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Abstract

Lithium-ion batteries are getting larger due to the expansion of transportation and mass storage markets and they can
now contain up to thousands of cells. However, a sole damaged cell can significantly impact the whole battery pack
efficiency. Thus, the diagnosis of a single cell remains critical for those systems. Many methods exist in which the
cell is considered homogeneous. We recently developed a heterogeneous equivalent circuit model that considers an
internal resistance distribution to better represent a real single cell behaviour. This internal resistance distribution
(IRD) may bring valuable information about a single cell internal quality, but only if it is determined with a sufficient
accuracy. In this paper, we propose an algorithm that allows a responsive determination of the IRD. The results are
compared to previous determination methods. This IRD, which is determined thanks to the preliminary construction
of a homogenous model and a single discharge, is also valid for other operating conditions. The determination of a
cell IRD can be used as a non-invasive diagnosis tool to track the internal degradations of a cell. The IRD of two
different cell, one aged and one new are then compared, the IRD of the aged one being on average larger. This proves
the relevance of the determination method and its use to get an insight into a cell. Differences in shape between the
aged and the new cell IRD are discussed, as well as criteria that seems interesting. Although this work is developed
for a single cell, its initial goal is to be used to detect a damaged cell inside a battery pack and may thus be applied to
several cells connected in parallel.

Keywords: battery, heterogeneous electrical model, internal resistance distribution, non-invasive diagnosis

1. Introduction

Lithium-ion batteries are becoming one of the best
solution to store energy in a wide range of applications,
in particular among systems where weight or volume
are major constraints, such as drones, cars and trains.
In the industry, this technology is not often well known
and it is to our advantage to develop a plain, yet ro-
bust model, that can be used in a wide range of op-
erating conditions. In order to anticipate the voltage
response of a cell to a current profile, a model can be
used. Three main types of models exist, with a first one
being the electrochemical model. It takes into account
the chemical reactions, diffusion reactions and energy
equations at the atom scale. Example of this model can
be found in many articles such as in Di Domenico et al.
(2010) where the author use an electrochemical-based
model coupled to a Kalman filter to estimate a cell state

of charge during usage, or in Yuan et al. (2017) where
the authors estimate the lithium concentration within the
electrode. In Dong et al. (2018) the authors use an elec-
trochemical model to simulate the thermal behaviour of
a cell under very high current charge or discharge, that
is more than 8C. Finally, Delacourt (2016) presents the
construction of an electrochemical model. The inter-
ested reader will find in this long document all the in-
formation regarding the electrochemical modelling of a
cell. However, the complexity of those models and the
number of parameters needed require invasive measure-
ments that are not possible for most battery managers.

Another main type of model is the black box model
that uses mathematical description of a cell using prob-
ability and large data set to be constructed. Example
of this model can be found in Saha et al. (2009) where
the authors estimate the remaining life of a cell using a
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Bayesian framework or in Nuhic et al. (2013) where the
author use machine learning to estimate the cell remain-
ing life as well. Those models can be built with various
methodologies (machine learning, fuzzy logic, genetic
algorithms) but have often in common the fact that they
are constructed thanks to a large set of data. The re-
sult is "black box" model with no or very few physical
meaning, which cannot be used to diagnose the internal
state of the battery.

One last option in term of model is to use electrical
equivalent circuits, also known as behavioural models.
Those model are generally done at the cell level and
model it thanks to usual electrical components, that is
resistances, capacitances, voltage sources, etc. Even
though they do not take into account all the atom-level
reactions, a good accuracy can be obtained. The
interested reader can find more information in the
article of Berrueta et al. Berrueta et al. (2018) where
the modelling of electrochemical phenomena using an
electrical framework is explained. Articles Andre et al.
(2011) and Kuhn et al. (2006) focuses on the modelling
of unusual electrical component, that are constant
phase element and Warburg impedance in RC circuits.
Finally, in the article Merla et al. (2018) introduces
a multi-particle, diagnosis oriented model. Although
those behavioural models are easier to parametrize,
their parameters have to depend on current, temperature
and State of Charge (SoC) to bring accurate results.
Thus, those models usually require lookup tables that
need many measurements to be completed.

All those models are useful to predict the perfor-
mances of a cell in many operating conditions in order
to optimize the sizing of a battery pack, choose an
appropriate cooling system or predict its capacity to
fulfil a mission. A previous work Kuhn et al. (2006) led
to a homogeneous equivalent circuit of a Ni-MH cell,
built on a physical basis. This model only takes into
account the main phenomena that occur inside a cell,
and associate to them a combination of resistances and
capacitances to model those phenomena.

Recently, the homogeneous model developed in our
laboratory was extended to a heterogeneous one, the so-
called "multibunch model", by Damay et al. Damay
et al. (2017). It aims to model the heterogeneity of a cell
thanks to a distribution of one or more parameters. The
origin of those distributed parameters can have many
sources that will be listed. This model is more accurate
than a homogeneous one and although it may appear
more complicated at first sight, it is faster to charac-
terize than a usual electrical equivalent circuit model.

Damay et al. found that the addition of the hetero-
geneous behaviour representation in the model allows
the removal of the parameters SoC-dependencies (ex-
cept for the open circuit voltage). This led to model that
is faster to characterize: around 10 times faster than the
previous homogeneous equivalent circuit model, which
had a SoC-dependency precision of 10%. Once charac-
terized, this model is able to simulate the cell over its
whole range of operation. The characterization of the
heterogeneity of a cell, through the distribution of one
or more parameters, also brings valuable insights into its
behaviour and its internal electrical properties. We ex-
pect this distribution to change during the cell lifetime
due to ageing and the tracking of this distribution may
be used as a diagnosis tool.

In this paper, we demonstrate that the measurement of
a single discharge, used to build our model, allows us to
simulate the cell in 4 different operating conditions and
to extract the distribution of one of our parameters. For
this article, this parameter is a single resistance mod-
elling fast-dynamic phenomena such as charge transfer,
current-collector resistance and electrolyte resistance.
The distribution of this resistance for two different cells,
one aged and one new, will be computed and compared
in order to support the idea that this tool can be used as
a non-invasive diagnosis tool. The problems related to
the determination of this distribution will be presented
and our solutions explained. In section 2 we present the
construction of the model, from a homogeneous one to
a heterogeneous one, its parameters and variables. The
simulation and optimization algorithms are presented
in section 3 while section 4 describes our experimental
setup and the used cells. Discussions about the obtained
results are in section 5 and last, the conclusion and per-
spectives of this study are presented in section 6.

2. Model and parameter dependency

2.1. Construction of the multibunch model

Our model is based on the assumption that one cell
can be divided into elementary volumes that behave
homogeneously and have specific electrical properties.
Those volumes can be seen as paths that are used
by electrons and lithium ion to travel through the
cell internal parts. Those volumes are connected in
parallel, as showed on figure 1.a. We assume that
certain volumes, not necessarily spatially bounded,
have close electrical properties when compared to each
other. Because their behaviours are comparable, we
group those volumes into a "bunch" that is considered
homogeneous. By repeating this operation, the cell is
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Figure 1: (a) Division of the cell into elementary homogeneous volumes (b) Model with homogeneous volumes grouped (c) Multibunch model
with n bunches

discretized into n homogeneous bunches, each having
distinct electrical properties, see figure 1.b. The origin
of those distinct electrical properties can be: the
position of the tab within the cell Zhao et al. (2014), the
distance of active material to current collector Bernardi
and Go (2011), temperature gradient, manufacturing
non uniformities Schuster et al. (2015), non-uniform
pressure on the electrodes Ouvrard et al. (2013), local
tortuosity Cooper et al. (2014), different particles sizes
Satyavani et al. (2016), etc. . . This idea of variation of
electrical parameters within the cell is supported by the
recent work of Park et al. Park et al. (2018), who found
that a resistance distribution is found by scanning the
surface of an active material sample. The number of
bunches of our model, n, is a choice from the user and
its value is discussed later in this section.

The bunches have a proper current Ii but the same
voltage: Vcell . The sum of the bunch currents Ii is the
cell current: Icell . Each bunch is modelled using an
equivalent circuit model (ECM). The proposed repre-
sentation of a bunch comes from a previous article from
Damay et al. Damay et al. (2015) in which the hypoth-
esises are the following:

• The double layer capacity is neglected because of
its fast dynamic and the fact that our tests are con-
ducted at constant current during thirty to sixty
minutes. We call "high frequency" resistance,
noted RHF , the sum of the so called ohmic resis-
tance and the charge transfer one.

• In order to reduce the computation time, the War-
burg impedance representing the diffusion phe-
nomenon is modelled by a single RC. More RC cir-
cuits can be added to better model the diffusion, as

presented in the studies of Kuhn et al. Kuhn et al.
(2006) where the transformation from a Warburg
element into an infinite sum of RC is explained,
and of Andre et al. Andre et al. (2011) where the
modelling of a constant phase element with RC cir-
cuits is explained. The subscript d under those el-
ements stands for diffusion. This hypothesis is as-
sumed reasonable as the errors in constant current
discharge will be concentrated during the first tens
of seconds for simulation of several tens of min-
utes.

Those two hypotheses lead us to the multibunch dy-
namic model used in this paper, presented on figure 1c:
one voltage source, one high frequency resistance and
one parallel RC. Because each bunch represent elemen-
tary parts with different electrical properties, the value
of the resistance will be different from one bunch to
another. Among those parameters and to simplify our
model, all the heterogeneity of the electrical proper-
ties is considered to be concentrated in the values of
the RHF,i. We expect this parameter to be the most
heterogeneous one in a cell due to varying distance to
the current collector and variation in the manufacturing
processes. The determination of the distribution of the
RHF,i is done either by searching a mathematical distri-
bution (a Weibull one), or by searching directly values
fitting the experiments. Differences between both meth-
ods will be discussed later

2.2. Parameters values, dependencies and number of
bunches

The voltage source associated to bunch number i has
a values U(Qi) that varies with the bunch charge like an
increasing and nonlinear function, following the open
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circuit voltage (OCV) of the cell. The bunch charge is
defined by its initial state and the bunch current by

Qi,t = Qi,t=0 +
∫ t

0
Ii(t)dt (1)

Thus the value of the bunch voltage source U(Qi)
only depends on the proper SoC of the bunch. All oth-
ers parameters have values that vary with the tempera-
ture and the current. The lookup tables we use to rep-
resent those variations are obtained through the analysis
of the voltage response of the cell to a current pulse. By
using different current values at different temperatures,
one can extract the variation of the parameters through
the analysis of the response, as can be seen on figure 2.
The interested reader will found detailed protocol in the
article from Damay et al Damay et al. (2017).

Figure 2: Expected voltage response of a cell

Values of the parameters at different temperatures
and currents are then computed as follow, where P
represents a parameter and βP(I,T ) is a coefficient which
is calculated thanks to measurements:

P(I,T ) = P(50%SoC,1C,25◦C) ·βP(I,T ) (2)

where

βP(I,T ) =
Pmeas(50%SoC, I,T )

Pmeas(50%SoC,1C,25◦C)

Each parameter has its own non-linearity look-up
tables regarding the temperature and the current. If no
measurement for the particular I, T does exist, a linear
interpolation between the closest measured values is
done. Conversely to the RHF,i values, the values of Rd
and Cd are the same for each bunch. Thus no subscript

i is added to their names. The distribution of the
parameters RHF,i is done by optimization and will be
discussed in section 3.2

A summary of the differences between a usual
equivalent electrical model and the multibunch model
can be found in Table 1 where I refer to the cell current,
as opposed to the local current.

Table 1: Differences between a homogeneous and the multibunch
model

Parameter Homogeneous Multibunch, order n
OCV U(Qcell) U(Qi), i = [1..n]
RHF Re(SOC, I,T )+ RHF,i(I,T )

Rct(SOC, I,T ) and distributed
Rd Rd(SOC, I,T ) Rd(SOC 50%, I,T ) ·n
Cd Cd(SOC, I,T ) Cd(SOC 50%, I,T )/n

Regarding the number of bunches n, several con-
figurations have been tested, and the optimal number
found for a single cell seems to be the higher one. The
higher the number of bunches, the more precise the
model is. Because the optimization time needed to
find a set of resistance is roughly a first order function
of the number of bunch, the chosen number here is a
compromise between accuracy and computation time.
The impact of n on accuracy and computation time for
a given method can be found on figure 3. The result
regarding the value of n on accuracy and computation
time for other methods are similar and are not presented
here. All used methods are presented in section 3.2.
For this study, we choose n = 20.

On figure 4 are displayed the voltages simulated for
a various number of bunches for a given distribution
of parameter. The error decrease with the increase of
bunch number for multiple reasons. First of all, due
to the fact that a SoC modification does not affect the
parameter’s value, the over-voltage is only a function
of the current, which is constant here, and of the
temperature, which is monotonically increasing. So
in a first approximation, one can estimate that the
over-voltage is a function of the temperature only. As
a temperature increase lead to a decrease in resistance
value, the over-voltage for one bunch is a decreasing
function of the temperature, thus of the time. That is
why the shape of the OCV, and especially the transition
between the plateaus are visible on the 1-bunch voltage.
This lead to a great error in the end of the discharge.
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Figure 3: Influence of the number of bunches

Usual homogeneous model uses a SoC-dependency
lookup-table to tackle this problem, with an increase
in the resistance at low and high SoC (the effect is the
same during a charge, where the over-voltage is usually
quickly increasing near the end of the discharge, this is
why the constant voltage protocol is so widely used).
In this article, the SoC-dependency is not modelled
by choice. As one can see on figure 5, increasing
the number of bunches give a satisfactory result re-
garding the voltage drop in the end of the discharge,
as the least resistive bunches begin to be completely
discharged, letting more current flow through high re-
sistances one, effectively increasing their over-voltage,
and lowering the equivalent voltage of the whole model.

Another effect of the increase of the number of
bunches is the disappearance of the transitions between
the plateaus. This lead to a smoother curve, which is
in accordance with the measurement one can get from
a high-current battery discharge. This is due to the
fact that the transition between the OCV plateau does
not occur at the same time for all the bunches, as the
least resistive bunches are discharged quicker. This phe-
nomenon “hide” the plateaus transition by smoothing
them over a larger SoC range. As a result, for an in-
creasing number of bunches, the error decrease, until
a certain point where an augmentation of the number
of bunches do not significantly decrease the error, and
where the computation time becomes too large for the
achieved precision compared to other choices of num-
ber of bunches, as depicted on figure 3.

3. Simulation and optimization algorithms

3.1. Simulation of the cell

Based on a homogeneous bunch model where the pa-
rameter and non-linearity tables are known, we build
the multibunch model by determining the IRD. That is,
we need to find a set of resistances RHF,i that allows the
model to simulate the battery for any discharge inside
the operating conditions. This is done by using an opti-
mization in order to find the best set of RHF,i. The flow
chart of our coupled simulation-optimization algorithm
is represented on figure 6.

The voltage is simulated thanks to several inputs: the
measured temperature and current during a discharge,
the initial state of the cell and the IRD. The simulation
algorithm has three steps.

• First the electrical parameters values (resistances,
capacities, time constants) are updated with regard
to current and temperature (Equation (2));

• Then, based on the previous bunch currents and
the assumption that they remain constant during a
time step, the local states of charge Qi and volt-
ages U(Qi) and the voltage across the RC element
are computed (Equation (1));

• Finally, the new bunch currents and cell voltage
are computed by solving a linear system using the
cell current, the locals OCV U(Qi) and the volt-
ages across the electrical parameters.

3.2. Optimization algorithm and methods

In order to simplify the definition of the optimization
function, we chose to use high frequency conductances
GHF,i instead of high frequency resistances RHF,i.
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Figure 4: Influence of the number of bunches on the simulated voltage

This is because the equivalent conductance of parallel
conductances is simply the sum of those conductances.

This section is dedicated to the determination of the
RHF values, that are distributed among the bunches. To
find the best set, three methods are compared:

• WD method: an indirect determination using a
Weibull Distribution;

• FD-WI method: a direct determination using a
Free Distribution with a Weibull Initialization;

• FD method: a direct determination using a Free
Distribution initialized by a uniform one between
two values.

A Weibull distribution is a mathematical distribution
law that allows a great variety of shape, expected value
and initial value. It’s probability density function is

f (x;λ ,k,θ) =
k
λ
(

x−θ

λ
)k−1exp−(

x−θ

λ
)k

(3)

Using the WD method was already done in a previous
article Damay et al. (2017). Here we propose, on the one
hand, an optimization of the three Weibull parameters
of the indirect determination and, on the other hand, the
possibility to directly find the RHF,i values that were pre-
viously extracted from the WD. As the aim of the IRD
is to be monitored in order to make a diagnosis of the
cell, a shape modification of the IRD must remain pos-
sible. Thus a Weibull distribution is not the best suited

one as we could miss an outsider in the IRD during the
life of the cell. Using a free distribution allows us to
be able to find those points, at the cost of increasing the
number of parameters, therefore the computation time,
to the number of bunches n=20. In order to decrease
the computation time, we imposed an ordered solution,
meaning that an initial conductance G1 is searched for
and then the difference between Gn and Gn+1 (equation
(4))

∀i, j ∈ [2,n], GHF,i = GHF,1 +
i

∑
j=2

∆G j (4)

subject to ∀ j ∈ [2,n], 0≤ ∆G j ≤ ∆Gmax

This way of ordering our solution was necessary
as the algorithm used in the software Matlab includes
the optimization function lsqnonlin which does not
have constraint options in order to sort the solution.
Only lower and upper bounds can be defined, which
goes well with a research of the differences, as the
lower bound can be defined to be strictly superior to 0,
forcing an increase from one value to another.

The objective function for a free distribution is then:

min
GHF,i

fe(t, I,T,GHF,i)= [Usim(t, I,T,GHF,i)−Umeas(t)]

(5)
where fe is the error vector for a given discharge.

The objective function to be minimized is the dif-
ference between the simulated voltage and a measured
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Figure 5: Zoom on the end of the discharge

voltage. Thus, we need a test used as optimization test
in order to determine our IRD. This test, the setup and
the cells used are presented in the next section.

4. Experimental conditions

We used two 40Ah LiFePO4/graphite cells from the
same batch for this study. The discharge current limit is
2C, the charge current limit is 1C, for a voltage varying
between 2,5 and 3,7V. The operating-temperature range
is -15 to 50°C. The first cell used is already aged and
its actual capacity is around 37.9 Ah. This cell was
kept at room temperature for 2 years and various tests
have been made to acquire data for different studies.
No particular aging plan was used to age this cell.
The second cell used for this article is a cell from the
same batch, that was kept at 5°C, and which capacity is
around 39.4Ah.

The first cell was used to make several discharges in
various conditions in order to determine its IRD and to
run several validation simulations in order to validate
the behaviour of the model when used in different oper-
ating conditions. The same method has been used to de-
termine the IRD of the second cell in order to compare
it with the IRD of the first cell and discuss the appli-
cability of the proposed IRD determination method for
diagnosis purpose.

4.1. Experimental setup

As explained in section 2.2, the parameters values are
varying with regards to the temperature. It is measured
on the centre of the largest face of the battery by using
a thermocouple. But as we explained previously, our
model is not a spatial one, as no assumptions are made
regarding the position of the elementary volumes that
are grouped inside a given bunch. Thus the temperature
to be taken into account for a bunch may be different
from the measured surface temperature. Thus, as the
measured temperature will be used to compute the
parameters values of all bunches, the cell needs to
be as homogeneous in temperature as possible. We
chose to thermally insulate the cell with a 10-cm thick
polyurethane box during all our tests, as pictured on
figure 7, in order to have a quasi-adiabatic setup. We
used glass wool on the top of the cell to be able to
connect the power wires. The latter are also insulated
with polyurethane foam. The whole setup was then
placed into a climatic chamber to control the initial
temperature of the cell and to connect it to a Bio-Logic
system with a 100A booster.

We then consider the temperature to be the same
in the surface and inside the battery. Support to this
assumption can be found in the article of Damay et al.
Damay et al. (2015), in which the thermal exchange
between the core of the battery and the ambient air,
through the largest face of the cell, has been modelled.
The experimental setup was the same except that the
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Figure 6: flow chart of our algorithm

bottom face was cooled by a thermally regulated plate
with thermal glue. The thermal resistance between the
core and the largest face of the battery Rin has been
estimated to be of 0.8K/W. The thermal resistance
between the largest face and the ambient air Rout has
been estimated to be of 141 K/W. As Rin is very small
compared to Rout , we assume that the temperature
difference between the largest face and the core of
the cell is very small compared to the temperature
difference between the ambient air temperature and the
largest face temperature.

In the same article, a 3 dimensional thermal model
was used to simulate the core temperature of the cell
during a full discharge at 2C with an initial tempera-
ture of 18°C. The difference between the estimated core
temperature and the surface temperature is less than 3°C
when the surface temperature reaches 40°C and less
than 1°C when the surface temperature reaches 25°C.
As the cell is cooled by the bottom, effectively creating
gradient of temperature inside the cell, thus this can be
viewed as "worst case" scenario. This small difference
in temperature is due to the fact that the internal heat re-
sistance is very low, thus ensuring a good homogeneity
of the temperature inside the cell. Considering a ther-
mal difference of 3°C between the core and the surface
of the cell leads to an error of the estimated electrical
parameters used in this article of 8 to 20% for the high

Figure 7: Experimental setup

frequency resistance, of 8 to 11% for the diffusion re-
sistance and of 1.6 to 9% for the diffusion capacity.

4.2. Tests descriptions

The IRD determination test and the validation tests
are constant current discharge from the higher cut-off
voltage to the lower cut-off voltage. The IRD determi-
nation test consists in a discharge at low initial tempera-
ture (15 °C) and high current (2C, that is 80A). The val-
idation tests are similar but with an initial temperature
of 25°C and 38°C with a current of 1C and 2C for each
temperature, as well as a test at 15 °C, with a current
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Table 2: Experimental conditions of the tests

Current→ 1C (40A) 2C (80A)
Initial temp. ↓

15 °C Validation IRD determination
test test

25 °C Validation test Validation
test test

38 °C Validation test Aborted validation
test test

of 1C. The maximum temperature allowed by the con-
structor has been hit during the 2C discharge with ini-
tial temperature of 38 °C, resulting in a partial discharge
only. This discharge is not exploited here and no sim-
ulation have been made using experimental condition.
The table 2 contains the different operating conditions
and the associated tests.

5. Results and discussions

5.1. Choice of the IRD determination test

Our model aims to model the heterogeneity of a
single cell. Thus a discharge that brings out the most
heterogeneous behaviour of the cell should be the
best suited one in order to determine the IRD of our
model. Once this IRD is determined, it will be used to
simulate other operating conditions with a comparison
to experimental measurements to determine if it can
model the cell in a wide range of operating conditions.
Based on our observations, the discharge with the most
heterogeneous behaviour is a low temperature - high
current one. We tried to determine IRD with other
operating conditions, such as higher temperature or
lower current, but it gave greater error when the IRD
is applied to the other conditions of simulation. Thus
this particular discharge at low temperature and high
current was kept as determination test for the IRD.

The low temperature brings more dispersed
impedance values as temperature is a major factor
for impedance variation. The high current brings state
of charge heterogeneity among parts of the cell, because
our cell has a flat OCV as a function of the SoC. This
lead to no electrochemical constraint between a low
SoC and a mid to high SoC local part of the cell.
Moreover, as the setup only is a quasi-adiabatic setup,
the temperature increases in the case of a high current
should be greater than with a lower current, effectively
covering a larger temperature range. This will ensure

our model robustness with respect to large temperature
variations.

We used our IRD determination algorithm (figure 6),
tests (see section 4.2) and methods (see section 3.2) to
determine all three IRDs. The result of the indirect WD
method, that was developed in a previous study Damay
et al. (2017), are compared on figure 8 with the results
of the direct FD-WI method that we propose in this
paper.

(a) Overall measurements and simulations

(b) Zoom on the end of the discharge

Figure 8: Measured temperature, voltage and simulated voltages

From an initial temperature of 15 °C, we observe an
increase up to 43 °C. The linear shape of the temper-
ature curve supports the quasi-adiabatic setup that we
did, as a thermal cooling from the cell would be de-
tected as a variation of the derivative of the temperature
curve.

As the impedance is strongly linked to temperature
in a cell, we observe a particular shape of the voltage
curve. In a first part a voltage drop due to ohmic resis-
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tance can be seen. Then the voltage increases as the
state of charge decrease. As the cell is an LFP/graphite
cell, the OCV is nearly-flat at the beginning of the
discharge, which should induce a flat voltage during
discharge. However, the rising temperature of the cell
leads to a decrease of its impedance and, thus, leads
to an increase of the cell voltage. This happens until
the OCV of the cell decreases at low SoC, effectively
decreasing the cell voltage.

5.2. Relevance of the determined IRD to a diagnosis
purpose

The aim of the optimization is to find a suitable set of
resistances to model the cell. However, we also want to
obtain a distribution that is physically meaningful. Be-
cause the goal of the IRD is to monitor the internal state
of the cell, we have to exclude the results from the WD
method from the acceptable results, as it is so far not
proved that the resistances inside a cell vary with respect
to a Weibull distribution. Besides, a Weibull distribution
is constrained by equation (3) and cannot represent all
possible IRD that a cell may have.

We found that the FD method may lead to a question-
able solution. On figure 9 are presented the distributions
that our algorithm finds for each method presented in
section 3.2. The FD method brings a distribution with
a few equals & subsequent values and one greater value
at the end. Such an evolution is possible but is con-
sidered less likely because it doesn’t suit the hypothesis
of a continuum of electrical properties inside the cell.
The FD-WI method brings a better regularity among the
IRD, as expected from the model construction.

Figure 9: Comparison of the IRD

As we find it hard to have a consistent criterion to
evaluate the qualities of those solutions, we recommend
the FD-WI method for the determination of the IRD as
it gives satisfactory results regarding the hypothesis of
an internal electrical-properties continuum. It has the
advantage to be quickly initialized by the WD method
in which only three parameters have to be optimized,
and to avoid purely mathematical IRD.

5.3. Validation tests

To verify that the determined IRD is consistent, we
simulated discharges for other operating conditions.
The results are presented on figure 10. On each
subfigure are displayed the measured voltage and the
simulated voltage for the indicated operating condition.
The results validate our IRD determination method as
the error is kept below 25mV for an average voltage
around 3.1V (that is to say, less than 1% relative error).
The various operating points that are simulated strongly
support the fact that our model has a physical meaning,
that can be used to track the IRD during the cell lifetime.

The different simulations show a smaller error for a
higher discharge current. We suppose that high currents
are more likely to induce a heterogeneous behaviour in-
side the cell, which are to be modelled by this heteroge-
neous model. Although the determination test was also
a high current test, which can lead to a bias in the error,
IRD extracted from low-current test did not give bet-
ter result, neither for high current, nor for low ones, as
specified in section 5.1. Thus this IRD is considered to
be the best one we could find. The overall shape of the
simulation is satisfying compared to measured voltage,
which validate our goal to simulate the cell voltage over
a wide range of operating points.

As the cell voltage can be simulated during a constant
current discharge, with only one IRD obtained by opti-
mization on a single discharge at low temperature and
high current, it becomes possible to track the evolution
of this IRD. This open the way to a non-invasive diag-
nosis tool for a single cell or a group of parallel cells.

5.4. Direct IRD determination as a diagnosis tool

After having determined that the proposed IRD de-
termination method is suitable for a diagnosis purpose,
we tested this method in its usage as a diagnosis tool to
compare the IRD of two cells that have different ageing
conditions (those cells were described in section 4). We
expect the distribution of the aged cell to show higher
values of resistances, as its resistance should have in-
creased with use.
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(a) 1C discharge, Tini 38°C (b) 1C discharge, Tini 15°C

(c) 2C discharge, Tini 25°C (d) 1C discharge, Tini 25°C

Figure 10: Measured temperature, voltage and simulated voltage for different operating conditions

The exact same multibunch model parameters (and
non-linearity regarding temperature and current) have
been used for the new cell, except the values of RHF .
Those values were determined with the IRD determi-
nation test. The discharge test was conducted with the
same protocol, and in the same operating conditions.
The results of the optimization of the resistances are
shown on figure 11.

The IRD values are displayed on the Y axis and the
number of the bunch on the X axis. Both cells show
very similar shape of IRD, with the aged battery having
a higher equivalent resistance value as expected. The
values of the aged cell resistances are a bit higher by
around 4mΩ for bunches 4 to 14 but the shape is pre-
served, as if the aging impacted bunches 1 to 18 homo-
geneously. The bunches 18 to 20 are interesting as we
see a crossover between the IRD. This can be due to
several causes, including

• a difference between the two batteries initial IRD;

• an unexpected degradation process;

• a difficulty in finding a global optimum as local
minima may exist (equation (5));

• an artefact due to the model construction hypothe-
sis (very simple bunch model, no separation of the
2 electrodes behaviours...).

So far, no evidence has been found toward any of those
causes, and further studies should help us to have a bet-
ter understanding of these results. Tracking a single cell
IRD during its lifetime would help to distinguish that,
as its resistance should only grow.

The IRD analysis shows good consistency with the
expected resistance values, as the aged cell has a higher
average value of equivalent resistance. More tests on
other types of battery are necessary to conclude about
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Figure 11: Comparison of the IRD for an aged and a new cell

the usage of this criterion as a SoH diagnosis tool, but
those first results are encouraging. Moreover, new tool
can be used, based on the IRD shape or values, such as
a heterogeneity level that is the difference between the
min value of the IRD and the max value of the IRD. As
the cell ages normally, we expect this ratio to decrease
as less resistive parts are privileged paths for the current,
inducing more degradations and a resistance increase.
As this tool can be used on aged cell without a need
to rebuild non-linearity tables, it makes a good candi-
date for a SoH diagnosis tool. Other criteria such as the
standard deviation of the IRD could be used and will be
investigated in other studies. This work may bring new
methods in order to diagnose the internal behaviour of
the cell, without opening them.

6. Conclusions and perspectives

In this paper we presented an equivalent circuit model
called multibunch model, whose goal is to model the
heterogeneity of a commercial LiFePO4/graphite cell.
This model was initially developed in a previous study
Damay et al. (2017) and, in this article, we demonstrate
that it can be used as a non-invasive diagnosis tool. This
model gives access to an internal resistance distribution
(IRD) which is assumed to represent the distribution of
the cell internal electrical properties.

We propose a direct determination method of the
IRD in this paper, as opposed to the indirect determi-
nation method of the previous study. This allows us
to have a responsive distribution that is not bound to a
mathematical law of a distribution. As the cell internal

properties may vary in many different ways, the ability
to spot outsiders values within the IRD is a strong
improvement of the method.

An experimental protocol has been proposed for the
IRD determination and three determination methods
have been compared. The first one is the previous study
indirect determination method using a Weibull distribu-
tion. The two others are a direct determination using
a free optimization of the IRD values, after initializing
them with either a Weibull distribution or a uniform dis-
tribution. We demonstrated that the best method is to
first determine the best Weibull distribution, then to al-
low an optimization of the internal resistances around
the Weibull values in order to fit the measurements ob-
tained thanks to the IRD determination protocol. The
found IRD was validated for different other operating
conditions with an error of less than 25mV for an aver-
age voltage of 3.1V.

The comparison of the IRD of two different cells
highlights the new insights that our method provides
about a single cell internal state. We propose an
"heterogeneity level" as a new criterion to determine
a cell state of health, which allows to have a better
accuracy on the cell internal resistance. Other criteria
could be found to better represent the cell ageing
with regard to the IRD information, but further study
and tests on other batteries are necessary to have a
motivated opinion on the subject. This is the next step
of our work and will be presented in future publications.

The use of thermal model to estimate the core tem-
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perature, and the correct the estimation of the electri-
cal parameter may be an interesting perspective of this
study. Especially when low errors are achieved and
where small variations of the parameters due to tem-
perature may account for an unneglectable part of the
remaining error.

Also, application of this method to a small battery
pack which contains one aged cell and several new cells
will be done in order to validate this method as a di-
agnosis tool for larger battery pack. The construction
of the multibunch model allows it to model several bat-
teries in parallel. As our heterogeneous model is made
of parallel bunches, to model parallel cells is easy to
parametrize, as we only need to increase the number of
bunches.

Finally, we plan to apply this simulation method to
other cell chemistries to verify that we are able to simu-
late them over their whole operating range, to get an in-
sight of their internal states, and to follow the evolution
of their IRD in order to have a non-invasive diagnosis
tool for large battery packs.
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