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Abstract

Obtaining very high-order accurate solutions in curved domains is a challenging task as the accuracy of numeri-
cal methods may dramatically reduce without an appropriate treatment of the boundary condition. The classical
techniques to preserve the optimal order of accuracy, proposed in the context of Finite Element and Finite Volume
methods, rely on curved mesh elements to fit the curved boundaries. Such techniques often demand sophisticated
meshing algorithms, cumbersome quadrature rules for integration, and complex nonlinear transformations to map the
locally curved element onto the reference polygonal mesh elements. In this regard, the Reconstruction for Off-site
Data method was proposed in Costa et al. (2018) to provide very high-order accurate polynomial reconstructions for
curved boundaries, enabling the integration of the governing equations on polygonal mesh elements, and, therefore,
without the need of complex integration quadrature rules or nonlinear transformations. The method was introduced
with Dirichlet boundary conditions and the present article proposes an extension for general boundary conditions,
which represents an important advance for real context applications. To achieve that, a generic framework to compute
the polynomial reconstructions is also proposed based on the Least-squares method, enabling the method to handle
general constraints and further improving the algorithm. A comprehensive numerical benchmark test suite is provided
to validate and assess the accuracy, convergence rates, robustness, and efficiency, which proves that boundary con-
ditions for curved domains are properly satisfied and the optimal very high-order convergence rates are successfully
achieved.

Keywords: Very high-order accurate Finite Volume scheme, Arbitrary curved domains, General boundary
conditions, Polynomial reconstructions, Least-squares method, Reconstruction for Off-site Data method,
Convection-diffusion equation

1. Introduction

Nowadays the numerical simulations demand an increasing computational effort as models become far more
complex than what they used to be. In that regard, computational efficiency, usually defined as the ratio between
solution quality and computational effort, implies a trade-off between the order of accuracy of the method and mesh
size or the number of degrees of freedom. To improve this ratio for smooth solutions, increasing the order of accuracy
of the method is clearly preferable compared to mesh refinement. Although such approach improves the computational
efficiency, obtaining very high-order accurate approximations is a current and challenging task.

The majority of very high-order accurate methods are designed specifically for polygonal (or polyhedral) do-
mains, and therefore numerical difficulties to obtain the optimal convergence order of accuracy arise when dealing
with boundary conditions prescribed on curved boundaries. For a short literature review on this topic, the reader is
referred to the introduction in [1], which is summarized in the following. The classical approach to deal with curved
boundary conditions is based on the Isoparametric Element method [2, 3], which requires, on one hand, the intro-
duction of curved mesh elements and, on the other hand, a nonlinear transformation to map the local curved element
onto the reference polygonal mesh element. An alternative approach, dedicated to the Finite Volume method, was
initially proposed by Ollivier-Gooch et al. [4]. The technique does not require nonlinear transformations but the main
shortcoming remains, being mainly related to the meshing algorithm needed to generate curved mesh elements fitting
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the boundary in addition to the high-order accurate quadrature rules for integration applied on the nonpolygonal mesh
elements. Handling complex two- or three-dimensional curved elements turns out to be a cumbersome task that results
into significant computational costs [5, 6, 7].

In [1], the authors introduced a new approach in the Finite Volume context, called the Reconstruction for Off-site
Data method (shortened to ROD method), which is capable of handling complex curved boundaries with a very high-
order accuracy. The strength and the novelty of the method rely in the fact that only polygonal mesh elements are used,
even those generated to fit at best the curved boundaries, for which a mismatch between the mesh boundary and the
domain boundary exists. The method integrates the prescribed boundary conditions into the scheme using polynomial
reconstructions, which are computed based on the least-squares method for which the parameterized boundary is
needed. Moreover, the governing equations are integrated on the polygonal mesh elements and, consequently, the
fluxes are defined on the boundaries of the polygonal control volumes. Therefore, sophisticated meshing algorithms
with curved elements are no more required, nor nonlinear transformations, nor cumbersome quadrature rules for
integration for curved elements are then demanded. There are very few methods capable of handling curved domains
with polygonal meshes and most of them limited to first- or second-order of accuracy. Recently extention of the
immersed boundary method to the fourth-order has been proposed in the framework of the Fourier spectral method
[8, 9].

The ROD method was developed in [1] for the steady-state two-dimensional convection-diffusion problem with
Dirichlet boundary conditions, and subsequently improvements are reported in this article, namely: (i) the introduction
of Neumann and Robin boundary conditions, which represents an important advance for real context applications; and
(ii) the development of a generic framework to compute the polynomial reconstructions based on the least-squares
method, which enables to consider general constraints and improves upon the algorithm.

The remaining sections of the article are organized as follows. Section 2 presents the model, the mesh, and the
basic assumptions and notations. Section 3 introduces the generic framework to compute the polynomial reconstruc-
tions based on the least-squares method. Section 4 is dedicated to describe the ROD method based on the previously
introduced polynomial reconstructions and the Dirichlet, Neumann, and Robin boundary conditions on curved bound-
aries are addressed. Section 5 presents the very high-order accurate Finite Volume scheme comprising the polynomial
reconstructions and the ROD method. Section 6 provides a comprehensive numerical benchmark test suite that vali-
dates the proposed method, and the article is completed in Section 7 with the conclusions and some perspectives for
future work.

2. Problem formulation, mesh, and notation

The goal is to solve the two-dimensional steady-state convection-diffusion problem, in Cartesian coordinates x B
(x, y), for curved domains with boundaries given by regular Jordan curves that admit a local parameterization. To this
end, let Ω be an open bounded domain of R2 with boundary Γ, partitioned into three non-overlapping and possibly
empty subsets, ΓD, ΓN, and ΓR, such that Γ = ΓD∪ΓN∪ΓR. Vector n = (nx, ny) B (nx(x), ny(x)) stands for the outward
unit normal vector to Γ at point x (see Fig. 1).

Γ

Ω
nΓ

Figure 1: Arbitrary curved domain.

2.1. Convection-diffusion problem
The governing equation for unknown function φ B φ(x) is given by

∇ · (uφ − κ∇φ) = f , in Ω, (1)

where u =
(
ux, uy

)
B
(
ux(x), uy(x)

)
is a velocity field in R2, κ B κ(x) is a non-negative diffusion coefficient, and

f B f (x) is a given source term function. All functions are assumed to be regular in Ω. To complete Equation (1),
boundary partitions ΓD, ΓN, and ΓR are prescribed with the following boundary conditions:
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• On partition ΓD a Dirichlet boundary condition is prescribed with equation

φ = gD, in ΓD, (2)

where gD B gD(x) is a given regular function on ΓD;

• On partition ΓN a Neumann boundary condition is prescribed with equation

−κ∇φ · n = gN, in ΓN, (3)

where gN B gN(x) is a given regular function on ΓN;

• On partition ΓR a Robin boundary condition is prescribed with equation

σφ + ρ∇φ · n = gR, in ΓR, (4)

where gR B gR(x) is a given regular function on ΓR, and σ B σ(x) and ρ B ρ(x) are given regular real-valued
coefficient functions on ΓR; for instance, if σ B u · n and ρ B −κ, then the Robin boundary condition represents
a total flux boundary condition.

2.2. Mesh and notations
Domain Ω is discretized into a meshM comprising NC non-overlapping convex and polygonal cells without gap

and hole, denoted by ci, i ∈ CM = {1, . . . ,NC}. Two adjacent cells ci and c j, i, j ∈ CM, share a common edge denoted
by ei j and named inner edge (notice that e ji denotes the same edge as e ji). On the mesh boundary, the edges are
denoted by eiB and named boundary edges if they belong to cell ci, i ∈ CM and discretize boundary partition ΓB,
where the index B is replaced by letter D, N, or R accordingly to the boundary partition discretized. That is, if the
edge discretizes boundary partition ΓD, ΓN, or ΓR, then edge eiB is after all denoted by eiD, eiN, or eiR, respectively.
For the sake of simplicity and without loss of generality, each mesh boundary edge is associated to only one boundary
partition and the mesh boundary vertices are assumed to belong to physical boundary Γ.

To simplify, let BM be the subset of CM gathering the indices of the cells with an edge on the mesh boundary,
that is, all i indices such that eiB, B ∈ {D,N,R}, is an edge inM. Subsets of BM denoted as BM,D, BM,N, and BM,R
are also consider to gather the indices of the cells having an edge on ΓD, ΓN, and, ΓR, respectively, that is, any index i
such that eiD, eiN, or eiR is an edge inM, respectively.

In the scope of this article, keywords physical and computational are used to distinguish the real domain from the
discretized domain, respectively. In this way, the following terms and definitions are used:

• The computational domain gathers all the cells and is defined by Ω∆ =
⋃

i∈CM ci, which stands for a representa-
tive approximation of the physical domain defined by Ω;

• The computational boundary gathers all the boundary edges and is defined by Γ∆ =
⋃

i∈BM,B∈{D,N,R} eiB, which
stands for a representative approximation of the physical boundary defined by Γ;

• The computational boundary partition gathers all the boundary partition edges and is defined by ΓB,∆ =
⋃

i∈BM,B
eiB,

B ∈ {D,N,R}, which stands for a representative approximation of the physical boundary partition defined by
ΓB.

Remark 1. Assuming that domain Ω is nonpolygonal and bounded by a regular Jordan curve, the corresponding
polygonal approximation, Ω∆, does not fully overlap the physical domain and a mismatch of order O(h2) is expected
between the physical and the computational boundaries, where h is the characteristic mesh length. Such mismatch
represents a potential accuracy degradation for any more than second-order accurate scheme.

In Table 1, additional notation is introduced (see also Figure 2).

3. Least-squares method and polynomial reconstructions

The least-squares method for Finite Volume method, described in [10, 11, 12], is a powerful tool to compute
local representations of the underlying solution from scattered pointwise data associated to the cells. The underlying
solution is assumed to be continuous and smooth enough in domain Ω. Hence, no limiting procedure must be designed
to avoid parasitical oscillations resulting from Gibbs phenomenon, such as slope limiting for piecewise linear functions
[13, 14, 15], essentially non-oscillatory ((W)ENO) techniques [16, 17, 18, 19, 20, 21, 22], or advanced hierarchical
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Table 1: Notation associated to the edges, cells, reference and quadrature points.

Element type Notation Definition Choice

Cells
ci, i ∈ CM

∂ci Boundary
|ci | Area
mi = (mi,x,mi,y) Reference point, can be any point in ci Centroid
qi,r = (qi,r,x, qi,r,y) Quadrature points Gaussian
Ni Index set of the neighbor cells or boundary (von Neu-

mann type neighborhood)

Inner edges
ei j, i ∈ CM,
j ∈ Ni

|ei j | Length
ni j = (ni j,x, ni j,y) = −n ji Outward unit normal from ci to c j
mi j = (mi j,x,mi j,y) = mji Reference point, can be any point in ei j Midpoint
qi j,r = (qi j,r,x, qi j,r,y) = q ji,r Quadrature points with r = 1, . . . ,R Gaussian

Boundary edges
eiB, i ∈ BM,B,
B ∈ {D,N,R}

|eiB| Length
niB = (niB,x, niB,y) Outward unit normal of eiB
miB = (miB,x,miB,y) Reference point, can be any point in eiB Midpoint
qiB,r = (qiB,r,x, qiB,r,y) Quadrature points with r = 1, . . . ,R Gaussian

qiB,1

miB

qiB,2 qij,1

mij

qij,2

mi mj

niB
nij

ci cj

eiB eij

ΓB

Figure 2: Mesh notation for the edges and cells, the quadrature and reference points, and the outward unit normal vectors.

limiting strategies [23, 24] for quadratic or higher polynomials. The method consists in computing a local least-
squares approximation of function φ(x) for each mesh element, given in the general form as ϕ(x) = ηT p(x), where η
is a vector of coefficients and p(x) is a basis function vector. These local approximations are used to compute accurate
flux approximations and arbitrary high-order accurate convergence rates can be achieved under mesh refinement.
Although any type of basis function vectors can be considered, polynomial basis functions present a high flexibility
and are easy to construct [1, 25, 27]. Their associated local approximations are then called polynomial reconstructions.

In [25], the least-squares method for polynomial reconstructions is employed to design a very high-order accurate
Finite Volume scheme for convection-diffusion problems. The scheme uses several types of polynomial reconstruc-
tions to compute the different types of numerical fluxes, namely boundary or inner fluxes and diffusive or convec-
tive ones. In particular, the authors introduced a conservative polynomial reconstruction associated to the boundary
elements in order to handle the Dirichlet boundary condition. To achieve that, the polynomial reconstructions rep-
resentation are rewritten to force the prescribed Dirichlet boundary condition value at the quadrature points for flux
integration on the boundary edges. As such, the least-squares procedure corresponds to a simple and straightforward
unconstrained minimization problem. To handle Neumann boundary conditions, no polynomial reconstructions are,
in fact, required as the corresponding boundary fluxes at the edge quadrature points are assigned with the provided
Neumann boundary condition functions. Despite the effectiveness of the method to achieve arbitrary high-order con-
vergence rates under mesh refinement, the scheme was designed for polygonal domain and polygonal mesh that fit
each others.

The method introduced in [25] was later extended in [1] for curved domains with prescribed Dirichlet boundary
conditions. In [25] the method adapts the polynomial reconstructions associated to the boundary edges to force
the boundary condition at the collocation points, successfully restoring the optimal convergence rates. Since the
mesh elements are assumed to be polygonal, Neumann and Robin boundary conditions on curved boundaries cannot
be assigned to the edge quadrature points without accuracy loss. On the other hand, the procedure developed for
the Dirichlet boundary edges can be adapted to the cases of Neumann and Robin boundary conditions. That is,
the polynomial reconstructions can be transformed into a different form such that the Neumann or Robin boundary
conditions are forced at the collocation points, which means that polynomial ϕ(x) is not expressed in the form ϕ(x) =

ηT p(x) but instead in some other way. In practice, such approach turns out to be cumbersome as the transformation
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yields very complex polynomial reconstructions. Contrarily, this article proposes a reformulation of the polynomial
reconstructions framework and associated least-squares procedure. The new approach improves the versatility of the
local approximations without loss of efficiency and can handle genuine general boundary conditions, including the
ones of Neumann and Robin types.

The main idea to compute a polynomial reconstruction is to collect a stencil of cells in the vicinity of the current
mesh element. The associated pointwise data of the stencil is used to compute the unknown coefficients vector η of the
polynomial reconstruction in the least-squares sense. To handle the boundary conditions, some collocation points are
defined near the boundary mesh elements, and the associated data (extracted from the prescribed boundary conditions
functions) is used to constrain the least-squares method. Notice that, as the boundary conditions are forced via the
least-squares procedure to compute coefficients vector η, polynomial ϕ(x) is always expressed in the form ϕ(x) =

ηT p(x) and no cumbersome transformations are needed. In this way, one of the following two types of polynomial
reconstructions are employed for the current mesh element depending on its location. An unconstrained polynomial
reconstruction is employed when no additional data, apart from the stencil, is provided. A constrained polynomial
reconstruction is employed when data extracted from the prescribed boundary conditions (or other condition that has
to be satisfied) is provided. Both types of reconstructions are obtained by means of a weighted, possibly constrained,
least-squares procedure.

3.1. Polynomial representation
Polynomial basis functions are considered in this article to represent the local approximations of the underlying

function. A local polynomial approximation of degree d > 0 can be written in a compacted form as

ϕ(x; m, η) = ηT pd(x − m) =

d∑
α=0

d−α∑
β=0

η(α,β)(x − mx)α(y − my)β, (5)

where vector pd(x) is a two-dimensional polynomial basis function vector of degree d (see some examples in Table 2),
and m = (mx,my) is a reference point used for conditioning purposes. Vector η =

[
η(α,β)

]
gathers the unknown

polynomial coefficients to be computed. For the sake of simplicity and when it is unmistakable, the notation ϕ(x) B
ϕ(x; m, η) is adopted to represent the polynomial.

Table 2: Monomial terms in polynomial basis function vector pd(x).

1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4

p1(x) X X X
p2(x) X X X X X X
p3(x) X X X X X X X X X X
p4(x) X X X X X X X X X X X X X X X

3.2. Data, stencils, and weights
To provide an approximation of underlying solution φ(x), NC mean-value approximations over the cells of the

mesh are considered, given as

φi ≈
1
|ci|

∫
ci

φ(x) dx, i ∈ CM, (6)

that is, φi corresponds to an approximation of the mean-value of function φ(x) over cell ci. All mean-values are
gathered in a vector Φ = (φi)i∈CM .

For a given mesh element, a stencil S is a collection of s cell indices generaly located in its vicinity. 1 The
goal of a stencil is to use the associated data, φk, k ∈ S, to compute vector η of the local polynomial reconstruction
ϕ(x) from (5). The number of cell indices in the stencil depends on the polynomial basis function vector degree
and, eventually, on the type of the polynomial reconstruction to be computed, as seen later. Generally speaking, a
polynomial reconstruction of degree d requires n = (d + 1)(d + 2)/2 coefficients and thus a minimum of n cells has
to be collected in stencil S. In accordance to the common practice, s ≈ 1.5n is chosen to exceed that minimum

1A simple algorithm based on cells proximity can be implemented to collect S, but other possibilities can also be considered to deal with
complex or particular situations.
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giving some freedom to compute the polynomial reconstruction, decreasing conditioning numbers and, consequently,
improving its robustness [4].

A positive weight ωk is associated to each cell index k ∈ S, in the stencil. Those weights are gathered in vector
ω ∈ Rs. The weighting procedure is reported in Barth in [26] to compute fluid dynamics solutions with unstructured
meshes. The goal is to reduce the influence of data farther from the local reconstruction where neglected high-order
terms will have the greatest effect. In this article, weights ωk B ω(dk; δ, γ) are computed as the inverse of distance to
a power of γ ∈ R, given as

ω(dk; δ, γ) =
1

(δdk)γ + 1
, k ∈ S, (7)

where δ ∈ R+
0 is a sensibility factor and dk = |mk − m| is the Euclidean distance between the cell reference point mk

(the cell centroid in this article) and the chosen polynomial reconstruction reference point m. The values of δ and γ
will be specified later.

3.3. Unconstrained polynomial reconstructions

Unconstrained polynomial reconstructions approximate the underlying solution in the vicinity of any inner edge
(see also Table 3). As the name suggests, no constraint is applied and the polynomial reconstruction is straightfor-
wardly computed in the approximated sense, by solving a weighted cost functional from Rn to R given as‹F (η;S,Φ,ω) =

∑
k∈S

ωk

ï
1
|ck |

∫
ck

ϕ(x) dx − φk

ò2

, (8)

also denoted as ‹F (η) B ‹F (η;S,Φ,ω) for the sake of simplicity.
The approximation procedure consists in seeking the unique vector η̃ ∈ Rn that minimizes ‹F (η) in the least-

squares sense, that is

η̃ = arg min
η

î‹F (η)
ó
. (9)

An overdetermined system of s linear equations to solve for n unknowns arises, which can be written in the matrix
form as W Aη = Wb. Matrix W ∈ Rs×s is the diagonal matrix W = diag (ω) and vector b ∈ Rs is obtained from the
mean-values Φ with index in S. Matrix A ∈ Rs×n is composed of entries

ak,l =
1
|ck |

∫
ck

(x − mx)α(y − my)βdx, k = 1, . . . , s, l = 1, . . . , n, (10)

where for each index l a pair (α, β), α ∈ {1, . . . , d}, β ∈ {1, . . . , d − α}, is associated for a polynomial reconstruction
of degree d. Assuming a local indexation of the stencil S = {1, 2, . . . , s} and assuming that vector η writes as η =[
η1 η2 . . . ηn

]T, the system of linear equations in matrix form then writes
ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...

0 0 · · · ωs


︸                        ︷︷                        ︸

W


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

as,1 as,2 · · · as,n


︸                            ︷︷                            ︸

A


η1

η2
...

ηn


︸  ︷︷  ︸

η

=


ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...

0 0 · · · ωs


︸                        ︷︷                        ︸

W


φ1

φ2
...

φs


︸  ︷︷  ︸

b

. (11)

Finally, the solution of the unconstrained least-squares problem (9) provides vector η̃ that minimizes the cost
functional (8). The associated unconstrained polynomial reconstruction is denoted by ϕ̃(x) = η̃T pd(x − m).

Several minimization procedures can be derived to found the least-squares solution. In this article, the normal
equations method is applied.

Following this procedure, unconstrained polynomial reconstruction for inner edge ei j, i ∈ CM, j ∈ Ni, is computed
and denoted as ϕi j(x) = ηT

i j pd(x − mi j). The reference point corresponds to the edge midpoint, m B mi j, and the
stencil, S B Si j, gathers s cells in the vicinity of the edge. The solution of the unconstrained least-squares problem
associated to the polynomial reconstructions for the inner edges, as given in (9), provides vector η̃i j that minimizes
cost functional (8). The associated unconstrained polynomial reconstruction is denoted as ϕ̃i j(x) = η̃T

i j pd(x − mi j).
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3.4. Constrained polynomial reconstructions

Constrained polynomial reconstructions are computed to approximate the underlying function in the vicinity of the
boundary cells and edges (see Table 3). This situations arise when it is necessary to include local boundary conditions,
conservation properties, etc., which are easily handled in an approximated sense. As the name suggests, in addition to
the linear equations to be approximated in the least-squares sense, p linear constraints, where 0 < p < n, with respect
to vector η must be fulfilled. For this purpose, a constraint functional from Rn to Rp is introduced and denoted as
Ĝ(η). Mimicking the unconstrained polynomial reconstruction case, the same weighted cost functional from Rn to R
is considered“F (η;S,Φ,ω) =

∑
k∈S

ωk

ï
1
|ck |

∫
ck

ϕ(x) dx − φk

ò2

. (12)

also denoted as “F (η) B “F (η;S,Φ,ω) for the sake of simplicity.
The approximation procedure consists in seeking unique vector η̂ ∈ Rn that minimizes “F (η) in the least-squares

sense and, at the same time, exactly satisfies equation Ĝ(η) = 0, that is

η̂ = arg min
η

î“F (η)
ó

subject to Ĝ(η) = 0. (13)

The least-squares method yields an overdetermined system of s linear equations for n unknowns, which again can be
written in the matrix form as W Aη = Wb. Matrices W ∈ Rs×s and A ∈ Rs×n, and vector b ∈ Rs are given as for
the unconstrained polynomial reconstruction in Equation (11). Moreover, the solution is obtained applying the linear
constraints in the matrix form Cη = d with p equations for n unknowns. Matrix C ∈ Rp×n gathers the coefficients of
the linear constraints, assumed to be full rank, while vector d ∈ Rp is the right-hand side.

Finally, the solution of the constrained least-squares problem (13), provides vector η̂ that minimizes the cost
functional (12) and exactly satisfies the linear constraints. The associated constrained polynomial reconstruction
writes as ϕ̂(x) = η̂T pd(x − m).

Several minimization procedures fulfilling linear constraints can be found in the literature, and this article con-
siders the so-called linearly constrained Lagrange Multipliers method. This topic is not elaborated and the reader is
referred to [28] for more details.

3.4.1. Constrained polynomial reconstructions for the cells
Constrained polynomial reconstruction for cell ci, i ∈ CM, is computed and denoted as ϕi(x) = ηT

i p(x − mi).
The unknown polynomial coefficients vector is η B ηi, the reference point m = mi is chosen to be the cell centroid,
and stencil S = Si gathers s cells in the vicinity of the cell (excluding ci). The corresponding mean-value, φi is an
approximation of function φ(x) over cell ci, and to enforce the conservation of φi in polynomial ϕi(x), the constraint
functional Ĝ(η) B Ĝi(ηi) must have the form

Ĝi(η) =
1
|ci|

∫
ci

ϕi(x) dx − φi = 0. (14)

Assuming that vector η writes as η =
[
η1 η2 . . . ηn

]T, the linear constraint (14) in matrix form writes[
c1 c2 · · · cn

]
︸               ︷︷               ︸

C

[
η1 η2 . . . ηn

]T

︸                 ︷︷                 ︸
η

=

[
φi

]
︸︷︷︸

d

, (15)

with the coefficients cl given as

cl =
1
|ci|

∫
ci

(x − mi,x)α(y − mi,y)βdx, l = 1, . . . , n, (16)

where for each index l a pair (α, β), α ∈ {1, . . . , d}, β ∈ {1, . . . , d − α}, is associated for a polynomial reconstruction of
degree d.

The solution of the constrained least-squares problem (13) associated to the polynomial reconstructions in the
cells, provides the vector η̂i that minimizes the cost functional (12) and exactly satisfies linear constraint (14). The
associated constrained polynomial reconstruction writes as ϕ̂i(x) = η̂T

i pd(x − mi).
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3.4.2. Constrained polynomial reconstructions for the boundary edges
Constrained polynomial reconstruction for boundary edge eiB, i ∈ BM,B, on computational boundary Γ∆,B, B ∈

{D,N,R}, with prescribed Dirichlet, Neumann, or Robin boundary conditions is computed and denoted as ϕiB(x) =

ηT
iB p(x − miB). The unknown polynomial coefficients vector is η B ηiB, the reference point m B miD is chosen to be

the edge midpoint, and stencil S B SiD gathers s cells in the vicinity of the edge. Assume that piB = (piB,x, piB,y) is a
point in the vicinity of edge eiB with an associated outward unit normal vector viB = (viB,x, viB,y), to be assigned later.

Constraint functional Ĝ(ηiB) is defined according to the prescribed boundary condition at boundary partition ΓB,
as follows:

• In case edge eiB is on boundary partition ΓD (index B is replaced by D), to enforce the Dirichlet boundary
condition φ(piD) = gD(piD) within polynomial ϕiD(x), constraint functional ĜiB(η) B ĜiD(ηiD) must have the
form

ĜiD(ηiD) = ϕiD(piD) − gD,iD = 0, (17)

where the boundary condition function value is defined as gD,iD B gD(piD);

• In case edge eiB is on boundary partition ΓN (index B is replaced by N), to enforce the Neumann boundary
condition −κ(piN)∇φ(piN) · viN = gN(piN) within polynomial ϕiN(x), the constraint functional ĜiB(η) B ĜiN(ηiN)
must have the form

ĜiN(ηiN) = −κiN∇ϕiN(piN) · viN − gN,iN = 0, (18)

where the coefficient is defined as κiN B κ(piN) and the boundary condition function value is defined as gN,iN B
gN(piN);

• In case edge eiB is on boundary partition ΓR (index B is replaced by R), to enforce the Robin boundary condition
σ(piR)φ(piR) + ρ(piR)∇φ(piR) · viR = gR(piR) within polynomial ϕiR(x), the constraint functional ĜiB(η) B
ĜiR(ηiR) must have the form

ĜiR(ηiR) = σiRϕiR(piR) + ρiR∇ϕiR(piR) · viR − gR,iR = 0, (19)

where the coefficients are defined as σiR B σ(piR) and ρiR B ρ(piR) and the boundary condition function value
is defined as gR,iR B gR(piR).

Assuming that vector η writes as η =
[
η1 η2 . . . ηn

]T, the linear constraints (17-19) in matrix form writes[
c1 c2 · · · cn

]
︸               ︷︷               ︸

C

[
η1 η2 . . . ηn

]T

︸                 ︷︷                 ︸
η

=

[
gB,iB

]
︸    ︷︷    ︸

d

, (20)

with the coefficients cl, l = 1, . . . , n, for the Dirichlet, Neumann, and Robin cases given respectively as

cl = (piD,x − miD,y)α(piD,y − miD,y)β, (21)

cl = −κiN

ï
α(piN,x − miN,x)α−1(piN,y − miN,y)β

β(piN,x − miN,x)α(piN,y − miN,y)β−1

ò
· viN, (22)

cl = σiR(piR,x − miR,y)α(piR,y − miR,y)β + ρiR

ï
α(piR,x − miR,x)α−1(piR,y − miR,y)β

β(piR,x − miR,x)α(piR,y − miR,y)β−1

ò
· viR, (23)

where for each index l a pair (α, β), α ∈ {1, . . . , d}, β ∈ {1, . . . , d − α}, is associated for a polynomial reconstruction of
degree d.

The solution of the constrained least-squares problem (13) associated to the polynomial reconstructions for the
boundary edges, provides the vector η̂iB that minimizes the cost functional (12) and exactly satisfies the linear con-
straint (17), (18), or (19) for a Dirichlet, Neumann, or Robin boundary condition, respectively. The associated con-
strained polynomial reconstruction writes as ϕ̂iB(x) = η̂T

iB pd(x − miB).
Table 3 summarizes the different polynomial reconstructions and their associated constraints (if applicable) con-

sidered in this article.
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Table 3: Edge and cell based polynomial reconstructions under constraints.

Mesh Polynomial Reference Type Least-squares
Element Point constraint

Inner edge
ei j, i ∈ CM, j ∈ Ni

ϕ̃i j(x) mi j Unconstrained —

Cell
ci, i ∈ CM

ϕ̂i(x) mi
Constrained
(Mean-value) (14)

Dirichlet edge
eiD, i ∈ BM,D

ϕ̂iD(x) miD
Constrained
(Dirichlet) (17)

Neumann edge
eiN, i ∈ BM,N

ϕ̂iN(x) miN
Constrained
(Neumann) (18)

Robin edge
eiR, i ∈ BM,R

ϕ̂iR(x) miR
Constrained
(Robin) (19)

4. Curved boundary treatment

The discretization of regular curved boundaries by polygons yields second-order accurate geometrical approxi-
mations [6]. Therefore, if no specific treatment is used to accurately handle the boundary conditions, the scheme
converges with a maximal second-order of accuracy. In this regard, developing techniques dedicated to boundary
conditions which are prescribed on curved boundaries is of paramount importance to achieve arbitrary high-order
accurate convergence rates. The classical technique is based on the Isoparametric Elements method [2, 3], but similar
techniques have been specificaly designed for the Finite Volume method. For example, the seminal paper of Ollivier-
Gooch et al. [4] introduces a technique based on the constrained least-squares reconstruction method for curved cells
fitting the physical boundary. The proposed method enforces the local polynomial reconstructions associated to the
boundary mesh elements to satisfy the boundary conditions at the collocation points. Such points are extracted from
the physical boundary [29, 30, 31] and have to correspond to quadrature points qiB,r, r = 1, . . . ,R, on the mesh ele-
ments of the boundary which are used to numerically integrate the fluxes. Consequently, the boundary mesh elements
have to be curved in order to fit the physical boundary (see Figure 3), which requires complex and computational
intensive meshing algorithms [6]. Moreover, extracting collocation/quadrature points qiB,r, r = 1, . . . ,R, and associ-
ated outward unit normal vectors niB,r, r = 1, . . . ,R, is not trivial for the general case [27, 29, 30, 31]. Contrary to
the Isoparametric Elements method, the Ollivier-Gooch technique does not require nonlinear transformations but the
principal shortcoming remains: the meshing algorithm to generate curved mesh elements fitting the boundary, and,
in addition the associated high-order accurate quadrature rules for integration applied on those nonpolygonal mesh
elements. Handling complex two- or three-dimensional curved elements turns to be a cumbersome task that may
result into significant computational costs [5, 6, 7].

qiB,1 qiB,2

niB,1 niB,2

eiB

ci
ΓB

Figure 3: Representation of physical boundary Γ and fitting curved boundary edge eiB with quadrature points qiB,1 and qiB,2 (eventually less or
more depending on the order of the quadrature rule used) and associated outward unit normal vectors niB,1, and niB,2.

To avoid the use of curved mesh elements, a new technique proposed in [1] deals solely with polygonal represen-
tative approximations of the curved boundaries. As introduced in Section 3, for given boundary edge eiB, i ∈ BM,B,
B ∈ {D,N,R}, the prescribed boundary condition is evaluated at the collocation point piB with outward unit normal
vector viB. Then, a linear constraint is defined at point piB that is embedded in the least-squares method that computes
the polynomial reconstruction ϕ̂iB(x) associated to edge eiB. For the Dirichlet, Neumann, and Robin boundary edges,
linear constraint Ĝ(η) = 0 is defined in Equations (17), (18), and (19), respectively. Notice that only one collocation
point per boundary edge is required and no exact location for piB was yet defined but, as stated before, it will be sought
in the vicinity of the corresponding boundary edge. In the proposed method, qiB,r, r = 1, . . . ,R, are the quadrature
points on edge eiB with outward unit normal vector niB. Moreover, the key-point to handle curved boundaries with
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polygonal mesh elements is to carefully determine the appropriate constraints, such that the polynomial reconstruc-
tions satisfy the boundary conditions and provides an arbitrary high-order accurate approximation of the underlying
solution. The following subsections introduce several of such strategies.

4.1. Naive method

A first and straightforward approach consists in constraining the least-squares methods with the boundary condi-
tion on the computational boundary represented by edge eiB (see Figure 4). That is, one can choose in Equations (17),
(18), and (19) the edge midpoint as the collocation point, piB B miB, and for Neumann and Robin boundary condi-
tions, one can use the edge outward unit normal vector, viB B niB, and define coefficients κiB B κ(miB), σiB B σ(miB),
and ρiB B ρ(miB). The right-hand side values in Equations (17), (18), and (19) are defined as gD,iD B gD(miD),
gN,iN B gN(miN), and gR,iR B gR(miR), respectively. Such approach provides a maximal second-order convergence
rate since collocation point miB and outward unit normal vector niB only represent second-order approximations with
respect to physical boundary Γ. Notice that, in this approach, collocation point miB does not belong to boundary Γ,
hence an extension of function gB(x), B ∈ {D,N,R}, in the neighborhood of the edge is required to guarantee that the
associated boundary condition makes sense. This approach can assure an arbitrary high-order of accuracy only in the
case the computational domain exactly fits the physical one, in other words when the physical domain is polygonal.

miDeiD

ci
ΓD

Least-squares constraint
ϕiD(miD) = gD,iD

miNeiN

ci
ΓN

Least-squares constraint
−κiN∇ϕiN(miN) · niN = gN,iN

miReiR

ci
ΓR

Least-squares constraint
σiRϕiR(miR) + ρiR∇ϕiR(miR) · niR = gR,iR

(a) Dirichlet boundary condition. (b) Neumann boundary condition. (c) Robin boundary condition.

Figure 4: Representation of the least-squares constraints and the collocation points for the Naive method from Section 4.1.

4.2. ROD – Reconstruction for Off-site Data method

The Reconstruction for Off-site Data method (shortened to ROD method) was introduced in [1] to restore the
very high-order convergence rates for Dirichlet boundary conditions on curved domains. In this work, the method is
extended to more general boundary conditions such as the Neumann and Robin ones. The basic principle is based on
an evaluation of the boundary condition with collocation points on the physical boundary while the flux computation
is carried out on the computational boundary. The term Off-site Data reminds the difference between the data location
(boundary condition on physical boundary Γ) and its use (flux computation on computational boundary Γ∆). Therefore
all computations are performed on the polygonal edges but taking into account the information located on the physical
boundary using, for that purpose, the previously introduced constrained polynomial reconstructions for the boundary
edges. The main advantages of the ROD method are the following ones:

• Numerical integration of the fluxes and source terms are only carried out on the polygonal computational domain
and not on the curved physical domain;

• No curved mesh element is required;

• No geometrical transformation is required;

• No quadrature points for integration on the physical boundary need to be determined;

• The method is independent of the spacial dimension and the shape of the mesh elements.

To recover the optimal order of convergence and accuracy, the ROD method constraints the least-squares methods
by the boundary condition at the true physical boundary (see Figures 5 and 6 and compare with Figures 3 and 4)
instead of the computational boundary, as in the Naive method. That is, one can choose in Equations (17), (18),
and (19) the collocation points as points extracted from the physical boundary Γ, piB B biB, and for Neumann and
Robin boundary conditions, one can use the outward unit normal vector to the physical boundary at the collocation
point, viB B riB, and define coefficients κiB B κ(biB), σiB B σ(biB), and ρiB B ρ(biB). The right-hand side values in
Equations (17), (18), and (19) are gD,iD B gD(biD), gN,iN B gN(biN), and gR,iR B gR(biR), respectively. In practice,
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for the sake of simplicity, the collocation point biB can be the orthogonal projection of edge midpoint miB onto the
associated physical boundary Γ (as illustrated in Figure 5). Notice that quadrature points qiB,r, r = 1, . . . ,R, do belong
to the straight edge of the boundary element where all the fluxes are computed, as will be presented in Section 5.1.
This last point definitively distinguishes the ROD method from the one proposed by Ollivier-Gooch et. al [4], where
in the latter the authors propose to use the same points (quadrature points on the curved edges) both for the boundary
condition collocation and for the flux integration.

qiB,1 miB qiB,2

biB

riB

niB

eiB

ci
ΓB

Figure 5: Representation of physical (curved) boundary Γ and computational (polygonal) boundary edge eiB with quadrature points qiB,1 and qiB,2
(eventually less or more depending on the quadrature rule used) and the associated outward unit normal vector niB. On the physical boundary are
represented collocation point biB and associated outward unit normal vector riB.

biD

eiD

ci
ΓD

Least-squares constraint
ϕiD(biD) = gD,iD

biN

eiN

ci
ΓN

Least-squares constraint
−κiN∇ϕiN(biN) · riN = gN,iN

biR

eiR

ci
ΓR

Least-squares constraint
σiRϕiR(biR) + ρiR∇ϕiR(biR) · riR = gR,iR

(a) Dirichlet boundary condition. (b) Neumann boundary condition. (c) Robin boundary condition.

Figure 6: Representation of the least-squares constraints and the collocation points for the ROD method from Section 4.2.

4.3. AROD – Adaptive Reconstruction for Off-site Data method

For the ROD method implies the entries of the linear constraints in Equations (17), (18), and (19) explicitly depend,
by construction, on the physical boundary location via collocation points biB. An alternative method, called Adaptive
Reconstruction for Off-site Data method (shortened to AROD method), is introduced to treat boundary conditions on
curved boundaries. Contrarily to the ROD method, in the AROD method the physical boundary location is decoupled
from the least-squares procedure.

Remark 2. One of the advantages of the AROD method over the ROD method lies in the treatment of unsteady and
time-dependent problems with moving boundaries/interfaces or tracking boundaries/interfaces problems. In these
situations, the displacement of the physical boundary or interface can deteriorate the accuracy of the previously
computed polynomial reconstructions associated to the boundary edges and, therefore, limit the convergence orders
under mesh refinement. As instance, if the boundary is parameterized by time, Γ(t), then collocation points biB(t1),
used in the ROD method to impose the boundary conditions at time-step t = t1, do not necessarily exactly represent
the physical boundary at time-step t = t2. Therefore, if the ROD method is applied at time-step t = t1 and if,
hypothetically, biB(t2)− biB(t1) = O(h2), then the convergence order at time-step t = t2 is limited to a maximal second-
order. In fact, as the performed least-squares procedure depends on the physical boundary, collocation points biB(t1)
do not represent exactly the boundary condition at the current time-step, unless this procedure is recomputed for the
new collocation points, biB(t2). The recomputation of the least-squares procedure is, therefore, required to recover the
accuracy and the convergence order in the ROD method. On the other hand, the AROD method can avoid this cost
for small perturbations of the physical boundary.

The three main ingredients are:

• A constrained polynomial reconstruction, ϕiB(x), for boundary edge eiB, i ∈ BM,B, B ∈ {D,N,R}, with linear
constraints as given in Equations (17-19), depending on the type of the boundary condition (Dirichlet, Neumann,
or Robin);
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• A collocation point, biB ∈ ΓB, where the fitting condition is prescribed, and the associated outward unit normal
vector, riB (for the cases of Neumann and Robin boundary conditions); the coefficients in Equations (17-19)
are defined as κiB B κ(biB), σiB B σ(biB), and ρiB B ρ(biB), and the boundary condition functions values are
defined as gD,iD B gD(biD), gN,iN B gN(biN), and gR,iR B gR(biR), respectively;

• A real free-parameter, g, associated to edge midpoint miB, where the least-squares constraint is imposed, and
the associated outward unit normal vector, niB (for the cases of Neumann and Robin boundary conditions);
the coefficients in Equations (17-19) are defined as κiB B κ(miB), σiB B σ(miB), and ρiB B ρ(miB), and the
boundary condition functions values are defined as gD,iD B gD(miD), gN,iN B gN(miN), and gR,iR B gR(miR),
respectively.

The term fitting condition refers to the condition imposed at collocation point biB while, on the other hand, term
least-squares constraint refers to the constraint imposed at edge midpoint miB (see Figure 7). Both conditions are of
the same type as the boundary condition type associated to the edge but, while the fitting condition takes the value of
the boundary condition function, the least-squares constraint takes the value of free-parameter g. The basic idea of
AROD method, described as follows, is to constrain the least-squares method with the least-squares constraint (which
does not exactly satisfy the boundary condition at the physical boundary) and then to compute free-parameter g to
satisfy the fitting condition.

miD

biD

eiD

ci
ΓD

Fitting condition
ϕiD(biD) = gD,iD

Least-squares constraint
ϕiD(miD) = g

miN

biN

eiN

ci
ΓN

Fitting condition
−κiN∇ϕiN(biN) · riN = gN,iN

Least-squares constraint
−κiN∇ϕiN(miN) · niN = g

miR

biR

eiR

ci
ΓR

Fitting condition
σiRϕiR(biR) + ρiR∇ϕiR(biR) · riR = gR,iR

Least-squares constraint
σiRϕiR(miR) + ρiR∇ϕiR(miR) · niR = g

(a) Dirichlet boundary condition. (b) Neumann boundary condition. (c) Robin boundary condition.

Figure 7: Representation of the least-squares constraints and the collocation points for the AROD method from Section 4.3.

For a given edge eiB, i ∈ BM,B, on boundary partition ΓB, B ∈ {D,N,R}, polynomial ϕiB(x) is computed solving the
least-squares problem (13) with the linear constraint ĜiB(ηiB), which is defined according to the prescribed boundary
condition at boundary partition ΓB, as follows:

• In case edge eiB is on boundary partition ΓD (index B is replaced by D), condition φ(miD) = g is enforced within
polynomial ϕiD(x) and constraint functional ĜiB(η) B ĜiD(ηiD) must have the form

ĜiD(ηiD) = ϕiD(miD) − g, (24)

which corresponds to Equation (17) where collocation point piD B miD corresponds to the edge midpoint, and
the boundary condition function value is replaced by free-parameter g (see Figure 7(a));

• In case edge eiB is on boundary partition ΓN (index B is replaced by N), condition −κ(miN)∇φ(miN) · niN =

gN(miN) is enforced within polynomial ϕiN(x) and constraint functional ĜiB(η) B ĜiN(ηiN) must have the form

ĜiN(ηiN) = −κiN∇ϕiN(miN) · niN − g, (25)

which corresponds to Equation (18) where collocation point piN B miN corresponds to the edge midpoint,
vector viN B niN corresponds to the edge outward unit normal vector, the coefficient is defined as κiN B κ(miN),
and the boundary condition function value is replaced by free-parameter g (see Figure 7(b));

• In case edge eiB is on boundary partition ΓR (index B is replaced by R), conditionσ(miR)φ(miR)+ρ(miR)∇φ(miR)·
niR = gR(miR) is enforced within polynomial ϕiR(x) and constraint functional ĜiB(η) B ĜiR(ηiR) must have the
form

ĜiR(ηiR) = σiRϕiR(miR) + ρiR∇ϕiR(miR) · niR − g, (26)
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which corresponds to Equation (19) where collocation point piN B miN corresponds to the edge midpoint, vector
viN B niN corresponds to the edge outward unit normal vector, the coefficients are defined as σiN B σ(miN) and
ρiN B ρ(miN) and the boundary condition function value is replaced by free-parameter g (see Figure 7(c)).

The polynomial reconstruction coefficients in vector η̂iD computed by the least-square procedure, linearly depends
on free-parameter g. Notice that the polynomial reconstruction procedure does not depend on the physical boundary
but, instead, on the edge midpoint. The fitting condition is introduced as an affine real valued functional B̂iB(g)
depending on parameter g, and is defined according to the prescribed boundary condition at boundary partition ΓB, as
follows:

• In case edge eiB is on boundary partition ΓD (index B is replaced by D), the Dirichlet boundary condition
φ(biD) = gD(biD), is enforced within polynomial ϕiD(x) and functional B̂iB(g) B B̂iD(g) must have the form

B̂iD(g) = ϕiD(biD) − gD,iD, (27)

which corresponds to Equation (17) where piD B biD is a collocation point close to edge eiD extracted from the
physical boundary, and the boundary condition function value is defined as gD,iD B gD(biD) (see Figure 7(a));

• In case edge eiB is on boundary partition ΓN (index B is replaced by N), the Neumann boundary condition
−κ(biN)∇φ(biN) · riN = gN(biN) is enforced within polynomial ϕiN(x) and functional B̂iB(g) B ĜiN(g) must have
the form

B̂iN(g) = −κiN∇ϕiN(biN) · riN − gN,iN, (28)

which corresponds to Equation (18) where piN B biN is a collocation point close to edge eiN extracted from the
physical boundary, vector viN B riN is the associated outward unit normal vector to partition ΓN at point biN, the
coefficient is defined as κiN B κ(biN), and the boundary condition function value is defined as gN,iN B gN(biN)
(see Figure 7(b));

• In case edge eiB is on boundary partition ΓR (index B is replaced by R), condition σ(biR)φ(biR) +ρ(biR)∇φ(biR) ·
riR = gR(biR) is enforced within polynomial ϕiR(x) and functional B̂iB(g) B ĜiR(g) must have the form

B̂iR(g) = σiRϕiR(biR) + ρiR∇ϕiR(biR) · riR − gR,iR, (29)

which corresponds to Equation (19) piR B biR is a collocation point close to edge eiR extracted from the
physical boundary, vector viR B riR is the associated outward unit normal vector to partition ΓR at point biR, the
coefficient are defined as σiR B σ(biR) and ρiR B ρ(biR) and the boundary condition function value is defined
as gR,iR B gR(biR) (see Figure 7(c)).

Functional B̂iB(g) depends on free-parameter g since polynomial reconstruction ϕiD(x) also depends on g. Notice
that the least-squares procedure is constrained by one of Equations (24-26) and does not involve B̂iD(g).

In order to exactly satisfy the boundary condition, a parameter g∗ is sought such that the employed least-squares
constraint (24-26) and equation B̂iB(g) = 0 are satisfied simultaneously. Due to the linearity of functional B̂iB(g) with
respect to free-parameter g, parameter g∗ is sought under the form

g∗ = g0 − ε
B̂iB(g0)

B̂iB(g0 + ε) − B̂iB(g0)
, (30)

where g0 and ε , 0 are scalars. In other words, the free-parameter in the least-squares constraint is freely adjusted
such that B̂iB(g) = 0 and therefore ϕ̂iB(biB) = gB,iB. Although it seems that two constraints are being applied to the
least-squares problems, in fact only one constraint, whose right-hand side (the value of g) serves as an intermediate
value to satisfy the fitting condition, is genuinely active. Here, in practice scalar g0 = gB,iB is chosen for robustness
since parameter g∗ is relatively close to gB,iB as only smooth solutions are computed. Moreover, scalar ε = 1 is
chosen is this article as only normalized solutions are computed but, for the general case, values of the same order of
magnitude as the solution are preferable for robustness purposes.

Contrarily to the previous methods, here, the polynomial reconstruction ϕiB(x) does not depend on the boundary
position. Hence, its coefficients are given by a matrix-vector product between the mesh-based structural matrix and the
vector of local values φk, k ∈ SiB, and depends on the free-parameter g. Therefore, the structural matrix is evaluated
only during the preprocessing procedure and the computational effort is reduced. Consequently, the evaluation of
functional B̂iB(g) is rather fast leading to an efficient computation of g∗. More importantly, AROD method generates
a polynomial reconstruction ϕ̂iB(x) which satisfies the prescribed boundary condition at the collocation point on the
physical boundary.
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Remark 3. The AROD method has been designed for situation when the physical boundary and its associated col-
location points evolve in time. Compared to ROD method, AROD method requires an additional step to compute
parameter g∗. For such situations, the ROD method requires to recompute the structural matrix and to solve the
associated least-squares problem, while AROD method re-uses the initial and precomputed structural matrix.

4.4. AROD–XY – Adaptive Reconstruction for Off-site Data method

As seen before, the least-squares constraint and the fitting condition for the AROD method have different col-
location points, outward unit normal vectors, and coefficients, nonetheless, both are of the same type. The fitting
conditions have to respect the type of the prescribed boundary condition, Dirichlet, Neumann, or Robin. To ensure
an arbitrary high-order of accuracy, AROD methods assumes that the collocation points, outward unit normal vectors,
coefficients, and right-hand side values, are extracted from the exact physical boundary and its associated boundary
conditions functions. Remind that there is no reason for the least-squares constraint in Equations (24-26) to respect
the prescribed boundary condition. Although it is the natural choice to choose both of the same type, a different ap-
proach called AROD–XY method was found to be more stable, as will be numerically proven in Section 6. Character
X recall the fitting condition type while Y refers to the least-squares constraint type, and will be replaced by D, N, or
R, standing for Dirichlet, Neumann, and Robin types, respectively.

The formulation of the AROD–XY method strictly follows the AROD method (see Subsection 4.3), where the only
change occurs for the least-squares constraint. Consequently, only this difference is addressed. Table 4 summarizes
the constraints and fitting conditions used for each of the AROD-XY methods considered.

Table 4: Description of the constraints and fitting conditions used for AROD-XY methods.

Method Fitting condition Least-squares constraint
Type Equation Type Equation

AROD–DN Dirichlet (27) Neumann ĜiD(ηiD) = −κ(miD)∇ϕiD(miD) · niD − g
AROD–DR Robin ĜiD(ηiD) = ρ(miD)ϕiD(miD) + σ(miD)∇ϕiD(miD) · niD − g

AROD–ND Neumann (28) Dirichlet ĜiN(ηiN) = ϕiN(miN) − g
AROD–NR Robin ĜiN(ηiN) = ρ(miN)ϕiD(miN) + σ(miN)∇ϕiN(miN) · niN − g

AROD–RD Robin (29) Dirichlet ĜiR(ηiR) = ϕiR(miR) − g
AROD–RN Neumann ĜiR(ηiR) = −κ(miR)∇ϕiR(miR) · niR − g

Remark 4. When the fitting condition is of Dirichlet or Neumann types but the least-squares constraint is of Robin
type, as in methods AROD–DR and AROD–NR, functions σ(x) and ρ(x) are not available for that boundary partition
and some definition is required. In this article, functions σ(x) B u(x) · n and ρ(x) B −κ(x) are chosen such that the
constrained Robin condition represents a total flux condition and has a physical meaning.

Remark 5. This approach can improve robustness to handle boundary conditions on curved boundaries compared
with the AROD method, as will be numerically proven in Section 6. On the other hand, the AROD–XY method can
handle situations where the boundary condition type changes, as instance, from one time-step to another in a time-
dependent or unsteady problem, therefore avoiding to recompute the least-squares procedure.

Remark 6. In the proposed methods, a single collocation point is considered to constrain the boundary conditions
polynomial reconstructions associated to the boundary edges. Contrarily, the common practice, as in curved mesh
approaches, consists in finding multiple collocation points, usually corresponding to integration points on the physical
boundary. Given that, one may question the the subsequent impact of a single collocation point on the quality of the
high-degree polynomial reconstructions to represent boundary conditions.

The first attempt for the proposed method included a formulation with multiple collocation points on the curved
boundary per polynomial reconstruction associated to the boundary edges. An exhaustive numerical verification
were performed varying the number of collocation points from one up to three - notice that a sixth-order quadrature
on the curved boundary would require three points. From the obtained results, conclusions were drawn showing
that a single collocation point per polynomial reconstruction is the optimal choice, that is, no significant accuracy,
robustness, or convergence rates gains were consistently observed with multiple collocation points, regardless the
scheme order. In fact, a slight accuracy deterioration (and consequently of efficiency) occurred in the generality of
the cases when considering multiple collocation points, particularly when constraining gradients. This results may
be related to the over-fitted or over-constrained polynomial reconstructions, which increases least-squares matrices
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condition number and, consequently, has a negative impact on solution accuracy that is not counterbalanced by the
additional information.

On the other side, one must keep in mind that each boundary polynomial reconstruction includes, not only a
single collocation point to constrain the boundary condition, but also the mean-values of the neighbor cells included
in the stencil. In turn, each of these mean-values takes part in the computation of several boundary polynomial
reconstructions since the associated cell is shared among many stencils. Also, notice that, when higher polynomial
degrees are used, larger stencils are required and, therefore, each cell is shared among more stencils. Hence, in a
intrinsic way, each polynomial reconstruction associated to the boundary edges depends on several collocation points
via other polynomial reconstructions.

5. Finite volume scheme

Generic Finite Volume discretization derives from applying the divergence theorem to Equation (1) over each cell
ci, i = 1, . . . ,NC, providing equation∫

∂ci

(uφ − κ∇φ) · nids =

∫
ci

f dx, (31)

where ∂ci stands for the cell boundary and ni the associated outward unit normal vector. An R–points Gaussian quadra-
ture rule with weights ξr, r = 1, . . . ,R, is considered for the line integration, which provides a residual expression of
order 2R for Equation (31), given as

∑
j∈Ni

|ei j|

[
R∑

r=1

ζr
(
FC

i j,r + FD
i j,r

)]
− fi|ci| = O

(
h2R

i

)
, (32)

where hi = max j∈Ni |ei j| and fi stands for an approximation of order 2R of the mean-value of the source term function
f over cell ci. Notice that, if cell ci is not triangular, a splitting into sub-triangles which share the cell centroid as a
common vertex is used, and the quadrature rule is then applied in each sub-triangle, as in described in [32]. Physical
diffusive flux FD

i j,r and physical convective flux FC
i j,r at quadrature point qi j,r are given by

FC
i j,r =

(
u(qi j,r) · ni j

)
φ(qi j,r), FD

i j,r = −κ(qi j,r)∇φ(qi j,r) · ni j. (33)

Notice that FC
i j,r = FC

ji,r and FD
i j,r = FD

ji,r.

5.1. Numerical fluxes
Given the polynomial reconstructions, see Table 3, the approximations to the physical fluxes are then computed

with respect to the edges, as follows: For inner edge ei j, i ∈ CM, j ∈ Ni \ {D,NR}, the numerical diffusive and
convective fluxes at quadrature points qi j,r, r = 1, . . . ,R, write

F C
i j,r = F C

ji,r =
[
u(qi j,r) · ni j

]+
ϕ̂i(qi j,r) +

[
u(qi j,r) · ni j

]−
ϕ̂ j(qi j,r), (34)

F D
i j,r = F D

ji,r = −κ(qi j,r)∇ϕ̃i j(qi j,r) · ni j, (35)

where [a]+ = max(0, a) and [a]− = min(0, a) for any scalar a ∈ R. For boundary edge eiB, i ∈ BM, B ∈ {D,N,R}, with
a prescribed boundary conditions, the numerical diffusive and convective fluxes at quadrature points qiB,r, r = 1, . . . ,R,
write

F C
iB,r =

[
u(qiB,r) · niB

]+
ϕ̂i(qiB,r) +

[
u(qiB,r) · niB

]−
ϕ̂iB(qiB,r), (36)

F D
iB,r = −κ(qiB,r)∇ϕ̂iB(qiB,r) · niB. (37)

Notice that, in both cases, for the convective fluxes the constrained polynomial reconstruction associated to the adja-
cent cell and the constrained polynomial reconstruction associated to the edge are used while, for the diffusive fluxes,
the edge-based unconstrained polynomial reconstruction is used.

The constrained polynomial reconstructions associated to the boundary edges might be computed with the Naive
method (see Section 4.1), ROD method (see Section 4.2), AROD method (see Section 4.3), or AROD–XY method
(see Section 4.4).

Notice that all numerical fluxes are computed on the polygonal boundary edges of the computational domain
without any explicit reference to the physical domain. Similarly, the prescribed boundary condition is taken into
account via polynomial reconstructions ϕ̂iB and, therefore, no explicit reference to the boundary condition does appear
in the numerical scheme, which deals with only two situations: inner or boundary edges.
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5.2. Residual operator

For any vector Φ in RNC of mean-value approximations, the residual operator for each cell ci, i = 1, . . . ,NC,
defined as

Ri(Φ) =
∑
j∈Ni

|ei j|

[
R∑

r=1

ζr
(
F C

i j,r + F D
i j,r

)]
− fi|ci|, (38)

corresponds to the Finite Volume scheme (32) cast in residual form. Gathering all the residual operators, a global
affine operator Φ → R(Φ) = (Ri(Φ))i∈CM is defined. Vector Φ? ∈ RNC , solution the system of linear equations
R(Φ) = 0, provides the approximate mean-values of the original convection-diffusion problem (1). A GMRES
method, supplemented by a preconditioning matrix, is used to compute an approximation of vector Φ?, similarly to
the proposed methods in [25, 27].

6. Numerical benchmark

In order to validate the implementation of the proposed methods and assess their performance in terms of accu-
racy and convergence rates, manufactured solutions are computed for specific curved domains for which the associated
source term has to satisfy Equation (1), given the convective and diffusive coefficients. Notice that only smooth solu-
tions of the steady-state two-dimensional convection-diffusion equation are considered to achieve the optimal order.
To complete Equation (1), Dirichlet, Neumann, or Robin boundary conditions are prescribed on the corresponding
boundary partitions, satisfying the associated analytical solution. The method of validation consists in assessing the
rates of the error convergence under mesh refinement, applying the different techniques and methods proposed in this
article to compute the approximate solution. Structured and unstructured triangular meshes are considered in this
work.

Assume that vector Φ? = (φ?i )i∈CM gathers the numerical approximated mean values while vector Φ = (φi)i∈CM
gathers exact mean-values of function φ(x), that is φi = (1/|ci|)

∫
ci
φ dx. Relative L1- and L∞-norm errors, denoted as

E1 and E∞, respectively, are evaluated as

E1(M) =

NC∑
i=1

(∣∣φ?i − φi

∣∣ |ci|
)

NC∑
i=1

(∣∣φi

∣∣ |ci|
) NC∑

i=1

|ci|

and E∞(M) =

NCmax
i=1

∣∣φ?i − φi

∣∣
NC∑
i=1

(∣∣φi

∣∣ |ci|
) . (39)

Convergence rates for relative L1- and L∞-norm errors between two different meshes, M1 andM2, with DOF1 and
DOF2 degrees of freedom (equal to the number of cells), respectively, where DOF1 , DOF2, are estimated by

Ok(M1,M2) = 2

∣∣log(Ek(M1)/Ek(M2))
∣∣∣∣log(DOF1/DOF2)
∣∣ , k ∈ {1,∞}. (40)

The Naive, ROD, AROD, and AROD–XY methods are tested and compared using Pd polynomial reconstructions
degrees, with d ∈ {1, 3, 5}. For the Naive method, the same degree d is considered for all the elements (see Table 3).
Contrarily, for the ROD and AROD methods, either (i) the same degree d is considered for all the elements or (ii) a
degree d + 1 is considered for the Neumann and Robin boundary edges (see Table 3) while degree d is considered for
the others, in this case we adopt the notation Pd/Pd+1.

All the simulations are carried out considering the weighting function (7) with δ = 5h and γ = 2, where h is
the characteristic length of the reference mesh edge or cell. Two non-polygonal physical domains are considered: a
simple annulus domain, in Subsection 6.1, and a rose-shaped one, in Subsection 6.2.

Remark 7. For the presented geometries, all the mesh boundary edges intersect with the physical curved boundary
at only two points corresponding to the edge ends. For the general case, there is no particular limitation and the
mesh boundary edges may intersect one, several, or have no intersections with the physical boundary. The key point
is that the collocation point for boundary condition constraining is extracted from the surrounding physical curved
boundary. Notice, however, that only smooth curved boundaries are handled in this benchmark and, therefore, more
than two intersections on each mesh boundary edge are not expected for refined enough grids.
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6.1. Annulus domain
A simple annulus geometry is first addressed, consisting of an interior, ΓI, and exterior, ΓE, circumferences cen-

tered at point (0, 0) with radius rI = 0.5 and rE = 1, respectively. For this domain, the assigned manufactured solution
(see Figure 8(a)), invariant by rotation, is expressed in terms of polar coordinates (r, θ) as

φ(r) = a
(
exp(R(r)) + exp(−R(r)) + b

)
+ 1, R ≡ R(r) =

2r − (rE + rI)
rE − rI

, (41)

where r2 = x2 + y2 such that R ∈ [−1, 1], and coefficients a, b ∈ R. Notice that, although the solution is given in terms
of r and θ, the problem is numerically solved in Cartesian coordinates. In order to guarantee property φ(x) ∈ [1, 2] in
Ω, the coefficients a and b are deduced as a = 1/(2 − exp(1) − exp(−1)) and b = − exp(1) − exp(−1). The associated
source term function is obtained after substituting Equation (41) into Equation (1) (see Figure 8(b)).

(a) Analytical solution. (b) Source term.

Figure 8: Analytical solution and source term in a very fine mesh mesh for the annulus domain (for interpretation of the color in this figure, the
reader is referred to the electronic version of this article).

Successive refined uniform triangular Delaunay meshes are generated for the annulus domain (see Figure 9(a))
and the Naive and ROD methods with Pd, d ∈ {1, 3, 5}, polynomial reconstructions are tested. Let emphasize that the
boundary vertices belong to the physical boundary and the maximum gap between the physical and the computational
boundaries is of order O(h2) (see Figure 9(b)). Pure convective and pure diffusive situations, prescribing different
boundary conditions, are addressed in this test case assigning convection and diffusion coefficients accordingly.
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(a) Uniform triangular Delaunay mesh. (b) Boundary/mesh inset.

Figure 9: Coarse uniform triangular Delaulay mesh and inset of a very coarse mesh (gray filling) and the curved physical boundaries (thick lines)
for the annulus domain.

6.1.1. Pure convective case
A radial velocity field u(r, θ) = (cos(θ), sin(θ)) is assigned while no diffusion is considered, that is κ = 0. Inner

boundary ΓI is prescribed with constant Dirichlet boundary condition gD(x) = 1, x ∈ ΓI, while no boundary condition
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is required for outer boundary ΓE since an upwind scheme is applied to discretize the hyperbolic term in Equation (1).
In Figure 10 are shown the individual errors distribution obtained from the Naive and ROD methods with Pd,

d ∈ {1, 3, 5}, polynomial reconstructions with a mesh made of 736 cells. As observed, both the Naive and ROD
methods seem to provide comparable errors distribution when P1 polynomial reconstructions are used. In fact, the
geometrical mismatch between the boundary collocation points, located on the computational boundary, and the
physical boundary is of order O(h2), and the same size error is expected for the inner fluxes approximations. On the
contrary, when P3 and P5 polynomial reconstructions are used, the Naive method noticeably provides a stalled error
resulting from the treatment of the inner boundary. Notice that, as there is no diffusion term in this test case and
a radial velocity field is prescribed, the outer boundary represents an outflow condition and, therefore, no boundary
condition and curved boundary treatment is, in fact, applied here. As predicted, the solution accuracy is restored for
high-degree polynomial reconstructions when the ROD method is used since the boundary condition is appropriately
handled on the inner curved boundary.

Table 5 reports the obtained errors and corresponding convergence rates. As observed, the Naive method provides
at most a second-order convergence rate for both error norms, regardless of the polynomial degree considered. Such
results are expected attending to the geometrical mismatch of order O(h2) between the boundary collocation points
on the computational boundary and the true physical boundary. The ROD method, contrarily, restores the optimal
effective second-, fourth-, and sixth-order convergence rates for polynomial degrees of d ∈ {1, 3, 5}, respectively,
while no oscillations are reported. The results support the capability of the ROD method to overcome the second-
order limitation expected when dealing with curved boundaries, without the use of curved cells to fit the boundaries.
Notice that the hyperbolic term is treated with no difficulty, no nonphysical oscillations appear due to the upwind flux
used for the convective contribution, and the steady-state scheme is unconditionally stable with respect to the mesh
parameter.

Table 5: Pure convective case with Dirichlet–Dirichlet boundary conditions – relative errors and convergence rates obtained from the Naive and
ROD methods with uniform triangular Delaunay meshes.

DOF d = 1 d = 3 d = 5
E1 O1 E∞ O∞ E1 O1 E∞ O∞ E1 O1 E∞ O∞

Naive method with Pd

736 3.65E−03 — 1.48E−02 — 2.72E−03 — 4.11E−03 — 2.78E−03 — 4.05E−03 —
2828 8.96E−04 2.09 5.25E−03 1.54 7.73E−04 1.87 1.15E−03 1.89 7.79E−04 1.89 1.15E−03 1.87
11500 2.35E−04 1.91 1.87E−03 1.47 1.94E−04 1.97 2.89E−04 1.97 1.95E−04 1.98 2.90E−04 1.97
45248 6.37E−05 1.90 6.47E−04 1.55 5.01E−05 1.98 7.49E−05 1.97 5.02E−05 1.98 7.49E−05 1.98
177880 1.69E−05 1.94 2.21E−04 1.57 1.27E−05 2.00 1.91E−05 2.00 1.27E−05 2.00 1.91E−05 2.00

ROD method with Pd

736 2.96E−03 — 1.19E−02 — 6.64E−05 — 2.12E−04 — 1.15E−05 — 4.04E−05 —
2828 7.66E−04 2.01 4.66E−03 1.39 7.19E−06 3.30 2.52E−05 3.17 4.34E−07 4.87 1.25E−06 5.17
11500 2.00E−04 1.92 1.73E−03 1.42 4.82E−07 3.85 1.95E−06 3.65 7.73E−09 5.74 2.36E−08 5.66
45248 5.43E−05 1.90 6.09E−04 1.52 3.65E−08 3.77 2.22E−07 3.18 1.71E−10 5.57 6.18E−10 5.32
177880 1.48E−05 1.90 2.02E−04 1.61 2.38E−09 3.99 1.33E−08 4.11 2.98E−12 5.91 1.41E−11 5.52

6.1.2. Pure diffusive case
For this test case, a constant diffusion coefficient κ = 1 is assigned while no velocity field is considered, that is

u = 0. Inner boundary ΓI is prescribed with constant Dirichlet boundary condition gD(x) = 1, x ∈ ΓI, and ΓI ⊆ ΓD,
while outer boundary ΓE is prescribed according to one of the following cases:

• Dirichlet–Dirichlet: a constant Dirichlet boundary condition gD(x) = 1, x ∈ ΓE, and ΓE ⊂ ΓD;

• Dirichlet–Neumann: a constant Neumann boundary condition gN(x) = 4a(exp(1) − exp(−1)), x ∈ ΓE, and
ΓE = ΓN;

• Dirichlet–Robin: a constant Robin boundary condition, providing constant coefficients α(x) = 1 and β(x) = 1,
and gR(x) = 1 + 4a(exp(1) − exp(−1)), x ∈ ΓE, and ΓE = ΓR.

Dirichlet–Dirichlet case. The Dirichlet boundary conditions on both boundaries are firstly addressed and Table 6
reports the errors and the corresponding convergence rates obtained from the Naive and ROD methods with Pd,
d ∈ {1, 3, 5}, polynomial reconstructions. Similarly to the pure convective case, the Naive method provides at most
a second-order convergence rate for both error norms, regardless of the polynomial degree, while the ROD method
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(a) Naive method with d = 1. (b) ROD method with d = 1.
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(c) Naive method with d = 3. (c) ROD method with d = 3.
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(e) Naive method with d = 5. (f) ROD method with d = 5.

Figure 10: Pure convective case with Dirichlet–Dirichlet boundary conditions – individual errors distribution obtained from the Naive and ROD
methods with Pd polynomial reconstructions and a uniform triangular Delaunay mesh with 736 cells (for interpretation of the color in this figure,
the reader is referred to the electronic version of this article).
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restores the optimal orders while no oscillations are reported. The results highlight, once again, the capability of the
proposed method to overcome the second-order limitation, in that case for the elliptic term.

Table 6: Pure diffusive case with Dirichlet–Dirichlet boundary conditions – relative errors and convergence rates obtained from the Naive and ROD
methods with uniform triangular Delaunay meshes.

DOF d = 1 d = 3 d = 5
E1 O1 E∞ O∞ E1 O1 E∞ O∞ E1 O1 E∞ O∞

Naive method with Pd

736 7.71E−03 — 1.40E−02 — 1.49E−03 — 3.84E−03 — 1.50E−03 — 3.90E−03 —
2828 2.31E−03 1.79 4.15E−03 1.80 4.06E−04 1.93 1.13E−03 1.82 4.06E−04 1.94 1.13E−03 1.84
11500 5.90E−04 1.95 1.11E−03 1.89 1.03E−04 1.96 2.87E−04 1.95 1.03E−04 1.96 2.87E−04 1.95
45248 1.50E−04 2.00 3.09E−04 1.86 2.63E−05 1.99 7.45E−05 1.97 2.63E−05 1.99 7.46E−05 1.97
177880 3.54E−05 2.11 8.37E−05 1.91 6.65E−06 2.01 1.90E−05 2.00 6.65E−06 2.01 1.90E−05 2.00

ROD method with Pd

736 7.52E−03 — 1.29E−02 — 3.03E−05 — 1.06E−04 — 3.92E−06 — 1.93E−05 —
2828 2.21E−03 1.82 3.73E−03 1.84 2.00E−06 4.04 1.24E−05 3.19 1.29E−07 5.07 9.48E−07 4.48
11500 5.68E−04 1.94 1.01E−03 1.86 2.55E−07 2.94 1.30E−06 3.21 1.16E−09 6.72 9.83E−09 6.51
45248 1.44E−04 2.00 2.64E−04 1.95 1.84E−08 3.84 8.70E−08 3.95 2.55E−11 5.57 2.74E−10 5.23
177880 3.38E−05 2.12 7.35E−05 1.87 8.63E−10 4.47 5.53E−09 4.02 5.36E−13 5.64 6.55E−12 5.46

Dirichlet–Neumann case. The Neumann boundary condition is now prescribed for outer boundary ΓE and Table 7
reports the errors and the corresponding convergence rates obtained from the Naive method, ROD method with Pd,
and Pd/Pd+1 d ∈ {1, 3, 5}, polynomial reconstructions. Inexorably the Naive method provides at most a second-order
convergence rate for both error norms, regardless of the polynomial degree. On the other hand, the ROD method
with Pd, d ∈ {1, 3, 5}, polynomial reconstructions achieves second-, third-, and fifth-order convergence rates, respec-
tively, while remind that second-, fourth-, and sixth-order convergence rates were achieved for the previous Dirichlet–
Dirichlet case. To overcome this problem, the scheme is slightly modified considering (d + 1)-degree polynomial
reconstructions for the Neumann boundary edges while d-degree polynomial reconstructions are maintained for the
remaining mesh edges and cells. Doing so, a small performance penalty is accepted since additional coefficients for
the Pd+1 polynomial reconstructions have to be included in the associated least-squares procedure. In practice, this
penalty is acceptable according to the relative small number of Pd+1 reconstructions – around 3–4% of the total num-
ber of reconstructions for uniform triangular Delaunay meshes generated for the annulus domain. As can be seen
in Table 7, applying the ROD method with Pd/Pd+1, d ∈ {1, 3, 5}, polynomial reconstructions, restore the optimal
convergence rates. Notice that the IEEE 745 floating-point precision is attained with d = 5 for the last mesh and,
therefore, no convergence rate was computed.

Dirichlet–Robin case. Last, a Robin boundary condition is prescribed on outer boundary ΓE, and Table 8 reports the
errors and corresponding convergence rates obtained from the Naive method, ROD method with Pd, and Pd/Pd+1,
d ∈ {1, 3, 5}, polynomial reconstructions. The results are consistent with the conclusions previously drawn: the Naive
method is limited to a maximal second-order convergence rate and the ROD method with Pd, d ∈ {3, 5}, polynomial
reconstructions does not achieve the optimal convergence rates. On the other hand, the ROD method with Pd/Pd+1,
d ∈ {3, 5}, polynomial reconstructions seems to effectively increase the approximated solution accuracy and achieves
the expected fourth- and sixth-order convergence rates, respectively.

6.2. Rose-shaped domain
The convection-diffusion problem is now addressed in a complex shape the boundaries of which cannot be pa-

rameterized by polynomial terms. For this purpose, a diffeomorphism is applied to the annulus geometry previously
introduced. This consists in a periodic transformation of its boundaries given in polar coordinates (r, θ) by

ΓI :
ï

x
y

ò
= RI(θ; rI, αI)

ï
cos(θ)
sin(θ)

ò
, ΓE :

ï
x
y

ò
= RE(θ; rE, αE)

ï
cos(θ)
sin(θ)

ò
, (42)

Functions RI(θ) B RI(θ; rI, αI) and RE(θ; rE) B RE(θ; rE, αE) represent the transformed rays of the inner and outer
boundaries, respectively, having initial constant rays rI, rE ∈ R and coefficients αI, αE ∈ R, and are given, respectively,
by

RI(θ; rI, αI) = rI

Å
1 +

1
20

sin(αIθ)
ã
, RE(θ; rE, αE) = rE

Å
1 +

1
20

sin(αEθ)
ã
. (43)

20



Table 7: Pure diffusive case with Dirichlet–Neumann boundary conditions – relative errors and convergence rates obtained from the Naive and
ROD methods with uniform triangular Delaunay meshes.

DOF d = 1 d = 3 d = 5
E1 O1 E∞ O∞ E1 O1 E∞ O∞ E1 O1 E∞ O∞

Naive method with Pd

736 5.85E−03 — 1.35E−02 — 2.15E−03 — 3.94E−03 — 2.24E−03 — 4.14E−03 —
2828 2.16E−03 1.48 4.12E−03 1.76 5.11E−04 2.14 1.12E−03 1.87 5.21E−04 2.16 1.12E−03 1.94
11500 4.46E−04 2.25 1.09E−03 1.89 1.35E−04 1.90 2.86E−04 1.95 1.37E−04 1.91 2.86E−04 1.95
45248 1.55E−04 1.54 3.10E−04 1.84 3.42E−05 2.00 7.44E−05 1.96 3.44E−05 2.01 7.44E−05 1.96
177880 5.24E−05 1.58 1.03E−04 1.60 8.60E−06 2.02 1.90E−05 1.99 8.63E−06 2.02 1.90E−05 1.99

ROD method with Pd

736 2.27E−03 — 9.39E−03 — 3.27E−05 — 1.15E−04 — 1.93E−05 — 3.65E−05 —
2828 1.02E−03 1.19 2.96E−03 1.71 1.06E−05 1.67 2.13E−05 2.50 3.86E−07 5.81 8.84E−07 5.53
11500 1.87E−04 2.42 8.03E−04 1.86 2.39E−06 2.13 4.02E−06 2.38 1.56E−08 4.58 2.86E−08 4.89
45248 7.99E−05 1.24 2.35E−04 1.80 3.22E−07 2.92 5.33E−07 2.95 5.12E−10 4.99 9.08E−10 5.04
177880 3.33E−05 1.28 8.41E−05 1.50 3.68E−08 3.17 6.34E−08 3.11 1.64E−11 5.03 3.64E−11 4.70

ROD method with Pd/Pd+1

736 6.07E−03 — 1.07E−02 — 3.35E−05 — 1.06E−04 — 1.03E−05 — 2.04E−05 —
2828 2.14E−03 1.54 3.19E−03 1.80 2.44E−06 3.89 1.25E−05 3.18 3.38E−07 5.07 9.78E−07 4.51
11500 4.56E−04 2.21 9.21E−04 1.77 6.31E−07 1.93 1.33E−06 3.20 3.36E−09 6.57 9.97E−09 6.54
45248 1.57E−04 1.55 2.97E−04 1.65 5.01E−08 3.70 8.95E−08 3.94 6.93E−11 5.67 2.76E−10 5.24
177880 5.29E−05 1.59 1.15E−04 1.38 1.39E−09 5.24 5.51E−09 4.07 5.64E−12 — 6.30E−11 —

Table 8: Pure diffusive case with Dirichlet–Robin boundary conditions – relative errors and convergence rates obtained from the Naive and ROD
methods with uniform triangular Delaunay meshes.

DOF d = 1 d = 3 d = 5
E1 O1 E∞ O∞ E1 O1 E∞ O∞ E1 O1 E∞ O∞

Naive method with Pd

736 6.44E−03 — 1.36E−02 — 1.85E−03 — 3.80E−03 — 1.90E−03 — 3.85E−03 —
2828 2.16E−03 1.62 4.12E−03 1.78 4.62E−04 2.06 1.12E−03 1.81 4.67E−04 2.08 1.12E−03 1.83
11500 4.89E−04 2.12 1.10E−03 1.89 1.20E−04 1.92 2.86E−04 1.95 1.21E−04 1.93 2.86E−04 1.95
45248 1.49E−04 1.74 3.09E−04 1.85 3.05E−05 2.00 7.45E−05 1.96 3.06E−05 2.00 7.45E−05 1.97
177880 4.44E−05 1.77 9.17E−05 1.78 7.69E−06 2.01 1.90E−05 2.00 7.71E−06 2.01 1.90E−05 2.00

ROD method with Pd

736 3.96E−03 — 9.97E−03 — 3.00E−05 — 1.10E−04 — 1.08E−05 — 2.24E−05 —
2828 1.44E−03 1.51 3.03E−03 1.77 6.87E−06 2.19 1.52E−05 2.94 2.19E−07 5.80 9.10E−07 4.76
11500 3.09E−04 2.19 8.14E−04 1.87 1.51E−06 2.16 2.59E−06 2.52 8.95E−09 4.56 1.75E−08 5.63
45248 1.02E−04 1.62 2.35E−04 1.81 1.98E−07 2.97 3.25E−07 3.03 2.95E−10 4.98 5.52E−10 5.05
177880 3.25E−05 1.67 8.43E−05 1.50 2.25E−08 3.18 3.82E−08 3.13 9.84E−12 4.97 4.62E−11 3.62

ROD method with Pd/Pd+1

736 5.44E−03 — 1.04E−02 — 3.03E−05 — 1.06E−04 — 8.15E−06 — 2.00E−05 —
2828 1.83E−03 1.62 3.08E−03 1.80 1.88E−06 4.13 1.24E−05 3.19 2.58E−07 5.13 9.67E−07 4.50
11500 4.09E−04 2.13 8.42E−04 1.85 4.30E−07 2.11 1.31E−06 3.20 2.54E−09 6.59 9.92E−09 6.53
45248 1.28E−04 1.70 2.47E−04 1.79 3.39E−08 3.71 8.74E−08 3.96 5.26E−11 5.66 2.76E−10 5.23
177880 3.91E−05 1.73 9.53E−05 1.39 5.55E−10 6.01 5.54E−09 4.03 1.73E−11 — 1.11E−10 —
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The resulting geometry is called rose-shaped domain because of its resemblance to rose petals. In this test case, initial
rays rI = 0.5 and rE = 1 and coefficients αI = 5 and αE = 8 are assigned. Notice that the annulus geometry is
recovered assigning αI = αE = 0. Outward unit normal vectors on the inner and outer boundaries, nI B nI(θ) and
nE B nE(θ), respectively, are obtained applying the chain rule and are given by

nI(θ) =
1

(RI(θ))2 + (∂θRI(θ))2

ï
−RI(θ) cos(θ) − ∂θRI(θ) sin(θ)
−RI(θ) sin(θ) + ∂θRI(θ) cos(θ)

ò
, (44)

nE(θ) =
−1

(RE(θ))2 + (∂θRE(θ))2

ï
−RE(θ) cos(θ) − ∂θRE(θ) sin(θ)
−RE(θ) sin(θ) + ∂θRE(θ) cos(θ)

ò
, (45)

where ∂θRI(θ) and ∂θRE(θ) are the derivatives of RI(θ) and RE(θ) in order to variable θ, respectively.
For this domain, the manufactured solution (see Figure 11(a)) is expressed in terms of polar coordinates as

φ(r, θ) = a
(
exp(R(r, θ)) + exp(−R(r, θ)) + b

)
+ 1, R(r, θ) =

2r − (RE(θ) + rI)
RE(θ) − rI

, (46)

where r2 = x2 + y2 such that R ∈ [−1, 1], and coefficients a, b ∈ R. Notice that, although the solution is given in terms
of r and θ, the problem is numerically solved using the Cartesian geometry. In order to guarantee the property φ(x) ∈
[1, 2] in Ω, the coefficients are deduced as a = 1/(2 − exp(1) − exp(−1)) and b = − exp(1) − exp(−1). The associated
source term function is obtained after substituting manufactured solution (46) into Equation (1) (see Figure 11(b)). A
convective-diffusive situation is considered setting a constant diffusion coefficient κ = 1 and a constant radial velocity
field u(r, θ) = (cos(θ), sin(θ)). Inner boundary ΓI is prescribed with a nonconstant Dirichlet boundary condition,
while outer boundary ΓE is prescribed with either: a constant Dirichlet boundary condition (Dirichlet–Dirichlet case),
a nonconstant Neumann one (Dirichlet–Neumann case), or a nonconstant Robin one (Dirichlet–Robin case) with
coefficients σ(θ) = (θ+π)(θ−π)/π2 and ρ(θ) = 1−σ(θ) given in terms of polar coordinates. The boundary conditions
functions computed from the analytical solution are represented by long expressions and therefore, for the sake of
simplicity, are omitted from this article.

(a) Analytical solution. (b) Source term.

Figure 11: Analytical solution and source term in a very fine mesh mesh for the rose-shaped domain (for interpretation of the color in this figure,
the reader is referred to the electronic version of this article).

All the simulations were carried out either with successive refined uniform triangular Delaunay or quadrilateral
meshes generated for the rose-shaped domain (see Figure 12(a) and 12(b)). Observe that the boundary vertices belong
to the physical boundary and the maximum gap between the physical and the computational boundaries is of order
O(h2) (see Figure 12(c)). The ROD and AROD methods are tested while the Naive method is not considered here
since it can not provide more than a second-order convergence rate. When Neumann or Robin boundary conditions are
prescribed, then Pd/Pd+1, d ∈ {1, 3, 5}, polynomial reconstructions are used to achieve the optimal orders of accuracy,
as proceed previously.

Dirichlet–Dirichlet case. Both boundaries ΓI and ΓE are prescribed with a Dirichlet boundary condition and Table 9
reports the errors and corresponding convergence rates obtained from the ROD and AROD methods when uniform
triangular Delaunay meshes are used. As observed, the optimal convergence orders are obtained for this complex
geometry and the ROD and AROD methods perform very similarly in terms of accuracy.
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(a) Uniform triangular Delaunay mesh. (b) Uniform quadrilateral mesh. (c) Boundary/mesh inset.

Figure 12: Coarse uniform triangular Delaulay and quadrilateral meshes and inset of a very coarse mesh (gray filling) and the curved physical
boundaries (thick lines) for the rose-shaped domain.

To investigate the AROD–DN and AROD–DR methods, the least-squares constraint to compute the polynomial
reconstructions associated to the boundary edges, is considered to be of Neumann and Robin types, respectively, while
the fitting condition remains of Dirichlet type. Only the boundary edges associated to the outer boundary are treated
with the AROD–DN or AROD–DR methods while those associated to the inner boundary are treated with the AROD
method. When the AROD–DN and AROD–DR methods are used, no residual convergence was obtained with the last
two meshes and d = 5 for the applied stopping criteria. On the other hand, for the cases where residual convergence
is achieved, the AROD–DN and AROD–DR methods provide similar accuracy compared to the ROD and AROD
methods.

To deeper investigate this issue, Table 10 reports the GMRES iterations count in the ROD, AROD, AROD–DN,
and AROD–DR methods. A comparable number of GMRES iterations between the ROD and AROD methods is
always observed regardless of the polynomial degree or mesh used. However, when the polynomial degree increases
and the mesh characteristic length decreases, the AROD–DN and AROD–DR methods provide a larger number of
iterations. Such results can be explained since for each boundary edge, a polynomial reconstruction with a least-
squares constraint of Neumann or Robin types, defined in terms of gradient ∇ϕ(x), is used to satisfy a fitting condition
of Dirichlet type, defined in terms of function φ(x). Such choice increases the condition number of the implicit system
of linear equations, slowing down or destroying the residual convergence.

Dirichlet–Neumann case. Outer boundary ΓE is now prescribed with a Neumann boundary condition and Table 11
reports the errors and corresponding convergence rates obtained from ROD and AROD methods with Pd/Pd+1, d ∈
{1, 3, 5}, polynomial reconstructions and uniform triangular Delaunay meshes. As previously observed, the optimal
convergence orders are obtained for this complex geometry and the ROD and AROD methods perform very similarly,
but for the latter one no residual convergence was obtained with the last meshes and d = 5.

Similarly to the previous test case, to investigate the AROD–ND and AROD–NR methods, the least-squares
constraint to compute the polynomial reconstructions associated to the boundary edges, is considered to be of Dirichlet
and Robin types, respectively, while the fitting condition is of Neumann type. Only the boundary edges associated
to the outer boundary are treated with the AROD–ND or AROD–NR methods. As for the AROD method, when the
AROD–NR method is applied no residual convergence was obtained with the last mesh and d = 5 although, for the
cases where residual convergence is achieved, similar accuracy is obtained compared to the ROD and AROD methods.
Moreover, the residual convergence is achieved with all meshes and degrees when the AROD–ND method is used.

In Table 12, the GMRES iterations counts are reported. The results confirm that different number of iterations are
counted when the polynomial degree increases or the mesh characteristic length decreases. Concerning to the AROD–
NR method, the number of GMRES iterations to achieve residual convergence is comparable to the results obtained
in the AROD method. The AROD–ND method GMRES iterations counts are always comparable to the ROD method
ones and smaller than for the AROD and AROD–NR methods. In conclusion, considering a least-squares constraint
of Dirichlet type instead of Neumann or Robin types, seems to perform better and provides better conditioning, even
when the fitting and the boundary conditions are of Neumann type.

Dirichlet–Robin case. Last, outer boundary ΓE is prescribed with a Robin boundary condition and Table 13 reports the
errors and corresponding convergence rates obtained from the ROD and AROD methods with Pd/Pd+1, d ∈ {1, 3, 5},
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Table 9: Convective-diffusive case with Dirichlet–Dirichlet boundary conditions – relative errors and convergence rates obtained from the ROD,
AROD, AROD–DN, and AROD–DR methods with uniform triangular Delaunay meshes.

DOF d = 1 d = 3 d = 5
E1 O1 E∞ O∞ E1 O1 E∞ O∞ E1 O1 E∞ O∞

ROD method with Pd

750 7.18E−03 — 1.31E−02 — 7.61E−05 — 4.95E−04 — 3.64E−05 — 3.00E−04 —
3144 1.85E−03 1.89 3.76E−03 1.75 5.03E−06 3.79 3.55E−05 3.68 9.28E−07 5.12 1.62E−05 4.07
12482 4.77E−04 1.97 1.15E−03 1.71 2.94E−07 4.12 3.46E−06 3.38 1.60E−08 5.89 4.04E−07 5.36
50102 1.15E−04 2.05 3.03E−04 1.92 2.05E−08 3.84 2.71E−07 3.66 2.85E−10 5.80 1.22E−08 5.03
199636 2.91E−05 1.99 8.68E−05 1.81 1.28E−09 4.01 1.88E−08 3.86 3.89E−12 6.21 1.75E−10 6.14

AROD method with Pd

750 7.19E−03 — 1.32E−02 — 7.51E−05 — 4.94E−04 — 3.57E−05 — 3.00E−04 —
3144 1.85E−03 1.89 3.77E−03 1.75 5.02E−06 3.78 3.51E−05 3.69 9.20E−07 5.10 1.61E−05 4.09
12482 4.77E−04 1.97 1.16E−03 1.71 2.94E−07 4.12 3.46E−06 3.36 1.60E−08 5.87 4.04E−07 5.34
50102 1.15E−04 2.05 3.03E−04 1.93 2.05E−08 3.83 2.71E−07 3.66 2.85E−10 5.80 1.22E−08 5.04
199636 2.91E−05 1.99 8.68E−05 1.81 1.28E−09 4.00 1.88E−08 3.86 3.93E−12 6.20 1.75E−10 6.14

AROD–DN method with Pd

750 6.58E−03 — 1.24E−02 — 6.97E−05 — 4.79E−04 — 3.48E−05 — 2.91E−04 —
3144 1.67E−03 1.92 3.49E−03 1.76 4.92E−06 3.70 3.29E−05 3.74 8.84E−07 5.13 1.52E−05 4.11
12482 4.31E−04 1.96 1.07E−03 1.72 2.81E−07 4.15 3.27E−06 3.35 1.67E−08 5.76 4.28E−07 5.18
50102 1.03E−04 2.06 2.71E−04 1.97 1.97E−08 3.82 2.57E−07 3.66 — — — —
199636 2.63E−05 1.98 7.74E−05 1.82 1.27E−09 3.97 1.91E−08 3.76 — — — —

AROD–DR method with Pd

750 6.58E−03 — 1.24E−02 — 6.97E−05 — 4.79E−04 — 3.48E−05 — 2.91E−04 —
3144 1.67E−03 1.92 3.50E−03 1.76 4.92E−06 3.70 3.29E−05 3.74 8.84E−07 5.13 1.52E−05 4.11
12482 4.31E−04 1.96 1.07E−03 1.72 2.81E−07 4.15 3.27E−06 3.35 1.67E−08 5.76 4.28E−07 5.18
50102 1.03E−04 2.06 2.71E−04 1.97 1.97E−08 3.82 2.57E−07 3.66 — — — —
199636 2.63E−05 1.98 7.74E−05 1.82 1.27E−09 3.97 1.91E−08 3.76 — — — —

Table 10: Convective-diffusive case with Dirichlet–Dirichlet boundary conditions – GMRES iterations counts in the ROD, AROD, AROD–DN,
and AROD–DR methods with Pd reconstructions and uniform triangular Delaunay meshes.

DOF d = 1 d = 3 d = 5
ROD AROD AROD–DN AROD–DR ROD AROD AROD–DN AROD–DR ROD AROD AROD–DN AROD–DR

750 80 40 80 80 80 80 120 120 120 80 280 240
3144 80 80 120 120 120 120 200 200 200 160 400 400
12482 120 120 200 200 200 200 440 440 440 320 1360 1440
50102 240 240 400 400 440 440 920 920 600 600 NC NC
199636 520 520 800 800 960 960 2240 2240 1200 1160 NC NC
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Table 11: Convective-diffusive case with Dirichlet–Neumann boundary conditions – relative errors and convergence rates obtained from the ROD,
AROD, AROD–ND, and AROD–NR methods with uniform triangular Delaunay meshes.

DOF d = 1 d = 3 d = 5
E1 O1 E∞ O∞ E1 O1 E∞ O∞ E1 O1 E∞ O∞

ROD method with Pd/Pd+1

750 3.33E−03 — 8.50E−03 — 9.41E−05 — 5.36E−04 — 7.51E−05 — 5.35E−04 —
3144 9.34E−04 1.77 2.72E−03 1.59 5.29E−06 4.02 3.66E−05 3.74 1.73E−06 5.27 1.63E−05 4.87
12482 2.31E−04 2.02 8.20E−04 1.74 3.83E−07 3.81 3.44E−06 3.43 2.58E−08 6.10 4.04E−07 5.36
50102 5.78E−05 2.00 2.28E−04 1.84 3.98E−08 3.26 2.72E−07 3.65 5.07E−10 5.66 1.22E−08 5.04
199636 1.52E−05 1.93 8.29E−05 1.46 3.00E−09 3.74 1.88E−08 3.86 6.99E−12 6.20 1.75E−10 6.14

AROD method with Pd/Pd+1

750 3.30E−03 — 8.40E−03 — 9.38E−05 — 5.34E−04 — 7.57E−05 — 5.40E−04 —
3144 9.30E−04 1.77 2.71E−03 1.58 5.29E−06 4.01 3.65E−05 3.74 1.72E−06 5.28 1.62E−05 4.90
12482 2.31E−04 2.02 8.20E−04 1.73 3.82E−07 3.81 3.45E−06 3.42 2.59E−08 6.09 4.05E−07 5.35
50102 5.77E−05 2.00 2.27E−04 1.85 3.98E−08 3.25 2.72E−07 3.66 5.06E−10 5.66 1.22E−08 5.04
199636 1.52E−05 1.93 8.28E−05 1.46 3.01E−09 3.73 1.88E−08 3.86 — — — —

AROD–ND method with Pd/Pd+1

750 3.31E−03 — 8.40E−03 — 1.04E−04 — 5.83E−04 — 7.76E−05 — 5.37E−04 —
3144 9.34E−04 1.77 2.71E−03 1.58 5.83E−06 4.02 4.02E−05 3.73 1.74E−06 5.30 1.62E−05 4.89
12482 2.32E−04 2.02 8.20E−04 1.73 3.57E−07 4.05 3.44E−06 3.57 2.53E−08 6.13 4.05E−07 5.35
50102 5.80E−05 1.99 2.27E−04 1.85 2.45E−08 3.86 2.71E−07 3.66 5.20E−10 5.59 1.22E−08 5.04
199636 1.53E−05 1.93 8.29E−05 1.46 1.66E−09 3.89 1.88E−08 3.86 6.82E−12 6.27 1.75E−10 6.14

AROD–NR method with Pd/Pd+1

750 3.30E−03 — 8.40E−03 — 9.38E−05 — 5.34E−04 — 7.57E−05 — 5.40E−04 —
3144 9.30E−04 1.77 2.71E−03 1.58 5.29E−06 4.01 3.65E−05 3.74 1.72E−06 5.28 1.62E−05 4.90
12482 2.31E−04 2.02 8.20E−04 1.73 3.82E−07 3.81 3.45E−06 3.42 2.59E−08 6.09 4.05E−07 5.35
50102 5.77E−05 2.00 2.27E−04 1.85 3.98E−08 3.25 2.72E−07 3.66 5.06E−10 5.66 1.22E−08 5.04
199636 1.52E−05 1.93 8.28E−05 1.46 3.01E−09 3.73 1.88E−08 3.86 — — — —

Table 12: Convective-diffusive case with Dirichlet–Neumann boundary conditions – GMRES iterations counts in the ROD, AROD, AROD–ND,
and AROD–NR methods with Pd/Pd+1 reconstructions and uniform triangular Delaunay meshes.

DOF d = 1 d = 3 d = 5
ROD AROD AROD–ND AROD–NR ROD AROD AROD–ND AROD–NR ROD AROD AROD–ND AROD–NR

750 80 80 80 80 120 80 120 80 160 200 200 200
3144 120 120 120 120 240 200 200 200 280 280 320 280
12482 240 240 240 240 360 360 400 360 720 920 640 920
50102 440 440 440 440 800 840 800 840 1480 4520 1240 4640
199636 840 840 800 840 1880 1960 1800 1960 5600 NC 3240 NC
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polynomial reconstructions and uniform triangular Delaunay meshes. The results are in accordance with the ones
obtained for the previous Dirichlet–Dirichlet and Dirichlet–Neumann cases, achieving the optimal convergence order
for the ROD and AROD methods with comparable accuracy.

Table 13: Convective-diffusive case with Dirichlet–Robin boundary conditions – relative errors and convergence rates obtained from the ROD,
AROD, AROD–RD, and AROD–RN methods with uniform triangular Delaunay meshes.

DOF d = 1 d = 3 d = 5
E1 O1 E∞ O∞ E1 O1 E∞ O∞ E1 O1 E∞ O∞

ROD method with Pd/Pd+1

750 3.50E−03 — 8.55E−03 — 8.71E−05 — 4.95E−04 — 6.89E−05 — 4.86E−04 —
3144 9.64E−04 1.80 2.72E−03 1.60 5.00E−06 3.99 3.50E−05 3.70 1.60E−06 5.25 1.63E−05 4.74
12482 2.38E−04 2.03 8.21E−04 1.74 3.69E−07 3.78 3.44E−06 3.36 2.44E−08 6.07 4.04E−07 5.36
50102 5.87E−05 2.02 2.28E−04 1.84 3.68E−08 3.32 2.72E−07 3.66 4.67E−10 5.70 1.22E−08 5.04
199636 1.54E−05 1.94 8.15E−05 1.49 2.71E−09 3.77 1.88E−08 3.86 1.63E−11 4.85 1.75E−10 6.14

AROD method with Pd/Pd+1

750 3.47E−03 — 8.45E−03 — 8.65E−05 — 4.93E−04 — 6.93E−05 — 4.91E−04 —
3144 9.60E−04 1.79 2.71E−03 1.59 5.00E−06 3.98 3.49E−05 3.69 1.59E−06 5.27 1.62E−05 4.76
12482 2.38E−04 2.02 8.21E−04 1.73 3.68E−07 3.78 3.45E−06 3.36 2.45E−08 6.06 4.05E−07 5.35
50102 5.86E−05 2.02 2.28E−04 1.85 3.67E−08 3.32 2.72E−07 3.66 4.65E−10 5.70 1.22E−08 5.04
199636 1.50E−05 1.97 8.13E−05 1.49 2.70E−09 3.77 1.88E−08 3.86 — — — —

AROD–RD method with Pd/Pd+1

750 3.47E−03 — 8.45E−03 — 9.48E−05 — 5.37E−04 — 7.08E−05 — 4.88E−04 —
3144 9.61E−04 1.79 2.71E−03 1.59 5.37E−06 4.01 3.83E−05 3.69 1.61E−06 5.28 1.61E−05 4.76
12482 2.38E−04 2.02 8.21E−04 1.73 3.45E−07 3.98 3.44E−06 3.50 2.41E−08 6.10 4.05E−07 5.35
50102 5.87E−05 2.02 2.28E−04 1.85 2.38E−08 3.85 2.71E−07 3.66 4.77E−10 5.64 1.22E−08 5.04
199636 1.51E−05 1.97 8.15E−05 1.49 1.58E−09 3.93 1.88E−08 3.86 6.31E−12 6.26 1.75E−10 6.14

AROD–RN method with Pd/Pd+1

750 3.47E−03 — 8.45E−03 — 8.64E−05 — 4.92E−04 — 6.93E−05 — 4.91E−04 —
3144 9.60E−04 1.79 2.71E−03 1.59 5.00E−06 3.98 3.49E−05 3.69 1.59E−06 5.27 1.62E−05 4.76
12482 2.38E−04 2.02 8.21E−04 1.73 3.68E−07 3.78 3.45E−06 3.36 2.45E−08 6.06 4.05E−07 5.35
50102 5.86E−05 2.02 2.28E−04 1.85 3.67E−08 3.32 2.72E−07 3.66 4.66E−10 5.70 1.22E−08 5.04
199636 1.50E−05 1.97 8.13E−05 1.49 2.70E−09 3.77 1.88E−08 3.86 — — — —

In Table 14 the GMRES iterations counts are reported. As already observed, when the polynomial degree increases
or the mesh characteristic length decreases, the AROD–RD method performs always comparably to the ROD method
whereas the AROD–RN and AROD methods require more GMRES iterations to achieve a residual convergence.

To conclude the analysis, the ROD, AROD, and AROD–XY methods provide comparable accuracy although dif-
ferences in terms of residual convergence are reported when the polynomial degree increases or the mesh characteristic
length decreases. For Dirichlet boundary conditions, the GMRES method with the ROD and AROD methods perform
better compared with the AROD–DN and AROD–DR methods, which require in general a larger number of iterations
to converge. For Neumann and Robin boundary conditions, the ROD and AROD–ND/AROD–RD methods perform
better compared with the AROD and AROD–NR/AROD–RN methods, which also require in general more iterations
to converge. Given these statements, the ROD method provides in general the first or second best performance in
terms of residual convergence regardless of the boundary condition. On the other hand, for the AROD and AROD–
XY methods, the polynomial reconstructions associated to the boundary edges provide better residual convergence
constraining the associated least-squares problem with a Dirichlet type equation, regardless of the type of the bound-
ary condition. In other words, the AROD, AROD–ND, and AROD–RD for the cases of a Dirichlet, Neumann, and
Robin boundary conditions, respectively, perform better compared with the others.

Quadrilateral meshes. To conclude this benchmark, the previous Dirichlet–Dirichlet, Dirichlet–Neumann, and Dirichlet–
Robin cases for the rose-shaped domain, are simulated with uniform quadrilateral meshes. Only the ROD method
with Pd or Pd/Pd+1, d ∈ {1, 3, 5}, polynomial reconstructions is addressed whereas the other methods (AROD and
AROD–XY) perform as observed previously for uniform triangular meshes. The obtained errors and corresponding
convergence rates are reported in Table 15. The results support the capability of the method to achieve the optimal
convergence rates with quadrilateral meshes and with an essentially non-oscillatory behavior.
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Table 14: Convective-diffusive case with Dirichlet–Robin boundary conditions – GMRES iterations counts in the ROD, AROD, AROD–RD, and
AROD–RN methods with Pd/Pd+1 reconstructions and uniform triangular Delaunay meshes.

DOF d = 1 d = 3 d = 5
ROD AROD AROD–RD AROD–RN ROD AROD AROD–RD AROD–RN ROD AROD AROD–RD AROD–RN

750 80 80 80 80 80 80 120 80 160 200 160 200
3144 200 120 120 120 200 160 200 160 280 280 280 280
12482 200 200 240 200 320 360 360 360 1080 840 600 880
50102 440 400 440 400 680 800 760 800 1440 4320 1200 4280
199636 840 960 960 960 1600 2040 1880 2040 4640 NC 2840 NC

Table 15: Convective-diffusive case with Dirichlet–Dirichlet, Dirichlet–Neumann, and Dirichlet-Robin boundary conditions – relative errors and
convergence rates obtained from the ROD method with Pd/Pd+1 polynomial reconstructions and uniform quadrilateral meshes.

DOF d = 1 d = 3 d = 5
E1 O1 E∞ O∞ E1 O1 E∞ O∞ E1 O1 E∞ O∞

Dirichlet–Dirichlet case

748 6.89E−03 — 1.19E−02 — 2.08E−04 — 7.85E−04 — 1.28E−04 — 7.96E−04 —
3128 1.71E−03 1.94 3.15E−03 1.85 1.77E−05 3.44 7.87E−05 3.22 5.03E−06 4.52 7.17E−05 3.36
12784 4.24E−04 1.99 7.97E−04 1.95 1.28E−06 3.74 5.41E−06 3.80 9.23E−08 5.68 1.28E−06 5.72
52224 1.04E−04 1.99 1.98E−04 1.98 8.18E−08 3.90 3.31E−07 3.97 1.33E−09 6.02 1.64E−08 6.19
209984 2.61E−05 1.99 4.96E−05 1.99 5.05E−09 4.00 2.10E−08 3.96 2.63E−11 5.64 2.66E−10 5.92

Dirichlet–Neumann case

748 2.27E−03 — 9.47E−03 — 4.79E−04 — 2.78E−03 — 2.70E−04 — 2.05E−03 —
3128 5.88E−04 1.89 2.47E−03 1.88 6.41E−05 2.81 2.73E−04 3.24 4.34E−05 2.56 1.59E−04 3.58
12784 1.51E−04 1.93 6.30E−04 1.94 4.76E−06 3.69 2.20E−05 3.58 1.28E−06 5.01 3.47E−06 5.43
52224 3.79E−05 1.96 1.56E−04 1.98 2.59E−07 4.14 1.91E−06 3.48 5.02E−09 7.87 4.19E−08 6.28
209984 9.41E−06 2.00 3.99E−05 1.96 1.77E−08 3.86 1.91E−07 3.31 3.43E−11 7.17 6.65E−10 5.95

Dirichlet–Robin case

748 2.36E−03 — 8.76E−03 — 4.33E−04 — 2.67E−03 — 2.62E−04 — 2.00E−03 —
3128 6.10E−04 1.89 2.31E−03 1.86 5.59E−05 2.86 2.64E−04 3.23 3.66E−05 2.75 1.47E−04 3.64
12784 1.56E−04 1.94 5.90E−04 1.94 4.15E−06 3.69 2.10E−05 3.60 1.07E−06 5.02 3.28E−06 5.41
52224 3.90E−05 1.97 1.48E−04 1.97 2.33E−07 4.09 1.88E−06 3.43 4.39E−09 7.81 4.03E−08 6.25
209984 9.61E−06 2.01 3.77E−05 1.97 1.68E−08 3.77 1.86E−07 3.32 3.54E−11 6.93 6.55E−10 5.92
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7. Conclusions

A very high-order finite volume scheme for the steady-state two-dimensional convection-diffusion problem with
curved boundaries has been constructed based on a new framework to compute polynomial reconstructions. The
scheme is equipped with the Reconstruction for Off-site Data method (shortened to ROD method) to handle complex
curved boundaries prescribed with general boundary conditions, such as the Dirichlet, Neumann, and Robin. The
method does not require curved elements to fit the boundary, nor complex quadrature rules for integration, nor complex
nonlinear transformations, which represents an important achievement to the existing techniques in the Finite Volume
context. An Adaptive Reconstruction for Off-site Data method (AROD and its variants AROD–XY methods, were also
proposed in order to handle evolving boundaries (with respect to time or an iterative process). This approach avoids
recomputing the least-squares procedure for small boundary displacements, avoiding in fact a waste of computer
resources. A comprehensive numerical benchmark test suit, using the method of manufactured solutions, validated
the implementation and did assess the performance of the methods with simple and complex curved domains. The
following conclusions were drawn:

• Very high accurate convergence rates were achieved for the two-dimensional steady-state pure convection, pure
diffusion, and convection-diffusion problems, either with triangular or quadrilateral meshes;

• To achieve the optimal convergence rates when Neumann and Robin boundary conditions are prescribed, Pd+1
polynomial reconstructions are required for the associated boundary edges while Pd polynomial reconstructions
can be used for the remaining boundary and inner edges and cells; since only Pd polynomial reconstructions
are required to treat Dirichlet boundary conditions, a performance penalty is expected when treating Neumann
and Robin boundary conditions; in practice, such penalty is relatively small as it only affects the polynomial
reconstructions associated to the Neumann or Robin boundary edges; for the three-dimensional case, such
penalty would be negligible as the ratio of the number of boundary faces by the number of inner faces and cells
decreases, compared to the two-dimensional case;

• Both the ROD, AROD, and AROD–XY methods provide comparable and optimal convergence rates when
dealing with Dirichlet boundary conditions and no oscillations or instabilities were reported; Pd polynomial
reconstructions for the edges and cells provide (d+1)th-order accurate convergence rates under mesh refinement;

• Although all the methods provide comparable accuracy, a performance degradation, in terms of GMRES con-
vergence, occurs in some cases when the polynomial reconstructions degree increases and the characteristic
mesh length decreases; to summarize, the ROD method (regardless of the boundary condition) and the AROD,
AROD–ND, and AROD–RD methods (for Dirichlet, Neumann, and Robin boundary conditions, respectively)
have the best performance.

The future plans within this research include to apply the proposed ROD and AROD methods to complex systems
(e.g. Navier-Stokes equations and Euler equations) in three-dimensional geometries with structured and unstructured
meshes. Additionally, unsteady problems with time evolving domains (e.g. piston problems, pulsating interfaces
problems, and tracking interfaces problems) will be investigated aiming towards complex physical and industrial
applications. Moreover, code and algorithms performance improvements, validation, and verification will be required.

Acknowledgements

R. Costa acknowledges the financial support by Portugal 2020 and FSE – Fundo Social Europeu, through NORTE
2020 – Programa Operacional Regional do Norte, project no. NORTE-08-5369-FSE-000034, under program IM-
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