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Abstract

This paper analyses the expected warranty costs from the perspectives of the
manufacturer and the consumer respectively. Both the non-renewing free
replacement policy and the renewing replacement policy are examined re-
garding a two-component series system with stochastic dependence between
components. It is assumed that whenever component 1 fails, a random dam-
age to component 2 is induced whereas a component 2 failure causes the
failure of component 1. Component 2 fails when its total damage exceeds a
pre-determined level L. By considering the consumer’s behavior the product
service time, the warranty costs allocations between the manufacturer and
the consumer are presented. Numerical and Monte Carlo examples are given
to demonstrate the applicability of the methodology. It is shown that, inde-
pendent of the type of the warranty policy, the failure interaction between
components has impact on the manufacturer profits and the consumer costs.
The initial warranty length has impact on the product quality preferences to
both the consumer and the manufacturer.

Keywords: Free replacement warranty; Two-component systems; Failure
interaction; Virtual age; Imperfect repair

1. Introduction

A warranty is a contract between the manufacturer and the buyer[14]. It
requests the manufacturer to repair, replace the product or to compensate
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the buyer if the product fails before a pre-determined time period, which
is referred to as warranty period. Due to the development of technology
and the intense competition between enterprises, warranty is more and more
important and a lot of attention has been paid to it by both buyers and man-
ufacturers. From the buyer’s point of view, warranty is protectional which
supports them to mitigate or even avoid losses if the item is out of function
when properly used. Also, warranty is informational as the buyers generally
deduce an item with longer warranty is more reliable and has better quality.
From the manufacturer’s point of view, warranty is also protectional and pro-
motional because the conditional warranty prevents the misuse of products
(for example, a broken-down HTC mobile phone within warranty period is
not supposed to be repaired if the failure is caused by rough handling, ex-
posure to moisture, dampness, extreme thermal, etc.) and can be seen as
an advertisement since the buyers believe a longer warranty is more reliable
when other circumstances are settled. Besides, warranty is an instrument
which can be used in competitions with other manufacturers.

Basically, there are two common types of warranty policies in the liter-
ature: the free replacement/repair warranty (FRW)([9, 20, 22, 30]) and the
pro rata warranty (PRW) [8, 20]. The former indicates that the manufac-
turer covers the total cost of repair or replacement of the product before the
expiration of the warranty and the latter means that within the warranty
period, a failed product is repaired at a cost which is proportional to the
product age at failure. For example, Yun et al. [32] studied the optimal
burn-in time to minimize the manufacturer’s expected total cost including
burn-in cost and the cumulative FRW cost. Wu et al. [29] developed a model
for the burn-in time and warranty period optimization of non-repairable sys-
tems under FRW/PRW policy. Park et al. [21] examined the warranty of
multi-component systems regarding the fixed warranty period and imperfect
repair. There are many extensions and variations of warranty policies in the
literature[2, 4].

In recent decades, in the warranty study, more and more focuses have
been shifted from the single component system to the multi-component sys-
tem. Compared to the single component systems, the reliability
and cost analysis of multi-component systems are more appealing
and more challenging. On the one hand, it provides more flexibility
to model the system in terms of its reliability. For instance, some
components can be modeled by their lifetimes [27], some can be
characterized by their degradations [3, 33]. Besides, it permits the
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manufacturer to benefit from the implementation of opportunistic
maintenance to the product within the warranty period [1]. How-
ever, on the other hand, many problems are emerged consequently
along with the advantages of multi-component systems. It requires
the manufacture to develop warranty policies at the system level
as well as at the component level. Therefore it is necessary to un-
derstand the contribution of each component to the system and
the dependency among components. In which context, failure de-
pendence between components is a major challenge which should be taken
into account in the study of multi-component systems. In the literature, fail-
ure dependence was first presented by Murthy et al. ([15],[16]) in which they
proposed two types of dependency in two-component and multi-component
systems. For two-component systems, type I failure interaction indicates
that the failure of component i may act as a shock and cause the failure of
the other one with probability pi, 0 < p < 1, i = 1, 2. Type II failure inter-
action implies that other than inducing instantaneous failure, the failure of
a component increases the failure rate of the surviving one. Type III failure
interaction is introduced by Nakagawa and Murthy [18] which implies that
component 1 failure causes a random damage to component 2 and component
2 failure induces the failure of component 1. More and more maintenance and
reliability analysis are developed since then, see for instance ([24, 25, 28, 31]).

It is noticed that in the previously reviewed studies, most of the war-
ranty cost analysis dealt with the single-item system or the multi-item system
with the assumption of consisting of independent items. In the framework of
multi-component systems studies, the objectives are either maintenance-cost-
oriented or system reliability/availability-oriented without considering the
maintenance cost allocation between, for example, the product supplier and
its consumer. Liu et al. [12] studied the warranty cost of multi-component
systems with type I failure interaction between components under the re-
newing free replacement policy. The manufacturer’s expected warranty costs
with different system configurations have been examined.

In our study, we consider the type III failure interaction of a two-component
system.

We intend to develop a modeling framework that is generic
enough to have theoretical and methodological added value and
precise enough to be meaningful for several applications. Gener-
ally speaking, in many technical systems, the failure of one com-
ponent (component 1) can contribute to produce shocks/damages
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while another part can experience the shocks/damages or the con-
sequences of these shocks/damages (component 2). It is often the
case for mechanical or electrical systems, when one component
failure ends in unexpected vibrations, frictions, overheating. For
instance, in the break system, the disc rotor bolted to the wheel
hub that rotates with the wheel and the brake pad made of steel
backing plate are vital components. It is the fraction created by
pushing the brake pad into the rotor which slows an automobile
or brings it to a sudden halt. Whenever the break is carried out,
fluid pressure forces the pads to against the disc. Adhesion mu-
tual impact between the motional rotor and the static brake pad
may cause wear at the surface of the brake pad. Besides, the sur-
face of the rotor may be left rough due to the deformation of the
metal. In a previous study, Nakagawa et al. [18] proposed a two
component system with stochastic dependence where component 1
failure causes accumulative damages to component 2. Component
2 is considered as failure when its total damage exceeds a predeter-
mined threshold. They discussed the optimization of the average
long-run maintenance cost with respect to the failure number of
component 1. In [23], likewise, the optimal maintenance cost of
a similar problem was taken into consideration where they took
the damage threshold and the system age as indicators. However,
both of them considered the failure of component 2 as the effect
of the damages due to the failure of component 1. However, it is
clear that in the brake system as we mentioned, the disk rotor may
worn out due to its natural deterioration with respect to its age.
Therefore, in this study, we consider the two-component system
with failure interaction where component 2 undertakes its natu-
ral deterioration as well the damages generated by the failure of
component 1.

The paper is organized as follows. The system descriptions, the hypothe-
ses and the failure interactions between components are introduced in section
2. The warranty costs and profits from the perspectives of the manufacturer
and the consumer are formulated in section 3. Section 4 is devoted to exact
numerical calculations, Monte Carlo simulations and system sensitivity anal-
ysis. Finally, we make conclusions and give future extensions of our work in
section 5.
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2. Model description

First, a brief introduction about the virtual age method adopted in our
model assumptions is given.

Virtual age (or effective age) depicts the real condition of the system
other than the physical time elapsed from its new state. It is general
enough which allows that the age of the repaired unit can be any
value between 0 (renewal or perfect repair) and the age just before
the failure (minimal repair). For instance, roughly speaking, a
car can be considered as in the as-good-as-new state if we change
its motor; or in the as-bad-as-old state if we change its battery.
Kijima et al. [10, 11] developed two imperfect maintenance models where
they proposed the virtual age reduction method to describe the impact of
repair. Let Bn, An, Xn be respectively the component effective age after the
nth repair, the component’s nth repair degree and the time interval between
the (n − 1)st and the nth repair. It is assumed in model 1 (Kijima model
1) that the repair reduces only the damage caused during the last survival
period: Bn = Bn−1+AnXn, B0 = 0, 0 ≤ An ≤ 1. In Kijima model 2, damages
induced before the nth repair are reduced: Bn = An(Bn−1 +Xn), B0 = 0, 0 ≤
An ≤ 1.

In this study, the Kijima model 1 is considered and we assume that the
repair degree is independent of the failure number n which yields An = a,
0 ≤ a ≤ 1. The repair degenerates to minimal repair if a = 1 and to perfect
repair if a = 0.
The system descriptions and the maintenance behaviors are given as follow-
ing.

• Component 1 and component 2 are in series.

• Component 1 is repairable with lifetime distribution F (·), where F (0) =
0. It is imperfectly repaired when failure occurs. Let Xi and a denote
the inter-maintenance time between the (i−1)st and the ith repair and
the imperfect maintenance degree respectively. Then the virtual age of
component 1 after the ith repair is Bi = Bi−1 +aXi, i = 1, 2, · · · where
B0 = 0 and 0 ≤ a ≤ 1 .

• Whenever component 1 failure occurs, it causes a random amount of
damage to component 2. Let Zj (j = 1, 2, ...) be the damages which are
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independently and identically distributed random variables with distri-
bution function H(·), H(0) = 0. Damages are additive and the total
damage induced by component 1 by time t is the sum of Zj occurred
by time t.

• Component 2 is non-repairable and it fails when its damage level ex-
ceeds a pre-determined threshold L, L > 0. The failure of component
2 induces the failure of component 1. The system is replaced at the
failure of component 2.

• Denoted by {Y (t), t ≥ 0} the component 2 intrinsic damage level at
time t and σL the natural arrival time or first exceeding time of the
damage level L. Then without considering the damage induced by
component 1 failure, the distribution function of σL is

GσL(t) = P{σL ≤ t} = P{Y (t) ≥ L}, t ≥ 0. (1)

• Both the component repair times and the system renewal times are
negligible.

Denoted N(t) the component 1 failure number by time t, Vn(·) the dis-
tribution function of Bn, and pn(t) = P(N(t) = n). According to [10],

V̄n+1(x) = V̄n(x) +

∫ x

0

F̄ (y + x−y
a

)

F̄ (y)
dVn(y) (2)

the following equation can be easily derived.

pn(t) = P(
n∑
i=1

Xi ≤ t <
n+1∑
i=1

Xi) = P(
Bn

a
≤ t <

Bn+1

a
) (3)

=

∫ at

0

F̄ (y + at−y
a

)

F (y)
vn(y)dy

where F̄ (·) = 1 − F (·),vn(x) = d
dx
Vn(x), v1(x) = 1

a
f(x

a
) and vn+1(x) =

1
a

∫ x
0

f(y+x−y
a

)

F (y)
vn(y)dy for n ≥ 1 [10].

Besides, the component 2 lifetime distribution Fs(t) is presented in the
following proposition.
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Proposition 1. The component 2 lifetime distribution Fs(t) is given by

Fs(t) = p0(t)GσL(t) +
∞∑
k=1

pk(t)

∫ ∞
0

GσL−z(t)dH
∗(k)(z) (4)

where pk(t) is the probability mass function of the component 1 failure number
given in equation (3). H(·) is the damage distribution function and H∗(k)(t)
is the k-fold convolution of H(t) with itself.

Proof. Let Ti, i = 1, 2, · · · , be the time interval of the ith system renewal
time which are identically and independently distributed. Assume that the
distribution function is Fs(t). Then

Fs(t) = P{T1 ≤ t} = p0(t)P(Y (t) > L) +

∞∑
k=1

P(Y (t) +

k∑
i=1

Zi > L | N(t) = k)P(N(t) = k)

= p0(t)P(Y (t) > L) +

∞∑
k=1

pk(t)

∫ ∞
0

P(Y (t) > (L− z))dH∗(k)(z)

= p0(t)GσL
(t) +

∞∑
k=1

pk(t)

∫ ∞
0

GσL−z
(t)dH∗(k)(z)

where Gσx(t) = 1 when x < 0. Therefore the component 2 lifetime distribu-
tion function is obtained. �

3. Warranty analysis

In this section, we intend to consider two types of warranty policies which
are the non-renewing free replacement policies and the renewing free replace-
ment policy (we will call them the non-renewing FRW and the RFRW for
short hereafter). More precisely, it means, during the initial warranty period
W ,

• under the non-renewing FRW

– component 1 is imperfectly repaired at its failure at time Tf1 and
the warranty of the system remains valid during the remaining
W − Tf1 period.

– the system is replaced at the failure of component 2 at time Tf2

and the warranty of the system remains valid only during the
remaining W − Tf2 period.
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• under the RFRW,

– component 1 is imperfectly repaired at its failure at time Tf1 and
the warranty of the system remains valid during the remaining
W − Tf1 period.

– the system is replaced at the failure of component 2 at time Tf2

and a full system warranty period of length W is provided.

Suppose that to the manufacturer, the component 1 repair cost and the
system replace cost are c1 and c2 respectively. First, under the two warranty
policies, from the perspective of the manufacturer, the expected warranty
costs are formulated.

3.1. The manufacturer’s expected warranty costs

For simplicity, we call the system failure as minor failure if it contains
only component 1 failure and major failure if both the two components in
the system fail.

3.1.1. The expected manufacturer’s cost under the non-renewing FRW

Under the non-renewing FRW, the manufacturer covers the repair or
replacement cost up to a duration W from the initial product purchase time.
Denote E(C(W )) be the manufacturer’s expected warranty cost under non-
renewing FRW within warranty period W . The following theorem gives the
expected manufacturer cost under non-renewing FRW.

Theorem 3.1. Under the non-renewing FRW, the expected manufacturer
cost E(C(W )) within the warranty period W is given by:

E(C(W )) =

∫ W

0

[1 +M(W − t)]k(t)dt (5)

where M(t) is the renewal function related with Fs(t) which can be given by

M(t) =
∑∞

n=1 F
(n)
s (t), k(t) = c1F̄s(t)

∑∞
n=0 n[avn(at)−

∫ at
0

f(y+at−y
a

)

F (y)
vn(y)dy]+

c2fs(t), Fs(t)(fs(t)), F (t)(f(t)) are the lifetime distribution (density) func-
tions of component 2 and component 1 respectively, F̄s(t) = 1 − Fs(t), a is
the imperfect maintenance degree of component 1, vn(t) is given in equation
3.
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Proof. By conditioning on the first renewal time of the system YT1 , we have:

E(C(W )|YT1 = t) =

{
c1E(N(W )) t > W

c2 + c1E(N(t)) + E(C(W − t)) t ≤ W

where E(N(t)) =
∑∞

n=0 npn(t) is the expected maintenance times of com-
ponent 1 in [0, t] before system replacement. Based on the law of total
probability:

E(C(W )) = c1F s(W )E(N(W )) +

∫ W

0

{c2 + c1E(N(t)) + E(C(W − t))}dFs(t)

= K(W ) +

∫ W

0

E(C(W − t))dFs(t)
(6)

where K(W ) = c1F s(W )E(N(W )) +
∫W

0
{c2 + c1E(N(t))}dFs(t). From the

renewal property, equation (6) is equal to

E(C(W )) = K(W ) +

∫ W

0

K(W − x)dM(x) (7)

where M(t) is the renewal function related with Fs(t). The above equation
is equal to

E(C(W )) =

∫ W

0

[1 +M(W − t)]k(t)dt (8)

where k(t) = dK(t)
dt

= c1F s(t)
∑∞

n=0 n[avn(at)−
∫ at

0

f(y+at−y
a

)

F (y)
vn(y)dy]+c2fs(t).

�
In our study, only the expected warranty cost of the manu-

facturer within the warranty period is considered. Meanwhile, as
a competition means, warranty plays an active role in promoting
the market share as well as the profitability of the manufacturer.
Therefore, it is necessary to compare the marginal maintenance
cost and the marginal warranty gains in developing warranty poli-
cies. A lower limit of the marginal maintenance cost is given in the
following remark.

Remark 1: Under the non-renewing FRW, the marginal main-
tenance cost Mnon(W ) follows the following inequality.

Mnon(W ) ≥ k(W )
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Figure 1: A possible system warranty period under RFRW policy

where k(W ) is given in Theorem 3.1. Particularly, when com-
ponent 1 is minimally repaired at failure (a = 1), k(W ) can be
simplified to

k(W ) = c1F̄s(W )r(W ) + c2fs(W )

where r(W ) is the failure rate of component 1 defined as r(W )dW =
dF (W )

F (W )
, Fs(W ) is given in equation (4).

3.1.2. The expected manufacturer’s cost under renewing FRW policy

Under the RFRW, the major failure within the warranty period is replaced
by a new one (repaired as good as new) with a full system warranty period
W . Let us denote Tr the warranty cycle which is a time interval from the
system purchase time until the expiration of the warranty. It is obvious that
in this situation the warranty cycle depends on the initial warranty period
W , the system renewal times and the time interval between two consecutive
system renewal times. Denote Nr(W ) be the system renewal times when the
initial warranty period is W , and Ji, i = 1, 2, · · · , Nr(W ) the corresponding
time interval between the (i−1)th and the ith system renewal time which are
identically and independently distributed random variables. Figure 1 gives
an example of total system warranty length under RFRW. It can be noticed
that:

Tr = J1 + J2 + · · ·+ JNr(W ) +W

Let E(CR(W )) be the expected manufacturer warranty cost under RFRW.
We have the following theorem.

Theorem 3.2. Under the RFRW, the expected system cost is

E(CR(W )) =
c2Fs(W ) + c1

∫W
0

EN(t)dFs(t)

1− Fs(W )
+ c1EN(W ) (9)
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where Fs(t) is the component 2 lifetime distribution function, F s(t) = 1 −
Fs(t), E(N(t)) =

∑∞
n=1 npn(t) which is the expected failure times of compo-

nent 1 before system failure.

Proof. It can be noticed that P(Nr(W ) = n) = F n
s (W )F s(W ). Denote FJi(t)

the distribution function of Ji, then

FJi(t) = P(Ji ≤ t) = P(Ti ≤ t | Ti ≤ W ) (10)

=

{
Fs(t)
Fs(W )

if t < W

1 if t ≥ W

Let CnW (T ) be the total system warranty cost by time T under RFRW with
warranty period W given that the number of major system failure n. Then

E(CR(W )) = E
[
E(CR(W |Nr(W ) = n))

]
=

∞∑
n=0

Fns (W )F̄s(W )E[CnW (J1 + J2 + · · ·+ Jn +W )]

=

∞∑
n=0

Fns (W )F̄s(W )

∫ W

0

· · ·
∫ W

0

(nc2 + c1

n∑
i=1

E(N(ji)) + c1E(N(W ))dFJ1(j1) · · · dFJn(jn)

=

∞∑
n=0

F̄s(W )

(
nc2F

n
s (W ) + c1E(N(W ))Fns (W ) + nc1F

n−1
s (W )

∫ W

0

E(N(t))dFs(t)

)

=

∞∑
n=0

F̄s(W )Fns (W )

(
nc2 + c1E(N(W )) + nc1

∫W
0

E(N(t))dFs(t)

Fs(W )

)

=
c2Fs(W ) + c1

∫W
0

EN(t)dFs(t)

1− Fs(W )
+ c1EN(W )

Therefore we obtain the warranty cost under RFRW for the manufacturer.�
Remark 2:If F is IFR, when component 1 is minimally repaired,

the following inequalities regarding the marginal maintenance cost
M re(W ) are valid.

M re(W ) ≥
c2fs(W ) + c1Λ(W )fs(W )(1 − Fs(W ))

(1 − Fs(W ))2
+ c1r(W )

M re(W ) ≤
c2fs(W ) + c1Λ(W )fs(W )

(1 − Fs(W ))2
+ c1r(W )

(11)
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Proof. Let be r(t) the failure rate of component 1 by time t. The
failure arrives according to a non-homogeneous Poisson process
when component 1 is minimally repaired which yields:

E(W ) = Λ(W )

where Λ(W ) =
∫W

0
r(t)dt. Therefore

dE(CR(W )

dW
) =

c2fs(W ) + c1Λ(W )fs(W )(1 − Fs(W ))

(1 − Fs(W ))2

+
c1
∫W

0
EN(W )dFs(W )

(1 − Fs(W ))2
+ c1r(W )

≥
c2fs(W ) + c1Λ(W )fs(W )(1 − Fs(W ))

(1 − Fs(W ))2
+ c1r(W )

Particularly, when F is IFR,∫ W

0

EN(t)dFs(t) ≤ EN(W )Fs(W )

which yields

dE(CR(W )

dW
) ≤

c2fs(W ) + c1Λ(W )fs(W )

(1 − Fs(W ))2
+ c1r(W )

�
By now, we have formulated the expected warranty costs of the manu-

facturer under the non-renewing FRW and the RFRW. One step further, if
we take the consumer’s behavior into consideration and assume that he/she
intends to put the product in service until T , it follows that W < T < ∞.
After this, the system is not repaired when failure occurs. Besides, after the
product warranty, the consumer chose coming back to the original manufac-
turer (or the supplier, retailer, seller etc. here we do not distinguish them)
for the maintenance. Denoted c11, c22 are the component 1 repair price and
the system renewal price respectively to the consumer. It is rational to set
cii > ci, i = 1, 2 as the manufacturer earnings from the difference between
the prices c11, c22 and the corresponding costs c1, c2. In section 3.2, the war-
ranty cost and profit to the consumer and the manufacturer respectively are
examined.
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3.2. The expected warranty profit and cost in (0, T ]

In the following, by assuming that the product service time is T , W <
T < ∞. The warranty cost analysis of different warranty policies in (0, T ]
are explored. Hereafter we assume that component 1 is minimally repaired
when failure occurs.

3.2.1. The expected warranty profit and cost in (0, T ] under the RFRW

Let Cs(T ) and TP s(T ) be the total warranty cost of the consumer (owner)
and the profit of the manufacturer respectively, let E(Cs(T )) and E(TP s(T ))
be their expectations. They are formulated in the following theorem.

Theorem 3.3. Under the RFRW, the expected maintenance cost of the con-
sumer and the expected total profit of the manufacturer in [0, T ] are as follows:

E(Cs(T )) =

∫ T

W

(1 +M(T − u))dh(u) (12)

E(TP s(T )) = E(Cs(T ))− E(C1(T ))− c2M(T )

where

h(T ) = c22(Fs(T )− Fs(W )) + c11

∫ T

W

F̄s(t)dEN(t) for T ≥ W

E(C1(T )) = h1(T ) +

∫ T

0

h1(T − t)dM(t)

h1(T ) = c1E(N(T ))− c1

∫ T

0

Fs(t)dE(N(t))

M(t) =
∑∞

n=1 F
(n)
s (t) is the system renewal function related with Fn(t) and

EN(t) =
∑∞

n=1 npn(t) is the expected failure number of component 1 in [0, t]
before system replacement. Fs(t)(fs(t)), F (t)(f(t)) are the lifetime distri-
bution (density) functions of component 2 and component 1 respectively,
F̄s(t) = 1− Fs(t).

The proof is omitted as it is similar to the proof the Theorem 3.1.
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3.2.2. The expected warranty profit and cost under the non-renewing FRW

Under the non-renewing FRW, the manufacturer pays the full warranty
cost if the system fails within the warranty period and the warranty is not
renewed. It is reasonable to assume that the consumer is provided with a new
system with a full warranty if the major failure occurs in (W,T ] and he/she
covers himself/herself the full purchase cost. Here we adopt the method pro-
posed by Nguyen and Murthy [19] for the expected warranty cost calculation.

Let Csn(T ) and TP sn(T ) be the total warranty cost of the consumer and
the profit of the manufacturer respectively. Let E(Csn(T )), E(TP sn(T )) be
their expectations.

Theorem 3.4. Under the non-renewing FRW, when component 1 failures
occur according to a Poisson process, the expected warranty cost of the con-
sumer and the expected total profit of the manufacturer in [0, T ] are derived
as follows:

E(Csn(T )) = hn(T ) +

∫ T

0

hn(T − u)dMU(u)

E(TP sn(T )) = E(Csn(T ))− c1EN(T )− c2M(T )

(13)

where

FU(t) = Fs(t)−
∫ W

0

F̄ (t− x)dM(x) for t ≥ W and 0 otherwise

hn(t) = c22FU(t) + c11

∫ t

W

F̄U(θ)dEN(θ) for t ≥ W and 0 otherwise

MU(t)(M(t)) is the system renewal function related with FU(t)(Fn(t)) and
EN(t) =

∑∞
n=1 npn(t) is the expected failure number of component 1 in

[0, t] before system replacement. Fs(t)(fs(t)), F (t)(f(t)) are the lifetime dis-
tribution (density) functions of component 2 and component 1 respectively,
F̄s(t) = 1− Fs(t).

Proof. Let U(U > W ) be the time interval between two consecutive
system purchase time by the consumer. That is to say that the system
renewal cost are covered by the consumer rather than the manufacturer.
Denote γ(W ) be the residual life to the system at time W , then U = W +
γ(W ). Let Fγ(t), FU(t) be the distribution function of γ(W ) and U then
from the renewal theory we know [17]:

Fγ(t) = Fs(W + t)−
∫ W

0

F̄s(W + t− x)dM(x) (14)
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E(U) = (M(W ) + 1)

∫ ∞
0

F̄s(t)dt (15)

where M(W ) =
∑∞

n=1 F
(n)
s (W ) and

FU(t) =

{
0 0 ≤ t ≤ W

Fγ(t−W ) W < t

Thus by conditioning on the first purchase time of the consumer, his/her
expected total cost can be derived. The expected profit of the manufacturer
is then obtained as the revenue minus the maintenance cost by time T . �

3.3. The long run average costs and profits

In industrial manufacturing, many systems are longevous and supposed
to operate for a long time, which is the case T = ∞. In the following, we
derive the system average warranty cost of the consumer and the average
profit of the manufacturer considering the long-run time horizon T =∞.

3.3.1. No warranty

In this case, the system repair and replacement costs are not covered
by the manufacturer but are paid by the consumer. Suppose C l and TP l

be respectively the average cost and the profit of the consumer and the
manufacturer on the long time horizon.

Theorem 3.5. C l and TP l are given as follows

C l =
c22 + c11

∫∞
0

EN(t)dFs(t)∫∞
0
F̄s(t)dt

TP l = C l −
c2 + c1

∫∞
0

EN(t)dFs(t)∫∞
0
F̄s(t)dt

(16)

It can be easily proved by the renewal reward theorem. The proof is omitted
here. Proof. The system operation process is seen as a renewal process since
the system is renewed at component 2 failure. Let φi, be the length of the
ith replacement cycle and Ri the cost over φi, i = 1, 2, · · · . Then {φi, Ri}
constitutes a renewal reward process which yields

C l =
E(φ1)

E(R1)
(17)
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where E(φ1),E(R1) are the expectations of φ1, R1 correspondingly. Since

E(φ1) = c22 + c11

∫ ∞
0

EN(t)dFs(t)

E(R1) =

∫ ∞
0

F̄s(t)dt

(18)

the expected maintenance cost of the consumer without warranty is derived.
Similarly the maintenance profit of the manufacturer can be calculated.�

3.3.2. Under the RFRW policy

Suppose that Cr and TP r are respectively the average cost and the profit
to the consumer and the manufacturer under RFRW, then

Theorem 3.6. Cr and TP r are given as

Cr =
c22F̄s(W ) + c11

∫∞
W

(EN(t)− EN(W ))dFs(t)∫∞
0
F̄s(t)dt

TP r = Cr −
c2 + c1

∫∞
0

EN(t)dFs(t)∫∞
0
F̄s(t)dt

(19)

The theorem is easily obtained by the renewal reward theorem as in Theorem
3.5.

3.3.3. Under the non-renewing FRW policy

Suppose that component 1 failure occurs according to a Poisson process.
Let Cnr and TP nr be the expected average consumer cost and the manufac-
turer profit under non-renewing FRW.

Theorem 3.7. Cnr and TP nr are given as

Cnr =
c22 + c11

∫∞
W

(EN(t)− EN(W ))dFU(t)

(M(W ) + 1)
∫∞

0
F̄s(t)dt

TP nr = Cnr −
c2(M(W ) + 1) + c1

∫∞
W

EN(t)dFU(t)

(M(W ) + 1)
∫∞

0
F̄s(t)dt

(20)

The theorem is easily obtained by the renewal reward Theorem.
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4. Numerical examples

4.1. Parameter estimation

Here we briefly provide an approach of the estimation of pa-
rameter settings in this study. To do with this, suppose that
there are M systems which are periodically observed at time k∆,
k = 1, 2, · · · , N , T = N∆. The degradation increment of com-
ponent 2 of component i at time j∆ is yij, i = 1, 2, · · · ,M ; j =
1, 2, · · · , N.Whenever component 1 failure occurs, it is replaced with
an as-good-as-new one. Let be xik∆ the time at which the kth fail-
ure of component 1 is observed in system i, i = 1, 2, · · · ,M ; k ∈ N∗.
The collected data is the can be classified into three types:

• A = {xik∆−xik−1∆}, i = 1, 2, · · · ,M ; k ∈ N∗ are the lifetime data
of component 1 which can be used in estimating parameters
corresponding to the lifetime of component 1;

• B = {yij; j∆ 6= xik∆} are the natural degradation data of com-
ponent 2 in the period of time ∆ which can be implemented
in the parameter estimation of the lifetime of component 2;

• C = {yij; if yij /∈ B} are the summation of the natural degra-
dation as well as the damage incurred to component 2 because
of the failure of component 1 which can be implied in the es-
timation of the damage level.

An example is given in the following. Here we suppose that com-
ponent 1 is Weibull distributed with lifetime distribution function
F (t) = 1 − e−( t

λ
)b , t > 0. The damage induced to component 2 by

component 1 failure has exponential distribution with expectation
λ. The natural deterioration of component 2 follows a homoge-
neous Gamma process which has been extensively applied due to
its successfully data-fitted property in describing system degrada-
tion associated to crack , corrosion, etc. [26]. The density function
is

gαt,β(u) =
βαtuαt−1e−βu

Γ(αt)
(21)

where

Γ(α) =

∫ ∞
0

uα−1e−udu (22)
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It is clear that

GσL(t) =
Γ(αt, Lβ)

Γ(αt)
, t ≥ 0 (23)

where

Γ(α, x) =

∫ ∞
x

zα−1e−zdz

Therefore the parameters a, b can be estimated by maximum likeli-
hood function using dataset A; the scale parameter and the shape
parameter of the gamma distribution can be derived with the
dataset B. In this example, it is clear that the density function
of the damage level d(z) can be calculated by

d(z) =
d

dz

∫ z

0

(1− e−µ(z−θ))gα∆,β(θ)dθ = µ

∫ z

0

eµθgα̂∆,β̂(θ)dθ (24)

where α̂ and β̂ are the estimation of α and β in the previous step.
Therefore the total log-likelihood is

lnL (µ;∀yij ∈ C) = P ln(µ)−
∑
yij∈C

yij +
∑
zij∈C

ln(

∫ zij

0

eµθgα̂∆,β̂(θ))dθ

where P is the cardinality of C and the maximum likelihood esti-
mator of λ can be derived by

µ̂ = arg max
µ

(P ln(µ)−
∑
yij∈C

yij +
∑
zij∈C

ln(

∫ zij

0

eµθgα̂∆,β̂(θ))dθ) (25)

Table 1 presents the estimation results when M = 100 and ∆ = 0.1.
Generally, the result is acceptable with so many samples (M = 100

Parameter True value Estimated value 95% confidential interval
λ 1.5 1.5227 [1.4276, 1.6241]
b 1.2 1.2123 [1.1437, 1.2851]
α 1 1.1790 [1.1530, 1.2050]
β 3 3.3422 [3.1969, 3.5336]
µ 2 2.0833 [1.9359, 2.2307]

Table 1: Estimation results of system parameters with system numbers M = 100
and observation interval ∆ = 0.1
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and the total replace number of component 1 in this simulation is
696). Besides, expert advice in reality may play a significant role
to decide the parameter settings.

In the following, the warranty cost under, respectively, RFRW and non-
renewing FRW is presented first through exact numerical calculations and
Monte Carlo simulations, and then using Monte Carlo simulations. The im-
pact of system parameter setting associated to the warranty costs is explored.
The consumer cost and the manufacturer profit under the two warranty poli-
cies are compared.

4.2. Illustrative examples: cost calculation by two methods

As an illustrative example, we assume that a = 10, b = 2, µ = 1, α =
4, β = 2, c1 = 50, c2 = 250 and a = 1 which implies that component 1
undergoes minimal repair when failure occurs. From Theorems 3.1 and
3.2, the expected warranty costs under the non-renewing FRW
and RFRW respectively are obtained respectively: E(C(W )) = 12.50
where W = 5 and L = 20 and E(CR(W )) = 467.6 where W = 10 and
L = 20. The exact results are compared with Monte Carlo simula-
tions which are more time consuming. In Figure 2 and Figure 3,
the green line represents the theoretical result and the blue aster-
isks represent the simulation results with respect to the number
of the simulations. It is seen that under both cases, the simula-
tions calculations are convergent to the theoretical results when
the number of the simulations is 20000 which indicated that the
results under the two methods are coincident.
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Figure 2: the total cost under non-renewing
FRW
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Figure 3: the total cost under RFRW
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4.3. Sensitivity analysis

First, let S = {λ = 8, b = 2, a = 1, µ = 4, α = 4, β = 2, L = 20, c11 =
5, c22 = 25, c1 = 1, c2 = 4, T = 20}. In the following, the impacts of some
parameters involved in the model are investigated by changing one parameter
each time and comparing with the results derived by using the original data
set S.
The impacts of the initial warranty length and the failure interac-
tion
We first study the effects of the warranty period and the failure interaction
to the manufacturer’s profit and the consumer’s cost respectively. One can
expect the extension of the warranty period is more beneficial to
the consumer and less profitable to the manufacturer. This latter
is confirmed by Figures 4 and 5. Figure 4 shows the consumer’s warranty
costs and the manufacturer’s profits under the RFRW with various values of
W and µ. Whereas, Figure 5 illustrates the long run average warranty costs
and profits correspondingly. As expected, the difference between the total
expected manufacturer profit E(TP s) and the expected cost of the consumer
E(Cs) is constant.
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Figure 4: The expected consumer cost and manufacturer profit under RFRW with various
values of W and µ
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Figure 5: The long run average consumer cost and manufacturer profit under RFRW with
different values of W and µ.

In both cases of short-run and long-run horizon, the expected warranty
cost of the consumer (or the expected profit of the manufacturer) is a de-
creasing function of the warranty period. It is easy to understand that as
the warranty increases, the manufacturer has to cover more warranty costs.
Consequently, the expected manufacturer profit E(TP s) and the expected
cost of the consumer E(Cs) both decrease as the warranty period grows.

In presence of interaction between components, for short warranty period,
the manufacturer profit increases . As the warranty period gets longer, the
average total manufacturer benefit (or the consumer total average cost) de-
creases. This means that in the presence of interaction between components,
a long warranty period is more cost efficient for the consumer. Indeed, the
component dependency has a stronger impact on the long term where due to
the aging of component 1 more and more maintenance is required. The com-
ponent or system failure usually occurs after the warranty period resulting
in a maintenance cost to the consumer and so a profit to the manufacturer.
When W gets larger, the failure interaction between components accelerates
the failure within warranty leading to a gratis system maintenance for the
consumer which decreases the income of the manufacturer. Therefore, in
presence of dependence, the manufacturer profit (consumer cost) decreases
for long warranty periods.
The impact of the repair degree of component 1
Figure 6 shows the expected manufacturer cost within the warranty period
under RFRW with different repair degree of component 1 (a = 0.2, a = 0.6
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Figure 6: The expected manufacturer cost E(CR(W )) under RFRW with different repair
degree of component 1 (a = 0.2, a = 0.6 and a = 1).

and a = 1). It shows that the manufacturer warranty cost increases with a.
The larger a is, the worse is the repair of component 1. More damages are
induced to component 2 which accelerates its degradation and so its failure.
Therefore more system maintenance and replacement costs are induced to
the manufacturer expenses. It is noted that the manufacturer cost is less
sensitive when W is small. This is due to the fact that in our example,
the occurrence of component 1 failure and the system failure are rare within
small W , and component 1 is minimally repaired at failure.

In sum, it is more costly to the manufacturer to replace the
product than to repair it. However, the cost difference is not signif-
icant and it could be profitable for its commercial image to propose
a prefect or quasi perfect repair.

In the following, we reset S = {W = 5, λ = 8, b = 1, a = 1, µ = 5, α =
4, β = 2, L = 20, c11 = 5, c22 = 25, c1 = 1, c2 = 4, T = 20}.
The impact of component 1 quality
Figure 7 shows that when the warranty period is small, both consumer cost
and manufacturer profit decreases with λ. The smaller is λ, the shorter is
the lifetime of component 1. Therefore more component/system failure are
occurred within the service time T . Hence for short warranty period, the
consumer pays more and the manufacturer loses less. On the contrary, when
the warranty period W is large, during the period T , more failure costs are
covered by the manufacturer which decreases its profit and the consumer
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Figure 7: The expected consumer costs and manufacturer profits with different λ (λ = 8,
λ = 12).

The impact of component 2 natural deterioration
It is expected that as component 2 deteriorates faster, it is more
beneficial for the consumer to have a warranty and more costly for
the manufacturer to fulfill this option. This fact is highlighted in
Figure 8. Similarly, it can be noticed in Figure 8 that the manufacturer
profit and the consumer cost increase with α when W is small and decrease
with α when W is large. With large α, component 2 deteriorates faster and
its lifetime is shorter. It is then more beneficial to the consumer to have
long warranty period. For a short warranty period with these parameters
setting, α ∈ {4, 6}, the failure is not mainly due to the natural deterioration,
henceforth the total maintenance cost is not very sensitive to the changes of
α.

From the sensitivity analysis of the impacts of component 1 and compo-
nent 2, it is noticed that the initial warranty period W has impact on the
manufacturer’s and the consumer’s product quality preferences.
The impact of maintenance prices and costs
The manufacture profits and consumer costs under both RFRW and non-
renewing FRW with different maintenance prices and costs are presented in
Tables 2 and 3.

As expected, both the manufacturer profit and the consumer cost decrease
with the value of W . As W gets larger, more maintenance costs are covered
by the manufacturer which induces the manufacture profit and the consumer
cost. Both the consumer cost and the manufacturer profit increase with the
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Figure 8: The expected consumer cost and manufacturer profits with different α (α = 4,
α = 6).

parameters c11 = 5, c22 = 25 c11 = 5, c22 = 15 c11 = 10, c22 = 25
cost/profit W = 4 W = 6 W = 9 W = 4 W = 6 W = 9 W = 4 W = 6 W = 9
E(Cs(T )) 50.0 40.9 17.3 31.5 25.0 10.5 53.6 42.5 17.5
E(TP s(T )) 40.0 30.8 7.3 21.5 15.0 0.45 43.6 32.4 7.5
E(Csn(T )) 50.5 42.9 28.1 29.6 25.6 17.0 51.3 43.3 29.0
E(TP sn(T )) 40.4 32.8 18.0 20.6 16.7 8.2 41.3 34.3 20.1

Table 2: The warranty costs and profits under the RFRW and the non-renewing FRW
with different values of c11 and c22

consumers maintenance prices c11 and c22. Since c1 and c2 are maintenance
costs for the manufacturer, the consumer maintenance cost is unchanged
with c1and c2. However, the manufacturer profits under both the RFRW
and non-renewing FRW decrease as c1 and c2 increase.

It is obvious that the RFRW is more economic for the consumer and
the non-renewing FRW is more favorable to the manufacturer. In addition,
the most profitable policy for the manufacturer is no warranty policy under

parameters c1 = 1, c2 = 4 c1 = 1, c2 = 8 c1 = 3, c2 = 8
cost/profit W = 4 W = 6 W = 9 W = 4 W = 6 W = 9 W = 4 W = 6 W = 9
E(Cs(T )) 50.0 40.9 17.3 50.0 40.9 17.3 50.0 40.9 17.3
E(TP s(T )) 40.0 30.8 7.3 31.7 22.7 -1.0 27.9 18.6 -4.7
E(Csn(T )) 50.5 42.9 28.1 50.5 42.9 28.1 50.5 42.9 28.1
E(TP sn(T )) 40.4 32.8 18.0 32.2 24.8 10.0 28.3 20.6 7.6

Table 3: The warranty costs and profits under the RFRW and the non-renewing FRW
with different values of c1 and c2
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which the consumer covers the whole cost during its usage.
It can be observed in Table 4 that, in general, the non-renewing FRW pol-

icy incurs more significant consumer cost and manufacturer benefit. Indeed
in this case, the manufacturer covers less maintenance under FRW and so
the consumer cost increases in this policy. In our example, when there is no
failure interaction between components and the warranty period W is short,
there is not a substantial difference between the RFRW and non-renewing
FRW policy. Under the same parameters setting, the cost rate and the profit
for the consumer and the manufacturer without warranty are E(C l) = 1.3,
E(TP l) = 6.4 when µ = 5 and E(C l) = 1.4, E(TP l) = 6.2 when µ = 0
respectively.

parameters µ = 5 µ = 0
cost/profit W = 4 W = 6 W = 9 W = 4 W = 6 W = 9
E(Cr) 3.1 2.6 1.2 2.9 2.7 1.9
E(TP r) 2.5 2.0 0.7 2.3 2.2 1.4
E(Cnr) 3.1 2.7 2.0 2.9 2.7 2.2
E(TPnr) 2.5 2.1 1.4 2.3 2.2 1.7

Table 4: The average cost rate and profit rate under RFRW and the non-renewing FRW
policies with different values of W and µ

It is worth mentioning that the estimation of the warranty costs/profits
to the consumer/manufacturer under different warranty policies could be ref-
erences paving the way for lucrative market strategies.The important thing is
the overall interest to the manufacturer rather then the profits/costs induced
by the warranty individual.

W and T
manufacturer’s profit rate consumer’s cost rate

E(TPs(T))/T E(TPsn(T))/T E(Cs(T))/T E(Csn(T))/T
(W,T) = (4,20) 2.00 2.02 2.50 2.53
(W,T) = (6,20) 1.54 1.64 2.05 2.15
(W,T) = (6,∞) 2.00 2.10 2.60 2.70

Table 5: The average cost rate and profit rate in the long-run horizon and in
the short-run horizon respectively

The comparison between long-run and short-run
Table 5 presents the comparison of the short-run and long-run cost
rates and profit rates form the points of view of the consumer and
the manufacturer respectively. It is observed that, under both the
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non-renewing FRW and the RFRW, the profit rate of the manu-
facture show an decreasing tendency with respect to the warranty
period W . On the contrary, the consumer spends less as more
maintenance costs are covered by the manufacturer. Besides, the
long-run profit rate of the manufacturer is higher than that in the
short run. Therefore the manufacturer may underestimate their
benefit if they take the long-run profit rate as a criterion when the
product service time is short-term.

5. Conclusions

In this study, a warranty cost and profit model for a two-component
series system with failure interactions is developed. By considering the prod-
uct service time to the consumer, the warranty cost and profit from both
point of view, the manufacturer and the consumer, are derived. The exact
numerical results and Monte Carlo simulations are presented. It is shown
that the failure interaction between components can affect the system life-
time and therefore the warranty cost and the profit. The initial warranty
length has impact on the manufacturer’s and the consumer’s product quality
preferences. The warranty length is established by the manufacturer based
on the warranty cost/profit, as well as system reliability, and is intended to
maximize the manufacturer’s profit. Therefore it would be beneficial to
the manufacturer to mitigate the stochastic dependence between
components in product design phase. It is recommended to the
decision-maker to consider the warranty cost budget in the develop
of the warranty strategy, to take the warranty cost as a reference
in the evaluation of the product profit, etc.

In our future works, we intend to consider the warranty cost analysis
of more complex systems with different structure configuration, warranty
policies, maintenance types, etc.
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[31] Yu, H., Chu, C., Châtelet, É.. Availability optimization of a redundant
system through dependency modeling. Applied Mathematical Modelling
2014;38(19):4574–4585.

[32] Yun, W.Y., Lee, Y.W., Ferreira, L.. Optimal burn-in time under
cumulative free replacement warranty. Reliability Engineering & System
Safety 2002;78(2):93–100.

[33] Zong, S., Chai, G., Zhang, Z.G., Zhao, L.. Optimal replacement
policy for a deteriorating system with increasing repair times. Applied
Mathematical Modelling 2013;37(23):9768–9775.

29


