
HAL Id: hal-02489017
https://hal.science/hal-02489017

Submitted on 24 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A very low complexity block turbo decoder for product
codes

Ramesh Pyndiah, P. Combelles, Patrick Adde

To cite this version:
Ramesh Pyndiah, P. Combelles, Patrick Adde. A very low complexity block turbo decoder for product
codes. GLOBECOM’96 : IEEE Global telecommunications conference, Nov 1996, London, United
Kingdom. pp.101 - 105, �10.1109/GLOCOM.1996.594341�. �hal-02489017�

https://hal.science/hal-02489017
https://hal.archives-ouvertes.fr


A very low complexity block turbo decoder for product codes 

Ramesh PYNDIAH*, Pierre COMBELLES** and Patrick ADDE* 

*Télécom Bretagne, Technopôle Brest Iroise, BP-832, 29285 BREST, FRANCE.
(Tel: (33) 98 00 13 92, Fax: (33) 98 00 10 98, email: ramesh.pyndiah@enst-bretagne.fr) 

** CCETT-DHN, 4 rue du Clos-Courtel, BP-59, 35512 CESSON-SEVIGNE, FRANCE. 
(Tel : (33) 99 12 41 11, Fax : (33) 99 12 40 98) 

ABSTRACT - This paper presents a low complexity block 
turbo decoder for product codes. This new decoder, which has 
been derived from the near-optimum block turbo decoder 
described in [l], is a very good compromise between 
complexity and performance. For performance evaluation, we 
have considered the [BCH(64,57,4)]2 product code transmitted 
over a Gaussian channel using a QPSK modulation. The 
complexity of the new block turbo decoder is about ten times 
less than that of the near-optimum block turbo decoder for a 
coding gain degradation of only 0.7 dB. 

I - Introduction 

Today, concatenated coding schemes are considered as 
being the best solutions for the powerful protection of digital 
information against errors at the receiver end due to linear 
perturbations of the received signal. The motivation for using 
concatenated coding schemes is to achieve the same 
performance as that of a single and powerful error correcting 
code but with a lower decoding complexity by associating two 
( or more than two) less powerful error correcting codes for data 
coding. In practical applications, the number of codes in a 
concatenated coding scheme is limited to two and concatenated 
coding schemes can be divided into two categories. The first 
one consists of the serially concatenated error correcting codes 
while the second one concerns error correcting codes 
concatenated in parallel. In the classical series concatenation 
scheme, the information bits are first encoded by an externat 
code, for example a Reed-Solomon code. Tuen the encoded data 
is interleaved before being encoded by an internai code which is 
usually a convolutional code or a treillis coded modulation. At 
the receiver end, the Viterbi algorithm is used to perform the 
soft decoding of the internai convolutional code. The decoded 
data is then de-interleaved before being decoded by the external 
decoder. In practice, the external decoder is a hard (algebraic) 
decoder because a very powerful Reed-Solomon code is required 
to correct the residual errors at the output of the Viterbi 
decoder. Although bard decoding of the Reed-Solomon code is 
sub-optimal from the theoretical point of view, the serial 
concatenation of a convolutional code and a powerful Reed­
Solomon code is today a standard for numerous applications. 
This results from the fact that, down to the early 1990's, series 
concatenatenated coding schemes gave the best results in terms 
of coding gain for a reasonable complexity of the decoder. 

The concept of product code, which is a series 
concatenated coding scheme, was introduced, as early as 1954, 
by Elias [2]. The information bits are placed in a matrix. Then, 
the rows of the matrix are encoded by a linear block code and 
the columns of the matrix are encoded by a second block code. 
At the receiver end, the received matrix is decoded sequentially 
along the rows and columns of the matrix and this decoding 
process can be iterated. Although the product code is also a very 
attractive candidate for the construction of powerful error 

correcting schemes, it did not yield very good performance until 
the early 1990's. The deceiving performance of product codes 
was due mainly to the use of sub-optimal hard decoders for 
decoding the rows and columns of the matrix. In 1994, R. 
Pyndiah et al [1] proposed a near-optimum iterative algorithm 
for decoding product codes. This algorithm is based on soft 
decoding of the component codes and soft decision at the output 
of the elementary decoders. Thus, at each iteration, the 
elementary decoders can operate under near-optimum conditions, 
that is Maximum Likelihood Sequence Decoding. Coding gains 
close to the theoretical coding gain expected from product codes 
when using Maximum Likelihood Sequence Decoding were 
obtained. For a BER (Bit Error Rate) of 10-5, the signal to 
noise ration (Eb!N0 ) was at 2.5±0.2 dB of Shannon's 
theoretical limit for different BCH product codes. These 
performance are comparable to those obtained with series 
concatenated coding schemes and also to those of convolutional 
turbo codes, proposed by C. Berrou [2] in 1993, which are 
parallel concatenated coding schemes. In this paper we shall 
refer to the iterative decoding algorithm of product codes as the 
block turbo decoder. 

Series and parallel concatenated coding schemes are 
today comparable in terms of performance. The dominating 
factor in the choice of one solution among these different 
candidates today is the complexity of the decoders. The near­
optimum iterative decoding algorithm (block turbo-decoder) 
proposed in [1] has a much higher complexity and performance 
than previous iterative decoding algorithms[3][4]. From there 
on, we tried to reduce the complexity of the block turbo decoder 
and we have developed a very low-complexity block turbo 
decoder which exhibits only a 0.7 dB degradation of the coding 
gain. 

This paper describes the modifications we have brought 
to the near-optimum block turbo decoder to develop a low­
complexity block turbo decoder. In section Il, we recall the 
minimum requirements concerning product codes and the near 
optimum block turbo decoder for a better understanding of the 
modifications we propose. In section III, we analyze the 
complexity of the block turbo decoder and we identify the 
procedures which have the highest computation complexity. 
Section IV is dedicated to the modifications in the block turbo 
decoder to obtain the low complexity block turbo decoder. The 
performance of the low complexity block turbo decoder are 
given in section V and in section VI, we draw some 
conclusions. 

II - Block turbo code 

Let us consider two systematic linear block codes_ '€ 1 
having parameters (n i,k1 ,81) and '€ 2 having parameters
(n2,k2,82) where ni, ki and ôi (i =1,2) stand for code Iength, 
number of information bits and minimum Hamming distance 



of code '€ i. The product code � = '€ 1 ® '€ 2 is obtained by 
placing (k1 x k2) information bits in a matrix of k1 rows by k2 
columns. The k1 rows of the matrix are coded using code '€ 2 

and the n2 columns of the resulting (k1 x n2) matrix are coded 
using code 'e 1. All the n 1 rows of the product code are code
words of '€2 exactly as the n2 columns are code words of '€ 1 by 
construction. Furthermore, the parameters of the product code 
� are given by n = n 1 x n2 , k = k1 x k2 and ô = ô1 x Si and 
the code rate R is given by R = Ri x R2 where Ri is the code
rate of code 'ei. 

Let us now consider the transmission of the n binary 
symbols { -1,+ 1} of � using a QPSK signaling over a 
Gaussian channel. Suppose that the coded matrix [E] is 
transmitted column by column and let E = ( e1, ... , el, ... , en1 

) 
be one of the columns of the matrix. The vector 
R=(71, ... ,17, ... ,rn1) at the output of the coherent
demodulator, for a transmitted column E, can be written as: 

R = E + G (1) 

where G = ( gi, .. ·, gl, · .. , gni) are Additive White Gaussian
Noise (A WGN) samples of standard deviation cr. By using 
Maximum Likelihood Sequence Decoding, one can show that 
optimum decision D corresponding to a transmitted column E 
of the matrix is given by 

D=ci if IR-ci l2 <IR-dl2 
\ite[1,2

k1 ],t:;ti (2)

where ci = (cf, ... , cf, ... , c�1 ) is the ith code word of 'f I and :

.12
n1 

( 
. 
)2 IR-C1 = � rj -c1 J=l 

(3) 

is the squared Euclidean distance between R and ci . As the 
number of code words increases exponentially with the number 
of information bits, maximum likelihood sequence decoding 
becomes too complex for block codes with more than ten 
information bits. Long block codes are in fact the most 
interesting for practical applications since they are the ones 
having the highest code rate. To reduce the complexity of the 
soft block decoder, Chase proposed in 1972 an algorithm [5] 
which approximates maximum likelihood sequence decoding of 
block codes with a low computation complexity and a small 
performance degradation. Instead of reviewing all the code 
words cl for 1 S: l S: 2 k1 , the Chase algorithm searches for the 
code words at Hamming distance within a sphere of radius 
(31 -1) centered on Y= (Y1, .. ,yz, .. ,Yn1 ) where 

Yj :=ü.5(1+sgnh)) and Yj e{0,1}. To further reduce the 
number of reviewed code words, only the most probable code 
words within the sphere are selected by using channel 
information R. This search procedure can be decomposed into 
three steps 

1) determine the position of the [o 1/2] least reliable binary
elements of Y using R,

2) form test patterns Tq defined as n1 -dimensional binary
vectors with a "1" in the least reliable positions and "O"
in the other positions,

3) decode Zq = Y EB Tq using a hard decoder and memorize
the code words Cq

The maximum likelihood transmitted sequence D is then given 
by decision rule (2) with the reviewed code words restricted to 
those found at step 3) above. Once we have determined the 
optimum decision D, we have to compute the reliability of 
each of the components of vector D in order to obtain the soft 
decisions at the output of the decoder. The reliability of 
decision d

j 
can be obtained from the Log Likelihood Ratio 

(LLR) of transmitted symbol e j which is defined by : 

(UR)
j 
=ln(

Pr
l

ej =+1/R
ll (4)

Pr e
j 

=-1/R 
By considering the different authorized code words, the 
numerator of (4) can be expressed as: 

where sj 1 is the set of code words {ci } such that c� = + 1.

For the denominator we obtain a similar expression where sj 1

is replaced by s-;1 which is the set of code words {ci} such

that c1 = -1. By applying BAYES rule and assuming that the 
different code words are uniformly distributed, we obtain for 
(UR) 

j 
the following expression :

.L P{R/ E = ci } 
C1eS'!'1 

(LLR). = ln 1 
{ }J .L p R/E=CÏ 

C'es-:-1 
J 

(6) 

where P{} is the probability distribution fonction of R 
conditionally to E. As shown in [l), relation (6) can be 
approximated by 

( LLR) j "" 
2
�2 (JR - c-lU) 1

2 
-jR -c+ lU) 12 ) (7)

where c+l(j) is the code word in sj1 at minimum distance

from R and c-l(j) is the code word in s·;1 at minimum 
distance from R. By expanding relation (7) using (3) we finally 
obtain the following expression 

where: 

2 [ n +1( ') 
J (LLR). ""

-r 
rj + I11ct 

1 
pz 

J O' l=l,/:t j 

{
o 'f +l(j) - -l(j)1 c1 -

c1 
Pl

= 

1 if c+l(j) :;t:c-l(j)l l 

(8) 

(9)



By normalizing the approximated (LLR) j with respect to 2/a2 

we obtain: 

where: 
r' ·-r·+w· 1- J J 

n +1( ") 
Wj = L'1Ct J Pt 

(10) 

l=l,l,t= j (11) 
The estünated normalized ( LLR) j, rJ (relation 10), is given
by rj plus w j which is the additional information given by 
the decoder to the reliability of the decoded bit. The 
approximated normalized LLR of ej ( rJ) is an estimation of 
the soft decision at the output of the soft block decoder. lt has 
the same sign as d

j 
and its absolute value indicates the 

reliability of the decision. To compute (LLR) j using (7) we 

must identify the two code words c+l(
j
) and c-l(

j
). This is

done by increasing the number of least reliable bits and test 
patterns in the Chase algorithm. For each code word Cq found 
at step 3), we compute its Euclidean distance from R:

Mq =IR-cq j2 (12) 

As in tfue Chase algorithm we select the code word D a t 
minimurh Euclidean distance from R. Then we search for the 
code wotd C at minimum Euclidean distance from R such that 
c j # d j. If we find such a code word then rJ is gi ven by : 

r
j

�({M
c to )}

j (13) 

else we use the following equation 
r' j =rj+(J3xdj ) (14) 

where J3 is a constant which increases with the iteration number 
and is optimized by simulation. Equation (14) can be justified 
by the fact that w 

j 
has the same sign as d

j 
but we have not 

been able to compute the amplitude of the reliability since we 
have not found code word C. 

On receiving matrix [R] correspondîng to a transrnitted 
matrix [E], the first decoder performs the soft decoding of the 
rows (or columns) of the matrix, estimates the matrix [R'] 
using rel11tions (13) or (14) and gives as output [W(2)]. Then 
the next decoder performs the same operations on the columns 
(or rows) using as input: 

[R(2)] = [R] + a(2)[W(2)] (15) 

The decqding procedure described above is then iterated by 
cascading elementary decoders. The constant a(m) is used to 
reduce thb influence of [W(m)] in the first iterations when the 
BER is r�latively high. 

III • Ctjmplexity of block turbo decoder 
In: 1994, R. Pyndiah et al showed [1] that the block 

turbo deqoder, described in section Il, provides near optimum 
decoding performance for binary product codes when transrnitted 
using Q�SK signaling over a Gaussian channel. As stated in 
our introduction, the series or parallel concatenated coding 
schemes �xhibit, today, comparable performance in terms of 

coding gain and the dominating factor in the choice between 
one solution or the other will be decoder complexity. This 
explains our motivation to analyze the complexity of the block 
turbo decoder and to reduce its complexity while maintaining a 
small coding gain degradation. 

Let us estimate the complexity of the block turbo 
decoder described in section II and identify the procedures which 
have the highest computation complexity. We shall estimate 
the average complexity for a given column (or a given row) of 
the coded matrix so that we can directly compare this 
complexity to that of a simple block decoder. If we consider the 
decoding of a column of the matrix, the first source of 
complexity in the block turbo decoder is the number of times 
the hard decoding of the block code is performed. In reference 
[1], the number of test patterns used was seventeen (q=l 7) and 
thus, for this procedure (procedure-1 ), the decoding complexity 
of one column is q times the complexity of the hard decoder for 
code '€ 1. If we use the same code for the rows and columns of 
the matrix that is '€ 1='€ 2 , then the average complexity of 
procedure-1 for decoding one column is 

Q1 =(qx/Tx2) (16) 
times the complexity of the hard decoder where IT is the 
number of iterations. Thus if we consider a three iterations 
turbo decoder, the average complexity of procedure-1 for 
decoding one column is Qi = ( 17 X 3 x 2) = 102 times that of 
the hard decoder. 

The second procedure (procedure-2) which requires a high 
computation complexity is the computation of the extrinsic 
information W associated to a decision D. For each component 
w j, procedure-2 has to search among the q code words given by 
procedure-1 if there is a code word C at smallest distance from 
R such that Cj # dj

. If we find such a code word C then we 
use relation ( 13) else we use relation ( 14) to compute w j. 
Although this procedure involves mainly low complexity 
compare and save operations, the global complexity of 
procedure-2 is relatively high because these operations are 
performed a large number of times. If we call P the complexity 
of an elementary compare and save operation, the average 
complexity of procedure-2 for the decoding of a column is 
given by: 

Q2 =(qxn1 x/Tx2)xP (17) 
for product codes with '€ 1='€ 2. If we consider a block turbo 
decoder with parameters q = 17, n1 = 64 and IT = 3, then the 
average complexity of procedure-2 for decoding one column of 
the matrix is Qz =(17x64x3x2)xP= 6528xP. To the 
complexity of procedures 1 and 2 we must add that of the 
computation of the metrics (12) and a few compare and save 
operations which can be considered as negligible when 
compared to procedures 1 and 2. 

Thus it is clear that the block turbo decoder, described in 
section Il, is a relatively complex algorithm when compared to 
a bard block decoder. The next section of this paper describes 
the modifications we have brought to the block turbo decoder 
to reduce its complexity. 

IV · Low complexity block turbo decoder 
To reduce the complexity of the block turbo decoder, we 

must first reduce the number of test patterns q and then 



simplify procedure-2 so as to bring down the number of 
compare and save operations to a more reasonable value. In a 
first attempt, we tried to reduce q and we observed that the 
degradation in coding gain was relatively small for q�8. On the 
other hand, for q<8 we observed an important degradation of the 
coding gain as we reduced q. Thus we are limited to q=8 for 
coding gain considerations and the average decoding complexity 
for one column is only divided by a factor 2. Next, we tried to 
reduce the complexity of procedure-2. For this we tried to find 
an easy way to identify code word C without going through the 
search procedure. W e found that we could considerably reduce 
Q2, with a small coding gain de gradation, by replacing code 
word C by decision D(m-1) when computing the extrinsic 
information W(m+l). This is the main breakthrough which led 
to the new low complexity block turbo decoder. 

Let us consider the mth decoding of the product code and 
suppose that we start by decoding the columns of the product 
code. For odd values of m, the decoder processes the columns 
of the product code while for even values of m, the decoder 
processes the rows of the product code. Suppose now that the 
decoder is performing the mth decoding of the product code and 
that it has gone through procedure-1 and that it has selected the 
optimum code word D(m) which is at minimum Euclidean 
distance from the input data R(m). To compute the new 
extrinsic information W(m+l) we propose to use the following 
equation: 

Wj(m+l)= 

IR(m)-D(m-1)12 -IR(m)-D(m)i2 (18) 
4 

Xdj(m)-rj(m) 

when d
j (m):;:. dj(m-1) and otherwise we use: 

Wj (m+l)=�Xdj (m) (19) 
By using this algorithm, the complexity of procedure-2 is now 
equal to Q2 = ( n1 X IT X 2) X P' where P' consists only of a 
comparison between two binary elements and thus has a much 
lower complexity than P. Furthermore, we noticed that this 
new iterative decoding algorithm was less sensitive to the 
number of test patterns. For product codes based on BCH codes 
with a minimum distance of 4, we managed to reduce the 
number of test patterns down to four (q=4) while maintaining a 
small degradation of the coding gain. Thus the complexity of 
procedure-1 is now equal to Qi = ( 4 x 3 x 2) = 24 times that of 
the hard decoder while the complexity of procedure-2 is equal to 
Q2 =(64x3x2)xP'=384xP'. The complexity of 
procedure-1 has been divided by four and that of procedure-2 has 
been divided by more than seventeen. 

Before proceeding to the simulations, we shall make a 
few comments on this new algorithm. First of ail, D(m-1) is 
not always a code word. Let us consider m odd and suppose that 
the decoder is processing the columns of the product code. Tuen 
D(m) is a code word. However in matrix [D(m-1)], the 
decoder guarantees that we have code words along the rows of 
the matrix but not along the columns. Thus, there is no 
guarantee that column D(m-1) is a code word and thus W(m+l) 
does not have the same interpretation in the new algorithm as 
in the previous one. Although the equations in the new 
algorithm are quite similar to those in the near-optimum 

algorithm, the theoretical justification of this new algorithm is 
quite different from that of the previous one. This algorithm is 
in fact closer to a gradient algorithm and so we shall refer to it 
as the gradient algorithm. 

V · Performance of the low complexity decoder 
We have evaluated the performance of the low 

complexity block turbo decoder on an additive white gaussian 
channel when using QPSK signaling. For our evaluations, we 
have considered the product code with parameters 
'e l=<f 2=BCH(64,57,4). We used four test patterns in our 
simulations which are based on the three least reliable bits in 
position (Ji, h, /3). As we shall be considering different 
versions of this low complexity algorithm or gradient 
algorithm we shall call this algorithm grad_O. The Bit Error 
Rate (BER) function of the signal to noise ratio (SNR) 
obtained when decoding product code [BCH(64,57,4)]2 using 
the grad_O algorithm is given in figure 1 after each iteration 
(IT) up to IT-4. 

BER 

10-1 

2 4 6 8 

Eb/No (dB) 

10 12 

Figure 1 : Bit Error Rate versus SNR (EbfNo) after each 
iteration when decoding product code [BCH(64,57,4)]2 
using grad_O algorithm. 

From figure 1, we clearly observe that there is an amelioration 
of the BER at each additional iteration for any SNR greater or 
equal to 3.5 dB. However, there is a substantial degradation of 
the BER for a given SNR when we compare these curves with 
those (OPT) obtained with the near-optimum algorithm [l]. 
We shall now consider the near-optimum algorithm as a 
reference for our comparisons. For a BER of 10-s, the coding 
gain obtained with the grad_O algorithm exhibits a degradation 
of 1.1 dB at iteration-4. This is a reasonable penalty for such 
an important reduction in decoder complexity. Furthermore, the 
degradation in coding gain (1.1 dB) at iteration-4 is nearly 
constant for a BER less or equal to 10-3 (see fig. 1). 

From there on, we tried to reduce the coding gain 
degradation of the gradient algorithm. The first amelioration 
was obtained by allowing the selection of a code word only if : 

{hl such that d
j

(m) :;é dj(m -1)} < y(m) (20) 

where y( m) is a constant which increases with m. This 
modified version of the gradient algorithm will be refered to as 
grad_l. From figure 2, we observe that grad_l exhibits a 
coding gain degradation of only 0.9 dB. 



The last amelioration was obtained by weighting the constant f3( m) by the following fonction : 
x(m)=[2+dH(D(�),D(m-1))) (2l)  

where d H is the Hamming distance. This algorithm which is refered to as grad_2 exhibits a degradation of only 0.7 dB (see fig. 2). . These two ameliorations represent only a small increase m the complexity of the gradient algorithm and they have reduced the coding gain degradation of the gradient algorithm down:to only 0.7 dB. This new block turbo decoder offers a very good compromise between complexity and performance. 
BER 

6 8 

Eb/No (dB) 

Fi�ure 2 : Bit Error Rate versus SNR at iteration-4 when 
detoding product code [BCH(64,57,4)J2 with different block 
tuibo decoders. 

VI -i Conclusion 
1 The low complexity block turbo decoder presented in this p�per offers a good compromise between complexity and perf01;mance. When compared with the near-optimum block turbo \decoder, this low complexity turbo decoder exhibits a �odJni gain degradation of only 0.7 dB for a complexity which1s d1vrded by ten. The average decoding complexity of a row (ora column) of a product code is slightly greater than thecomp}exity .of a soft block decoder [5] multiplied by thenumber of times the product code is decoded. With this low comp,exity block turbo decoder, the time required to decode the colmtjns ( or rows) of a product code is much smaller than for the n1ear-optimum algorithm. Thus, instead of cascading elem�ntary decoders to iterate the decoding procedure [2], we can u$e of the same decoder to perform several iterations. The complexity of this new block turbo decoder does not depend on the number of iterations. This represents another significant reduction in terms of circuit complexity. If we consider a three iteratipns turbo decoder, the circuit complexity is divided by six when jcompared with a pipe-lined turbo decoder. Furthermore, by us,ng the same turbo ?ecoder to perform three iterations, we �an reduce by a factor six the decoding delay which is also an1mporltant parameter for some applications. This feature gives

• 1 

d an important a vantage to block turbo codes over convolutionalturbo !codes [2]. Indeed, for convolutional turbo codes one mustcasca�e the elementary decoders to perform the iterations beca�se the data blocks are correlated. The data flow through each elementary decoder of the convolutional turbo code must 

be continuous and thus it is not possible to use the same elementary decoder to perform several iterations on the same data block as for block turbo codes. . Althou.gh .this new algorithm is very interesting for�ra�t�cal. apphcations, we do not have a very clear theoreticalJUS�1ficat10n for explaining its relatively good behaviour. We ?ehe�e t�at the theoretical justification for this new algorithm 1s qmte d1fferent from that of the near-optimum algorithm even though the first one has been derived from the second one. The low complexity block turbo decoder bas a number of �imilit�de� with the gradient algorithm and we are actually mvestigatmg the theoretical justification of this new algorithm. 
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