
HAL Id: hal-02489048
https://hal.science/hal-02489048

Submitted on 10 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Multi-dimensional Elephant Random Walk
Bernard Bercu, Lucile Laulin

To cite this version:
Bernard Bercu, Lucile Laulin. On the Multi-dimensional Elephant Random Walk. Journal of Statis-
tical Physics, 2019, 175 (6), pp.1146-1163. �10.1007/s10955-019-02282-8�. �hal-02489048�

https://hal.science/hal-02489048
https://hal.archives-ouvertes.fr


ar
X

iv
:1

70
9.

07
34

5v
1 

 [
m

at
h.

PR
] 

 2
1 

Se
p 

20
17

ON THE MULTI-DIMENSIONAL ELEPHANT RANDOM WALK

BERNARD BERCU AND LUCILE LAULIN

Abstract. The purpose of this paper is to investigate the asymptotic behavior
of the multi-dimensional elephant random walk (MERW). It is a non-Markovian
random walk which has a complete memory of its entire history. A wide range of
literature is available on the one-dimensional ERW. Surprisingly, no references are
available on the MERW. The goal of this paper is to fill the gap by extending the
results on the one-dimensional ERW to the MERW. In the diffusive and critical
regimes, we establish the almost sure convergence, the law of iterated logarithm
and the quadratic strong law for the MERW. The asymptotic normality of the
MERW, properly normalized, is also provided. In the superdiffusive regime, we
prove the almost sure convergence as well as the mean square convergence of
the MERW. All our analysis relies on asymptotic results for multi-dimensional
martingales.

1. Introduction

The elephant random walk (ERW) is a fascinating discrete-time random process
arising from mathematical physics. It is a non-Markovian random walk on Z which
has a complete memory of its entire history. This anomalous random walk was intro-
duced by Schütz and Trimper [20], in order to investigate how long-range memory
affects the random walk and induces a crossover from a diffusive to superdiffusive
behavior. It was referred to as the ERW in allusion to the traditional saying that
elephants can always remember where they have been. The ERW shows three dif-
ferents regimes depending on the location of its memory parameter p which lies
between zero and one.

Over the last decade, the ERW has received considerable attention in the mathe-
matical physics literature in the diffusive regime p < 3/4 and the critical regime
p = 3/4, see e.g. [1],[2],[8],[9],[10],[13],[17],[19] and the references therein. Quite
recently, Baur and Bertoin [1] and independently Coletti, Gava and Schütz [6] have
proven the asymptotic normality of the ERW, properly normalized, with an explicit
asymptotic variance.

The superdiffusive regime p > 3/4 is much harder to handle. Initially, it was sug-
gested by Schütz and Trimper [20] that, even in the superdiffusive regime, the ERW
has a Gaussian limiting distribution. However, it turns out [3] that this limiting
distribution is not Gaussian, as it was already predicted in [10], see also [6],[19].

Surprisingly, to the best of our knowledge, no references are available on the multi-
dimensional elephant random walk (MERW) on Z

d, except [8],[18] in the special
case d = 2. The goal of this paper is to fill the gap by extending the results on the
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convergence, Asymptotic normality.
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one-dimensional ERW to the MERW. To be more precise, we shall study the influ-
ence of the memory parameter p on the MERW and we will show that the critical
value is given by

pd =
2d+ 1

4d
.

In the diffusive and critical regimes p ≤ pd, the reader will find the natural extension
to higher dimension of the results recently established in [1],[3],[6],[7] on the almost
sure asymptotic behavior of the ERW as well as on its asymptotic normality. One
can notice that unlike in the classic random walk, the asymptotic normality of the
MERW holds in any dimension d ≥ 1. In the superdiffusive regime p > pd, we will
also prove some extensions of the results in [3],[8],[18].

Our strategy is to make an extensive use of the theory of martinagles [11],[15], in
particular the strong law of large numbers and the central limit theorem for multi-
dimensional martingales [11], as well as the law of iterated logarithm [21],[22]. We
strongly believe that our approach could be successfully extended to MERW with
stops [8],[16], to amnesiac MERW [9], as well as to MERW with reinforced memory
[1],[14].

The paper is organized as follows. In Section 2, we introduce the exact MERW and
the multi-dimensional martingale we will extensively make use of. The main results
of the paper are given in Section 3. As usual, we first investigate the diffusive
regime p < pd and we establish the almost sure convergence, the law of iterated
logarithm and the quadratic strong law for the MERW. The asymptotic normality
of the MERW, properly normalized, is also provided. Next, we prove similar results
in the critical regime p = pd. At last, we study the superdiffusive regime p > pd and
we prove the almost sure convergence as well as the mean square convergence of the
MERW to a non-degenerate random vector. Our martingale approach is described
in Appendix A, while all technical proofs are postponed to Appendices B and C.

2. The multi-dimensional elephant random walk

First of all, let us introduce the MERW. It is the natural extension to higher
dimension of the one-dimensional ERW defined in the pioneer work of Schütz and
Trimper [20]. For a given dimension d ≥ 1, let (Sn) be a random walk on Z

d,
starting at the origin at time zero, S0 = 0. At time n = 1, the elephant moves
in one of the 2d directions with the same probability 1/2d. Afterwards, at time
n ≥ 1, the elephant chooses uniformly at random an integer k among the previous
times 1, . . . , n. Then, he moves exactly in the same direction as that of time k with
probability p or in one of the 2d− 1 remaining directions with the same probability
(1 − p)/(2d − 1), where the parameter p stands for the memory parameter of the
MERW. From a mathematical point of view, the step of the elephant at time n ≥ 1
in given by

(2.1) Xn+1 = AnXk
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where

An =



























































+Id with probability p

−Id with probability 1−p
2d−1

+Jd with probability 1−p
2d−1

−Jd with probability 1−p
2d−1

...

+Jd−1

d with probability 1−p
2d−1

−Jd−1

d with probability 1−p
2d−1

with

Id =









1 0 · · · 0
0 1 · · · 0
...

. . .
. . .

...
0 · · · 0 1









and Jd =









0 1 · · · 0
0 0 · · · 0
...

. . .
. . .

...
1 · · · 0 0









.

One can observe that the permutation matrix Jd satisfies Jd
d = Id. Therefore, the

position of the elephant at time n ≥ 1 is given by

(2.2) Sn+1 = Sn +Xn+1.

It follows from our very definition of the MERW that at any n ≥ 1, Xn+1 = AnXbn

where An is the random matrix described before while bn is a random variable
uniformly distributed on {1, ..., n}. Moreover, as An and bn are conditionally in-
dependent, we clearly have E [Xn+1|Fn] = E [An]E [Xbn|Fn] where Fn stands for
the σ-algebra, Fn = σ(X1, . . . , Xn). Hence, we can deduce from the law of total
probability that at any time n ≥ 1,

(2.3) E [Xn+1|Fn] =
1

n

(2dp− 1

2d− 1

)

Sn =
a

n
Sn a.s.

where a is the fundamental parameter of the MERW,

(2.4) a =
2dp− 1

2d− 1
.

Consequently, we immediately obtain from (2.2) and (2.3) that for any n ≥ 1,

(2.5) E [Sn+1|Fn] = γnSn where γn = 1 +
a

n
.

Furthermore,
n
∏

k=1

γk =
Γ(a + 1 + n)

Γ(a+ 1)Γ(n+ 1)

where Γ is the standard Euler Gamma function. The critical value associated with
the memory parameter p of the MERW is

(2.6) pd =
2d+ 1

4d
.
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As a matter of fact,

a <
1

2
⇐⇒ p < pd, a =

1

2
⇐⇒ p = pd, a >

1

2
⇐⇒ p > pd.

Definition 2.1. The MERW (Sn) is said to be diffusive if p < pd, critical if p = pd,
and superdiffusive if p > pd.

All our investigation in the three regimes relies on a martingale approach. To be
more precise, the asymptotic behavior of (Sn) is closely related to the one of the
sequence (Mn) defined, for all n ≥ 0, by Mn = anSn where a0 = 1, a1 = 1 and, for
all n ≥ 2,

(2.7) an =

n−1
∏

k=1

γ−1

k =
Γ(a+ 1)Γ(n)

Γ(n+ a)
.

It follows from a well-known property of the Euler Gamma function that

(2.8) lim
n→∞

Γ(n+ a)

Γ(n)na
= 1.

Hence, we obtain from (2.7) and (2.8) that

(2.9) lim
n→∞

naan = Γ(a+ 1).

Furthermore, since an = γnan+1, we can deduce from (2.5) that for all n ≥ 1,

E [Mn+1|Fn] = Mn a.s.

It means that (Mn) is a multi-dimensional martingale. Our goal is to extend the
results recently established in [3] to MERW. One can observe that our approach is
much more tricky than that of [3] as it requires to study the asymptotic behavior of
the multi-dimensional martingale (Mn).

3. Main results

3.1. The diffusive regime. Our first result deals with the strong law of large
numbers for the MERW in the diffusive regime where 0 ≤ p < pd.

Theorem 3.1. We have the almost sure convergence

(3.1) lim
n→∞

1

n
Sn = 0 a.s.

Some refinements on the almost sure rates of convergence for the MERW are as
follows.

Theorem 3.2. We have the quadratic strong law

(3.2) lim
n→∞

1

log n

n
∑

k=1

1

k2
SkS

T
k =

1

d(1− 2a)
Id a.s.

In particular,

(3.3) lim
n→∞

1

log n

n
∑

k=1

‖Sk‖2
k2

=
1

(1− 2a)
a.s.
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Moreover, we also have the law of iterated logarithm

(3.4) lim sup
n→∞

‖Sn‖2
2n log log n

=
1

(1− 2a)
a.s.

Our next result is devoted to the asymptotic normality of the MERW in the diffusive
regime 0 ≤ p < pd.

Theorem 3.3. We have the asymptotic normality

(3.5)
1√
n
Sn

L−→ N
(

0,
1

(1− 2a)d
Id

)

.

Remark 3.1. We clearly have from (2.4) that

1

1− 2a
=

2d− 1

2d(1− 2p) + 1
.

Hence, in the special case d = 1, the critical value pd = 3/4 and the asymptotic

variance
1

1− 2a
=

1

3− 4p
.

Consequently, we find again the asymptotic normality for the one-dimensional ERW

in the diffusive regime 0 ≤ p < 3/4 recently established in [1],[3],[6].

3.2. The critical regime. We now focus our attention on the critical regime where
the memory parameter p = pd.

Theorem 3.4. We have the almost sure convergence

(3.6) lim
n→∞

1√
n log n

Sn = 0 a.s.

We continue with some refinements on the almost sure rates of convergence for the
MERW.

Theorem 3.5. We have the quadratic strong law

(3.7) lim
n→∞

1

log logn

n
∑

k=2

1

(k log k)2
SkS

T
k =

1

d
Id a.s

In particular,

(3.8) lim
n→∞

1

log log n

n
∑

k=2

‖Sk‖2
(k log k)2

= 1 a.s.

Moreover, we also have the law of iterated logarithm

(3.9) lim sup
n→∞

‖Sn‖2
2n logn log log log n

= 1 a.s.

Our next result concerns the asymptotic normality of the MERW in the critical
regime p = pd.

Theorem 3.6. We have the asymptotic normality

(3.10)
1√

n logn
Sn

L−→ N
(

0,
1

d
Id

)

.
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Remark 3.2. As before, in the special case d = 1, we find again [1],[3],[6] the

asymptotic normality for the one-dimensional ERW

Sn√
n log n

L−→ N (0, 1).

3.3. The superdiffusive regime. Finally, we get a handle on the more arduous
superdiffusive regime where pd < p ≤ 1.

Theorem 3.7. We have the almost sure convergence

(3.11) lim
n→∞

1

na
Sn = L a.s.

where the limiting value L is a non-degenerate random vector. Moreover, we also

have the mean square convergence

(3.12) lim
n→∞

E

[∥

∥

∥

1

na
Sn − L

∥

∥

∥

2]

= 0.

Theorem 3.8. The expected value of L is E[L] = 0, while its covariance matrix is

given by

(3.13) E
[

LLT
]

=
1

d(2a− 1)Γ(2a)
Id.

In particular,

(3.14) E
[

‖L‖2
]

=
1

(2a− 1)Γ(2a)
.

Remark 3.3. Another possibility for the MERW is that, at time n = 1, the elephant
moves in one direction, say the first direction e1 of the standard basis (e1, . . . , ed)
of Rd, with probability q or in one of the 2d− 1 remaining directions with the same

probability (1− q)/(2d− 1), where the parameter q lies in the interval [0, 1]. After-

wards, at any time n ≥ 2, the elephant moves exactly as before, which means that his

steps are given by (2.1). Then, the results of Section 3 holds true except Theorem

3.8 where

E[L] =
1

Γ(a + 1)

(2dq − 1

2d− 1

)

e1

and

E[LLT ] =
1

Γ(2a+ 1)

(2dq − 1

2d− 1

)(

e1e
T
1 − 1

d
Id

)

+
1

d(2a− 1)Γ(2a)
Id,

which also leads to

E
[

‖L‖2
]

=
1

(2a− 1)Γ(2a)
.

Appendix A

A multi-dimensional martingale approach

We clearly obtain from (2.1) that for any time n ≥ 1, ‖Xn‖ = 1. Consequently, it
follows from (2.2) that ‖Sn‖ ≤ n. Therefore, the sequence (Mn) given, for all n ≥ 0,
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by Mn = anSn, is a locally square-integrable multi-dimensional martingale. It can
be rewritten in the additive form

(A.1) Mn =

n
∑

k=1

akεk

since its increments ∆Mn = Mn − Mn−1 satisfy ∆Mn = anSn − an−1Sn−1 = anεn
where εn = Sn − γn−1Sn−1. The predictable quadratic variation associated with
(Mn) is the random square matrix of order d given, for all n ≥ 1, by

(A.2) 〈M〉n =
n
∑

k=1

E
[

∆Mk(∆Mk)
T |Fk−1

]

.

We already saw from (2.5) that E [εn+1|Fn] = 0. Moreover, we deduce from (2.2)
together with (2.3) that

E
[

Sn+1S
T
n+1|Fn

]

= E
[

SnS
T
n |Fn

]

+
2a

n
SnS

T
n + E

[

Xn+1X
T
n+1|Fn

]

=

(

1 +
2a

n

)

SnS
T
n + E

[

Xn+1X
T
n+1|Fn

]

a.s.(A.3)

In order to calculate the right-hand side of (A.3), one can notice that for any n ≥ 1,

XnX
T
n =

d
∑

i=1

IXi
n 6=0eie

T
i

where (e1, . . . , ed) stands for the standard basis of the Euclidean space Rd and X i
n is

the i-th coordinate of the random vector Xn. Moreover, it follows from (2.1) together
with the law of total probability that any time n ≥ 1 and for any 1 ≤ i ≤ d,

P(X i
n+1 6= 0|Fn) =

1

n

n
∑

k=1

P((AnXk)
i 6= 0|Fn)

=
1

n

n
∑

k=1

IXi

k
6=0P(An = ±Id) +

1

n

n
∑

k=1

(1− IXi

k
6=0)P(An = ±Jd)

=
NX

n (i)

n

(

P(An = Id)− P(An = Jd)
)

+ 2P(An = Jd)

which implies that for any 1 ≤ i ≤ d,

(A.4) E
[

IXi

n+1
6=0|Fn

]

=
a

n
NX

n (i) +
(1− a)

d
a.s.

where

NX
n (i) =

n
∑

k=1

IXi

k
6=0

and the parameter a is given by (2.4). Hence, we infer from (A.3) and (A.4) that

(A.5) E
[

Xn+1X
T
n+1|Fn

]

=
a

n
Σn +

(1− a)

d
Id a.s.



8 BERNARD BERCU AND LUCILE LAULIN

where

(A.6) Σn =
d
∑

i=1

NX
n (i)eie

T
i .

One can observe the elementary fact that for all n ≥ 1, Tr(Σn) = n where Tr(Σn)
stands for the trace of the positive definite matrix Σn. Therefore, we obtain from
(A.3) together with (A.5) that

E
[

εn+1ε
T
n+1|Fn

]

= E
[

Sn+1S
T
n+1|Fn

]

− γ2
nSnS

T
n

=
(

1 +
2a

n

)

SnS
T
n +

a

n
Σn +

(1− a)

d
Id − γ2

nSnS
T
n

=
a

n
Σn +

(1− a)

d
Id −

(a

n

)2

SnS
T
n a.s.(A.7)

which ensures that

E
[

‖εn+1‖2|Fn

]

=
a

n
Tr(Σn) +

1− a

d
Tr(Id)−

(a

n

)2

‖Sn‖2

= 1− (γn − 1)2‖Sn‖2 a.s.(A.8)

By the same token,

E
[

‖εn+1‖4|Fn

]

= 1− 3(γn − 1)4‖Sn‖4 − 2(γn − 1)2‖Sn‖2 + 4(γn − 1)2ξn

where, thanks to (A.5),

ξn = E
[

〈Sn, Xn+1〉2|Fn

]

=
a

n
ST
nΣnSn +

(1− a)

d
‖Sn‖2.

It leads to

E
[

‖εn+1‖4|Fn

]

= 1− 3(γn − 1)4‖Sn‖4 − 2
(

1− 2(1− a)

d

)

(γn − 1)2‖Sn‖2

+
4a

n
(γn − 1)2ST

nΣnSn a.s.(A.9)

Therefore, as Σn ≤ nId for the usual order of positive definite matrices, we clearly
obtain from (A.9) that

E
[

‖εn+1‖4|Fn

]

≤ 1− 3(γn − 1)4‖Sn‖4

+
2

d
(γn − 1)2

(

2a(d− 1) + 2− d
)

‖Sn‖2 a.s.(A.10)

Consequently, we obtain from (A.8) and (A.10) the almost sure upper bounds

(A.11) sup
n≥0

E
[

‖εn+1‖2|Fn

]

≤ 1 and sup
n≥0

E
[

‖εn+1‖4|Fn

]

≤ 4

3
a.s.

Hereafter, we deduce from (A.2) and (A.7) that

〈M〉n = a21E[ε1ε
T
1 ] +

n−1
∑

k=1

a2k+1E
[

εk+1ε
T
k+1|Fk

]

=
1

d
Id

n
∑

k=1

a2k + a

n−1
∑

k=1

a2k+1

(1

k
Σk −

1

d
Id

)

− ζn(A.12)
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where

ζn = a2
n−1
∑

k=1

(ak+1

k

)2

SkS
T
k .

Hence, by taking the trace on both sides of (A.12), we find that

(A.13) Tr〈M〉n =
n
∑

k=1

a2k − a2
n−1
∑

k=1

(ak+1

k

)2

‖Sk‖2.

The asymptotic behavior of the multi-dimensional martingale (Mn) is closely related
to the one of

vn =

n
∑

k=1

a2k =

n
∑

k=1

(Γ(a+ 1)Γ(k)

Γ(a + k)

)2

.

One can observe that we always have Tr〈M〉n ≤ vn. In accordance with Definition
2.1, we have three regimes. In the diffusive regime where a < 1/2,

(A.14) lim
n→∞

vn
n1−2a

= ℓ where ℓ =
(Γ(a+ 1))2

1− 2a
.

In the critical regime where a = 1/2,

(A.15) lim
n→∞

vn
log n

= (Γ(a+ 1))2 =
π

4
.

Finally, in the superdiffusive regime where a > 1/2, vn converges to the finite value

lim
n→∞

vn =

∞
∑

k=0

(Γ(a+ 1)Γ(k + 1)

Γ(a+ k + 1)

)2

=

∞
∑

k=0

(1)k (1)k (1)k
(a+ 1)k (a + 1)k k!

= 3F2

(

1, 1, 1
a+ 1, a+ 1

∣

∣

∣
1
)

(A.16)

where, for any α ∈ R, (α)k = α(α+ 1) · · · (α+ k − 1) for k ≥ 1, (α)0 = 1 stands for
the Pochhammer symbol and 3F2 is the generalized hypergeometric function defined
by

3F2

(

a, b, c
d, e

∣

∣

∣
z
)

=
∞
∑

k=0

(a)k (b)k (c)k
(d)k (e)k k!

zk.

Appendix B

Proofs of the almost sure convergence results
.

B.1. The diffusive regime.

Proof of Theorem 3.1. First of all, we focus our attention on the proof of the
almost sure convergence (3.1). We already saw from (A.13) that Tr〈M〉n ≤ vn.
Moreover, we obtain from (A.14) that, in the diffusive regime where 0 < a < 1/2,
vn increases to infinity with the speed n1−2a. On the one hand, it follows from the
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strong law of large numbers for multi-dimensional martingales given e.g. by the last
part of Theorem 4.3.15 in [11] that for any γ > 0,

(B.1)
‖Mn‖2

λmax〈M〉n
= o
((

log Tr〈M〉n
)1+γ)

a.s

where λmax〈M〉n stands for the maximal eigenvalue of the random square matrix
〈M〉n. However, as 〈M〉n is a positive definite matrix and Tr〈M〉n ≤ vn, we clearly
have λmax〈M〉n ≤ Tr〈M〉n ≤ vn. Consequenly, we obtain from (B.1) that

‖Mn‖2 = o
(

vn(log vn)
1+γ
)

a.s

which implies that

(B.2) ‖Mn‖2 = o
(

n1−2a(log n)1+γ
)

a.s.

Hence, as Mn = anSn, it follows from (2.9) and (B.2) that for any γ > 0,

‖Sn‖2 = o
(

n(logn)1+γ
)

a.s.

which completes the proof of Theorem 3.1.

Proof of Theorem 3.2. We shall now proceed to the proof of the almost sure
rates of convergence given in Theorem 3.2. First of all, we claim that

(B.3) lim
n→∞

1

n
Σn =

1

d
Id a.s.

where Σn is the random square matrix of order d given by (A.6). As a matter of
fact, in order to prove (B.3) it is only necessary to show that for any 1 ≤ i ≤ d,

(B.4) lim
n→∞

NX
n (i)

n
=

1

d
a.s.

For any 1 ≤ i ≤ d, denote

Λn(i) =
NX

n (i)

n
.

One can observe that

Λn+1(i) =
n

n+ 1
Λn(i) +

1

n+ 1
IXi

n+1
6=0

which leads, via (A.4), to the recurrence relation

(B.5) Λn+1(i) =
n

n+ 1
γnΛn(i) +

(1− a)

d(n+ 1)
+

1

n+ 1
δn+1(i)

where δn+1(i) = IXi

n+1
6=0 − E[IXi

n+1
6=0|Fn]. After straightforward calculations, the

solution of this recurrence relation is given by

(B.6) Λn(i) =
1

nan

(

Λ1(i) +
(1− a)

d

n
∑

k=2

ak + Ln(i)
)

where

Ln(i) =

n
∑

k=2

akδk(i).
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However, (Ln(i)) is a square-integrable real martingale with predictable quadratic
variation 〈L(i)〉n satisfying 〈L(i)〉n ≤ vn a.s. Then, it follows from the standard
strong law of large numbers for martingales given by Theorem 1.3.24 in [11] that
(Ln(i))

2 = O(vn log vn) a.s. Consequently, as na2n is equivalent to (1 − 2a)vn, we
obtain that for any 1 ≤ i ≤ d,

(B.7) lim
n→∞

1

nan
Ln(i) = 0 a.s.

Furthermore, one can easily check from (2.9) that

(B.8) lim
n→∞

1

nan

n
∑

k=1

ak =
1

1− a
.

Therefore, we find from (B.6) together with (B.7) and (B.8) that for any 1 ≤ i ≤ d,

(B.9) lim
n→∞

Λn(i) =
1

d
a.s.

which immediately leads to (B.4). Hereafter, it follows from the conjunction of (3.1),
(A.7) and (B.4) that

(B.10) lim
n→∞

E
[

εn+1ε
T
n+1|Fn

]

=
1

d
Id a.s.

By the same token, we also obtain from (A.12) and Toeplitz lemma that

(B.11) lim
n→∞

1

vn
〈M〉n =

1

d
Id a.s.

We are now in the position to prove the quadratic strong law (3.2). For any vector
u of Rd, denote Mn(u) = 〈u,Mn〉 and εn(u) = 〈u, εn〉. We clearly have from (A.1)

Mn(u) =

n
∑

k=1

akεk(u).

Consequently, (Mn(u)) is a square-integrable real martingale. Moreover, it follows
from (B.10) that

lim
n→∞

E
[

|εn+1(u)|2|Fn

]

=
1

d
‖u‖2 a.s.

Moreover, we can deduce from (A.11) and the Cauchy-Schwarz inequality that

sup
n≥0

E
[

|εn+1(u)|4|Fn

]

≤ 4

3
‖u‖4 a.s.

Furthermore, we clearly have from (2.9) and (A.14) that

lim
n→∞

nfn = 1− 2a where fn =
a2n
vn

,

which of course implies that fn converges to zero. Therefore, it follows from the
quadratic strong law for real martingales given e.g. in Theorem 3 of [4], that for
any vector u of Rd,

(B.12) lim
n→∞

1

log vn

n
∑

k=1

fk

(M2
k (u)

vk

)

=
1

d
‖u‖2 a.s.
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Consequently, we find from (A.14) and (B.12) that

(B.13) lim
n→∞

1

log n

n
∑

k=1

a2k
v2k

M2
k (u) =

(1− 2a)

d
‖u‖2 a.s.

Hereafter, as Mn = anSn and n2a4n is equivalent to (1 − 2a)2v2n, we obtain from
(B.13) that for any vector u of Rd,

(B.14) lim
n→∞

1

log n

n
∑

k=1

1

k2
uTSkS

T
k u =

1

d(1− 2a)
‖u‖2 a.s.

By virtue of the second part of Proposition 4.2.8 in [11], we can conclude from (B.14)
that

(B.15) lim
n→∞

1

log n

n
∑

k=1

1

k2
SkS

T
k =

1

d(1− 2a)
Id a.s.

which completes the proof of (3.2). By taking the trace on both sides of (B.15), we
immediately obtain (3.3). Finally, we shall proceed to the proof of the law of iterated
logarithm given by (3.4). We already saw that a4nv

−2
n is equivalent to (1− 2a)2n−2.

It ensures that

(B.16)

+∞
∑

n=1

a4n
v2n

< +∞.

Hence, it follows from the law of iterated logarithm for real martingales due to Stout
[21],[22], see also Corollary 6.4.25 in [11], that for any vector u of Rd,

lim sup
n→∞

( 1

2vn log log vn

)1/2

Mn(u) = − lim inf
n→∞

( 1

2vn log log vn

)1/2

Mn(u)

=
1√
d
‖u‖ a.s.(B.17)

Consequently, as Mn(u) = an〈u, Sn〉, we obtain from (A.14) together with (B.17)
that

lim sup
n→∞

( 1

2n log log n

)1/2

〈u, Sn〉 = − lim inf
n→∞

( 1

2n log log n

)1/2

〈u, Sn〉

=
1

√

d(1− 2a)
‖u‖ a.s.

In particular, for any vector u of Rd,

(B.18) lim sup
n→∞

1

2n log log n
〈u, Sn〉2 =

1

d(1− 2a)
‖u‖2 a.s.

However,

‖Sn‖2 =
d
∑

i=1

〈ei, Sn〉2
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where (e1, . . . , ed) is the standard basis of Rd. Finally, we deduce from (B.18) that

lim sup
n→∞

‖Sn‖2
2n log log n

=
1

(1− 2a)
a.s.

which achieves the proof of Theorem 3.2.

.

B.2. The critical regime.

Proof of Theorem 3.4. We already saw from (A.15) that in the critical regime
where a = 1/2, vn increases slowly to infinity with a logarithmic speed logn. We
obtain once again from the last part of Theorem 4.3.15 in [11] that for any γ > 0,

‖Mn‖2 = o
(

vn(log vn)
1+γ
)

a.s

which leads to

(B.19) ‖Mn‖2 = o
(

log n(log logn)1+γ
)

a.s.

However, we clearly have from (2.9) with a = 1/2 that

(B.20) lim
n→∞

na2n =
π

4
.

Consequently, as Mn = anSn, we deduce from (B.19) and (B.20) that for any γ > 0,

‖Sn‖2 = o
(

n logn(log log n)1+γ
)

a.s.

which completes the proof of Theorem 3.4.

Proof of Theorem 3.5. The proof of Theorem 3.5 is left to the reader as it follows
the same lines as that of Theorem 3.2.

.

B.3. The superdiffusive regime.

Proof of Theorem 3.7. We already saw from (A.16) that in the superdiffusive
regime where 1/2 < a ≤ 1, vn converges to a finite value. As previously seen,
Tr〈M〉n ≤ vn. Hence, we clearly have

lim
n→∞

Tr〈M〉n < ∞ a.s.

Therefore, if

(B.21) Ln =
Mn

Γ(a+ 1)
,

we can deduce from the second part of Theorem 4.3.15 in [11] that

(B.22) lim
n→∞

Mn = M and lim
n→∞

Ln = L a.s.

where the limiting values M and L are the random vectors of Rd given by

M =

∞
∑

k=1

akεk and L =
1

Γ(a+ 1)

∞
∑

k=1

akεk.
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Consequently, as Mn = anSn, (3.11) clearly follows from (2.9) and (B.22) We now
focus our attention on the mean square convergence (3.12). As M0 = 0, we have
from (A.1) and (A.2) that for all n ≥ 1,

E[‖Mn‖2] =
n
∑

k=1

E[‖∆Mk‖2] = E[Tr〈M〉n] ≤ vn.

Hence, we obtain from (A.16) that

sup
n≥1

E
[

‖Mn‖2
]

≤ 3F2

(

1, 1, 1
a + 1, a+ 1

∣

∣

∣
1
)

< ∞,

which means that the martingale (Mn) is bounded in L
2. Therefore, we have the

mean square convergence

lim
n→∞

E
[

‖Mn −M‖2
]

= 0,

which clearly leads to (3.12).

Proof of Theorem 3.8. First of all, we clearly have for all n ≥ 1, E[Mn] = 0
which implies that E[M ] = 0 leading to E[L] = 0. Moreover, taking expectation on
both sides of (A.3) and (A.5), we obtain that for all n ≥ 1,

E
[

Sn+1S
T
n+1

]

=
(

1 +
2a

n

)

E
[

SnS
T
n

]

+ E
[

Xn+1X
T
n+1

]

=
(

1 +
2a

n

)

E
[

SnS
T
n

]

+
a

n
E [Σn] +

(1− a)

d
Id.(B.23)

However, we claim that

(B.24) E [Σn] =
n

d
Id.

As a matter of fact, taking expectation on both sides of (B.6), we find that for any
1 ≤ i ≤ d,

(B.25) E[Λn(i)] =
1

nan

(

E[Λ1(i)] +
(1− a)

d

n
∑

k=2

ak

)

.

On the one hand, we clearly have

E[Λ1(i)] =
1

d
.

On the other hand, it follows from Lemma B.1 in [3] that

n
∑

k=2

ak =
n
∑

k=2

Γ(a+ 1)Γ(k)

Γ(k + a)
=

n−1
∑

k=1

Γ(a+ 1)Γ(k + 1)

Γ(k + a + 1)

=
1

(a− 1)

(

1− Γ(a+ 1)Γ(n+ 1)

Γ(a+ n)

)

=
(1− nan)

(a− 1)
.(B.26)

Consequently, we can deduce from (B.25) and (B.26) that for any 1 ≤ i ≤ d,

(B.27) E[Λn(i)] =
1

nan

(1

d
− (1− nan)

d

)

=
1

d
.
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Therefore, we get from (A.6) and (B.27) that

E[Σn] = n

d
∑

i=1

E[Λn(i)]eie
T
i =

n

d

d
∑

i=1

eie
T
i =

n

d
Id.

Hereafter, we obtain from (B.23) and (B.24) that

(B.28) E
[

Sn+1S
T
n+1

]

=
(

1 +
2a

n

)

E
[

SnS
T
n

]

+
1

d
Id.

It is not hard to see that the solution of this recurrence relation is given by

E
[

SnS
T
n

]

=
Γ(n+ 2a)

Γ(2a+ 1)Γ(n)

(

E[S1S
T
1 ] +

1

d

n−1
∑

k=1

Γ(2a+ 1)Γ(k + 1)

Γ(k + 2a+ 1)
Id

)

=
Γ(n + 2a)

Γ(n)

(

n
∑

k=1

Γ(k)

Γ(k + 2a)

)

1

d
Id(B.29)

since

E[S1S
T
1 ] =

1

d
Id.

Therefore, it follows once again from Lemma B.1 in [3] that

(B.30) E
[

SnS
T
n

]

=
n

(2a− 1)

(

Γ(n+ 2a)

Γ(n+ 1)Γ(2a)
− 1

)

1

d
Id.

Hence, we obtain from (B.21) together with (B.30) that

E[LnL
T
n ] =

na2n
(2a− 1)(Γ(a+ 1))2

(

Γ(n + 2a)

Γ(n+ 1)Γ(2a)
− 1

)

1

d
Id

=
n

(2a− 1)

(

Γ(n)

Γ(n + a)

)2(

Γ(n+ 2a)

Γ(n + 1)Γ(2a)
− 1

)

1

d
Id.(B.31)

Finally, we find from (3.12) and (B.31) that

lim
n→∞

E[LnL
T
n ] = E[LLT ] =

1

d(2a− 1)Γ(2a)
Id

which achieves the proof of Theorem 3.8.

Appendix C

Proofs of the asymptotic normality results
.

C.1. The diffusive regime.

Proof of Theorem 3.3. In order to establish the asymptotic normality (3.5), we
shall make use of the central limit theorem for multi-dimensional martingales given
e.g. by Corollary 2.1.10 of [11]. First of all, we already saw from (B.11) that

(C.1) lim
n→∞

1

vn
〈M〉n =

1

d
Id a.s.
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Consequently, it only remains to show that (Mn) satisfies Lindeberg’s condition, in
other words, for all ε > 0,

1

vn

n
∑

k=1

E
[

‖∆Mn‖2I{‖∆Mn‖≥ε
√
vn}|Fk−1

]

P−→ 0.

We have from (A.11) that for all ε > 0

1

vn

n
∑

k=1

E
[

‖∆Mn‖2I{‖∆Mn‖≥ε
√
vn}|Fk−1

]

≤ 1

ε2v2n

n
∑

k=1

E
[

‖∆Mn‖4|Fk−1

]

≤ sup
1≤k≤n

E
[

‖εk‖4|Fk−1

] 1

ε2v2n

n
∑

k=1

a4k

≤ 4

3ε2v2n

n
∑

k=1

a4k.

However, we already saw from (B.16) that

+∞
∑

n=1

a4n
v2n

< +∞.

Hence, it follows from Kronecker’s lemma that

lim
n→∞

1

v2n

n
∑

k=1

a4k = 0,

which ensures that Lindeberg’s condition is satisfied. Therefore, we can conclude
from the central limit theorem for martingales that

(C.2)
1√
vn

Mn
L−→ N

(

0,
1

d
Id

)

.

As Mn = anSn and
√
nan is equivalent to

√

vn(1− 2a), we find from (C.2) that

1√
n
Sn

L−→ N
(

0,
1

d(1− 2a)
Id

)

,

which completes the proof of Theorem 3.3.
.

C.2. The critical regime.

Proof of Theorem 3.6. Via the same lines as in the proof of (B.11), we can
deduce from (3.6), (A.13) and (A.15) that in the critical regime

(C.3) lim
n→∞

1

vn
〈M〉n =

1

d
Id a.s.

Moreover, it follows from (A.15) and (B.20) that a2nv
−1
n is equivalent to (n logn)−1.

It implies that

(C.4)

∞
∑

k=1

a4n
v2n

< +∞.
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As previously seen, we infer from (C.4) that (Mn) satisfies Lindeberg’s condition.
Therefore, we can conclude from the central limit theorem for martingales that

(C.5)
1√
vn

Mn
L−→ N

(

0,
1

d
Id

)

.

Finally, as Mn = anSn and an
√
n log n is equivalent to

√
vn, we obtain from that

(C.5) that
1√

n log n
Sn

L−→ N (0, 1),

which achieves the proof of Theorem 3.6.
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