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The purpose of this paper is to investigate the asymptotic behavior of the multi-dimensional elephant random walk (MERW). It is a non-Markovian random walk which has a complete memory of its entire history. A wide range of literature is available on the one-dimensional ERW. Surprisingly, no references are available on the MERW. The goal of this paper is to fill the gap by extending the results on the one-dimensional ERW to the MERW. In the diffusive and critical regimes, we establish the almost sure convergence, the law of iterated logarithm and the quadratic strong law for the MERW. The asymptotic normality of the MERW, properly normalized, is also provided. In the superdiffusive regime, we prove the almost sure convergence as well as the mean square convergence of the MERW. All our analysis relies on asymptotic results for multi-dimensional martingales.

Introduction

The elephant random walk (ERW) is a fascinating discrete-time random process arising from mathematical physics. It is a non-Markovian random walk on Z which has a complete memory of its entire history. This anomalous random walk was introduced by Schütz and Trimper [START_REF] Schütz | Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk[END_REF], in order to investigate how long-range memory affects the random walk and induces a crossover from a diffusive to superdiffusive behavior. It was referred to as the ERW in allusion to the traditional saying that elephants can always remember where they have been. The ERW shows three differents regimes depending on the location of its memory parameter p which lies between zero and one.

Over the last decade, the ERW has received considerable attention in the mathematical physics literature in the diffusive regime p < 3/4 and the critical regime p = 3/4, see e.g. [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF], [START_REF] Boyer | Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion[END_REF], [START_REF] Cressoni | Exact solution of an anisotropic 2D random walk model with strong memory correlations[END_REF], [START_REF] Cressoni | Amnestically induced persistence in random walks[END_REF], [START_REF] Da Silva | Non-Gaussian propagator for elephant random walks[END_REF], [START_REF] Kumar | Memory-induced anomalous dynamics: Emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model[END_REF], [START_REF] Kürsten | Random recursive trees and the elephant random walk[END_REF], [START_REF] Paraan | Exact moments in a continuous time random walk with complete memory of its history[END_REF] and the references therein. Quite recently, Baur and Bertoin [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF] and independently Coletti, Gava and Schütz [START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF] have proven the asymptotic normality of the ERW, properly normalized, with an explicit asymptotic variance.

The superdiffusive regime p > 3/4 is much harder to handle. Initially, it was suggested by Schütz and Trimper [20] that, even in the superdiffusive regime, the ERW has a Gaussian limiting distribution. However, it turns out [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] that this limiting distribution is not Gaussian, as it was already predicted in [START_REF] Da Silva | Non-Gaussian propagator for elephant random walks[END_REF], see also [START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF], [START_REF] Paraan | Exact moments in a continuous time random walk with complete memory of its history[END_REF]. Surprisingly, to the best of our knowledge, no references are available on the multidimensional elephant random walk (MERW) on Z d , except [START_REF] Cressoni | Exact solution of an anisotropic 2D random walk model with strong memory correlations[END_REF], [START_REF] Lyu | Residual diffusivity in elephant random walk models with stops[END_REF] in the special case d = 2. The goal of this paper is to fill the gap by extending the results on the one-dimensional ERW to the MERW. To be more precise, we shall study the influence of the memory parameter p on the MERW and we will show that the critical value is given by

p d = 2d + 1 4d .
In the diffusive and critical regimes p ≤ p d , the reader will find the natural extension to higher dimension of the results recently established in [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF], [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF], [START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF], [START_REF] Coletti | A strong invariance principle for the elephant random walk[END_REF] on the almost sure asymptotic behavior of the ERW as well as on its asymptotic normality. One can notice that unlike in the classic random walk, the asymptotic normality of the MERW holds in any dimension d ≥ 1. In the superdiffusive regime p > p d , we will also prove some extensions of the results in [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF], [START_REF] Cressoni | Exact solution of an anisotropic 2D random walk model with strong memory correlations[END_REF], [START_REF] Lyu | Residual diffusivity in elephant random walk models with stops[END_REF].

Our strategy is to make an extensive use of the theory of martinagles [START_REF] Duflo | Random iterative models[END_REF], [START_REF] Hall | Martingale limit theory and its application[END_REF], in particular the strong law of large numbers and the central limit theorem for multidimensional martingales [START_REF] Duflo | Random iterative models[END_REF], as well as the law of iterated logarithm [START_REF] Stout | A martingale analogue of Kolmogorovs law of the iterated logarithm[END_REF], [START_REF] Stout | Almost sure convergence[END_REF]. We strongly believe that our approach could be successfully extended to MERW with stops [START_REF] Cressoni | Exact solution of an anisotropic 2D random walk model with strong memory correlations[END_REF], [START_REF] Harbola | Memory-induced anomalous dynamics in a minimal random walk model[END_REF], to amnesiac MERW [START_REF] Cressoni | Amnestically induced persistence in random walks[END_REF], as well as to MERW with reinforced memory [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF], [START_REF] Harris | Random walkers with extreme value memory: modelling the peak-end rule[END_REF].

The paper is organized as follows. In Section 2, we introduce the exact MERW and the multi-dimensional martingale we will extensively make use of. The main results of the paper are given in Section 3. As usual, we first investigate the diffusive regime p < p d and we establish the almost sure convergence, the law of iterated logarithm and the quadratic strong law for the MERW. The asymptotic normality of the MERW, properly normalized, is also provided. Next, we prove similar results in the critical regime p = p d . At last, we study the superdiffusive regime p > p d and we prove the almost sure convergence as well as the mean square convergence of the MERW to a non-degenerate random vector. Our martingale approach is described in Appendix A, while all technical proofs are postponed to Appendices B and C.

The multi-dimensional elephant random walk

First of all, let us introduce the MERW. It is the natural extension to higher dimension of the one-dimensional ERW defined in the pioneer work of Schütz and Trimper [START_REF] Schütz | Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk[END_REF]. For a given dimension d ≥ 1, let (S n ) be a random walk on Z d , starting at the origin at time zero, S 0 = 0. At time n = 1, the elephant moves in one of the 2d directions with the same probability 1/2d. Afterwards, at time n ≥ 1, the elephant chooses uniformly at random an integer k among the previous times 1, . . . , n. Then, he moves exactly in the same direction as that of time k with probability p or in one of the 2d -1 remaining directions with the same probability (1p)/(2d -1), where the parameter p stands for the memory parameter of the MERW. From a mathematical point of view, the step of the elephant at time n ≥ 1 in given by (2.1) with

X n+1 = A n X k where A n =                             
I d =     1 0 • • • 0 0 1 • • • 0 . . . . . . . . . . . . 0 • • • 0 1     and J d =     0 1 • • • 0 0 0 • • • 0 . . . . . . . . . . . . 1 • • • 0 0     .
One can observe that the permutation matrix J d satisfies J d d = I d . Therefore, the position of the elephant at time n ≥ 1 is given by (2.2)

S n+1 = S n + X n+1 .
It follows from our very definition of the MERW that at any n ≥ 1, X n+1 = A n X bn where A n is the random matrix described before while b n is a random variable uniformly distributed on {1, ..., n}. Moreover, as A n and b n are conditionally independent, we clearly have

E [X n+1 |F n ] = E [A n ] E [X bn |F n ]
where F n stands for the σ-algebra, F n = σ(X 1 , . . . , X n ). Hence, we can deduce from the law of total probability that at any time n ≥ 1,

(2.3) E [X n+1 |F n ] = 1 n 2dp -1 2d -1 S n = a n S n a.s.
where a is the fundamental parameter of the MERW,

(2.4) a = 2dp -1 2d -1 .
Consequently, we immediately obtain from (2.2) and (2.3) that for any n ≥ 1,

(2.5) E [S n+1 |F n ] = γ n S n where γ n = 1 + a n .
Furthermore,

n k=1 γ k = Γ(a + 1 + n) Γ(a + 1)Γ(n + 1)
where Γ is the standard Euler Gamma function. The critical value associated with the memory parameter p of the MERW is (2.6)

p d = 2d + 1 4d .
As a matter of fact, All our investigation in the three regimes relies on a martingale approach. To be more precise, the asymptotic behavior of (S n ) is closely related to the one of the sequence (M n ) defined, for all n ≥ 0, by M n = a n S n where a 0 = 1, a 1 = 1 and, for all n ≥ 2, (2.7)

a < 1 2 ⇐⇒ p < p d , a = 1 2 ⇐⇒ p = p d ,
a n = n-1 k=1 γ -1 k = Γ(a + 1)Γ(n) Γ(n + a) .
It follows from a well-known property of the Euler Gamma function that

(2.8) lim n→∞ Γ(n + a) Γ(n)n a = 1.
Hence, we obtain from (2.7) and (2.8) that (2.9) lim n→∞ n a a n = Γ(a + 1).

Furthermore, since a n = γ n a n+1 , we can deduce from (2.5) that for all n ≥ 1,

E [M n+1 |F n ] = M n a.s. It means that (M n ) is a multi-dimensional martingale.
Our goal is to extend the results recently established in [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] to MERW. One can observe that our approach is much more tricky than that of [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] as it requires to study the asymptotic behavior of the multi-dimensional martingale (M n ).

Main results

3.1. The diffusive regime. Our first result deals with the strong law of large numbers for the MERW in the diffusive regime where 0 ≤ p < p d .

Theorem 3.1. We have the almost sure convergence

(3.1) lim n→∞ 1 n S n = 0 a.s.
Some refinements on the almost sure rates of convergence for the MERW are as follows.

Theorem 3.2. We have the quadratic strong law

(3.2) lim n→∞ 1 log n n k=1 1 k 2 S k S T k = 1 d(1 -2a) I d a.s.
In particular,

(3.3) lim n→∞ 1 log n n k=1 S k 2 k 2 = 1 (1 -2a) a.s.
Moreover, we also have the law of iterated logarithm

(3.4) lim sup n→∞ S n 2 2n log log n = 1 (1 -2a) a.s.
Our next result is devoted to the asymptotic normality of the MERW in the diffusive regime 0 ≤ p < p d .

Theorem 3.3. We have the asymptotic normality

(3.5) 1 √ n S n L -→ N 0, 1 (1 -2a)d I d . Remark 3.1. We clearly have from (2.4) that 1 1 -2a = 2d -1 2d(1 -2p) + 1 .
Hence, in the special case d = 1, the critical value p d = 3/4 and the asymptotic variance

1 1 -2a = 1 3 -4p .
Consequently, we find again the asymptotic normality for the one-dimensional ERW in the diffusive regime 0 ≤ p < 3/4 recently established in [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF], [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF], [START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF].

3.2. The critical regime. We now focus our attention on the critical regime where the memory parameter p = p d .

Theorem 3.4. We have the almost sure convergence

(3.6) lim n→∞ 1 √ n log n S n = 0 a.s.
We continue with some refinements on the almost sure rates of convergence for the MERW.

Theorem 3.5. We have the quadratic strong law

(3.7) lim n→∞ 1 log log n n k=2 1 (k log k) 2 S k S T k = 1 d I d a.s
In particular,

(3.8) lim n→∞ 1 log log n n k=2 S k 2 (k log k) 2 = 1 a.s.
Moreover, we also have the law of iterated logarithm

(3.9) lim sup n→∞ S n 2 2n log n log log log n = 1 a.s.
Our next result concerns the asymptotic normality of the MERW in the critical regime p = p d .

Theorem 3.6. We have the asymptotic normality

(3.10) 1 √ n log n S n L -→ N 0, 1 d I d .
Remark 3.2. As before, in the special case d = 1, we find again [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF], [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF], [START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF] the asymptotic normality for the one-dimensional ERW

S n √ n log n L -→ N (0, 1).
3.3. The superdiffusive regime. Finally, we get a handle on the more arduous superdiffusive regime where p d < p ≤ 1.

Theorem 3.7. We have the almost sure convergence

(3.11) lim n→∞ 1 n a S n = L a.s.
where the limiting value L is a non-degenerate random vector. Moreover, we also have the mean square convergence

(3.12) lim n→∞ E 1 n a S n -L 2 = 0.
Theorem 3.8. The expected value of L is E[L] = 0, while its covariance matrix is given by

(3.13) E LL T = 1 d(2a -1)Γ(2a) I d .
In particular,

(3.14) E L 2 = 1 (2a -1)Γ(2a)
.

Remark 3.3. Another possibility for the MERW is that, at time n = 1, the elephant moves in one direction, say the first direction e 1 of the standard basis (e 1 , . . . , e d ) of R d , with probability q or in one of the 2d -1 remaining directions with the same probability (1q)/(2d -1), where the parameter q lies in the interval [0, 1]. Afterwards, at any time n ≥ 2, the elephant moves exactly as before, which means that his steps are given by (2.1). Then, the results of Section 3 holds true except Theorem 3.8 where

E[L] = 1 Γ(a + 1) 2dq -1 2d -1 e 1 and E[LL T ] = 1 Γ(2a + 1) 2dq -1 2d -1 e 1 e T 1 -
1 d I d + 1 d(2a -1)Γ(2a) I d ,
which also leads to

E L 2 = 1 (2a -1)Γ(2a)
.

Appendix A A multi-dimensional martingale approach

We clearly obtain from (2.1) that for any time n ≥ 1, X n = 1. Consequently, it follows from (2.2) that S n ≤ n. Therefore, the sequence (M n ) given, for all n ≥ 0, by M n = a n S n , is a locally square-integrable multi-dimensional martingale. It can be rewritten in the additive form

(A.1) M n = n k=1 a k ε k since its increments ∆M n = M n -M n-1 satisfy ∆M n = a n S n -a n-1 S n-1 = a n ε n where ε n = S n -γ n-1 S n-1 .
The predictable quadratic variation associated with (M n ) is the random square matrix of order d given, for all n ≥ 1, by

(A.2) M n = n k=1 E ∆M k (∆M k ) T |F k-1 .
We already saw from (2.5) that E [ε n+1 |F n ] = 0. Moreover, we deduce from (2.2) together with (2.3) that

E S n+1 S T n+1 |F n = E S n S T n |F n + 2a n S n S T n + E X n+1 X T n+1 |F n = 1 + 2a n S n S T n + E X n+1 X T n+1 |F n a.s. (A.3)
In order to calculate the right-hand side of (A.3), one can notice that for any n ≥ 1,

X n X T n = d i=1 I X i n =0 e i e T i
where (e 1 , . . . , e d ) stands for the standard basis of the Euclidean space R d and X i n is the i-th coordinate of the random vector X n . Moreover, it follows from (2.1) together with the law of total probability that any time n ≥ 1 and for any 1

≤ i ≤ d, P(X i n+1 = 0|F n ) = 1 n n k=1 P((A n X k ) i = 0|F n ) = 1 n n k=1 I X i k =0 P(A n = ±I d ) + 1 n n k=1 (1 -I X i k =0 )P(A n = ±J d ) = N X n (i) n P(A n = I d ) -P(A n = J d ) + 2P(A n = J d )
which implies that for any 1 ≤ i ≤ d,

(A.4) E I X i n+1 =0 |F n = a n N X n (i) + (1 -a) d a.s.
where

N X n (i) = n k=1 I X i k =0
and the parameter a is given by (2.4). Hence, we infer from (A.3) and (A.4) that

(A.5) E X n+1 X T n+1 |F n = a n Σ n + (1 -a) d I d a.s.
where

(A.6) Σ n = d i=1 N X n (i)e i e T i .
One can observe the elementary fact that for all n ≥ 1, Tr(Σ n ) = n where Tr(Σ n ) stands for the trace of the positive definite matrix Σ n . Therefore, we obtain from (A.3) together with (A.5) that

E ε n+1 ε T n+1 |F n = E S n+1 S T n+1 |F n -γ 2 n S n S T n = 1 + 2a n S n S T n + a n Σ n + (1 -a) d I d -γ 2 n S n S T n = a n Σ n + (1 -a) d I d - a n 2 S n S T n a.s. (A.7) which ensures that E ε n+1 2 |F n = a n Tr(Σ n ) + 1 -a d Tr(I d ) - a n 2 S n 2 = 1 -(γ n -1) 2 S n 2 a.s. (A.8)
By the same token,

E ε n+1 4 |F n = 1 -3(γ n -1) 4 S n 4 -2(γ n -1) 2 S n 2 + 4(γ n -1) 2 ξ n
where, thanks to (A.5),

ξ n = E S n , X n+1 2 |F n = a n S T n Σ n S n + (1 -a) d S n 2 .
It leads to

E ε n+1 4 |F n = 1 -3(γ n -1) 4 S n 4 -2 1 - 2(1 -a) d (γ n -1) 2 S n 2 + 4a n (γ n -1) 2 S T n Σ n S n a.s. (A.9)
Therefore, as Σ n ≤ nI d for the usual order of positive definite matrices, we clearly obtain from (A.9) that

E ε n+1 4 |F n ≤ 1 -3(γ n -1) 4 S n 4 + 2 d (γ n -1) 2 2a(d -1) + 2 -d S n 2 a.s. (A.10)
Consequently, we obtain from (A.8) and (A.10) the almost sure upper bounds

(A.11) sup n≥0 E ε n+1 2 |F n ≤ 1 and sup n≥0 E ε n+1 4 |F n ≤ 4 3 a.s.
Hereafter, we deduce from (A.2) and (A.7) that

M n = a 2 1 E[ε 1 ε T 1 ] + n-1 k=1 a 2 k+1 E ε k+1 ε T k+1 |F k = 1 d I d n k=1 a 2 k + a n-1 k=1 a 2 k+1 1 k Σ k - 1 d I d -ζ n (A.12)
where

ζ n = a 2 n-1 k=1 a k+1 k 2 S k S T k .
Hence, by taking the trace on both sides of (A.12), we find that

(A.13) Tr M n = n k=1 a 2 k -a 2 n-1 k=1 a k+1 k 2 S k 2 .
The asymptotic behavior of the multi-dimensional martingale (M n ) is closely related to the one of

v n = n k=1 a 2 k = n k=1 Γ(a + 1)Γ(k) Γ(a + k) 2 .
One can observe that we always have Tr M n ≤ v n . In accordance with Definition 2.1, we have three regimes. In the diffusive regime where a < 1/2,

(A.14) lim n→∞ v n n 1-2a = ℓ where ℓ = (Γ(a + 1)) 2 1 -2a .
In the critical regime where a = 1/2,

(A.15) lim n→∞ v n log n = (Γ(a + 1)) 2 = π 4 .
Finally, in the superdiffusive regime where a > 1/2, v n converges to the finite value

lim n→∞ v n = ∞ k=0 Γ(a + 1)Γ(k + 1) Γ(a + k + 1) 2 = ∞ k=0 (1) k (1) k (1) k (a + 1) k (a + 1) k k! = 3 F 2 1, 1, 1 a + 1, a + 1 1 (A.16)
where, for any α ∈ R, (α) k = α(α + 1) • • • (α + k -1) for k ≥ 1, (α) 0 = 1 stands for the Pochhammer symbol and 3 F 2 is the generalized hypergeometric function defined by

3 F 2 a, b, c d, e z = ∞ k=0 (a) k (b) k (c) k (d) k (e) k k! z k .
Appendix B Proofs of the almost sure convergence results .

B.1. The diffusive regime.

Proof of Theorem 3.1. First of all, we focus our attention on the proof of the almost sure convergence (3.1). We already saw from (A.13) that Tr M n ≤ v n . Moreover, we obtain from (A.14) that, in the diffusive regime where 0 < a < 1/2, v n increases to infinity with the speed n 1-2a . On the one hand, it follows from the strong law of large numbers for multi-dimensional martingales given e.g. by the last part of Theorem 4.3.15 in [START_REF] Duflo | Random iterative models[END_REF] that for any γ > 0,

(B.1) M n 2 λ max M n = o log Tr M n 1+γ a.s
where λ max M n stands for the maximal eigenvalue of the random square matrix M n . However, as M n is a positive definite matrix and Tr M n ≤ v n , we clearly have λ max M n ≤ Tr M n ≤ v n . Consequenly, we obtain from (B.1) that

M n 2 = o v n (log v n ) 1+γ a.s which implies that (B.2) M n 2 = o n 1-2a (log n) 1+γ a.s.
Hence, as M n = a n S n , it follows from (2.9) and (B.2) that for any γ > 0,

S n 2 = o n(log n) 1+γ a.s.
which completes the proof of Theorem 3.1.

Proof of Theorem 3.2. We shall now proceed to the proof of the almost sure rates of convergence given in Theorem 3.2. First of all, we claim that

(B.3) lim n→∞ 1 n Σ n = 1 d I d a.s.
where Σ n is the random square matrix of order d given by (A.6). As a matter of fact, in order to prove (B.3) it is only necessary to show that for any 1 ≤ i ≤ d,

(B.4) lim n→∞ N X n (i) n = 1 d a.s.
For any 1

≤ i ≤ d, denote Λ n (i) = N X n (i) n .
One can observe that

Λ n+1 (i) = n n + 1 Λ n (i) + 1 n + 1 I X i n+1 =0
which leads, via (A.4), to the recurrence relation

(B.5) Λ n+1 (i) = n n + 1 γ n Λ n (i) + (1 -a) d(n + 1) + 1 n + 1 δ n+1 (i)
where

δ n+1 (i) = I X i n+1 =0 -E[I X i n+1 =0 |F n ].
After straightforward calculations, the solution of this recurrence relation is given by

(B.6) Λ n (i) = 1 na n Λ 1 (i) + (1 -a) d n k=2 a k + L n (i)
where

L n (i) = n k=2 a k δ k (i).
However, (L n (i)) is a square-integrable real martingale with predictable quadratic variation L(i) n satisfying L(i) n ≤ v n a.s. Then, it follows from the standard strong law of large numbers for martingales given by Theorem 1.3.24 in [START_REF] Duflo | Random iterative models[END_REF] that 

(L n (i)) 2 = O(v n log v n ) a.s.
E ε n+1 ε T n+1 |F n = 1 d I d a.s.
By the same token, we also obtain from (A.12) and Toeplitz lemma that

(B.11) lim n→∞ 1 v n M n = 1 d I d a.s.
We are now in the position to prove the quadratic strong law (3.2). For any vector

u of R d , denote M n (u) = u, M n and ε n (u) = u, ε n . We clearly have from (A.1) M n (u) = n k=1 a k ε k (u).
Consequently, (M n (u)) is a square-integrable real martingale. Moreover, it follows from (B.10) that

lim n→∞ E |ε n+1 (u)| 2 |F n = 1 d u 2 a.s.
Moreover, we can deduce from (A.11) and the Cauchy-Schwarz inequality that

sup n≥0 E |ε n+1 (u)| 4 |F n ≤ 4 3 u 4 a.s.
Furthermore, we clearly have from (2.9) and (A.14) that

lim n→∞ nf n = 1 -2a where f n = a 2 n v n ,
which of course implies that f n converges to zero. Therefore, it follows from the quadratic strong law for real martingales given e.g. in Theorem 3 of [START_REF] Bercu | On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications[END_REF], that for any vector u of R d , (B.12) lim

n→∞ 1 log v n n k=1 f k M 2 k (u) v k = 1 d u 2 a.s.
Consequently, we find from (A.14) and (B.12) that

(B.13) lim n→∞ 1 log n n k=1 a 2 k v 2 k M 2 k (u) = (1 -2a) d u 2 a.s.
Hereafter, as M n = a n S n and n 2 a 4 n is equivalent to (1 -2a) 2 v 2 n , we obtain from (B.13) that for any vector u of R d , (B. [START_REF] Harris | Random walkers with extreme value memory: modelling the peak-end rule[END_REF] lim

n→∞ 1 log n n k=1 1 k 2 u T S k S T k u = 1 d(1 -2a) u 2 a.s.
By virtue of the second part of Proposition 4.2.8 in [START_REF] Duflo | Random iterative models[END_REF], we can conclude from (B.14) that

(B.15) lim n→∞ 1 log n n k=1 1 k 2 S k S T k = 1 d(1 -2a) I d a.s.
which completes the proof of (3.2). By taking the trace on both sides of (B.15), we immediately obtain (3.3). Finally, we shall proceed to the proof of the law of iterated logarithm given by (3.4). We already saw that a

4 n v -2 n is equivalent to (1 -2a) 2 n -2 . It ensures that (B.16) +∞ n=1 a 4 n v 2 n < +∞.
Hence, it follows from the law of iterated logarithm for real martingales due to Stout [START_REF] Stout | A martingale analogue of Kolmogorovs law of the iterated logarithm[END_REF], [START_REF] Stout | Almost sure convergence[END_REF], see also Corollary 6.4.25 in [START_REF] Duflo | Random iterative models[END_REF], that for any vector

u of R d , lim sup n→∞ 1 2v n log log v n 1/2 M n (u) = -lim inf n→∞ 1 2v n log log v n 1/2 M n (u) = 1 √ d u a.s. (B.17)
Consequently, as M n (u) = a n u, S n , we obtain from (A. Proof of Theorem 3.4. We already saw from (A.15) that in the critical regime where a = 1/2, v n increases slowly to infinity with a logarithmic speed log n. We obtain once again from the last part of Theorem 4.3.15 in [START_REF] Duflo | Random iterative models[END_REF] that for any γ > 0, where the limiting values M and L are the random vectors of R d given by

M n 2 = o v n (log v n ) 1+γ a.
M = ∞ k=1 a k ε k and L = 1 Γ(a + 1) ∞ k=1 a k ε k .
Consequently, as M n = a n S n , (3.11) clearly follows from (2.9) and (B. [START_REF] Stout | Almost sure convergence[END_REF] We now focus our attention on the mean square convergence (3.12). As M 0 = 0, we have from (A.1) and (A.2) that for all n ≥ 1,

E[ M n 2 ] = n k=1 E[ ∆M k 2 ] = E[Tr M n ] ≤ v n .
Hence, we obtain from (A.16) that

sup n≥1 E M n 2 ≤ 3 F 2 1, 1, 1 a + 1, a + 1 1 < ∞,
which means that the martingale (M n ) is bounded in L 2 . Therefore, we have the mean square convergence

lim n→∞ E M n -M 2 = 0,
which clearly leads to (3.12).

Proof of Theorem 3.8. First of all, we clearly have for all n ≥ 1, E[M n ] = 0 which implies that E[M] = 0 leading to E[L] = 0. Moreover, taking expectation on both sides of (A.3) and (A.5), we obtain that for all n ≥ 1,

E S n+1 S T n+1 = 1 + 2a n E S n S T n + E X n+1 X T n+1 = 1 + 2a n E S n S T n + a n E [Σ n ] + (1 -a) d I d . (B.23) However, we claim that (B.24) E [Σ n ] = n d I d .
As a matter of fact, taking expectation on both sides of (B.6), we find that for any

1 ≤ i ≤ d, (B.25) E[Λ n (i)] = 1 na n E[Λ 1 (i)] + (1 -a) d n k=2 a k .
On the one hand, we clearly have

E[Λ 1 (i)] = 1 d .
On the other hand, it follows from Lemma B.1 in [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] that

n k=2 a k = n k=2 Γ(a + 1)Γ(k) Γ(k + a) = n-1 k=1 Γ(a + 1)Γ(k + 1) Γ(k + a + 1) = 1 (a -1) 1 - Γ(a + 1)Γ(n + 1) Γ(a + n) = (1 -na n ) (a -1) . (B.26)
Consequently, we can deduce from (B.25) and (B.26) that for any 1 ≤ i ≤ d,

(B.27) E[Λ n (i)] = 1 na n 1 d - (1 -na n ) d = 1 d .
Therefore, we get from (A.6) and (B.27) that

E[Σ n ] = n d i=1 E[Λ n (i)]e i e T i = n d d i=1 e i e T i = n d I d .
Hereafter, we obtain from (B.23) and (B.24) that (B.28)

E S n+1 S T n+1 = 1 + 2a n E S n S T n + 1 d I d .
It is not hard to see that the solution of this recurrence relation is given by

E S n S T n = Γ(n + 2a) Γ(2a + 1)Γ(n) E[S 1 S T 1 ] + 1 d n-1 k=1 Γ(2a + 1)Γ(k + 1) Γ(k + 2a + 1) I d = Γ(n + 2a) Γ(n) n k=1 Γ(k) Γ(k + 2a) 1 d I d (B.29) since E[S 1 S T 1 ] = 1 d I d .
Therefore, it follows once again from Lemma B.1 in [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] that

(B.30) E S n S T n = n (2a -1) Γ(n + 2a) Γ(n + 1)Γ(2a) -1 1 d I d .
Hence, we obtain from (B.21) together with (B.30) that Proof of Theorem 3.3. In order to establish the asymptotic normality (3.5), we shall make use of the central limit theorem for multi-dimensional martingales given e.g. by Corollary 2.1.10 of [START_REF] Duflo | Random iterative models[END_REF]. First of all, we already saw from (B. As previously seen, we infer from (C.4) that (M n ) satisfies Lindeberg's condition. Therefore, we can conclude from the central limit theorem for martingales that

E[L n L T n ] = na 2 n (2a -1)(Γ(a + 1)) 2 Γ(n + 2a) Γ(n + 1)Γ(2a) -1 1 d I d = n (2a -1) Γ(n) Γ(n + a) 2 Γ(n + 2a) Γ(n + 1)Γ(2a) - 1 
(C.5) 1 √ v n M n L -→ N 0, 1 d I d .
Finally, as M n = a n S n and a n √ n log n is equivalent to √ v n , we obtain from that (C.5) that 1 √ n log n S n L -→ N (0, 1), which achieves the proof of Theorem 3.6.

  find from (3.12) and (B.31) thatlim n→∞ E[L n L T n ] = E[LL T ] = 1 d(2a -1)Γ(2a) I dwhich achieves the proof of Theorem 3.8.Appendix C Proofs of the asymptotic normality results.C.1. The diffusive regime.

  The MERW (S n ) is said to be diffusive if p < p d , critical if p = p d , and superdiffusive if p > p d .

	a >	1 2	⇐⇒ p > p d .
	Definition 2.1.		

  Consequently, as na 2 n is equivalent to (1 -2a)v n , we obtain that for any 1 ≤ i ≤ d,

	(B.7)	lim n→∞	1 na n	L n (i) = 0	a.s.
	Furthermore, one can easily check from (2.9) that
	(B.8)	lim n→∞	1 na n	n k=1	a k =	1 1 -a	.
	Therefore, we find from (B.6) together with (B.7) and (B.8) that for any 1 ≤ i ≤ d, (B.9) lim n→∞ Λ n (i) = 1 d a.s.
	which immediately leads to (B.4). Hereafter, it follows from the conjunction of (3.1),
	(A.7) and (B.4) that						
	(B.10)	lim n→∞					

  , . . . , e d ) is the standard basis of R d . Finally, we deduce from (B.18) that

	where (e 1 lim sup n→∞ which achieves the proof of Theorem 3.2. S n 2 2n log log n	=	1 (1 -2a)	a.s.
	.							
				B.2. The critical regime.
									14) together with (B.17)
	that							
	lim sup n→∞	1 2n log log n	1/2	u, S n = -lim inf n→∞	1 2n log log n	1/2	u, S n
						=		1 d(1 -2a)	u	a.s.
	In particular, for any vector u of R d ,		
	(B.18) However,	lim sup n→∞	1 2n log log n	u, S n	2 =	1 d(1 -2a)	u 2	a.s.
							d	
					S n	2 =			e i , S n
							i=1

  Consequently, as M n = a n S n , we deduce from (B.[START_REF] Paraan | Exact moments in a continuous time random walk with complete memory of its history[END_REF]) and (B.20) that for any γ > 0, Proof of Theorem 3.5. The proof of Theorem 3.5 is left to the reader as it follows the same lines as that of Theorem 3.2.

								s
	which leads to						
	(B.19)		M n	2 = o log n(log log n) 1+γ	a.s.
	However, we clearly have from (2.9) with a = 1/2 that
	(B.20)				lim n→∞	na 2 n =	π 4	.
			S n	2 = o n log n(log log n) 1+γ	a.s.
	which completes the proof of Theorem 3.4.	
	.						
			B.3. The superdiffusive regime.
	Proof of Theorem 3.7. We already saw from (A.16) that in the superdiffusive
	regime where 1/2 < a ≤ 1, v n converges to a finite value. As previously seen, Tr M n ≤ v n . Hence, we clearly have lim n→∞ Tr M n < ∞ a.s.
	Therefore, if						
	(B.21)				L n =	M n Γ(a + 1)	,
	we can deduce from the second part of Theorem 4.3.15 in [11] that
	(B.22)	lim n→∞	M n = M	and	lim n→∞	L n = L	a.s.

  Consequently, it only remains to show that (M n ) satisfies Lindeberg's condition, in other words, for all ε > 0, As M n = a n S n and √ na n is equivalent to v n (1 -2a), we find from (C.2) that Proof of Theorem 3.6. Via the same lines as in the proof of (B.11), we can deduce from (3.6), (A.13) and (A.15) that in the critical regime

			1 v n	n k=1	E ∆M n	2 I { ∆Mn ≥ε √ vn} |F k-1	P -→ 0.
	We have from (A.11) that for all ε > 0
	1 v n	n k=1	E ∆M n	2 I { ∆Mn ≥ε √ vn} |F k-1 ≤	1 ε 2 v 2 n	n k=1	E ∆M n	4 |F k-1
									≤ sup 1≤k≤n	E ε k	4 |F k-1	1 ε 2 v 2 n	n k=1	a 4 k
									≤	4 3ε 2 v 2 n	n k=1	a 4 k .
	However, we already saw from (B.16) that
								+∞ n=1	a 4 n n v 2	< +∞.
	Hence, it follows from Kronecker's lemma that
							lim n→∞	1 n v 2	n k=1	a 4 k = 0,
	which ensures that Lindeberg's condition is satisfied. Therefore, we can conclude
	from the central limit theorem for martingales that
	(C.2)					1 √ v n	M n	L -→ N 0,	1 d	I d .
	1 √ n which completes the proof of Theorem 3.3. S n L -→ N 0, .	1 d(1 -2a)	I d ,
						C.2. The critical regime.
	(C.3)					lim n→∞	1 v n	M n =	1 d	I d	a.s.
	Moreover, it follows from (A.15) and (B.20) that a 2 n v -1 n is equivalent to (n log n) -1 .
	It implies that						11) that
	(C.1) (C.4)					lim n→∞	1 v n	M n =	1 d	I d	a.s.

∞ k=1