three-
dimensional manifold M , there exists a torsion-free Cartan geometry modelled on G/Pmin

inducing L on M , and whose curvature map has values in the space WK of normal curvatures.
Such a Cartan geometry is unique (up to action of principal bundle automorphisms covering
the identity on M), and will be called the normal Cartan geometry of L.

Furthermore, if (M1,L1) and (M2,L2) are two three-dimensional Lagrangean contact struc-
tures, and C1, C2 are the associated normal Cartan geometries, then the (local) isomorphisms
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between L1 and L2 and the (local) isomorphism between C1 and C2 are the same (this a di-
rect consequence of the quasi-unicity of the normal Cartan geometry). The curvature map
K : M̂ → WK of the normal Cartan geometry of a three-dimensional Lagrangean contact
structure L will simply be called the curvature of L.

2.3.2 Flat Lagrangean contact structures

The homogeneous model space (X,LX) verifies the following analog of Liouville’s theorem.

Theorem 2.9. For any connected open subsets U and V of the homogeneous model space X,
and any diffeomorphism f from U to V that preserves its standard Lagrangean contact structure
LX, there exists g ∈ G = Aut(X,LX) such that f is the restriction to U of the translation by
g.

Proof. The Maurer-Cartan form satisfies for any tangent vectors v and w the structural equa-
tion dωG(v,w) + [ωG(v), ωG(w)] = 0 (see [Sha97, §3.3 p.108]), implying that the curvature of
the Cartan connection ωG is zero. The Cartan geometry of the model satisfies thus the normal-
isation condition of Theorem 2.8, i.e. is the normal Cartan geometry of LX (see Remark 2.7).
According to Theorem 2.8, any local isomorphism of LX between two connected open subset U
and V of X lifts therefore to a local isomorphism of the Cartan geometry CX between π−1

G
(U)

and π−1
G

(V ). Such an automorphism is the left translation by an element of G according to
[Sha97, Chapter 5 Theorem 5.2], which concludes the proof.

A three-dimensional Lagrangean contact structure (M,L) is flat if its curvature vanishes
identically. According to the proof of Theorem 2.9, the model space is flat, and since this
property is local, any Lagrangean contact structure locally isomorphic to (X,LX) is flat.

The power of Cartan geometries lies in the converse of this statement: any flat three-
dimensional Lagrangean contact structure L is locally isomorphic to the homogeneous model
space (see [Sha97, Theorem 5.1 and Theorem 5.2 p. 212]). There exists in this case an atlas of
charts from M to X consisting of local isomorphisms of Lagrangean contact structures from L to
LX, and whose transition maps are restrictions of left translations by elements of G (according
to Theorem 2.9). A maximal atlas satisfying these conditions is called a (G,X)-structure on
M . Any (G,X)-structure conversely induces on M a Lagrangean contact structure L locally
isomorphic to LX, whose charts are local isomorphisms from L to LX.

Theorem 2.10. Any flat three-dimensional Lagrangean contact structure (M,L) is induced by
a (G,X)-structure on M .

Denoting by π : M̃ → M the universal cover of M , we recall that any (G,X)-structure
on M is described by a local diffeomorphism δ : M̃ → X called the developping map, that is
equivariant for a morphism ρ : π1(M) → G called the holonomy morphism (see for example
[Thu97, §3.4 p.139-141]). Moreover for any g ∈ G, the pair (g ◦ δ, gρg−1) of developping
map and holonomy morphism describes the same (G,X)-structure. The Lagrangean contact
structure L induced by a (G,X)-structure is characterized by: δ∗LX = π∗

M L.

2.3.3 Harmonic curvature

For K ∈ WK an element of the space of normal curvatures defined by

K : ēα ∧ ē0 7→

(
0 0 Kα

0 0 Kα

0 0 0

)
, ēβ ∧ ē0 7→

(
0 Kβ Kβ

0 0 0
0 0 0

)
, ēα ∧ ēβ 7→ 0,

and

p =



a x z
0 a−1b−1 y
0 0 b


 ∈ Pmin,

10



the adjoint action (2.9) of Pmin given in Paragraph 2.3 enables to compute the components ·α
and ·β of p ·K ∈ WK :

(p ·K)α = a5bKα and (p ·K)β = a−1b−5Kβ. (2.11)

These expressions show in particular that the two-dimensional subspace WH = {K ∈ WK |
Kα = Kβ = 0} of WK is preserved by the linear action of Pmin.

Proposition 2.11. If the curvature map of a three-dimensional Lagrangean contact structure
L has values in the subspace WH ( i.e. if Kα and Kβ identically vanish), then L is flat.

We will use in the proof of this result the graduation of sl3 given by the following block-
decomposition:

sl3 =




(sl3)0 (sl3)1 (sl3)2

(sl3)−1 (sl3)0 (sl3)1

(sl3)−2 (sl3)−1 (sl3)0


 . (2.12)

The graduation property simply means that the components of the splitting sl3 = ⊕2
i=−2(sl3)i

satisfy [(sl3)i, (sl3)j ] ⊂ (sl3)i+j for any i and j (where (sl3)i = {0} for any |i| > 2). This
graduation of sl3 gives rise to a filtration defined by sl3

i = ⊕j≥i(sl3)j , with respect to which
sl3 is a filtered Lie algebra, i.e. [sl3i, sl3

j] ⊂ sl3
i+j (with sl3

i = sl3 for i ≤ −2 and sl3
i = {0}

for i > 2).

Proof of Proposition 2.11. Let (M,M̂, ω) be the normal Cartan geometry of L, and let us intro-

duce the following basis of sl3: e0 =
(

0 0 0
0 0 0
1 0 0

)
, eα =

(
0 0 0
0 0 0
0 1 0

)
, eβ =

(
0 0 0
1 0 0
0 0 0

)
, e1 =

( 1 0 0
0 −1 0
0 0 0

)
, e2 =

( 0 0 0
0 1 0
0 0 −1

)
, eα =

(
0 0 0
0 0 1
0 0 0

)
, eβ =

(
0 1 0
0 0 0
0 0 0

)
, e0 =

(
0 0 1
0 0 0
0 0 0

)
, that we denote by B. The graduation of

sl3 implies [e0, (sl3)1 ⊕ (sl3)2] = {0}, and we have the following Lie brackets relations between
the elements of B: [e0, e0] = e1 + e2, [e0, eα] = eβ, [e0, eβ ] = −eα, [e0, e1] = [e0, e2] = −e0. We
denote the coordinate of the Cartan connection ω with respect to an element e of the basis
B as a real-valued one-form ωe on M̂ . We thus have ω =

∑
e∈B ωee, and in the same way,

the curvature form Ω of ω will be denoted as Ω =
∑

e∈B Ωee, where the Ωe’s are real-valued
two-forms on M̂ . According to the normalisation condition (2.10), if Kα = Kβ = 0 identi-
cally, then the only non-zero two-form Ωe is Ω0 = Kαωα ∧ ω0 + Kβωβ ∧ ω0. The curvature
form satisfies moreover the Bianchi identity dΩ = [Ω, ω], where [Ω, ω] = L ◦ (Ω ∧ ω) with
L : v⊗w ∈ sl3 ⊗ sl3 7→ [v,w] ∈ sl3 (see [Sha97, Chapter 1.5 p.61 and Chapter 5 Lemma 3.30]).
Projecting the Bianchi identity to Reβ and Reα, we obtain the following equalities:

0 = −Kαωα ∧ ω0 ∧ ωβ, 0 = Kβωβ ∧ ω0 ∧ ωα.

Since (ωα, ω0, ωβ) is at each point x̂ ∈ M̂ a basis of the dual space (ω−1
x̂ ((sl3)−2⊕(sl3)−1)))∗, the

three-form ωα ∧ω0 ∧ωβ does not vanish, and the above equalities imply therefore Kα = Kβ = 0
identically, i.e. K = 0 as announced.

Remark 2.12. The components Kα and Kβ of the curvature actually encode the harmonic
curvature of a normal Cartan geometry modelled on G/Pmin, which is known to be the only
obstruction to the flatness for parabolic Cartan geometries. With this point of view, the above
Proposition 2.11 is the translation in the specific case of Lagrangean contact structures of a
general phenomena arising for any parabolic Cartan geometry (see for example [ČS09, Theorem
3.1.12]).

2.3.4 Normal generalized Cartan geometry of an enhanced Lagrangean contact

structure

Let S = (Eα, Eβ , Ec) be an enhanced Lagrangean contact structure on a three-dimensional
manifold M , and C = (M̂, ω) be the normal Cartan geometry of the underlying Lagrangean
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contact structure (Eα, Eβ). Using the isomorphisms ix̂ defined in (2.6), the transverse distri-
bution Ec is encoded by the map

ϕ : x̂ ∈ M̂ 7→ ix̂(Ec(π(x̂))) ∈ V,

having values in the open subset

V = {L ∈ P(sl3/pmin) | L 6⊂ Vect(ēα, ēβ)}

of the projective space P(sl3/pmin). Endowing V with the right Pmin-action defined by L · p =
Ad(p)−1(L), ϕ is Pmin-equivariant. Conversely, any Pmin-equivariant application ϕ : M̂ → V
defines on M a distribution Ec(π(x̂)) = i−1

x̂ (ϕ(x̂)) which is transverse to the contact plane
Eα ⊕ Eβ of L.

Definition 2.13. We will call (C, ϕ) = (M̂ , ω, ϕ) the normal generalized Cartan geometry of
the enhanced Lagrangean contact structure S.

2.4 Killing fields of (enhanced) Lagrangean contact structures

2.4.1 Some classical properties of Killing fields

A (local) Killing field of a Lagrangean contact structure (M,L) is a (local) vector field X of
M whose flow preserves L. We will denote by Kill(U,L) the subalgebra of Killing fields of L
defined on an open subset U ⊂ M , and by killloc

L (x) the Lie algebra of germs of Killing fields
of L defined on a neighbourhood of x. The Killing fields of an enhanced Lagrangean contact
structure S are defined in the same way.

The following statement summarizes some important properties of Killing fields, coming
from their description through Cartan geometries and well-known in this context. The results
are stated for Lagrangean contact structures, but are true as well for enhanced Lagrangean
contact structures.

Lemma 2.14. Let M be a three-dimensional connected manifold endowed with a Lagrangean
contact structure L, and C = (M̂, ω) be the normal Cartan geometry of L.

1. If f̂ is a Pmin-equivariant diffeomorphism of M̂ that covers idM and preserves ω, then
f̂ = id

M̂
. If X̂ is a Pmin-invariant vector field on M̂ whose flow preserves ω and whose

projection on M vanishes, then X̂ = 0. As a consequence, the lift of a local automorphism
f (respectively Killing field X) of L to a Pmin-equivariant diffeomorphism f̂ of M̂ that
preserves ω (resp. to a Pmin-invariant vector field X̂ on M̂ whose flow preserves ω), is
unique.

2. If the lift X̂ of a Killing field X of L vanishes at some point x̂ ∈ M̂ , then X = 0. In
other words, the linear map X ∈ Kill(M,L) 7→ ωx̂(X̂x̂) ∈ sl3 is injective.

3. The Lie algebra morphism X ∈ Kill(M,L) 7→ [X]x ∈ killloc
L (x) sending a Killing field of

L to its germ at a point x ∈ M is injective.

Sketch of proof. 1. The first assertion is a direct consequence of [ČS09, Proposition 1.5.3] for
Cartan geometries modelled on G/Pmin, and implies the second one.
2. Let us assume that a local automorphism f̂ of C fixes a point x̂ ∈ M̂ . Then, since f̂ preserves
the parallelism defined by ω, a classical argument implies that f̂ is trivial on the connected
component of x̂. This remark easily implies the assertion about Killing fields.
3. According to [BFM09, Lemma 7.1], a local automorphism that is trivial in the neighbourhood
of x is trivial on the connected component of its domain of definition that contains x. This
result easily implies the statement concerning Killing fields.
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Remark 2.15. The third statement of the previous lemma shows in particular that for any
connected open neighbourhood U of x ∈ M , the dimension of Kill(U,L) is bounded from above
by dim sl3 = 8. If we consider a decreasing sequence of connected open neighbourhoods Uk of x
such that ∩kUk = {x}, (dimKill(Uk,L)) is thus a bounded increasing sequence, and is therefore
constant for k large enough. This proves the existence of a connected open neighbourhood U
of x such that

X ∈ Kill(U,L) 7→ [X]x ∈ killloc
L (x)

is a Lie algebra isomorphism.

The following Lemma is the translation of Theorem 2.9 for Killing fields of (X,LX).

Lemma 2.16. 1. At any point x ∈ X, the Lie algebra of local Killing fields of LX at x
is identified with sl3 through the fundamental vector fields of the action of G. In other
words, the application v ∈ sl3 7→ [v†]x ∈ killloc

LX
(x) sending v ∈ sl3 to the germ of v† at x,

is an anti-isomorphism of Lie algebras.

2. Any local Killing field of (X,LX) defined on a connected neighbourhood of a point x ∈ X is
the restriction of a global Killing field defined on X. In other words, X ∈ Kill(X,LX) 7→
[X]x ∈ killloc

LX
(x) is a Lie algebra isomorphism.

Proof. 1. If v† is trivial in the neighbourhood of x, then for any t ∈ R, etv acts trivially
on an open neighbourhood of x. But the action of G on X is analytic: if g and h in G

have the same action on some non-empty open subset of X, then g = h (because the linear
subspace generated by the pre-image in R3 of a non-empty open subset of RP2 is equal to R3).
Therefore, etv = id for any t ∈ R, i.e. v = 0. The application v 7→ [v†]x is thus injective, and as
dim killloc

LX
(x) ≤ dim sl3 according to the third assertion of Lemma 2.14, it is an isomorphism.

Finally, v 7→ v† is known to be an anti-morphism of Lie algebras.
2. Any local Killing field at x is the restriction of v† for some v ∈ sl3 according to the first
assertion, and extends therefore to a Killing field defined on X.

2.4.2 Total curvature map of an enhanced Lagrangean contact structure

Let (C, ϕ) = (M̂ , ω, ϕ) be the normal Cartan geometry of a three-dimensional enhanced La-
grangean contact structure (M,S). With K : M̂ → WK the curvature map of C, we define the
curvature map

K := (K,ϕ) : M̂ → WK := WK × V,

of the enhanced Lagrangean contact structure (M,S), which is Pmin-equivariant for the right
diagonal action of Pmin on WK.

If W is any manifold endowed with a right action of Pmin, we define B(W ) := {(w, l) |
w ∈ W, l ∈ End(sl3,TwW )} (this is a vector bundle over W ), that we endow with the right
Pmin-action (w, l) · p = (w · p,DwRp ◦ l ◦ Ad(p)). For any smooth Pmin-equivariant map
ψ : M̂ → W , we define a Pmin-equivariant map D1ψ : M̂ → B(W ) encoding the differential of
ψ as follows: D1ψ(x̂) = (ψ(x̂),Dx̂ψ ◦ω−1

x̂ ). We then define inductively Bk+1(W ) = B(Bk(W ))
and Dk+1ψ = D(Dkψ) : M̂ → Bk+1(W ) for any k ∈ N (with B0(W ) = W and D0ψ = ψ).

Denoting m = dim sl3 = 8, we define WKtot := Bm(WK), and the total curvature

Ktot := DmK : M̂ → WKtot

of the enhanced Lagrangean contact structure S. The total curvature Ktot is Pmin-equivariant
and preserved by local automorphisms of S (i.e. for any such local automorphism f we have
Ktot ◦ f̂ = Ktot). We also define for k ∈ N∗ the space of Killing generators of order k by
Killk(x̂) = ωx̂(Ker(Dx̂D

k−1K)) ⊂ sl3, and the space of Killing generators of total order by
Killtot(x̂) = Killm+1(x̂) = ωx̂(Ker(Dx̂Ktot)) ⊂ sl3.
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2.4.3 Gromov’s theory

The integrability locus M̂ int of M̂ is the set of points x̂ ∈ M̂ such that for any v ∈ Killtot(x̂),
there exists a local Killing field X of S defined around π(x̂) and such that ωx̂(X̂x̂) = v. It is
easy to check that M̂ int is a Pmin-equivariant set, and we define the integrability locus of M
as M int = π(M̂ int).

Theorem 2.17 (Integrability theorem). Let (M,S) be a three-dimensional enhanced Lagrangean
contact structure of total curvature Ktot, and M̂ be its normal Cartan bundle. Then the inte-
grability locus M̂ int of M̂ is equal to the set of points x̂ ∈ M̂ where the rank of Dx̂Ktot is locally
constant. In particular, M̂ int is open and dense, and so is the integrability locus M int of M .

Gromov investigates in [Gro88] the integration of “jets” of Killing fields for very general rigid
geometric structures, and proves results related to the above Theorem. In the case of three-
dimensional enhanced Lagrangean contact structures, the equivalence with normal generalized
Cartan geometries allows to avoid the notion of jets of Killing fields, replaced by the one of
Killing generators of total order. In this setting, Theorem 2.17 is a consequence of [Pec16,
Theorem 4.19]. We use here a modification of the statement of Pecastaing proved by Frances
in [Fra16, Theorem 2.2]. The proof of Frances statement for generalized Cartan geometries is
straightforward by following the lines of the proof he does for Cartan geometries, and using
[Pec16, Lemma 4.20 and Lemma 4.9].

3 Quasi homogeneity and flatness

From now on and until the end of this paper, we are under the hypotheses of Theorem B
and we adopt its notations. The manifold M is thus three-dimensional, closed, connected
and orientable, S = (Eα, Eβ , Ec) is an enhanced Lagrangean contact structure on M , and we
will denote by L = (Eα, Eβ) the underlying Lagrangean contact structure. Finally, f is an
automorphism of (M,S) such that:

– each of the distributions Eα and Eβ is weakly contracted by f (see Definition 1.3),

– and f has a dense orbit.

In particular, the non-wandering set NW (f) = NW (f−1) equals M , and the set Rec(f)
(respectively Rec(f−1)) of recurrent points of f (respectively f−1) is thus a dense Gδ-subset of
M . In particular, Rec(f) ∩ Rec(f−1) is dense in M as well.

3.1 Quasi homogeneity of the enhanced Lagrangean contact structure

At a point x ∈ M , we introduce the subalgebra

isloc
S (x) =

{
X ∈ killloc

S (x)
∣∣∣ X(x) = 0

}
(3.1)

of local Killing fields vanishing at x, that we call the isotropy subalgebra of S at x.

Definition 3.1. The Killloc-orbit (for S, respectively L) of a point x ∈ M is the set of points
that can be reached from x by flowing along finitely many local Killing fields of S (respectively
L). An enhanced Lagrangean contact structure (M,S) (resp. a Lagrangean contact structure
(M,L)) is locally homogeneous if any connected component of M is a Killloc-orbit (for S, resp.
L).

The first claim of the following Proposition is a consequence of Gromov’s “open-dense
orbit theorem”, and the second one is the translation in the context of enhanced Lagrangean
contact structures of a work done by Frances in [Fra16, Proposition 5.1] for pseudo-Riemannian
structures.
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Proposition 3.2. There exists an open and dense subset Ω of M , such that the enhanced
Lagrangean contact structure S is locally homogeneous in restriction to Ω. Moreover for any
x ∈ Ω, the isotropy subalgebra isloc

S (x) is non-trivial.

Proof. Since S has an automorphism f with a dense orbit, Gromov’s dense orbit theorem
directly implies the first claim (see [Gro88, Corollary 3.3.A], and [Pec16, Theorem 4.13] for a
proof in the case of generalized Cartan geometries). We fix from now on a connected component
O of Ω. By local homogeneity of S|Ω, it suffices to prove the second claim for one point of O.
Since the integrability locus M int is open and dense (see Theorem 2.17), and Rec(f)∩Rec(f−1)
is dense in M , there exists a point x ∈ O ∩ M int ∩ Rec(f) ∩ Rec(f−1). We show now that
isloc

S (x) is non-zero.
Let us denote by (M̂ , ω, ϕ) the normal generalized Cartan geometry of S (see Definition

2.13), and let us choose x̂ ∈ π−1(x). Possibly replacing f by f−1, we have lim
n→+∞

‖Dxf
n|Eα‖ = 0,

and by hypothesis on x, there exists a strictly increasing sequence (nk) of integers such that
fnk(x) converges to x, implying the existence of a sequence pk ∈ Pmin such that f̂nk(x̂) · p−1

k

converges to x̂. We claim that the sequence (f̂nk(x̂)) has to leave every compact subset of M̂ ,
implying that (pk) also leaves every compact subset of Pmin. In fact, if not, some subsequence
(f̂n′

k(x̂)) converges in M̂ , implying that (f̂n′

k) converges in Diff∞(M̂) for the C∞-topology,
because f̂ preserves the parallelism defined by ω (see [Kob95, Theorem I.3.2]). Therefore,
(fn′

k) also converges for the C∞-topology, which contradicts lim
k→+∞

∥∥∥Dxf
n′

k |Eα

∥∥∥ = 0.

The sequel of the proof of [Fra16, Proposition 5.1] will enable us to conclude, using the
total curvature Ktot : M̂ → WKtot of S (see Paragraph 2.4.3). By Pmin-equivariance of the total
curvature and its invariance by automorphisms, we have pk · Ktot(x̂) = Ktot(f̂nk(x̂) · p−1

k ), and
pk ·Ktot(x̂) converges thus to Ktot(x̂). The manifold WKtot has a canonical structure of algebraic
variety for which the action of Pmin is algebraic (because its action on the space WK of normal
curvatures and on the algebraic variety V ⊂ P(sl3/pmin) are algebraic, see [Pec16, Remark 4.16]
for more details). Therefore, the orbits of the action of Pmin on WKtot are locally closed, and
are thus imbedded submanifolds. In particular, there exists a sequence εk ∈ Pmin converging to
the identity and such that pk · Ktot(x̂) = εk · Ktot(x̂), i.e. such that ε−1

k pk ∈ StabPmin
(Ktot(x̂)).

Since ε−1
k pk leaves every compact subset of Pmin, StabPmin

(Ktot(x̂)) is non-compact. But
StabPmin

(Ktot(x̂)) is an algebraic subgroup of Pmin and has thus a finite number of connected
components, which implies that its identity component is also non-compact.

There exists thus a non-zero vector v ∈ pmin in the Lie algebra of StabPmin
(Ktot(x̂)). For

any t ∈ R we have by hypothesis Ktot(x̂ · exp(tv)) = Ktot(x̂) · exp(tv) = Ktot(x̂), and deriving
this equality at t = 0 we obtain Dx̂Ktot(ω−1

x̂ (v)) = 0, i.e. v ∈ ωx̂(Ker(Dx̂Ktot)) = Killtot(x̂).
Since x̂ is in the integrability locus M̂ int, there exists a local Killing field X ∈ killloc

S (x) such
that ωx̂(X̂x̂) = v 6= 0. This shows that X 6= 0 and X(x) = 0, i.e. that X ∈ isloc

S (x) \ {0}, and
concludes the proof of the proposition.

3.2 Flatness of the Lagrangean contact structure

In particular, the underlying Lagrangean contact structure L = (Eα, Eβ) is also locally homo-
geneous with non-zero isotropy in restriction to the open and dense subset Ω. The following
result due to Tresse in [Tre96] (see also [KT17, §4.5.2]) implies that L|Ω is flat.

Theorem 3.3 (Tresse [Tre96]). Any three-dimensional locally homogeneous connected La-
grangean contact structure with non-zero isotropy is flat.

By density of Ω and continuity of the curvature, the Lagrangean contact structure (M,L)
is therefore flat, and according to Paragraph 2.3.2, we obtain the following corollary.

Corollary 3.4. The Lagrangean contact structure L is described by a (G,X)-structure on M .
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The rest of this paragraph is devoted to prove Tresse’s Theorem 3.3. We consider a lo-
cally homogeneous Lagrangean contact structure L with non-zero isotropy defined on a three-
dimensional connected manifold M . We denote by C = (M̂ , ω) the normal Cartan geometry
of L, and by K : M̂ → WK its curvature map. Choosing x ∈ M and x̂ ∈ π−1(x), it suffices to
prove that K(x̂) = 0 by local homogeneity of C. We will denote by

h = killloc
L (x) and i = isloc

L (x)

the algebra of local Killing fields of L at x and its isotropy subalgebra. As L is locally homo-
geneous, evx(h) := {X(x) | X ∈ h} = TxM , and in particular dim h− dim i = 3. The following
result gives us a sufficient condition for the vanishing of the curvature.

Lemma 3.5. Let f be a local automorphism of a locally homogeneous three-dimensional La-
grangean contact structure (M,L) fixing a point x ∈ M , let x̂ ∈ π−1(x) be a lift of x in the
normal Cartan bundle of L, and let p ∈ Pmin be the holonomy of f̂ at x̂, characterized by
f̂(x̂) = x̂ · p−1. If p = exp(v) with

v =



a ∗ ∗
0 −a− b ∗
0 0 b


 ∈ pmin such that b 6= −5a and a 6= −5b, (3.2)

then L is flat.

Proof. Since the curvature K is preserved by f̂ and Pmin-equivariant (see Paragraph 2.3), we
obtain p ·K(x̂) = K(x̂ · p−1) = K(f̂(x̂)) = K(x̂), where the holonomy p is of the form

p =



λ ∗ ∗
0 λ−1µ−1 ∗
0 0 µ




with µ 6= λ−5 and λ 6= µ−5 by hypothesis. According to the expression of the compo-
nents (p.K)α and (p.K)β of the curvature given in (2.11), we have λ5µK(x̂)α = K(x̂)α and
λµ5K(x̂)β = K(x̂)β, implying K(x̂)α = K(x̂)β = 0. The structure being locally homogeneous
and the subspace WH = {K ∈ WK | Kα = Kβ = 0} being Pmin-invariant, K has values in WH

on a neighbourhood of x̂, and therefore K = 0 on this neighbourhood according to Proposition
2.11. By local homogeneity, L is flat.

We introduce the Cartan subalgebra a ≃ R2 of diagonal matrices of pmin, and the projection
p : pmin → a on a parallel to heis(3), which is a Lie algebra morphism. The following linear
map will play an important role in the proof:

φ : X ∈ i 7→ p(ωx̂(X̂x̂)) ∈ a.

Fact 3.6. If there exists X ∈ i such that φ(X) satisfies the hypotheses (3.2) of Lemma 3.5,
then L is flat.

Proof. Denoting by p(t) the element of Pmin such that ϕt
X̂

(x̂) = x̂ · p(t), {p(t)}t∈R is a one-
parameter subgroup. There exists thus w ∈ pmin such that p(t) = exp(tw), and deriving the
relation ϕt

X̂
(x̂) = x̂ · exp(tw) at t = 0 we obtain w = ωx̂(X̂x̂) (because ω reproduces the

fundamental vector fields of the action of Pmin). There exists thus an automorphism ϕ = ϕ−1
X

of (M,L) fixing x and such that ϕ̂(x̂) = x̂ · exp(ωx̂(X̂x̂))−1. Since φ(X) = p(ωx̂(X̂x̂)) satisfies
the conditions (3.2), ωx̂(X̂x̂) also does, and Lemma 3.5 implies that L is flat.

Fact. If Ker(φ) 6= {0} then L is flat.
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Proof. There exists then X ∈ i such that v := ωx̂(X̂x̂) ∈ heis(3) = (sl3)1, i.e.

v =
(

0 a c
0 0 b
0 0 0

)
6= 0.

We first assume that (a, b) 6= (0, 0). For an element of the form w =
(

0 0 0
a′ 0 0
0 b′ 0

)
in sl3,

we have [v,w] =
(

aa′ ∗ 0
0 bb′−aa′ ∗
0 0 −bb′

)
, and since a 6= 0 or b 6= 0, there exists such an element

w ∈ sl3 satisfying [v,w] =
( 1 ∗ 0

0 −1 ∗
0 0 0

)
or [v,w] =

( 0 ∗ 0
0 1 ∗
0 0 −1

)
. Since L is locally homogeneous, there

exists a Killing field Y ∈ h such that Yx = Dx̂π(ω−1
x̂ (w)), implying ωx̂(Ŷx̂) = w + w0 with

w0 ∈ pmin = (sl3)0. We now use the relation

ω([X̂, Ŷ ]) = −[ω(X̂), ω(Ŷ )] +K(ω(X̂), ω(Ŷ )), (3.3)

verified for any Killing fields of the Cartan geometry C, that will be proved at the end of this
demonstration. This relation implies ωx̂([X̂, Ŷ ]x̂) = −[v,w] + [v,w0] + K(v,w + w0) ∈ pmin,
where [v,w0] ∈ (sl3)1 according to the filtration property of sl3, and K(v,w+w0) = 0 because
v ∈ pmin (see Paragraph 2.2.2). In particular [X,Y ] ∈ i, and φ([X,Y ]) is equal to one of the
diagonal matrices [1,−1, 0] or [0, 1,−1], that both satisfy the conditions (3.2). This shows that
L is flat according to Fact 3.6.

If a = b = 0, we can find an element w ∈ sl3 such that [v,w] =
( 1 0 0

0 0 0
0 0 −1

)
, and by the same

argument as before we find Y ∈ h such that [X,Y ] ∈ i and φ([X,Y ]) =
( 1 0 0

0 0 0
0 0 −1

)
. Since this

element of a satisfies the conditions (3.2), L is flat according to Fact 3.6.
We now prove the relation (3.3) for two Killing fields X and Y of the Cartan geometry

C. Since the flow of X preserves ω, the Lie derivative LXω vanishes identically, and applying
Cartan’s formula LX = d ◦ ιX + ιX ◦ d to Y , we obtain Y · ω(X) + dω(X,Y ) = 0. Cartan’s
formula dω(X,Y ) = X · ω(Y ) − Y · ω(X) − ω([X,Y ]) implies then X · ω(Y ) = ω([X,Y ]), and
since LY ω = 0 as well, we also have −Y · ω(X) = ω([X,Y ]). Equation (3.3) then follows from
the definition of the curvature.

Fact. If φ(i) = a then L is flat.

Proof. There exists in this case a Killing field X ∈ i such that φ(X) =
( 1 0 0

0 0 0
0 0 −1

)
, which satisfies

the conditions (3.2). This implies that L is flat according to Fact 3.6.

It remains to handle the case when φ is injective, and φ(i) is one-dimensional. There exists
then V ∈ i such that i = RV , and we can moreover assume without lost of generality that
v := ωx̂(V̂x̂) ∈ pmin does not verify the conditions (3.2) (because if it does, then L is flat
according to Fact 3.6). In other words, denoting the components of v in a by

φ(V ) = p(v) =



a 0 0
0 −a− b 0
0 0 b


 ∈ a,

with (a, b) ∈ R2, we assume that:

either a = −5b 6= 0, or b = −5a 6= 0. (3.4)

Since v ∈ pmin, the curvature part of the relation (3.3) vanishes, and for any X ∈ h we
have:

ωx̂([̂V,X]x̂) = −[v, ωx̂(X̂x̂)]. (3.5)

The linear map
ϕ : X ∈ h 7→ ωx̂(X̂x̂) ∈ sl3
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is injective according to Lemma 2.14, and since evx(h) = TxM by local homogeneity of L, ϕ
induces an isomorphism ϕ̄ between h/i and sl3/pmin. Using the notations (2.8) of Paragraph
2.2.3 for the basis (ēα, ēβ , ē0) of sl3/pmin, there exists X, Y , and Z in h such that ϕ(X) ∈
eα + pmin, ϕ(Y ) ∈ eβ + pmin, and ϕ(Z) ∈ e0 + pmin. According to (3.5), ϕ̄ intertwines the
adjoint action of V on h/i and the adjoint action of −v on sl3/pmin, implying:

Mat(X̄,Ȳ ,Z̄)(ad(V )) = Mat(ēα,ēβ ,ē0)(ad(−v)) =




−a− 2b 0 ∗
0 2a+ b ∗
0 0 a− b


 . (3.6)

We will denote by A = −a− 2b and B = 2a+ b the eigenvalues of ad(V ) with respect to X̄
and Ȳ . Our hypotheses (3.4) on a and b imply A 6= 0 and B 6= 0, allowing us to choose X and
Y in h satisfying

[V,X] = AX and [V, Y ] = BY.

In fact, if X ∈ h satisfies ϕ̄(X + i) = ēα, there exists λ ∈ R such that [V,X] = AX + λV
according to (3.6) (recall that i = RV ), and X ′ := X + λ

A
V satisfies then [V,X ′] = AX ′. We

deal with the case of Y by the same computations.
The Jacobi identity yields [V, [X,Y ]] = (A+B)[X,Y ], implying in particular that [X,Y ] /∈

Vect(X,Y, V ) since A + B is distinct from A, B and 0. A second application of the same
identity gives [V, [X, [X,Y ]]] = (2A + B)[X, [X,Y ]] and [V, [Y, [X,Y ]]] = (A + 2B)[Y, [X,Y ]].
Furthermore, if [X, [X,Y ]] 6= 0, then 2A + B is an eigenvalue of ad(V ) ∈ End(h), and is thus
equal to one of the eigenvalues A, B, or A + B (since dim h = 4 and 2A + B 6= 0). But the
equalities 2A+B = A+B or 2A+B = B would contradict A 6= 0, and the equality 2A+B = A
would likewise contradict our hypotheses (3.4) on a and b. Consequently, [X, [X,Y ]] = 0, and
for the same reasons [Y, [X,Y ]] = 0.

This shows that E := Vect(X,Y, [X,Y ]) is a subalgebra of h isomorphic to heis(3). There is
a connected open neighbourhood U of x such that the injective linear map X ∈ Kill(U,L) 7→
[X]x ∈ killloc

L (x) is an isomorphism (see Remark 2.15), and there is thus an injective Lie algebra
morphism ι : heis(3) → Kill(U,L) of image E . According to the work of Palais in [Pal57],
chapter II Theorem XI and its corollary, there exists a (unique) local action of Heis(3) on U
that integrates this infinitesimal action, i.e. such that X† = ι(X)|U for any X ∈ heis(3). In
particular, the local action of Heis(3) on U preserves L, and since ι(heis(3)) ∩ i = {0}, this
action is moreover simply transitive at x. The Lagrangean contact structure L is thus locally
isomorphic to a left-invariant Lagrangean contact structure on Heis(3). The following lemma
implies then that L is flat, finishing the proof of Theorem 3.3.

Lemma 3.7. Any left-invariant Lagrangean contact structure on Heis(3) is flat.

Proof. The left-invariant Lagrangean contact structure M0 = (RX̃,RỸ ) of Heis(3) gener-
ated by X =

(
0 1 0
0 0 0
0 0 0

)
and Y =

(
0 0 0
0 0 1
0 0 0

)
is flat. In fact, we will see in Paragraph 4.2.3 that

(Heis(3),M0) is isomorphic to an open subset of the homogeneous model space (X,LX). Con-
sidering a left-invariant Lagrangean contact structure M on Heis(3), it suffices thus to find an
isomorphism of Lagrangean contact structures from M0 to M to prove our claim.

There exists v,w ∈ heis(3) such that M = (Rṽ,Rw̃), and since Rṽ ⊕ Rw̃ is a contact
distribution, [v,w] /∈ Vect(v,w). Denoting Z =

(
0 0 1
0 0 0
0 0 0

)
, v = aX+bY +cZ, and w = a′X+b′Y +

c′Z, we have [v,w] = (ab′ − ba′)Z, which implies ab′ − ba′ 6= 0. The Lie algebra automorphism

ϕ of heis(3) whose matrix in the basis (X,Y,Z) is
(

a a′ 0
b b′ 0
c c′ ab′−ba′

)
sends (X,Y ) to (v,w), and

since Heis(3) is simply-connected, there exists a Lie group automorphism φ of Heis(3) whose
differential at identity is ϕ. As φ is an automorphism, Deφ(X,Y ) = (v,w) implies φ∗ṽ = X̃
and φ∗w̃ = Ỹ , i.e. φ is an isomorphism of Lagrangean contact structures from M0 to M.
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4 Local model of the enhanced Lagrangean contact structure

In the previous section, we proved that the Lagrangean contact structure L is locally isomorphic
to the homogeneous model space (X,LX), and thus described by a (G,X)-structure on M .
The classical strategy is then to reduce the possibilities for the images of the developping map
δ : M̃ → M and of the holonomy morphism ρ : π1(M) → G of this structure.

In the case studied by Ghys in [Ghy87] of an Anosov flow preserving the structure, the
holonomy group ρ(π1(M)) ⊂ G is centralized by a one-parameter subgroup of G, which reduces
dramatically the possibilities for ρ(π1(M)). But in the case of a discrete-time dynamic, we do
not have any relevant algebraic restriction of this kind on ρ(π1(M)).

For this reason, we have to look not only at the local homogeneity of L on Ω, but at the
local homogeneity of the whole enhanced Lagrangean contact structure S = (Eα, Eβ , Ec) on
this open dense subset. In this section, we will show that in restriction to Ω, S is locally
isomorphic to an infinitesimal homogeneous model, that preserves a distribution transverse to
the contact plane.

4.1 Two algebraic models

We first describe the infinitesimal models in an algebraic way.

4.1.1 Left-invariant structure on SL2(R)

We will use the following basis for the Lie algebra sl2 of SL2(R):

E = ( 0 1
0 0 ) , F = ( 0 0

1 0 ) , and H =
(

1 0
0 −1

)
. (4.1)

The Lie bracket relation [E,F ] = H in sl2 shows that the left-invariant distributions gener-
ated by E, F and H induce a left-invariant enhanced Lagrangean contact structure SSL2(R) =
(RẼ,RF̃ ,RH̃) on SL2(R). Moreover, the right action of the one-parameter subgroup A gen-
erated by H also preserves SSL2(R). We endow the universal cover S̃L2(R) of SL2(R) with

the pullback of SSL2(R), so that the right action of the one-parameter subgroup Ã of S̃L2(R)
generated by H preserves S

S̃L2(R)
.

For any cocompact lattice Γ0 of S̃L2(R) and any admissible morphism u : Γ0 → Ã (see
Paragraph 1.1.1 of the introduction), the left-invariant enhanced Lagrangean contact structure
of S̃L2(R) is preserved by the graph-group Γ = gr(u,Γ0) ⊂ S̃L2(R) × Ã, and Γ\S̃L2(R) is
endowed with the induced enhanced Lagrangean contact structure. The stable and unstable
distributions of the algebraic contact-Anosov flow (Rat) on Γ\S̃L2(R) are given by this enhanced
Lagrangean contact structure.

4.1.2 Left-invariant structure on Heis(3)

We will use the following basis for the Lie algebra heis(3) of Heis(3):

X =
(

0 1 0
0 0 0
0 0 0

)
, Y =

(
0 0 0
0 0 1
0 0 0

)
, and Z =

(
0 0 1
0 0 0
0 0 0

)
.

The Lie bracket relation [X,Y ] = Z in heis(3) shows that the left-invariant distributions
(RX̃,RỸ ,RZ̃) induce a left-invariant enhanced Lagrangean contact structure SHeis(3) on Heis(3).
The subgroup

A =
{
ϕλ,µ

∣∣∣ (λ, µ) ∈ R∗2
}

of automorphisms introduced in Paragraph 1.1.2 is exactly the subgroup of automorphisms of
Heis(3) that preserve SHeis(3).

Any cocompact lattice Γ of Heis(3) preserves SHeis(3), and the quotient Γ\Heis(3) is endowed
with the induced enhanced Lagrangean contact structure. The stable, unstable and central
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distributions of any partially hyperbolic affine automorphism of Γ\Heis(3) are given by this
enhanced Lagrangean contact structure.

4.2 Two homogeneous open subsets of X

The left-invariant enhanced Lagrangean contact structures of SL2(R) and Heis(3) can be geo-
metrically imbedded in X as homogeneous open subsets, that will be the local models of the
enhanced Lagrangean contact structure S in restriction to Ω.

4.2.1 Some specific surfaces of X, and one affine chart

For D a projective line of RP2, we define the β − α surface

Sβ,α(D) = π−1
α (D) = ∪y∈Cβ(D)C

α(y),

and for m ∈ RP2, the analog α− β surface

Sα,β(m) = π−1
β (

{
L ∈ RP2

∗

∣∣∣ m ∈ L
}

) = ∪y∈Cα(m)C
β(y).

The open subset
Ωa := X \ Sβ,α([e1, e2])

of X, composed by pointed projective lines (m,D) for which m /∈ [e1, e2], will be identified
with the set Xa of pointed affine lines of R2 as follows:

φa : (m,D) ∈ Ωa 7→ (m ∩ P,D ∩ P ) ∈ Xa, (4.2)

where Vect(e1, e2) + (0, 0, 1) is identified with R2 by translation. The diffeomorphism φa is
moreover equivariant for the canonical identification

[
A X
0 1

]
∈ StabG(Ωa) 7→ A+X ∈ Aff(R2) (4.3)

of StabG(Ωa) with the group of affine transformations of R2.

4.2.2 The open subset Yt

We will embed SL2(R) in G as follows:

ι : g ∈ SL2(R) 7→

[
g 0
0 1

]
∈ G.

The resulting copy S0 of SL2(R) acts simply transitively at ot = ([1, 0, 1], [(1, 0, 1), e2 ]) =
φ−1

a (e1 + Re2) ∈ Ωa, and its orbit Yt = S0 · ot can be described as

Yt = Ωa \ Sα,β[e3] = φ−1
a

({
m+ L

∣∣∣ m ∈ R2 \ {(0, 0)}, L ∈ RP1 \ {Rm}
})

.

The left-invariant structure of SL2(R) induces on Yt a S0-invariant enhanced Lagrangean con-
tact structure

St = (θot
◦ ι)∗SSL2(R), (4.4)

which is compatible with LX in the sense that its α and β-distributions coincide with the ones
of LX, and whose central distribution is entirely described by its value at ot:

Ec
t (ot) = RH†

0(ot),where H0 =
( 1 0 0

0 −1 0
0 0 0

)
. (4.5)

20



Let us denote by A± the subgroup of SL2(R) composed by diagonal matrices. The right
action of A± preserves SSL2(R), and the direct product SL2(R)×A± acts on SL2(R) by (g, a)·h =
gha. The isomorphism from SL2(R) to (Yt,St) given by the orbital map at ot is equivariant
for: (

g,
(

λ 0
0 λ−1

))
∈ SL2(R) ×A± 7→ λg ∈ GL2(R).

In particular,

Ht :=

[
GL2(R) 0

0 1

]

is contained in the automorphism group of (Yt,St).

4.2.3 The open subset Ya

The action of Heis(3) is simply transitive at oa = ([e3], [e3, e2]) = φ−1
a ((0, 0) + Re2) ∈ Ωa, and

its orbit Ya = Heis(3) · oa can be described as

Ya = Ωa \ Sα,β[e1] = φ−1
a

({
m+ L

∣∣∣ m ∈ R2, L ∈ RP1 \ {Re1}
})

.

We endow Ya with the Heis(3)-invariant enhanced Lagrangean contact structure

Sa = (θoa
|Heis(3))∗SHeis(3) (4.6)

which is compatible with LX, and whose central distribution is entirely determined by

Ec
a(oa) = RZ†(oa). (4.7)

Let us recall that A is the subgroup of automorphisms of Heis(3) that moreover preserve
SHeis(3) (see Paragraph 4.1.2). The group of affine automorphisms Lg ◦ ϕ of Heis(3), where
g ∈ Heis(3) and ϕ ∈ A, will be seen as a semi-direct subgroup Heis(3)⋊A. With this notation,
the isomorphism from (Ya,Sa) to Heis(3) given by the orbital map at oa is equivariant for:

[
λ x z
0 λ−1µ−1 y
0 0 µ

]
∈ Pmin 7→

((
1 λµx µ−1z

0 1 µ−1y
0 0 1

)
, ϕλ2µ,λ−1µ−2

)
∈ Heis(3) ⋊ A. (4.8)

In particular, Ha := Pmin is contained in the automorphism group of (Ya,Sa).

4.3 From the infinitesimal model to the local model

We take back the notations of Theorem B. We recall that πM : M̃ → M denotes the universal
cover of M and that Ω is a dense and open subset of M where S is locally homogeneous (see
Proposition 3.2). We will denote S̃ = π∗

M S = (Ẽα, Ẽβ , Ẽc), L̃ = π∗
ML, Ω̃ = π−1

M (Ω), and
δ : M̃ → X a developping map of the (G,X)-structure of M describing the Lagrangean contact
structure L (see Corollary 3.4 and Paragraph 2.3.2). We finally choose for this whole section a
connected component O of Ω̃, i.e. an open Killloc-orbit of S̃.

Our goal in this section is to describe the local model of S̃ in restriction to O.

4.3.1 Infinitesimal model

At any point of X, we will identify the Lie algebra of local Killing fields of LX with sl3 through
the fundamental vector fields of the action of G (see Lemma 2.16). Since the developping map
δ is a local isomorphism from L̃ to LX, it induces at each point x ∈ M̃ an isomorphism

δ∗ : v ∈ sl3 = killloc
LX

(δ(x)) 7→ δ∗v ∈ killloc

L̃
(x), (4.9)

of Lie algebras, whose inverse will be denoted by δ∗ : killloc

L̃
(x) → sl3. For X ∈ killloc

L̃
(x) and

t ∈ R for which ϕt
X(x) exists, denoting v = δ∗[X]x ∈ sl3, we have

δ(ϕt
X (x)) = etv · δ(x). (4.10)
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Lemma 4.1. There exists a subalgebra h of sl3 such that:

Kill(O, S̃ |O) = (δ∗h)|O= {(δ∗v)|O| v ∈ h} .

Moreover, any local Killing field of S̃ on O extends to the whole Killloc-orbit O.

Proof. It suffices to show that the subalgebra h(x) = δ∗kill
loc
S̃

(x) is locally constant on O. This
will in fact imply by connexity of O that h(x) is constant equal to some Lie subalgebra h on
O, and then (δ∗h)|O⊂ Kill(O, S̃ |O). But for x ∈ O, dim h = dim killloc

S̃
(x) ≥ Kill(O, S̃|O) (see

Lemma 2.14), and this inclusion is thus an equality.
For any x ∈ O there exists an open connected neighbourhood U of x such that any local

Killing field of S̃ at x extends to a Killing field defined on U (see Remark 2.15), and for any
y ∈ U we thus have h(x) ⊂ h(y). But h(x) and h(y) have the same dimension since x and y
are in the same Killloc-orbit of S̃, and this inclusion is thus an equality. This shows that h(x)
is locally constant and finishes the proof.

We denote from now on by H the connected Lie subgroup of G of subalgebra h. It is not
necessarily closed in G, but the action of H on X is smooth for the structure of immersed
submanifold of H.

Lemma 4.2. All the points of δ(O) are in the same orbit Y under the action of H. In
particular, Y is open.

Proof. We consider x and y in O, and we want to find h ∈ H such that δ(y) = h · δ(x). By
hypothesis, as x and y are in the same Killloc-orbit of S̃, there exists a finite number of points
x1 = x, . . . , xn = y such that for any i ≤ n − 1 there exists a local Killing field Xi of S̃
satisfying xi+1 = ϕ1

Xi
(xi). According to Lemma 4.1, there exists for each i an element vi ∈ h

such that Xi = δ∗vi, and we have δ(xi+1) = eviδ(xi) according to the equation (4.10), implying
δ(y) = evn−1 . . . ev1x0 ∈ H · δ(x).

We choose from now on a point x ∈ O, we denote x0 = δ(x) ∈ Y , and we consider the
isotropy subalgebra

i = stabh(x0) := {v ∈ h | v(x0) = 0} (4.11)

of h at x0, characterized by δ∗i = isloc
S̃

(x). Since the orbit Y of x0 under H is open, dim h −

dim i = 3, and i is non-trivial according to Proposition 3.2. We also denote Ec(x0) = Dxδ(Ẽc(x)),
and h/i = Dα ⊕Dβ ⊕Dc the splitting sent to Tx0

Y = (Eα ⊕ Eβ ⊕ Ec)(x0) by the isomorphism
Deθx0

induced by the orbital map at x0.

Lemma 4.3. 1. The adjoint representation ad: i → End(h/i) preserves the line Dc in h/i,
i.e. for any v ∈ i we have ad(v)(Dc) ⊂ Dc.

2. There exists in the neighbourhood of x0 an unique H-invariant germ of a smooth one-
dimensional distribution Ec that extends Ec(x0) on a neighbourhood of x0, and this dis-
tribution is everywhere transverse to Eα ⊕ Eβ.

3. The developping map is an isomorphism between the enhanced Lagrangean contact struc-
tures S̃ and SY := (Eα, Eβ, Ec), from a neighbourhood of x to a neighbourhood of x0.

4. h = killloc
SY

(x0) and i = isloc
SY

(x0).

5. If I = StabH(x0) is a connected subgroup of H, then there exists an unique H-invariant
smooth one-dimensional distribution Ec that extends Ec(x0) on the whole open orbit Y ,
and Ec is transverse to Eα ⊕ Eβ . Furthermore, δ|O is a local isomorphism from (O, S̃|O)
to (Y,SY ).
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Proof. 1. For v ∈ i, denotingX = δ∗v ∈ isloc
S̃

(x), equation (4.10) implies Ec(x0) = Dx0
etv(Ec(x0))

for any t ∈ R, and thus Dc = Ad(etv) · Dc. Deriving this equality at t = 0, we obtain
ad(v) ·Dc ⊂ Dc.
2. The isotropy subgroup I = StabH(x0) and its identity component I0 are closed in H for its
topology of immersed submanifold, and the orbital map at x0 induces a local diffeomorphism
θ̄x0

: H/I0 → Y , equivariant for the action of H. We saw previously that Ad(exp(i)) preserves
Dc, implying that the subgroup

{
i ∈ I0

∣∣∣ Ad(i) ·Dc = Dc
}

is equal to I0 by connexity, i.e. that

I0 preserves Dc. Therefore, H/I0 supports an unique H-invariant smooth one-dimensional dis-
tribution extending Dc, that can be pushed by θ̄x0

to a H-invariant distribution extending
Ec(x0) on a neighbourhood of x0. Conversely, the pullback of any H-invariant distribution
extending Ec(x0) on a neighbourhood of x0 is H-invariant on H/I0, which proves the unicity
of the germ of Ec. Since Ec is preserved by H, it must moreover remain transverse to Eα ⊕ Eβ.
3. For y sufficiently close to x, there exists X ∈ Kill(O, S̃ |O) such that y = ϕ1

X(x). Denoting
y0 = δ(y) and v ∈ h such that δ∗v = X, we have Dy0

e−v ◦ Dyδ(Ẽc(y)) = Dxδ ◦ Dyϕ
−1
X (Ẽc(y)) =

Ec(x0), implying Dyδ(Ẽc(y)) = Ec(y0) by H-invariance of Ec.
4. This is a direct consequence of the equalities δ∗h = killloc

S̃
(x) and δ∗i = isloc

S̃
(x), and of the

fact that δ is a local isomorphism from S̃ to SY at x.
5. Concerning the first assertion, the orbital map at x0 induces a H-equivariant diffeomorphism
from H/I to Y , and we saw in the proof of the second assertion that H/I0 = H/I supports an
unique H-invariant distribution extending Dc on H/I0, which stays transverse to the contact
plane.

The set E of points y ∈ O such that δ is a local isomorphism in the neighbourhood of y is
open and non-empty, and we only have to prove that E is closed to conclude by connexity of
O. Let z ∈ O be an adherent point of E , and let us denote z0 = δ(z). There exists a point
y ∈ E sufficiently close to z such that, for some Killing field X of S̃, z = ϕ1

X(y). Denoting v ∈ h

such that X = δ∗v, we have Dz0
e−v ◦ Dzδ(Ẽc(z)) = Dyδ ◦ Dzϕ

−1
X (Ẽc(z)) = Ec(y0), implying

Dzδ(Ẽc(z)) = Ec(z0) by H-invariance of Ec. By local homogeneity of S|O, we can reach all the
points of some neighbourhood U of z in O by a Killing field, and the same computation as
before shows that δ|U is a local isomorphism, i.e. that z ∈ E , which concludes the proof.

4.3.2 Local model of an open Killloc-orbit

We will call
κ : (m,D) ∈ X 7→ (D⊥,m⊥) ∈ X (4.12)

the flip diffeomorphism of the homogeneous model space. This involution switches the distri-
butions Eα and Eβ of the standard Lagrangean contact structure, and is moreover equivariant
for the Lie group morphism κG : g 7→ tg−1 of G.

Consequently, interverting the distributions Eα and Eβ of the Lagrangean contact structure
of M is equivalent to composing the developping map of the (G,X)-structure with κ. At the
level of the subalgebra h introduced in the previous paragraph, it is equivalent to apply the Lie
algebra morphism κsl3 := DeκG : A 7→ − tA.

Denoting

(4.13)





ht =

{(
A 0
0 − tr(A)

) ∣∣∣∣∣ A ∈ gl2

}
,

ha = pmin,

we will prove in the next section that:

Proposition 4.4. Up to conjugacy in G or image by κsl3 = − t·, h is equal to ht or ha.

To deduce a local information about S̃|O from this infinitesimal classification, it only re-
mains to look at the action of the connected Lie subgroups H0

t
:= GL+

2 (R) and H0
a

:= P+
min of

G of respective Lie algebras ht and ha.
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Proposition 4.5. 1. Yt (respectively Ya) is the only open orbit of H0
t (resp. of H0

a) on X.

2. St (respectively Sa) is the only H0
t -invariant (resp. H0

a-invariant) enhanced Lagrangean
contact structure of Yt (resp. Ya) that is compatible with LX.

Proof. We refer to Paragraphs 4.2.2 and 4.2.3 for the description of (Yt,St) and (Ya,Sa).
1. Both of these groups are contained in StabG([e1, e2]) =

{[
A X
0 1

] ∣∣ A ∈ GL2(R),X ∈ R2
}
, that

preserves the surface Sβ,α[e1, e2], and whose only open orbit is thus Ωa = X \Sβ,α[e1, e2]. Any
open orbit of one these groups is therefore contained in Ωa. Since H0

t preserves the surface
Sα,β[e3], any open orbit of H0

t is contained in Yt = X \ (Sβ,α[e1, e2] ∪ Sα,β[e3]) = H0
t · ot.

In the same way, since H0
a preserves Sα,β[e1], any open orbit of H0

a is contained in Ya =
X \ (Sβ,α[e1, e2] ∪ Sα,β[e1]) = H0

a · oa.
2. We start with Yt, and we denote

it = Lie(StabH0

t

(ot)) =
{(

a 0 0
0 −2a 0
0 0 a

) ∣∣∣ a ∈ R
}
,

and
E =

(
0 1 0
0 0 0
0 0 0

)
, F =

(
0 0 0
1 0 0
0 0 0

)
,H =

(
1 0 0
0 −1 0
0 0 0

)
.

The standard Lagrangean contact structure of X satisfies RE†(ot) = Eα(ot) and RF †(ot) =
Eβ(ot), and for a ∈ R, the adjoint action of the diagonal element [a,−2a, a] of it has the
following diagonal matrix in the basis (Ē, F̄ , H̄) of h/i:

Mat(Ē,F̄ ,H̄)(ad([a,−2a, a])) = [3a,−3a, 0].

Any line Dc of ht/it that is transverse to Vect(Ē, F̄ ) has projective coordinates [x, y, 1] in the
basis (Ē, F̄ , H̄) for some (x, y) ∈ R2, and ad([a,−2a, a])(Dc) is generated by the vector of
coordinates (3ax,−3ay, 0). The only transverse line stabilized by ad(it) is therefore RH̄, and
Ec

t is the only H0
t -invariant distribution of Yt transverse to LX.

Let us denote

ia = Lie(StabH0
a
(oa)) =

{(
a 0 0
0 −a−b 0
0 0 b

) ∣∣∣∣ (a, b) ∈ R2
}
.

and
X =

(
0 1 0
0 0 0
0 0 0

)
, Y =

(
0 0 0
0 0 1
0 0 0

)
, Z =

(
0 0 1
0 0 0
0 0 0

)
. (4.14)

We have RX†(oa) = Eα(oa), RY †(oa) = Eβ(oa), and for (a, b) ∈ R2, the adjoint action of the
diagonal element [a,−a− b, b] of ia has the following diagonal matrix in the basis (X̄, Ȳ , Z̄) of
pmin/ia:

Mat(X̄,Ȳ ,Z̄)(ad([a,−a− b, b])) = [2a+ b,−a− 2b, a − b]. (4.15)

Any line Dc of pmin/ia that is transverse to Vect(X̄, Ȳ ) has projective coordinates of the form
[x, y, 1] in the basis (X̄, Ȳ , Z̄) for some (x, y) ∈ R2, and ad([a,−a − b, b])(Dc) is generated by
the vector of coordinates ((2a + b)x, (−a− 2b)y, a − b). The only transverse line stabilized by
ad(ia) is therefore RZ̄, and Ec

a is the only H0
a-invariant distribution of Ya transverse to LX.

We can finally describe the local geometry of O.

Corollary 4.6. Up to inversion of the distributions Eα and Eβ , the restriction δ|O of the
developping map to O is a local isomorphism from (O, S̃|O) to (Yt,St), or to (Ya,Sa).

Proof. Inversing the distributions Eα and Eβ is equivalent to apply κsl3 to h, and the conju-
gation of h by g ∈ G is equivalent to replace the developping map δ by g ◦ δ (that describes
the same (G,X)-structure on M). According to Proposition 4.4, we can thus assume that h is
equal to ht or ha, and the open orbit Y is therefore equal to Yt (respectively Ya) according to
Proposition 4.5. Since the isotropy subgroups StabH0

t

(ot) and StabH0
a
(oa) are connected, there

exists a H0
t -invariant (resp. H0

a-invariant) enhanced Lagrangean contact structure SY on Y
that is compatible with LX and such that δ|O is a local isomorphism from (O, S̃|O) to (Y,SY )
(see Lemma 4.3). According to Proposition 4.5, SY is equal to St (resp. Sa).
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5 Classification of the infinitesimal model

The goal of this section is to prove Proposition 4.4. Let us recall that the Lie subalgebras
i ⊂ h of sl3 are characterized by (δ∗h)|O= Kill(O, S̃ |O) and [δ∗i]x = isloc

S̃
(x) (see Lemma 4.1 and

(4.11)).

5.1 Algebraic reduction

We first prove some purely algebraic restrictions on h.

Lemma 5.1. The dimension of h is either 4 or 5.

Proof. Possibly translating the developping map by an element of G, we can assume that
x0 = o = ([e1], [e1, e2]) ∈ X, and since the adjoint action of Pmin on the lines of sl3/pmin

transverse to Vect(ēα, ēβ) is transitive (see equation (2.9) in Paragraph 2.2.3), we can moreover

assume that Dc = Deθo(Rē0) with e0 =
(

0 0 0
0 0 0
1 0 0

)
. As a consequence, i = h∩ pmin is contained in

o =
{
v ∈ pmin

∣∣∣ ad(v)(Rē0) ⊂ Rē0

}
=
{(

a 0 z
0 −a−b 0
0 0 b

)
| (a, b, z) ∈ R3

}
. (5.1)

Denoting e0 =
(

0 0 1
0 0 0
0 0 0

)
∈ o, we now prove that i ∩ Re0 = {0}, which implies dim i ≤ 2 and

concludes the proof of the Lemma since i is non-zero and dim h − dim i = 3.
Let us assume by contradiction that e0 ∈ i. As h + pmin = sl3 (because the orbit of o

under H is open), there exists v ∈ h and w ∈ pmin such that eβ =
(

0 0 0
1 0 0
0 0 0

)
= v + w. We have

then [v, e0] ∈ h, and since w ∈ pmin, [w, e0] ∈ Re0 ⊂ i. This implies that
(

0 0 0
0 0 1
0 0 0

)
= [eβ , e

0] =

[v, e0] + [w, e0] ∈ h∩ pmin = i ⊂ o, which contradicts the description of o in (5.1) and concludes
the proof of the lemma.

Let
h = sϕ⋉r, (5.2)

be the Levi decomposition of h, where s is a semi-simple subalgebra of h (or is trivial if h is
solvable), r is the solvable radical of h (it is an ideal of h), and ϕ is the restriction of the adjoint
representation ad: h → Der h to s (ϕ : s → Der r describes the bracket in h by [v,w] = ϕ(v)(w)
for v ∈ s and w ∈ r).

A proper semi-simple subalgebra of sl3 of dimension less than 5 is three-dimensional, and is
thus isomorphic to sl2 or to so(3). Moreover, up to conjugacy in SL3(R), the only embedding
of so(3) in sl3 is the inclusion, and the only embeddings of sl2 in sl3 are:

s0 :=

{(
A 0
0 0

) ∣∣∣∣∣ A ∈ sl2

}
and so(1, 2). (5.3)

If h is not solvable, s is thus equal to s0, so(1, 2) or so(3) up to conjugacy in SL3(R). The
centralizers of these subalgebras in sl3 are:





Csl3(so(1, 2)) = Csl3(so(3)) = {0},

Csl3(s0) =
{(

x 0 0
0 x 0
0 0 −2x

) ∣∣∣ x ∈ R
}
.

(5.4)

Lemma 5.2. Up to conjugacy in SL3(R) or image by κsl3 = − t·, we have the following results.

1. If h is not solvable, then:

(a) s is equal to s0,
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(b) and h is equal to ht or to

h1 = R2 ⋊ sl2 =
{(

A X
0 0

) ∣∣∣ A ∈ sl2,X ∈ R2
}
. (5.5)

2. If h is sovable, then either h is contained in ha = pmin, or h is equal to

h2 = R2 ⋊ sim(R2) =
{(

A X
0 − tr A

) ∣∣∣ A ∈ sim(R2),X ∈ R2
}
, (5.6)

where sim(R2) =
{(

a b
−b a

) ∣∣∣ (a, b) ∈ R2
}

.

Proof. 1.a) Let us assume by contradiction that s is conjugated to so(1, 2) or so(3), implying
that Csl3(s) = {0} according to (5.4). Since s is simple, if the Lie algebra morphism ϕ is
not injective then it is trivial, implying r ⊂ Csl3(s) = {0}, and therefore dim h = dim s = 3
which contradicts Lemma 5.1. Our hypothesis on s implies therefore that ϕ is injective, and in
particular that dim Der r ≥ dim s = 3.

Since dim s = 3, the solvable radical r is of dimension 1 or 2 according to Lemma 5.1,
and is thus isomorphic to R, aff(R), or R2. But if r is isomorphic to R or aff(R), then Der r
is of dimension 1 or 2 which contradicts the injectivity of ϕ, and r is thus isomorphic to R2.
Since so(3) has no non-zero two-dimensional representation, this implies that s is conjugated to
so(1, 2). The connected Lie subgroup H of SL3(R) of Lie algebra h contains then SO0(1, 2), and
its adjoint action induces thus by restriction a two-dimensional representation φ of SO0(1, 2)
on r (because r is an ideal of h). Since SO0(1, 2) is isomorphic to PSL2(R), φ is trivial, implying
that ϕ is trivial as well. This contradiction concludes the proof of the firs claim.
1.b) Let us assume by contradiction that r is isomorphic to aff(R). Then Der r is two-
dimensional and ϕ is thus non-injective, i.e. trivial by simplicity of s0. But r is then contained
in the centralizer of s0 which is one-dimensional according to (5.4), contradicting r ≃ aff(R).
Therefore, r is isomorphic to R2 or R.

We first assume that r is isomorphic to R2, implying that ϕ is injective (otherwise r ⊂
Csl3(s0) which is one-dimensional). We use the linear mapping eve3

|r : M ∈ r 7→ M(e3) ∈ R3

and discuss according to the dimension of its image r(e3). Let us emphasize that r is normalized
by the connected Lie subgroup S0 of SL3(R) of Lie algebra s0, and that r(e3) is thus preserved
by S0. If r(e3) is a plane then r(e3) = Vect(e1, e2), because it is the only plane of R3 preserved
by S0. Moreover, eve3

|r is then injective. There exists v ∈ r such that eve3
(v) = e1, and

with A =
(

1 0
0 −1

)
∈ sl2 and u =

(
A 0
0 0

)
∈ s0 we have eve3

([u, v]) = e1 = eve3
(v). This implies

[u, v] = v by injectivity of eve3
|r, and finally v =

(
0 0 1
0 0 0
0 x 0

)
for some x ∈ R. The same reasoning

with w ∈ r such that eve3
(w) = e2 and A =

(
−1 0
0 1

)
∈ sl2, implies that w =

(
0 0 0
0 0 1
y 0 0

)
for

some y ∈ R. Since r is abelian we have [v,w] = 0, which implies x = y = 0 and proves that
r =

(
0 R2

0 0

)
, i.e. that h = R2 ⋊ sl2. If r(e3) = {0}, then p :

(
B 0
X 0

)
∈ r′ 7→ X ∈ R2 is injective

(recall that r ∩ s0 = {0}), implying p(r) = R2. Therefore dim(κsl3(r))(e3) = 2 which brings us
back to the first case, and κsl3(h) = R2 ⋊ sl2. Finally, dim r(e3) = 1 is impossible. Otherwise,
r′ := ker eve3

∩r is one-dimensional, and since p|r′ is injective, p(r′) is a line of R2. But for
w ∈ r′ and v =

(
A 0
0 0

)
∈ s0 we have p([v,w]) = −p(w)A, i.e. p(r′) is preserved by sl2 and cannot

be a line.
We now assume that r is isomorphic to R. Then ϕ is non-injective and thus trivial, implying

r ⊂ Csl3(s0). This inclusion is an equality by equality of dimensions, proving h = ht.
2. Since h is solvable, it preserves a complex line in C3 according to Levi’s theorem. More
precisely, either h preserves a real line, or it preserves a plane on which it acts by similari-
ties. The second case implies h ⊂ R2 ⋊ sim(R2) = h2 up to conjugacy in SL3(R). In the first
case we can assume that h preserves Re1, and if the representation ( ∗ ∗

0 A ) ∈ h 7→ A ∈ gl2
also preserves a real line, then h ⊂ pmin = ha up to conjugacy. If not, then κsl3(h) ⊂{(

− tr A 0
X A

) ∣∣∣ A ∈ sim(R2),X ∈ R2
}

, according to the same remark than before. This last sub-

algebra being conjugated to R2 ⋊ sim(R2) = h2, this concludes the proof of the lemma.
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5.2 Two further properties of the infinitesimal model

In order to eliminate the subalgebras h1 and h2 appearing in Lemma 5.2, we prove two additional
properties of the infinitesimal model (h, i).

Lemma 5.3. Let l be a subalgebra of sl3 containing h, j = stabl(x0) be its isotropy at x0, and
Dc be the line of l/j sent to Ec(x0) by the orbital map at x0. If ad(j)(Dc) ⊂ Dc, then l = h.

Proof. Let us denote by L the connected Lie subgroup of G of Lie algebra l, and by J0 the
identity component of J = StabL(x0). As ad(j) preserves Dc, Ad(exp(j)) preserves Dc, and the
subgroup of elements j ∈ J0 such that Ad(j) preserves Dc is thus equal to J0 by connexity.
The construction made in the second assertion of Lemma 4.3 is thus valid for L/J0, and proves
the existence of an unique L-invariant enhanced Lagrangean contact structure S ′

Y extending
(Eα(x0), Eβ(x0), Ec(x0)) in the neighbourhood of x0. As h ⊂ l, we have H ⊂ L, and S ′

Y is thus
H-invariant, implying S ′

Y = SY by the unicity of such a tructure (see Lemma 4.3). Therefore
l ⊂ killloc

SY
(x0) = h, which concludes the proof.

Lemma 5.4. Let us assume that i is one-dimensional, and let v be a non-zero element of
i. Then the eigenvalues of ad(v) ∈ End(h/i) with respect to the eigenlines Dα and Dβ are
non-zero.

Proof. We already know that ad(i) is diagonalizable with eigenlines Dα, Dβ, and Dc (see
Lemma 4.3). The proof is the same for the eigenvalues of both eigenlines Dα and Dβ, and we
only do it for Dα. By density of Rec(f) ∩ Rec(f−1) in M (see the introduction of Section 3),
there exists x ∈ O such that x̄ = πM (x) ∈ Rec(f)∩ Rec(f−1), and possibly replacing f by f−1,
we have lim

n→+∞

∥∥∥Dx̄f
n|Eα(x̄)

∥∥∥
M

= 0 for a given Riemannian metric that we fix on M .

By hypothesis on x̄, there exists a sequence (γk) in π1(M) and a strictly increasing sequence
(nk) of integers such that γkf̃

nk(x) converges to x. We can moreover assume up to extraction
that xk ∈ O for any k, implying that γkf̃

nk preserves O. Endowing M̃ with the pullback µ̃M

of the Riemannian metric of M , we have lim
k→+∞

∥∥∥Dx(γk f̃
nk)|Ẽα(x)

∥∥∥
µ̃M

= 0 (since π1(M) acts by

isometries).
Theorem 2.9 implies the existence of a unique sequence (gk) in G satisfying

δ ◦ γkf̃
nk = gk ◦ δ on a neighbourhood of x. (5.7)

Denoting x0 = δ(x), gk · x0 = δ ◦ γkf̃
nk(x) ∈ Y = H · x0 converges to x0. There exists thus

a sequence hk ∈ H converging to the identity in G and such that hk · x0 = gk · x0. Since δ is
a local isomorphism from S̃|O to SY on a neighbourhood of x, the equation (5.7) defining gk

shows that gk preserves SY on a neighbourhood of x0. By H-invariance of SY , ik = h−1
k gk also

preserves SY , and ik is thus contained in the closed subgroup

I := {i ∈ StabG(x0) | i preserves SY on a neighbourhood of x0}

of G. The Lie algebra of I is equal to i because isloc
SY

(x0) = i (see Lemma 4.3).

Fact. I =
{
i ∈ StabG(x0)

∣∣∣ Ad(i) · h = h and Ad(i) ·Dc = Dc
}

. In particular I is algebraic
and has a finite number of connected components.

Proof. For i ∈ I and v ∈ h, the relation Dx0
i ◦ Deθx0

= Deθx0
◦ Ad(i) implies i−1∗

v = Ad(i) · v.
Since i is a local automorphism of SY and v a Killing field of SY , Ad(i) · v is also a Killing field
of SY , implying Ad(i) · v ∈ h since killloc

SY
(x0) = h (see Lemma 4.3). Moreover, Dx0

i(Ec
x0

) = Ec
x0

implies Ad(i) ·Dc = Dc.
Let us conversely assume that i ∈ StabG(x0) satisfies Ad(i) ·h = h and Ad(i) ·Dc = Dc. We

consider v ∈ h sufficiently close to 0, such that with h = ev ∈ H and y = h·x0 ∈ Y , SY is defined
at y. Since Ad(i) · Dc = Dc, Dx0

i(Ec(x0)) = Ec(x0), and h′ := ihi−1 = eAd(i)·v ∈ H because
Ad(i) · h = h. By H-invariance of Ec, we obtain Dyi(Ec(y)) = Dx0

h′ ◦ Dx0
i(Ec(x0)) = Ec(i · y),

proving that i ∈ I.
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We can thus assume up to extraction that (ik) lies in a given connected component of
I, and there exists then g ∈ I such that jk = gik is contained in the identity component
I0. We endow X with a Riemannian metric µX, and denote by µ̃X = δ∗µX its pullback on
M̃ . Since (γkf̃

nk(x)) is relatively compact in M̃ , the metrics µ̃M and µ̃X are equivalent in
restriction to (γkf̃

nk(x)), and the limit stated above for µ̃M is thus valid for µ̃X, implying that
lim

∥∥∥Dx0
gk|Eα(x0)

∥∥∥
µX

= 0. Since jk = gh−1
k gk with (gh−1

k ) relatively compact in G, we also

have lim
∥∥∥Dx0

jk|Eα(x0)

∥∥∥
µX

= 0.

The identity component I0 being connected and one-dimensional, there exists a non-zero
v ∈ i and a sequence tk ∈ R such that ik = exp(tkv), implying that Dx0

jk is conjugated
by the orbital map to exp(tkad(v)), and thus lim

∥∥∥exp(tkad(v))|Dα

∥∥∥ = 0. Denoting by λα

the eigenvalue of ad(v) with respect to Dα, exp(tkad(v))|Dα = exp(λαtk) idDα implies then
λα 6= 0.

5.3 End of the classification

We are now able to conclude the classification.

Lemma 5.5. h1 = R2 ⋊ sl2 does not satisfy the geometrical conditions of Lemma 4.3.

Proof. The only open orbit of the connected Lie subgroup H1 of G of Lie algebra h1 is the
open subset Ωa defined in Paragraph 4.2.1. If H1 · x0 is open for some point x0 ∈ X, we
can thus assume that x0 = ([e3], [e3, e1]) ∈ Ωa up to conjugacy in H1, implying that i1 =
Lie(StabH1

(x0)) =
{(

a b
0 −a

) ∣∣ a, b ∈ R2
}
. Denoting vα = ( 0 0

1 0 ) and vβ = ( 1
0 ) ∈ h1, we have

Rv†
α(x0) = Eα(x0) and Rv†

β(x0) = Eβ(x0), and defining vc = ( 0
1 ) and i = ( 0 1

0 0 ) ∈ i1, the matrix
of ad(i) in the basis (v̄α, v̄β, v̄c) of h1/i1 is:

Mat(v̄α,v̄β ,v̄c) ad(i) =
(

0 0 0
0 0 1
0 0 0

)
.

Any line of h1/i1 that is transverse to Vect(v̄α, v̄β) has projective coordinates [a, b, 1] in the
basis (v̄α, v̄β , v̄c) for some (a, b) ∈ R2, and ad(i)(Dc) has thus coordinates [0, 1, 0]. This proves
that ad(i)(Dc) 6⊂ Dc, i.e. that h1 does not satisfy the geometrical conditions of Lemma 4.3.

Lemma 5.6. If h is a four-dimensional subalgebra of ha = pmin, or is equal to h2 = R2 ⋊
sim(R2), then h does not respect both the geometrical conditions of Lemma 4.3 and the dynam-
ical condition of Lemma 5.4.

Proof. We first assume that h is a four-dimensional subalgebra of pmin. Therefore H ⊂ Pmin,
and if H · x0 is open then x0 ∈ Ya according to Proposition 4.5. We can thus assume up to
conjugacy in H that x0 = oa = ([e3], [e3, e2]) ∈ Ya, implying:

i = stabh(oa) ⊂ ia = stabpmin
(oa) =

{(
a 0 0
0 −a−b 0
0 0 b

) ∣∣∣∣ (a, b) ∈ R2
}
.

Let Dc ⊂ h/i be a line preserved by ad(i), and such that Deθoa
(Dc) is transverse to (Eα ⊕

Eβ)(oa). Since h is a proper subalgebra of pmin, Lemma 5.3 implies that ad(ia)(Dc) 6⊂ Dc, and
thus that stabia(Dc) :=

{
v ∈ ia

∣∣∣ ad(v)(Dc) ⊂ Dc
}

is equal to i. Consequently, dim stabia(Dc) =
1. Any line Dc of pmin/ia which is transverse to the contact plane has projective coordinates
[x, y, 1] in the basis (X̄, Ȳ , Z̄) of pmin/ia, for some (x, y) ∈ R2 (see Proposition 4.6), and
according to equation (4.15):

– if x = y = 0, i.e. Dc = RZ̄, then stabia(RZ̄) = ia;

– if x = 0 and y 6= 0, i.e. Dc = Dc
Y (t) := R(Z̄ + tȲ ) for some t ∈ R, then stabia(Dc

Y (t)) is

equal to the line iY generated by the diagonal matrix [1, 1,−2] =
(

1 0 0
0 1 0
0 0 −2

)
;
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– if x 6= 0 and y = 0, i.e. Dc = Dc
X(t) := R(Z̄ + tX̄) for some t ∈ R, then stabia(Dc

X(t)) is

equal to the line iX generated by the diagonal matrix [−2, 1, 1] =
(

−2 0 0
0 1 0
0 0 1

)
;

– if x 6= 0 and y 6= 0, then stabia(Dc) = {0}.

The only transverse lines of pmin/ia having a one-dimensional stabilizer in ia are thus Dc
X(t)

and Dc
Y (t), and i is therefore equal to iX or iY . But Mat(X̄,Ȳ ,Z̄) ad([1, 1,−2]) = [0, 3, 3] and

Mat(X̄,Ȳ ,Z̄) ad([−2, 1, 1]) = [−3, 0,−3] according to (4.15), i.e. the elements of iX and iY have
zero eigenvalue with respect to either the α or the β-direction. This shows that h does not
satisfy the dynamical condition of Lemma 5.4, and concludes the proof in the case h ( pmin.

In the same way, if h = h2, then we can assume that x0 = oa ∈ Ωa up to conjugacy in
H2 = R2⋊Sim(R2), implying i2 = stabh2

(oa) = iY defined above. But we saw that the elements
of iY have zero eigenvalue with respect to the α-direction, which shows that h2 does not satisfy
the dynamical condition of Lemma 5.4.

Proposition 4.4 directly follows from Lemmas 5.2, 5.5 and 5.6.

6 Global structure

From the local model that we determined for the enhanced Lagrangean contact structure S,
we will now deduce a global information.

6.1 Local homogeneity of the enhanced Lagrangean contact structure

So far, we only have informations about S on a dense and open subset Ω of M (see Proposition
3.2), and the first step to obtain a global information is to prove the following result.

Proposition 6.1. The open dense subset Ω equals M , i.e. S is locally homogeneous on M .

We will denote in this paragraph by (C, ϕ) = (M̂ , ω, ϕ) the normal generalized Cartan
geometry of the enhanced Lagrangean contact structure S̃ = π∗

M S of M̃ , and by Ktot : M̂ →
WKtot its total curvature (see Paragraphs 2.3.4 and 2.4.2). We recall that Ω̃ = π−1

M (Ω) ⊂ M̃ ,
and that the projection of the Cartan bundle is denoted by π : M̂ → M̃ .

We also recall that the local homogeneity of S̃|Ω̃ means that the connected components of
Ω̃ are exactly its Killloc-orbits (see Definition 3.1). Since the rank of DKtot is invariant by the
right action of Pmin and by the flow of Killing fields, this shows that rk(DKtot) is constant
over any connected component of Ω̃.

We choose for this whole paragraph a connected component O of Ω̃ (i.e. an open Killloc-
orbit of S̃) such that rk(Dx̂Ktot) for x̂ ∈ π−1(O) is maximal among rk(Dx̂Ktot) for x̂ ∈ π−1(Ω̃).
We will denote by (Y,SY ) the local model of S̃|O, equal to (Yt,St) or (Ya,Sa) and such that
δ|O : (O, S̃ |O) → (Y,SY ) is a local isomorphism (see Corollary 4.6). We still denote by h the
subalgebra of Killing fields of SY , respectively equal to ht or ha (see Proposition 4.4), and by
H the corresponding Lie connected subgroup

H0
t =

[
GL+

2 (R) 0
0 1

]
or H0

a = P+
min,

of G of Lie algebra h, preserving SY .
We recall that δ : M̃ → X denotes the developping map of the (G,X)-structure of M

describing the flat Lagrangean contact structure L (see Corollary 3.4).

Lemma 6.2. The boundary of O is mapped to X \Y by the developping map: δ(∂O) ⊂ X \Y .
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Proof. Let us assume by contradiction that there exists x ∈ ∂O such that x0 = δ(x) ∈ Y . The
pullback h̃ := δ∗h = {δ∗v | v ∈ h} is a subalgebra of vector fields of M̃ , such that Kill(O, S̃|O) =
h̃|O according to Lemma 4.1. As x0 ∈ Y , there exists an open and convex neighbourhood
W0 of 0 in h such that V = exp(W0) · x0 ⊂ Y is an open neighbourhood of x0. Denoting
W = δ∗W0 ⊂ h̃, U =

{
ϕ1

X(x)
∣∣ X ∈ W

}
is thus an open neighbourhood of x, and possibly

shrinking W0, we can moreover assume that δ|U is a diffeomorphism from U to V . As x ∈ ∂O,
there exists y ∈ U ∩ O, and X ∈ W such that x = ϕ1

X(y), implying that ϕt
X(y) ∈ U for any

t ∈ [0 ; 1], and thus δ(ϕt
X (y)) ∈ V ⊂ Y . Denoting t0 = inf

{
t ∈ [0 ; 1]

∣∣ ϕt
X(y) ∈ ∂O

}
, t0 > 0

because O is open, and ϕt0

X(y) ∈ ∂O because ∂O is closed. Replacing x by ϕt0

X(y) and X by
X
t0

∈ W , we finally have y ∈ O, x = ϕ1
X(y) ∈ ∂O, and for any t ∈ [0 ; 1[, ϕt

X(y) ∈ O, with
X|O∈ Kill(O, S̃ |O).

Choosing ŷ ∈ π−1(y), the invariance of D1Ktot by local automorphisms and the fact that
ϕt

X is a local automorphism of (C, ϕ) on the neighbourhood of y for any t ∈ [0 ; 1[ implies
D1Ktot(ϕ̂t

X(ŷ)) = D1Ktot(ŷ) for any t ∈ [0 ; 1[. Denoting x̂ = ϕ̂1
X(ŷ), we obtain D1Ktot(x̂) =

D1Ktot(ŷ) by continuity, i.e. Ktot(x̂) = Ktot(ŷ) and Dx̂Ktot ◦ω−1
x̂ = DŷKtot ◦ω−1

ŷ (see Paragraph
2.4.2 for the definition of D1Ktot).

This implies x̂ ∈ M̂ int. In fact since the rank of DKtot can only increase locally, there is an
open neighbourhood U of x̂ where the rank of DKtot is greater than rk(Dx̂Ktot). Let us assume
by contradiction that the open subset of U where rk(Dx̂′Ktot) > rk(Dx̂Ktot) is non-empty.
Then by density of π−1(Ω̃), there exists ẑ ∈ π−1(Ω̃) such that rk(DẑKtot) > rk(Dx̂Ktot). But
rk(Dx̂Ktot) = rk(DŷKtot) because D1Ktot(x̂) = D1Ktot(ŷ), and thus rk(DẑKtot) > rk(DŷKtot)
with ŷ ∈ π−1(O), wich contradicts our hypothesis of maximality of rk(DKtot) on O. Therefore
rk(DKtot) is constant on the open neighbourhood U of x̂, proving that x̂ ∈ M̂ int according to
Theorem 2.17.

For any X ∈ killloc
S (y), X̂ŷ ∈ Ker(DŷKtot), which implies ω−1

ŷ (pmin) + Ker(DŷKtot) = TŷM̂

since the Killloc-orbit O of y is open, and therefore ω−1
x̂ (pmin) + Ker(Dx̂Ktot) = Tx̂M̂ (because

Dx̂Ktot ◦ ω−1
x̂ = DŷKtot ◦ ω−1

ŷ ). Since x̂ ∈ M̂ int, this equality implies
{
Xx

∣∣∣ X ∈ killloc
S̃

(x)
}

=

TxM̃ , i.e. that the Killloc-orbit of x is open. But x ∈ ∂O, and the Killloc-orbit of x intersects
thus O, i.e. x ∈ O since O is also a Killloc-orbit, which contradicts our initial hypothesis. This
contradiction concludes the proof of the lemma.

Lemma 6.2 allows us to reduce the study of the central direction Ẽc on the boundary of O,
to the study of the central direction Ec on the boundary of Y . We first do some geometrical
remarks about the open subsets Ya and Yt of X, defined in Paragraphs 4.2.2 and 4.2.3.

Let us recall that, denoting D∞ = [e1, e2], mt = [e3] and ma = [e1], we have:

Yt = X \ (Sβ,α(D∞) ∪ Sα,β(mt)) and Ya = X \ (Sβ,α(D∞) ∪ Sβ,α(ma)).

In particular, for ε = a and t we have X \ Yε = ∂Yε = Sβ,α(D∞) ∪ Sα,β(mε).
We define in both cases

G :=
{
x ∈ ∂Y

∣∣∣ Cα(x) * ∂Y or Cβ(x) * ∂Y
}
.

It is easy to check that for ε = a and t, we have:

Gε = ∂Yε \ {Cβ(D∞) ∪ Cα(mε) ∪ (Sβ,α(D∞) ∩ Sα,β(mε))},

and that for any x ∈ G, if Cε(x) * ∂Y for ε = α or β, then Cε(x) \ {x} ⊂ Y .
We have Sβ,α(D∞) ∩ Sα,β(ma) = Cβ(D∞) ∪ Cα(ma), and Sβ,α(D∞) ∩ Sα,β(mt) is equal to

the chain defined by (mt,D∞), denoted by C(mt,D∞) and defined as follows:

C(mt,D∞) := {(m, [m,mt]) | m ∈ D∞} .

Finally, we will use the following description of the respective orbits of H on G:
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1. the orbits of H0
t on Gt are G1

t = Sα,β(mt)\(Cα(mt)∪C(mt,D∞)) where Cα(x)\{x} ⊂ Yt,
and G2

t = Sβ,α(D∞) \ (Cβ(D∞) ∪ C(mt,D∞)) where Cβ(x) \ {x} ⊂ Yt;

2. the orbits of H0
a on Ga are G1

a = Sα,β(ma) \ (Cα(ma) ∪ Cβ(D∞)) where Cα(x) \ {x} ⊂ Ya,
and G2

a = Sβ,α(D∞) \ (Cα(ma) ∪ Cβ(D∞)) where Cβ(x) \ {x} ⊂ Ya.

We now prove that the central direction Ec degenerates along the α and β-circles when
converging to a point of G.

Lemma 6.3. Let γ : [0 ; 1] → X be a smooth path such that γ(]0 ; 1]) ⊂ Y , x = γ(0) ∈ G, and
γ([0 ; 1]) is entirely contained in Cα(x), or entirely contained in Cβ(x). Then Ec(γ(t)) converges
at t = 0 to a line contained in (Eα ⊕ Eβ)(x).

Proof. Since the action of H on Y preserves Ec, it will be sufficient to prove this result for
one point of each of the two orbits of H on G described above, in each of the two cases Yt

or Ya. Moreover, we saw that in each case, either Cα(x) \ {x} ⊂ Y and Cβ(x) ⊂ ∂Y , or the
contrary. We thus have only one possibility to consider for γ in each of these four cases, either
that γ([0 ; 1]) ⊂ Cα(x), or that γ([0 ; 1]) ⊂ Cβ(x). To clarify our strategy, let x be a point of Gi

µ

for µ = t or a and i = 1 or 2, and let us consider the following data:

– a one-parameter subgroup {gt}t∈R of G such that, denoting x(t) = gt · x, we have
{x(t) | t ∈ R} = Cε(x) \ {y}, with y ∈ Cε(x) ∩ Y , and ε = α or β according to the
case considered,

– a one-parameter subgroup {ht}t∈R of H such that gt · x = x(t) = ht−1

· y for any t ∈ R∗,

– A in sl3 such that Deθy(RA) = Ec(y), where θy : G → X is the orbital map at y,

– and g0 ∈ G such that g0 · x = o where o = ([e1], [e1, e2]) is the usual base-point of X.

Then for any t ∈ R∗ we have

Dx(t)(g0g
−t)(Ec(x(t))) = Deθo(RAd(g0g

−tht−1

) ·A)).

Denoting by p : sl3 → sl3/pmin the canonical projection, let us assume that p(RAd(g0g
−tht−1

) ·
A) converges at t = 0 to a line contained in Vect(ēα, ēβ). Then Deθo(RAd(g0g

−tht−1

)·A) ⊂ ToX

converges to a line L ⊂ (Eα ⊕ Eβ)(o), and since gtg−1
0 converges to g−1

0 at t = 0, we deduce
by continuity that Ec(x(t)) converges at t = 0 to Dog

−1
0 (L), contained in (Eα ⊕ Eβ)(x) because

g−1
0 preserves Eα ⊕ Eβ.

In conclusion, we only have to find, in each of the four cases µ = t or a and i = 1 or 2, a
point x ∈ Gi

µ, together with gt, ht, A, and g0 satisfying the above conditions, and to prove that

p(RAd(g0g
−tht−1

) ·A) converges at t = 0 to a line contained in Vect(ēα, ēβ).
We begin with Yt, for which we choose for both orbits G1

t and G2
t the point y := ot =

([1, 0, 1], [(1, 0, 1), e2 ]) ∈ Yt. Let us recall that in this case, A =
( 1 0 0

0 −1 0
0 0 0

)
satisfies Ec(ot) =

Deθot
(RA) (see Paragraph 4.2.2).

– For G1
t , choosing x = ([1, 0, 1], [(1, 0, 1), e1 ]) = ([1, 0, 1], [e1 , e3]), g0 =

( 1 0 0
1 0 −1
0 1 0

)
, and the

one-parameter subgroups gt =
( 1 0 0

t 1 −t
0 0 1

)
of G and ht =

(
1 t 0
0 1 0
0 0 1

)
of H0

t such that gt · x =

ht−1

· ot ∈ Cα(x), we obtain:

Ad(g0g
−tht−1

) · A =
(

1 −2 −2t−1

1 −2 −2t−1

−t t 1

)
,

and thus p(RAd(g0g
−tht−1

) ·A) converges at t = 0 to Rēβ.
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– For G2
t , choosing x = ([e2], [e2, (1, 0, 1)]), g0 =

(
0 1 0
1 0 0
1 0 −1

)
, and the one-parameter subgroups

gt =
(

1 t 0
0 1 0
0 t 1

)
of G and ht =

(
1 0 0
t 1 0
0 0 1

)
of H0

t such that gt · x = ht−1

· ot ∈ Cβ(x), we obtain

Ad(g0g
−tht−1

) ·A =
(

1 2t−1 0
0 −1 0
t 1 0

)
,

and thus p(RAd(g0g
−tht−1

) ·A) converges at t = 0 to Rēα.

We now consider the case of Ya, for which we choose for both orbits G1
a and G2

a the point
y := oa = ([e3], [e3, e2]) ∈ Ya, and we recall that in this case A =

(
0 0 1
0 0 0
0 0 0

)
satisfies the above

condition Ec(oa) = Deθoa
(RA) (see Paragraph 4.2.3).

– For G1
a, choosing x = ([e3], [e3, e1]), g0 =

(
0 0 1
1 0 0
0 1 0

)
, and the one-parameter subgroups

gt =
(

1 0 0
t 1 0
0 0 1

)
of G and ht =

(
1 t 0
0 1 0
0 0 1

)
of H0

a such that gt · x = ht−1

· oa ∈ Cα(x), we obtain:

Ad(g0g
−tht−1

) ·A =
( 0 0 0

1 0 0
−t 0 0

)
,

and thus p(RAd(g0g
−tht−1

) ·A) converges at t = 0 to Rēβ.

– For G2
a, choosing x = ([e2], [e2, e3]), g0 =

(
0 1 0
0 0 1
1 0 0

)
, and the one-parameter subgroups

gt =
(

1 0 0
0 1 0
0 t 1

)
of G and ht =

(
1 0 0
0 1 t
0 0 1

)
of H0

a such that gt · x = ht−1

· oa ∈ Cβ(x), we obtain

Ad(g0g
−tht−1

) · A =
(

0 0 0
0 0 0
t 1 0

)
,

and thus p(RAd(g0g
−tht−1

) ·A) converges at t = 0 to Rēα.

According to the discussion above, this concludes the proof of the lemma.

We are now able to prove Proposition 6.1.

Proof of Proposition 6.1. Let us assume by contradiction that Ω 6= M . We choose a connected
component O of Ω̃ such that the rank of Dx̂Ktot for x̂ ∈ π−1(O) is maximal among the ranks
of Dx̂Ktot for x̂ ∈ π−1(Ω̃). Since ∅ 6= O 6= M̃ there exists x ∈ ∂O, and since Ẽα ⊕ Ẽβ is
contact, [Sus73, Theorem 4.1] implies the existence of a piecewise smooth path γ : [0 ; 1] → M̃
constituted of a finite concatenation of segments of α and β-leaves, joining x = γ(1) to a point
y = γ(0) ∈ O. Denoting t0 = inf {t ∈ [0 ; 1] | γ(t) ∈ ∂O}, t0 > 0 and γ(t0) ∈ ∂O. Replacing
x by γ(t0), keeping only the last smooth arc of γ, replacing y by the origin of this arc, and
choosing a parametrization of this arc by [0 ; 1], we finally obtain a smooth path γ : [0 ; 1] → M̃
such that γ([0 ; 1[) ⊂ O, x = γ(1) ∈ ∂O, and γ([0 ; 1]) is entirely contained in a same α or
β-leaf. The proof being the same in the two cases, we assume that γ([0 ; 1]) ⊂ F̃α(x) to fix the
ideas. Denoting x0 = δ(x), x0 ∈ X \ Y according to Lemma 6.2, and δ(γ([0 ; 1[)) ⊂ Y because
δ(O) ⊂ Y (see Lemma 4.2). Finally δ(γ([0 ; 1[)) is an open interval of Cα(x0) contained in Y ,
and x0 ∈ X \ Y , i.e. x0 ∈ G. Denoting γ0(t) = δ(γ(t)), Lemma 6.3 implies therefore that
Ec(γ0(t)) converges to a line Dc

0 ⊂ (Eα ⊕ Eβ)(x0) at t = 1. As δ|O is a local isomorphism
between S̃|O and SY , we have Ẽc(γ(t)) = (Dγ(t)δ)−1(Ec(γ0(t))) for any t ∈ [0 ; 1[, implying
Ẽc(x) = (Dxδ)−1(Dc

0) by continuity. Since δ is a local isomorphism between the Lagrangean
contact structures L̃ and LX, this implies that Ẽc(x) ⊂ (Ẽα ⊕ Ẽβ)(x), which contradicts the
definition of the transverse distribution Ẽc. This contradiction concludes the proof of the
proposition.
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6.2 Reduction of the holonomy group

Let us describe the global and local automorphisms of (Yt,St) and (Ya,Sa).

Proposition 6.4. 1. Aut(Yt,St) = Ht =

[
GL2(R) 0

0 1

]
and Aut(Ya,Sa) = Ha = Pmin.

2. Let (Y,SY ) be one of the two models (Yt,St) or (Ya,Sa). Then any local isomorphism of
SY between two connected open subsets of Y is the restriction of the action of a global
automorphism of Aut(Y,SY ).

Proof. 1. The inclusions Ht ⊂ Aut(Yt,St) and Ha ⊂ Aut(Ya,Sa) were explained in Paragraphs
4.2.2 and 4.2.3. Since the automorphism groups are contained in the respective stabilizers of
Yt and Ya, the equalities follow because Ht = StabG(Yt) and Ha = StabG(Ya).
2. Let us emphasize that in both cases, Aut(Y,SY ) is the normalizer of h in G. Let ϕ be a local
automorphism of SY between two connected open subsets U and V of Y . For any v ∈ h, since
v|V is a Killing field of SY , ϕ∗(v|V ) is a Killing field of SY , and therefore ϕ∗(v|V ) = w|U for
some w ∈ h. But ϕ is in particular a local automorphism of the Lagrangean contact structure
LX of X, and is thus the restriction to an open subset U ⊂ Y of the left translation by an
element g ∈ G, according to Theorem 2.9. Therefore w|U = ϕ∗(v|V ) = (Ad(g) · v)|U , implying
that Ad(g) · v = w ∈ h since the action of G on X is analytic (see Lemma 2.16). Consequently,
g ∈ NorG(h) = Aut(Y,SY ).

We recall that ρ : π1(M) → G denotes the holonomy morphism associated to the develop-
ping map δ : M̃ → X of the (G,X)-structure of M (see Corollary 3.4 and Paragraph 2.3.2).

Proposition 6.5. The holonomy group ρ(π1(M)) is contained in Aut(Y,SY ). Consequently,
M has either a (Ht, Yt)-structure or a (Ha, Ya)-structure, and its developping map is a local
isomorphism of enhanced Lagrangean contact structures from S̃ to St (respectively Sa).

Proof. According to Proposition 6.1, S is locally homogeneous, and we thus deduce from Corol-
lary 4.6 that, up to inversion of the distributions Eα and Eβ, the developping map of the
(G,X)-structure of M is a local isomorphism from (M̃ , S̃) to one of the two models (Yt,St)
or (Ya,Sa). According to Proposition 6.4, the holonomy morphism has moreover values in the
corresponding automorphism group Ht (respectively Ha) described in the same result, i.e. S
is described by a (Ht, Yt)-structure (resp. (Ha, Ya)-structure) on M . Concerning the inversion
of Eα and Eβ , it is easy to construct for both models (Yt,St) and (Ya,Sa), a diffeomorphism
of Y inverting the distributions Eα and Eβ and fixing the transverse distribution Ec

Y . In other
words, for these both models, the structures (Eα, Eβ , Ec

Y ) and (Eβ , Eα, Ec
Y ) are isomorphic, so

that a posteriori, the order of the distributions Eα and Eβ in the statement of Proposition 6.5
does not matter.

7 Completeness of the structure

The goal of this section is to prove that:

Proposition 7.1. The developping map δ is a covering map from M̃ to Y .

It is a known fact that a local diffeomorphism satisfying the path-lifting property is a
covering map (the reader can for example look for a proof in [DC76, §5.6, Proposition 6 p.
383]). According to the following statement, it will be sufficient to check the path-lifting
property in the α, β and central directions, to prove that δ is a covering map.

Lemma 7.2. Let h : N → B be a local diffeomorphism between two smooth three-dimensional
manifolds, B being connected. We assume that there is a smooth splitting E1 ⊕E2 ⊕E3 = TB
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of the tangent bundle of B into three one-dimensional smooth distributions, such that for any
i ∈ {1, 2, 3}, x ∈ Im(h), and x̃ ∈ h−1(x), any path tangent to Ei and starting from x entirely
lifts through h to a path starting from x̃. Then h is a covering map from N to B (and in
particular, h is surjective).

Proof. Since h is a local diffeomorphism, it suffices to prove that our weaker hypothesis implies
the lift of any path. By compactness, it is moreover sufficient to locally lift the paths in
B, around any point. We choose x ∈ B and a sufficiently small open neighbourhood U
of x, such that there are three smooth vector fields X, Y and Z generating E1, E2 and
E3 on U , and ε > 0 such that (t, u, v) ∈ ]−ε ; ε[3 7→ φ(t, u, v) := ϕt

X ◦ ϕu
Y ◦ ϕv

Z(x) ∈ U
is well-defined, and is a diffeomorphism (this exists according to Inverse mapping theorem).
Let us choose x̃ ∈ h−1(x). Then, denoting by X̃ = h∗X, Ỹ = h∗Y and Z̃ = h∗Z the
pullbacks, the path-lifting property in the directions E1, E2 and E3, and from any point,
implies that φ̃(t, u, v) := ϕt

X̃
◦ ϕu

Ỹ
◦ ϕv

Z̃
(x̃) is well-defined on ]−ε ; ε[3. If γ : [0 ; 1] → U is a

continuous path starting from x and contained in U , there are three continuous maps t, u and
v from [0 ; 1] to ]−ε ; ε[ such that γ(s) = φ(t(s), u(s), v(s)). Since h ◦ φ̃ = φ by construction,
γ̃(s) := φ̃(t(s), u(s), v(s)) is a lift of γ starting from x̃, which concludes the proof.

Remark 7.3. Proving that the paths in δ(M̃ ) in the α-direction (respectively β or central
direction) lift to M̃ is equivalent to prove that for any x ∈ δ(M̃ ) and x̃ ∈ δ−1(x), we have:

δ(F̃α(x̃)) = Cα(x) ∩ δ(M̃ ),

(respectively the same equality for β-leaves and β-circes, or for central leaves).

We first prove that the image of any α (respectively β) leaf in M̃ miss exactly one point in
the associated α-circle (respectively β-circle) of Y . We recall that ∂Y = X \ Y , as explained
before Lemma 6.3.

Lemma 7.4. For any x̃ ∈ M̃ , denoting x = δ(x̃) ∈ Y , there exists x∗ ∈ Cβ(x) ∩ ∂Y such that
δ(F̃β(x̃)) = Cβ(x) \ {x∗} = Cβ(x) ∩ Y . The same happens for α-leaves and their associated
α-circles.

Proof. We will only write the proof for β-leaves and β-circles as in the statement, the case of
the α-direction being the same. Denoting x̄ = πM (x̃) ∈ M , and possibly replacing f by f−1,
we have lim

n→+∞

∥∥∥Dx̄f
n|Eα(x̄)

∥∥∥
M

= 0 for some Riemannian metric that we fix on M .

The description of the open subsets Yt and Ya in Paragraphs 4.2.2 and 4.2.3 easily shows
that in these both cases, the intersection of any β-circle (respectively α-circle) with Y miss
exactly one point of the circle. In other words, the intersection Cβ(x) ∩ ∂Y is a single point
{x∗}, and as a consequence δ(F̃β(x̃)) ⊂ Cβ(x) \ {x∗} = Cβ(x) ∩ Y . To finish the proof of the
lemma, we have to prove that δ(F̃β(x̃)) cannot miss more than one point of Cβ(x). To achieve
this, we assume by contradiction the following:

there exists x− 6= x+ ∈ Cβ(x) \ {x, x∗} such that δ(F̃β(x̃)) = ]x− ;x+[ ( Cβ(x) \ {x∗}, (7.1)

where ]x− ;x+[ is the connected component of Cβ(x) \ {x−, x+} that contains x.
Since M is compact, there exists a strictly increasing sequence (nk) of positive integers such

that fnk(x̄) converges to a point x̄∞ ∈ M , and there exists then a sequence γk ∈ π1(M) such
that x̃k := γk · f̃nk(x̃) converges to a point x̃∞ ∈ π−1(x̄∞). Since γkf̃

nk is an automorphism
of the Lagrangean contact structure L̃ and δ a local isomorphism from L̃ to LX, Theorem 2.9
implies the existence of a unique sequence gk ∈ G satisfying:

δ(γk · f̃nk(x̃)) = gk · δ(x̃).

We denote xk = δ(x̃k) = gk(x) ∈ Y , that converges to x∞ := δ(x̃∞). Denoting x−
k = gk(x−)

and x+
k = gk(x+), xk, x−

k and x+
k are three distincts points of Cβ(xk) for any k. By compactness

of X, we can assume up to extraction that x−
k and x+

k respectively converge to points x−
∞ and

x+
∞ of Cβ(x∞), and the hypothesis (7.1) allows us to obtain the following crucial statement.
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Fact 7.5. x∞ 6= x−
∞, and x∞ 6= x+

∞.

Proof. Let us assume by contradiction that x−
∞ = x∞. Considering a neighbourhood U of

x̃∞ such that δ|U is injective, we can choose ỹ∞ ∈ (F̃β(x̃∞) ∩ U) \ {x̃∞}. There exists a
sequence ỹk ∈ F̃β(x̃k) converging to ỹ∞, and possibly changing ỹ∞, we can moreover assume
that δ(ỹk) ∈ ]x−

k ;xk[, implying that δ(ỹ∞) ∈ [x−
∞ ;x∞] by continuity. But [x−

∞ ;x∞] = {x∞}
since x−

∞ = x∞, and therefore δ(ỹ∞) = x∞ = δ(x̃∞), implying ỹ∞ = x̃∞ by injectivity of δ|U ,
which contradicts our hypothesis on ỹ∞. This contradiction concludes the proof of x∞ 6= x−

∞,
and x∞ 6= x+

∞ is proved in the same way.

The subgroup SO(3) of G acts transitively on X, and we can thus choose φ ∈ SO(3)
and a sequence (φk) in SO(3), satisfying φ(x) = o and φk(xk) = o for any k (we recall that
o = ([e1], [e1, e2])). Since StabSO(3)(Cβ(o)) =

[
SO(2) 0

0 1

]
acts transitively on Cβ(o), we can

moreover assume that φ(x+) = o+ and φk(x+
k ) = o+, where o+ = ([e2], [e1, e2]) ∈ Cβ(o). For

any k, φk ◦ gk ◦φ−1 is an element of StabG(o) ∩ StabG(o+), i.e. is of the form
[

1 0 x
0 λk y
0 0 µk

]
. Since

[
1 0 ∗
0 1 ∗
0 0 ∗

]
acts trivially in restriction to Cβ(o), Ak :=

[
1 0 0
0 λk 0
0 0 1

]
satisfies thus:

gk|Cβ(x)= φ−1
k ◦Ak ◦ φ|Cβ(x).

The following commutative diagram summarizes the situation.

Cβ(o) Cβ(x) F̃β(x̃) Fβ(x̄)

Cβ(o) Cβ(xk) F̃β(x̃k) Fβ(fnk(x̄))

Ak

φ

gk

δ

γk f̃nk

πM

fnk

φk δ

πM

(7.2)

The action of Ak ∈ G on Cβ(o) is conjugated to the action of the projective transformations[
1 0
0 λk

]
∈ PGL2(R) on RP1, i.e. to the action of the homotheties of ratio λk on R ∪ {∞}. By

this conjugation, o corresponds to 0, o+ to ∞, and o− := φ(x−) ∈ Cβ(o) \ {o, o+} corresponds
to a non-zero point of R. Fact 7.5 implies that Ak(o−) = φk(x−

k ) ∈ Cβ(o) stays bounded away
from o (since φk ∈ SO(3)), and therefore that λk is bounded away from 0.

On the other hand, endowing M̃ with the pullback of the Riemannian metric of M , the di-
agramm (7.2) implies lim

k→+∞

∥∥∥Dx̃(γkf̃
nk)|Ẽβ(x̃)

∥∥∥
M̃

= 0 (since π1(M) acts by isometries). Fixing

any Riemannian metric on X, as (x̃k) is relatively compact we also have lim
∥∥∥Dxgk|Eβ(x)

∥∥∥
X

= 0,

and since (φk) and (xk) are relatively compact as well, we finally obtain lim
∥∥∥DoAk|Eβ(x)

∥∥∥
X

= 0.
This contradicts the fact that λk is bounded away from 0, and this contradiction concludes

the proof of the lemma.

Lemma 7.4 allows us to easily infer the path-lifting property in the α and β-directions.

Corollary 7.6. 1. For any x ∈ δ(M̃ ), Cα(x) ∩ δ(M̃ ) = Cα(x) ∩ Y and Cβ(x) ∩ δ(M̃ ) =
Cβ(x) ∩ Y .

2. The paths in δ(M̃ ) in the α and β-directions lift to M̃ from any point.

Proof. We only write the proof of the statements for the α-direction, the case of the β-direction
being proved in the same way.
1. For any x̃ ∈ M̃ , denoting δ(x̃) = x, we know that ∂Y ∩ Cα(x) is equal to a single point {x∗}
that satisfies Cα(x) \ {x∗} = Cα(x) ∩ Y . Furthermore, δ(F̃α(x̃)) = Cα(x) \ {x∗} = Cα(x) ∩ Y
according to Lemma 7.4. Since Cα(x) ∩ δ(M̃ ) ⊂ ∪x̃∈δ−1(x)δ(F̃

α(x̃)) = Cα(x) ∩ Y , we finally
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obtain Cα(x) ∩ δ(M̃ ) = Cα(x) ∩ Y .
2. The first claim together with Lemma 7.4 imply δ(F̃ (x̃)) = Cα(x) ∩ δ(M̃ ), for any x ∈ δ(M̃ )
and x̃ ∈ δ−1(x). According to Remark 7.3, this proves that any path starting from x in the
α-direction lifts to M̃ from x̃.

The accessibility property of Lagrangean contact structures allows us to deduce that:

Corollary 7.7. The developping map is surjective: δ(M̃ ) = Y .

Proof. Let x be a point of δ(M̃ ), and y be any point in Y . Restricting the standard Lagrangean
contact structure of X to the connected open subset Y , [Sus73, Theorem 4.1] implies the
existence of a finite number x = x1, . . . , xn = y of points of Y such that for any i = 1, . . . , n−1,
xi+1 ∈ Cα(xi)∩Y or xi+1 ∈ Cβ(xi)∩Y . Applying the first statement of Corollary 7.6, we deduce
by a direct finite recurrence that for any i, xi ∈ δ(M̃ ), implying y ∈ δ(M̃ ).

We finally prove that the central paths also lift, by a specific method for each model.

Lemma 7.8. In the case of Yt, any central path starting at any point x ∈ Yt lifts in M̃ from
any point x̃ ∈ δ−1(x).

Proof. Denoting Z =
( 1 0 0

0 1 0
0 0 −2

)
∈ ht, the transverse distribution on Yt is generated by Z at

ot (see Paragraph 4.2.2). But Z is Ht-invariant since Z is central in ht, and Ec
t is there-

fore generated by Z on Yt, i.e. the central leaves are the integral curves of Z on Yt. Since
ρ(π1(M)) ⊂ Ht according to Proposition 6.5, Z is preserved by ρ(π1(M)), and Z̃ := δ∗Z is thus
π1(M)-invariant. This allows us to push it down by πM to a vector field Z̄ of M generating Ec,
and since M is compact, Z̄ is a complete vector field. Since πM is a covering map, Z̃ = π∗

M Z̄
is also complete, which allows us to lift any central path in Yt to M̃ .

Lemma 7.9. In the case of Ya, any central path starting at any point x ∈ Ya lifts in M̃ from
any point x̃ ∈ δ−1(x).

Proof. Let us first emphasize that the argument used in the previous lemma for the case of Yt

does not work here, because the center of ha is trivial.
We identify Ya with R3 through (x, y, z) ∈ R3 7→ ([x, y, 1], [(x, y, 1), (z, 1, 0)]) ∈ Ya, and we

define three vector fields of Ya as follows in these global coordinates:

Xα(x, y, z) = e3,X
β(x, y, z) = (z, 1, 0), and Xc(x, y, z) = e1.

These vector fields are complete and generate the enhanced Lagrangean contact structure
Sa = (Eα, Eβ , Ec

a) on Ya (see Paragraph 4.2.3). Since the paths tangent to the α and β-
distributions entirely lift to M̃ according to Corollary 7.6, X̃α := δ∗Xα and X̃β := δ∗Xβ are
complete as well. We can furthermore realize the flow of the central vector field Xc by α − β
curves through the following equalities:

{
ϕ−t

Xβ ◦ ϕ−t
Xα ◦ ϕt

Xβ ◦ ϕt
Xα(x) = x+ t2e1 = ϕt2

Xc(x),

ϕt
Xβ ◦ ϕ−t

Xα ◦ ϕ−t
Xβ ◦ ϕt

Xα(x) = x− t2e1 = ϕ−t2

Xc (x).

The same equalities are true for X̃α, X̃β and X̃c = δ∗Xc, and since the flows of X̃α and X̃β

are defined for all times, these equalities show that X̃c is complete. This allows us to lift any
central path of Ya from any point of M̃ , and concludes the proof of the lemma.

End of the proof of Proposition 7.1. According to Corollary 7.6 and to Lemmas 7.8 and 7.9,
the local diffeomorphism δ satisfies the path-lifting property on Y in the α, β, and central
directions, and is thus a covering map from M̃ to Y according to Lemma 7.2.
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8 Conclusion

8.1 End of the proof of Theorem B

8.1.1 Case of (Ya,Sa)

We first assume that (M,S) is locally isomorphic to (Ya,Sa). We identify Ya with Heis(3) and
the action of Ha on Ya to the action of Heis(3)⋊A on Heis(3) as explained in Paragraph 4.2.3.
The developping map being a covering according to Proposition 7.1, it is a diffeomorphism
δ : M̃ → Heis(3) by simple connexity of Heis(3). Moreover, δ conjugates the action of π1(M)
on M̃ to the one of Γ := ρ(π1(M)) ⊂ Heis(3) ⋊ A on Heis(3) (see Proposition 6.5). We can
thus assume that M is a quotient Γ\Heis(3), with Γ a discrete subgroup of Heis(3) ⋊A acting
freely, properly and cocompactly on Heis(3), and that f is an element of Heis(3)⋊A such that
fΓf−1 = Γ.

Denoting [x, y, z] =
(

1 x z
0 1 y
0 0 1

)
, the identification [x, y, z] ∈ Heis(3) 7→ (x, y, z) ∈ R3 of Heis(3)

with R3 is equivariant for the following injective morphism from Heis(3) ⋊ A to the affine
transformations of R3:

Θ: ([x, y, z], ϕλ,µ) ∈ Heis(3) ⋊ A 7→



λ 0 0
0 µ 0
0 µx λµ


+



x
y
z


 ∈ Aff(R3).

M is thus diffeomorphic to the quotient Λ\R3, where Λ := Θ(Γ) is a discrete subgroup
of affine transformations of R3 contained in S := Θ(Heis(3) ⋊ A), acting freely, properly and
cocompactly on R3. Since S is solvable (because Heis(3) ⋊ A ≃ Pmin is), the work of Fried
and Goldmann in [FG83] (more precisely Theorem 1.4, Corollary 1.5 and Paragraphs 3 and
4 of their paper) implies the existence of a crystallographic hull C for Λ. This group C is a
closed subgroup of S containing Λ, and whose identity component C0 satisfies the following
assumptions: Λ ∩C0 has finite index in Λ and is cocompact in C0, C0 acts simply transitively
on R3, and C0 is isomorphic to R3, Heis(3), or Sol. One can check that S does not contain any
subgroup isomorphic to R3, that the subgroups of S isomorphic to Sol do not act simply tran-
sitively on R3, and that Θ(Heis(3)) is the only subgroup of S isomorphic to Heis(3). Finally,
C0 is equal to Θ(Heis(3)), and therefore, Λ∩ Θ(Heis(3)) has finite index in Λ and is cocompact
in Θ(Heis(3)). As a consequence, Γ0 := Γ ∩ Heis(3) has finite index in Γ and is a cocompact
lattice of Heis(3).

The kernel of p : (g, ϕ) ∈ Heis(3) ⋊ A 7→ ϕ ∈ A is equal to Heis(3), and Γ/Γ0 is thus
isomorphic to p(Γ) ⊂ A. But A is isomorphic to (R∗)2, and a finite subgroup of A is thus
contained in the subgroup {ϕ±1,±1} of cardinal 4, implying that the index of Γ0 in Γ is at most
4. Since f = (g, ϕ) ∈ NorHeis(3)⋊A(Γ), we have gϕ(Γ0)g−1 = Γ0, and the affine automorphism
x 7→ gϕ(x) of Heis(3) induces therefore a diffeomorphism f̌ of M̌ := Γ0\Heis(3). The canonical
projection π̌ : M̌ = Γ0\Heis(3) → M = Γ\Heis(3) is a covering of finite order equal to [Γ0 : Γ],
and we have π̌ ◦ f̌ = f ◦ π̌.

We denote ϕ = ϕλ,µ. To conclude that f̌ is a partially hyperbolic affine automorphism
of Heis(3), it only remains to show that λ < 1 and µ > 1, or the contrary. Let us assume
by contradiction that λ < 1 and µ < 1. Choosing a left-invariant volume form ν on Heis(3),
we have ((Deϕ)∗ν)e = λ2µ2νe, and ν induces a volume form ν̄ on M̌ = Γ0\Heis(3) such that
f̌∗ν̄ = λ2µ2ν̄ (because Lg preserves ν). Since f̌ is a diffeomorphism of the compact manifold
M̌ , we must have

∫
M̌
ν̄ =

∫
M̌
f̌∗ν̄ = λ2µ2

∫
M̌
ν̄, which is a contradiction because

∫
M̌
ν̄ 6= 0 and

λ2µ2 < 1. The same argument shows that we cannot have λ > 1 and µ > 1 neither, which
concludes the proof of Theorem B in the case of the local model (Ya,Sa).
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8.1.2 Case of (Yt,St)

We now assume that S is locally isomorphic to (Yt,St). According to Proposition 7.1, δ : M̃ →
Yt is a covering map. Identifying Yt with SL2(R) as explained in Paragraph 4.2.2, δ lifts thus to
a diffeomorphism δ̃ : M̃ → S̃L2(R). According to Proposition 6.5, ρ(π1(M)) ⊂ Ht ≡ GL2(R).
But M is orientable, and π1(M) preserves thus the induced orientation of M̃ , implying that
ρ(π1(M)) is contained in GL+

2 (R). We saw in Paragraph 4.2.2 that the identification of Yt with
SL2(R) conjugates the action of GL+

2 (R) on Yt to the action of SL2(R) × A on SL2(R). This
shows that M is a quotient Γ̃\S̃L2(R), with Γ̃ a discrete subgroup of S̃L2(R) × Ã acting freely,
properly and cocompactly on S̃L2(R). Possibly replacing f by f2, we can moreover assume
that f preserves the orientation of M , and Theorem 6.4 implies then that f = Lg ◦ Rat with
(g, at) ∈ Nor

S̃L2(R)×Ã
(Γ̃).

Denoting by r1 : S̃L2(R)× Ã → S̃L2(R) the projection on the first factor, and Γ̃0 := r1(Γ̃) ⊂
S̃L2(R), we now prove that

Fact 8.1. Γ̃0 is a cocompact lattice of S̃L2(R), and Γ̃ is the graph-group gr(ũ, Γ̃0) of a morphism
ũ : Γ̃ → Ã.

Proof. Choosing a generator z of the center Z̃ of S̃L2(R), the finiteness of the level proved by
Salein in [Sal99, Theorem 3.3.2.3] implies the existence of a non-zero integer k ∈ N∗ such that
Γ̃ ∩ (Z̃ × {e}) = 〈(zk, e)〉. We will denote by 〈g〉 the group generated by an element g, and
we introduce the group PSL(k)

2 (R) := S̃L2(R)/〈zk〉 and denote by pk : S̃L2(R) → PSL(k)
2 (R) its

universal cover. Then, denoting Ak = pk(Ã) and Γk := (pk × pk)(Γ̃) ⊂ PSL(k)
2 (R) × Ak, pk

induces a diffeomorphism Γ̃\S̃L2(R) → Γk\PSL(k)
2 (R) (because Ker pk = 〈zk〉 and (zk, e) ∈ Γ̃),

implying in particular that Γk acts freely, properly and cocompactly on PSL(k)
2 (R).

We can now apply the work of Kulkarni-Raymond in [KR85] to Γk. Let us denote by
π : S̃L2(R) → PSL2(R) the universal cover morphism of PSL2(R) (of kernel Z̃), and by πk : PSL(k)

2 (R) →

PSL2(R) the induced k-fold covering by PSL(k)
2 (R). Then, with Γ = (π × π)(Γ̃) and Γ0 =

r1(Γ) ⊂ PSL2(R) the projection on the first factor, the form of Kulkarni-Raymond’s results
proved by Tholozan in [Tho14, Lemma 4.3.1] implies that Γ0 is a cocompact lattice of PSL2(R),
and that πk ◦ r1|Γk

is injective.
The first assertion ensures that Γ̃0 is discrete in S̃L2(R). The second one implies that

Γ = gr(u,Γ0) is the graph-group of a morphism u : Γ0 → A = π(Ã). Since r1|Γ̃ is also injective,
this implies that Γ̃ is the graph of a morphism ũ : Γ̃0 → Ã, trivial on Γ̃0 ∩ Z̃.

Since Z̃ ∩ Γ̃0 = 〈zk〉 is finite, the projection Γ̃0\S̃L2(R) → Γ0\PSL2(R) has finite fibers,
implying that Γ̃ is a cocompact lattice since Γ0\PSL2(R) is compact.

The projection Γ0 = π(Γ̃0) is a cocompact lattice of PSL2(R) according to the proof of Fact
8.1, and Γ0\ NorPSL2(R)(Γ0) is thus finite. Therefore, Γ̃0\ Nor

S̃L2(R)
(Γ̃0) is finite as well since

the projection Γ̃0\ Nor
S̃L2(R)

(Γ̃0) → Γ0\ NorPSL2(R)(Γ0) has finite fibers (Z̃ ∩ Γ̃0 = 〈zk〉 is finite

according to the finiteness of the level).
Recall that f = Lg ◦ Ra, where (g, at) ∈ Nor

S̃L2(R)×Ã
(Γ̃). Therefore g ∈ Nor

S̃L2(R)
(Γ̃0),

and since Γ̃0\ Nor
S̃L2(R)

(Γ̃0) is finite, there exists n ∈ N∗ such that γ := gn ∈ Γ̃0. Denoting

a := anũ(γ)−1, we have fn = Lγ ◦ Ran = Ra ◦ (Lγ ◦ Rũ(γ)). But Lγ ◦ Rũ(γ) acts trivially on

the quotient Γ̃\S̃L2(R), and therefore f = Ra is a non-zero time-map of the algebraic contact-
Anosov flow (Rat) on Γ̃\S̃L2(R). This concludes the proof of Theorem B in the case where S
is locally isomorphic to (Yt,St).

This paragraph concludes the proof of Theorem B.
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8.2 Proof of Theorem A

Theorem B implies the following refined version of Theorem A stated in the introduction.

Corollary 8.2. Let M be a closed, connected and orientable three-dimensional manifold, en-
dowed with a smooth splitting TM = Eα ⊕Eβ ⊕Ec, such that Eα ⊕Eβ is a contact distribution.
Let f be a diffeomorphism of M that preserves this splitting, and such that:

– each of the distributions Eα and Eβ is either uniformly contracted, or uniformly expanded
by f ,

– and NW (f) = M .

Then the conclusions of Theorem A hold. In particular, f is a partially hyperbolic diffeomor-
phism.

Let us emphasize that no domination is required on the central direction, and that the two
remaining directions can a priori be both contracted, or both expanded.

Proof of Corollary 8.2. Since Eα ⊕ Eβ is contact and M connected, any two points of M are
linked by the concatenation of a finite number of paths, tangent either to Eα or to Eβ (this is for
example a consequence of the work of Sussmann in [Sus73, Theorem 4.1]). In other words, the
pair (Fα,Fβ) of foliations associated to (Eα, Eβ) is topologically transitive in the terminology
of Brin in [Bri75]. Our hypothesis of uniform contraction or expansion of the distributions Eα

and Eβ directly implies that Fα and Fβ are uniformly contracted or expanded in the sense of
[Bri75]. Since NW (f) = M by hypothesis, [Bri75, Theorem 1.1] implies that f is topologically
transitive. In fact, Brin states this result assuming that one of the distributions is contracted,
and the other one expanded, but it is easy to see that his proof does not use this assumption,
and that the same proof works if both distributions are expanded, or both contracted.

We are now under the hypotheses of Theorem B, and its conclusions hold.
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