
HAL Id: hal-02488923
https://hal.science/hal-02488923v1

Preprint submitted on 24 Feb 2020 (v1), last revised 16 Sep 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Denoising IMU Gyroscopes with Deep Learning for
Open-Loop Attitude Estimation

Martin Brossard, Silvere Bonnabel, Axel Barrau

To cite this version:
Martin Brossard, Silvere Bonnabel, Axel Barrau. Denoising IMU Gyroscopes with Deep Learning for
Open-Loop Attitude Estimation. 2020. �hal-02488923v1�

https://hal.science/hal-02488923v1
https://hal.archives-ouvertes.fr


Denoising IMU Gyroscopes with Deep Learning
for Open-Loop Attitude Estimation

Martin BROSSARD∗, Silvère BONNABEL∗† and Axel BARRAU∗‡
∗Centre for Robotics, MINES ParisTech, PSL Research University, 60 Boulevard Saint-Michel, 75006 Paris, France

†University of New Caledonia, ISEA, 98851, Noumea Cedex, New Caledonia
‡Safran Tech, Groupe Safran, Rue des Jeunes Bois-Châteaufort, 78772, Magny Les Hameaux Cedex, France

Abstract—This paper proposes a learning method for denois-
ing gyroscopes of Inertial Measurement Units (IMUs) using
ground truth data, to estimate in real time the orientation
(attitude) of a robot in dead reckoning. The obtained algorithm
outperforms the state-of-the-art on the (unseen) test sequences.
The obtained performances are achieved thanks to a well chosen
model, a proper loss function for orientation increments, and
through the identification of key points when training with high-
frequency inertial data. Our approach builds upon a neural
network based on dilated convolutions, without requiring any
recurrent neural network. We demonstrate how efficient our
strategy is for 3D attitude estimation on the EuRoC and
TUM-VI datasets. Interestingly, we observe our dead reckoning
algorithm manages to beat top-ranked visual-inertial odometry
systems in terms of attitude estimation although it does not use
vision sensors. We believe this paper offers new perspectives
for visual-inertial localization and constitutes a step toward
more efficient learning methods involving IMUs. Our open-
source implementation is available at https://github.com/
mbrossar/denoise-imu-gyro.

Index Terms—localization, odometry, deep learning in
robotics and automation, autonomous systems navigation,
drones

I. INTRODUCTION

Inertial Measurement Units (IMUs) consist of gyroscopes
that measure angular velocities i.e. the rate of change of the
sensor’s orientation, and accelerometers that measure proper
accelerations [1]. IMUs allow estimating a robot’s trajectory
relative to its starting position, a task called odometry [2].

Small and cheap IMUs are ubiquitous in smartphones,
industrial and robotics applications, but suffer from difficul-
ties to estimate sources of error, such as axis-misalignment,
scale factors and time-varying offsets [3,4]. Hence, IMU
signals are not only noisy, but they are biased. In the present
paper, we propose to leverage deep learning for denoising
the gyroscopes (gyros) of an IMU, that is, reduce noise
and biases. As a byproduct, we obtain accurate attitude (i.e.
orientation) estimates simply by open-loop integration of the
obtained noise-free gyro measurements.

A. Links and Differences with Existing Literature

IMUs are generally coupled with complementary sensors
to obtain robust pose estimates in sensor-fusion systems [5],
where the supplementary information is provided by either
cameras in Visual-Inertial Odometry (VIO) [6]–[8], LiDAR,
GNSS, or may step from side information about the model
[9]–[12]. To obtain accurate pose estimates, a proper IMU
calibration is required, see e.g. the widely used Kalibr library

convolutional
neural network

∫
loss

function

ground truth

IMU (high frequency, high noise)

+

noise-free low frequency

correction

Fig. 1. Schematic illustration of the proposed method. The convolu-
tional neural network computes gyro corrections (based on past IMU
measurements) that filters undesirable errors in the raw IMU signals. We
then perform open-loop time integration on the noise-free measurements
for regressing low frequency errors between ground truth and estimated
orientation increments.

[3,13], which computes offline the underlying IMU intrinsic
and extrinsic calibration parameters. Our approach, which is
recapped in Figure 1, is applicable to any system equipped
with an IMU. It estimates offline the IMU calibration param-
eters and extends methods such as [3,13] to time-varying and
difficult to model signal corrections.

Machine learning (more specifically deep learning) has
been recently leveraged to perform LiDAR, visual-inertial,
and purely inertial localization, where methods are di-
vided into supervised [14]–[17] and unsupervised [18]. Most
works extract relevant features in the sensors’ signals which
are propagated in time through recurrent neural networks,
whereas [19] proposes convolutional neural networks for
pedestrian inertial navigation. A related approach [20] ap-
plies reinforcement learning for guiding the user to properly
calibrate visual-inertial rigs. Our method is supervised (we
require ground truth poses for training), leverages convo-
lutions rather than recurrent architectures, and outperforms
the latter approach. We obtain significantly better results
while requiring considerably less data and less time. Finallly,
the reference [17] estimates orientation with an IMU and
recurrent neural networks, but our approach proves simpler.

B. Contributions

Our main contributions are as follows:
• detailed modelling of the problem of learning orientation

increments from low-cost IMUs;
• the convolutional neural network which regresses gyro

corrections and whose features are carefully selected;
• the training procedure which involves a trackable loss

function for estimating relative orientation increments;
• the approach evaluation on datasets acquired by a drone

and a hand-held device [21,22], where our method

https://github.com/mbrossar/denoise-imu-gyro
https://github.com/mbrossar/denoise-imu-gyro


outperforms [17] and competes with VIO methods [6,7]
although it does not use vision;

• perspectives towards more efficient VIO and IMU based
learning methods;

• a publicly available open-sourced code, where training
is done in 5 minutes per dataset.

II. KINEMATIC & LOW-COST IMU MODELS

We detail in this section our model.

A. Kinematic Model based on Orientation Increments
The 3D orientation of a rigid platform is obtained by

integrating orientation increments, that is, gyro outputs of
an IMU, through

Rn = Rn−1 exp (ωndt) , (1)

where the rotation matrix Rn ∈ SO(3) at timestamp n maps
the IMU frame to the global frame, the angular velocity
ωn ∈ R3 is averaged during dt, and with exp(·) the SO(3)
exponential map. The model (1) successively integrates in
open-loop ωn and propagates estimation errors. Indeed, let
R̂n denotes an estimate of Rn. The error present in R̂n−1

is propagated in R̂n through (1).

B. Low-Cost Inertial Measurement Unit (IMU) Sensor Model
The IMU provides noisy and biased measurements of an-

gular rate ωn and specific acceleration an at high frequency
(200Hz in our experiments) as, see [3,4],

uIMU
n =

[
ωIMU

n

aIMU
n

]
= C

[
ωn

an

]
+ bn +wn, (2)

where bn ∈ R6 are quasi-constant biases, wn ∈ R6 are
commonly assumed zero-mean white Gaussian noises, and

an = RT
n−1 ((vn − vn−1) /dt− g) ∈ R3 (3)

is the acceleration in the IMU frame without the effects of
gravity g, with vn ∈ R3 the IMU velocity expressed in the
global frame. The intrinsic calibration matrix

C =

[
SωMω A
03×3 SaMa

]
≈ I6 (4)

contains the information for correcting signals: axis misalign-
ments (matrices Mω ≈ I3, Ma ≈ I3); scale factors (diagonal
matrices Sω ≈ I3, Sa ≈ I3); and linear accelerations on
gyro measurements, a.k.a. g-sensitivity (matrix A ≈ 03×3).
Remaining intrinsic parameters, e.g. level-arm between gyro
and accelerometer, can be found in [3,4].

We now make three remarks regarding (1)-(4):
1) equations (2)-(4) represent a model that approximates

reality. Indeed, calibration parameters C and biases
bn should both depend on time as they vary with
temperature and stress [1,4], but are difficult to estimate
in real-time. Then, vibrations and platform excitations
due to, e.g., rotors make Gaussian noise wn colored in
practice [23], albeit commonly assumed white;

2) substituting actual measurements ωIMU
n in place of true

value ωn in (1) leads generally to quick drift (in a few
seconds) and poor orientation estimates;

C
N
N

C
N
N

C
N
N

C
N
N

C
N
N

uIMU
n−N
...

uIMU
n

ω̃n

CNN layer # 1 2 3 4 5

kernel dim. 7 7 7 7 1

dilatation gap 1 4 16 64 1

channel dim. 16 32 64 128 1

Fig. 2. Proposed neural network structure which computes gyro correction
ω̃n in (5) from the N past IMU measurements. We set the Convolutional
Neural Networks (CNNs) as indicated in the table, and define between
two convolutional layers a batchnorm layer [24] and a smooth GELU
activation function [25] (magenta arrows). The adopted structure defines
the window size N = max (kernel dim.× dilation gap) = 7× 64 = 448,
corresponding to 2.24 s of past information, and has been found after trial-
and-error on datasets [21,22].

3) in terms of method evaluation, one should always com-
pare the learning method with respect to results obtained
with a properly calibrated IMU as a proper estimation
of the parameters C and bn in (2) actually leads to
surprisingly precise results, see Section IV.

III. LEARNING METHOD FOR DENOISING THE IMU
We describe in this section our approach for regression

of noise-free gyro increments ω̂n in (2) in order to obtain
accurate orientation estimates by integration of ω̂n in (1). Our
goal thus boils down to estimating bn, wn, and correcting
the misknown C.

A. Proposed Gyro Correction Model

Leveraging the analysis of Section II, we compute the
noise-free increments as

ω̂n = Ĉωω
IMU
n + ω̃n, (5)

with Ĉω = ŜωM̂ω ∈ R3×3 the intrinsic parameters that
account for gyro axis-misalignment and scale factors, and
where the gyro bias is included in the gyro correction ω̃n.
Explicitly considering the small accelerometer influence A,
see (2)-(4), does not affect the results so it is ignored.

We now search to compute ω̃n and Ĉω . The neural net-
work described in Section III-B computes ω̃n by leveraging
information present in a past local window of size N around
ωIMU

n . In contrast, we let Ĉω be static parameters initialized
at I3 and optimized during training since each considered
dataset uses one IMU. The learning problem involving a time
varying Ĉω and/or multiple IMUs is let for future works.

The consequences of opting for the simple model (5) and
the proposed network structure are as follows. First, the
corrected gyro may be initialized on the original gyro, i.e.
ω̂n ≈ ωIMU

n with Ĉω = I3 and ω̃n ≈ 03 before training.
This way, the method improves the estimates as soon as the
first training epoch. Then, our method is intrinsically robust
to overfitting as measurements outside the local windows, i.e.
whose timestamps are less than n−N or greater than n, see
Figure 2, do not participate in infering ω̃n. This allows us to
train the method with 8 or less minutes of data, see Section
IV-A.



δR̂0,1 δR̂1,2 δR̂2,3 δR̂3,4 δR̂4,5 δR̂5,6 δR̂6,7 δR̂7,8

δR̂0,2 δR̂2,4 δR̂4,6 δR̂6,8

δR̂0,4 δR̂4,8

δR̂0,8

1

2

3

Fig. 3. Time efficient computation of the loss (9) by viewing the orientation
integration (8) as a tree of matrix multiplications. Computation for length j
requires log2(j) “batch” operations as denoted by the blue vertical arrow
on the left. We see we need 3 batches of parallel operations for j = 8 on
the chart above. In the same way, we only need 5 operations for j = 32.

B. Dilated Convolutional Neural Network Structure

We define here the neural network structure which infers
the gyro correction as

ω̃n = f(uIMU
n−N , . . . ,u

IMU
n ), (6)

where f(·) is the function defined by the neural network. The
network should extract information at temporal multi-scales
and compute smooth corrections. Note that, the input of the
network consists of IMU data, that is, gyros naturally, but
also accelerometers signals. Indeed, from (3), if the velocity
varies slowly between successive increments we have

an+1 − an ≈ −(Rn −Rn−1)
Tg

≈ −(exp (−ωndt)− I3)R
T
n−1g, (7)

which also provides information about angular velocity.
We leverage dilated convolutions that infer a correction

based on a local window of N = 448 previous measurements,
which represents 2.24 s of information before timestamp
n in our experiments. Dilated convolutions are a method
based on convolutions applied to input with defined dilatation
gap, see [26], which: i) supports exponential expansion of
the receptive field, i.e., N , without loss of resolution or
coverage; ii) is computationally efficient with few memory
consumption; and iii) maintains the temporal ordering of
data. We thus expect the network to detect and correct various
features such as rotor vibrations that are not modeled in
(2). Our configuration given in Figure 2 requires learning
77 052 parameters, which is extremely low and contrasts with
recent (visual-)inertial learning methods, see e.g. [18] Figure
2, where IMU processing only requires more than 2 600 000
parameters.

C. Loss Function based on Integrated Gyro Increments

Defining a loss function directly based on errors ωn −
ω̂n requires having a ground truth ωn at IMU frequency
(200Hz), which is not feasible in practice as the best tracking
systems are accurate at 20-120Hz. In place, we suggest
defining a loss based on the following integrated increments

δRi,i+j = RT
i Ri+j =

i+j−1∏

k=i

exp (ωk) , (8)

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

TUM-VI

Fig. 4. Horizontal ground truth trajectory for the sequence room 1 of [22].
Ground truth is periodically absent due to occlusions of the hand-held device
from the motion capture system, see the color lines on the right of the figure.

i.e., where the IMU frequency is reduced by a factor j. We
then compute the loss for a given j as

Lj =
∑

i

ρ
(
log
(
δRi,i+jδR̂

T
i,i+j

))
, (9)

where log(·) is the SO(3) logarithm map, and ρ(·) is the
Huber loss function. We set in our experiments the Huber
loss parameter to 0.005, and define our loss function as

L = L16 + L32. (10)

The motivations for (9)-(10) are as follows:
• the choice of Huber loss ρ(·) yields robustness to ground

truth outliers;
• (8) is invariant to rotations which suits well IMUs,

whose gyro and accelerometer measurements are respec-
tively invariant to rotations and yaw changes [2,27], i.e.,
left shifting Rn ← δRRn and R̂n ← δRR̂n with
δRn ∈ SO(3) leaves (9) unchanged;

• the choice of (10) corresponds to error increments at
200/16 ≈ 12Hz and 200/32 ≈ 6Hz, which is barely
slower than ground truth. Setting too high a j, or in
the extreme case using a loss based on the overall
orientation error RT

n R̂n, would make the algorithm
prone to overfitting, and hence makes the method too
sensitive to specific trajectory patterns of training data.

D. Efficient Computation of (8)-(10)

First, note that thanks to parallelization applying e.g.,
exp(·), to one or parallelly to many ω̂n takes similar ex-
ecution time on a GPU (we found experimentally that one
operation takes 5ms whereas 10 million operations in parallel
take 70ms, that is, the time per operation drops to 7 ns). We
call an operation that is parallelly applied to many instances a
batch operation. That said, an apparent drawback of (8) is to
require j matrix multiplications, i.e. j operations. However,
first, we may compute ground truth δRi,i+j only once, store
it, and then we only need to compute δR̂i,i+j multiple times.
Second, by viewing (8) as a tree of matrix multiplications, see
Figure 3, we reduce the computation to log2(j) batch GPU
operations only. We finally apply sub-sampling and take one
i every j timestamps to avoid counting multiple times the



dataset sequence VINS- VINS-Mono Open- Open-VINS zero raw OriNet* calibrated IMU proposed
Mono [7] (loop-closure) VINS [6] (proposed) motion IMU [17] (proposed) IMU

MH 02 easy 1.34/1.32 0.57/0.50 1.11/1.05 1.21/1.12 44.4/43.7 146/130 5.12/– 7.09/1.49 1.39/0.85

MH 04 difficult 1.44/1.40 1.06/1.00 1.60/1.16 1.40/0.89 42.3/41.9 130/77.9 7.77/– 5.64/2.53 1.40/0.25

EuRoC V1 01 easy 0.97/0.90 0.57/0.44 0.80/0.67 0.80/0.67 114/76 71.3/71.2 5.01/– 6.65/3.95 1.13/0.49

[21] V1 03 difficult 4.72/4.68 4.06/4.00 2.32/2.27 2.25/2.20 81.4/80.5 119/84.9 13.2/– 3.56/2.04 2.70/0.96

V2 02 medium 2.58/2.41 1.83/1.61 1.85/1.61 1.81/1.57 93.9/93.5 117/86 9.59/– 4.63/2.30 3.85/2.25

average 2.21/2.14 1.62/1.52 1.55/1.37 1.50/1.30 66.1/66.1 125/89.0 7.70/– 5.51/2.46 2.10/0.96

room 2 0.60/0.45 0.69/0.50 2.47/2.36 1.95/1.84 91.8/90.4 118/88.1 –/– 10.6/10.5 1.31/1.18

TUM-VI room 4 0.76/0.63 0.66/0.51 0.97/0.88 0.93/0.83 107/103 74.1/48.2 –/– 2.43/2.30 1.48/0.85

[22] room 6 0.58/0.38 0.54/0.33 0.63/0.51 0.60/0.51 138/131 94.0/76.1 –/– 4.39/4.31 1.04/0.57

average 0.66/0.49 0.63/0.45 1.33/1.25 1.12/1.05 112/108 95.7/70.8 –/– 5.82/5.72 1.28/0.82

Table 1. Absolute Orientation Error (AOE) in terms of 3D orientation/yaw, in degree, on the test sequences. We see our approach competes with VIO
(while entirely based on IMU signals) and outperforms other inertial methods. (*) Note that, results from OriNet correspond instead to the mean orientation
error

∑M
n=1 ‖ log(RT

n R̂n)‖2/M which is by definition always less than AOE criterion, and are unavailable on the TUM-VI dataset.

same increment. Training speed is thus increased by a factor
32/ log2(32) ≈ 6.

E. Training with Data Augmentation

Data augmentation is a way to significantly increase the
diversity of data available for training without actually col-
lecting new data, to avoid overfitting. This may be done for
the IMU model of Section II by adding Gaussian noise wn,
adding static bias bn, uncalibrating the IMU, and shifting the
orientation of the IMU in the accelerometer measurement.
The two first points were noted in [17], whereas the two
latter are to the best of our knowledge novel.

Although each point may increase the diversity of data, we
found they do not necessarily improve the results. We opted
for addition of a Gaussian noise (only), during each training
epoch, whose standard deviation is the half the standard
deviation that the dataset provides (0.01 deg/s).

IV. EXPERIMENTS

We evaluate the method in term of 3D orientation and yaw
estimates, as the latter are more critical regarding long-term
odometry estimation [2,28].

A. Dataset Descriptions

We divide data into training, validation, and test sets,
defined as follows, see Chapter I.5.3 of [29]. We optimize the
neural network and calibration parameters on the training set.
Validation set intervenes when training is over, and provides
a biased evaluation, as the validation set is used for training
(data are seen, although never used for “learning”). The test
set is the gold standard to provide an unbiased evaluation. It
is only used once training (using the training and validation
sets) is terminated. The datasets we use are as follows.

1) EuRoC: the dataset [21] contains image and inertial
data at 200Hz from a micro aerial vehicle divided into 11
flight trajectories of 2-3 minutes in two environments. The
ADIS16448 IMU is uncalibrated and we note ground truth
from laser tracker and motion capture system is accurately
time-synchronized with the IMU, although dynamic motions
deteriorate the measurement accuracy. As yet noticed in [6],

ground truth for the sequence V1 01 easy needs to be
recomputed.

We define the train set as the first 50 s of the six sequences
MH{01,03,05}, V1{02}, V2{01,03}, the validation set
as the remaining ending parts of these sequences, and we
constitute the test set as the five remaining sequences. We
show in Section IV-E that using only 8 minutes of accurate
data for training - the beginning and end of each trajectory
are the most accurately measured - is sufficient to obtain
relevant results.

2) TUM-VI: the recent dataset [22] consists of visual-
inertial sequences in different scenes from an hand-held
device. The cheap BMI160 IMU logs data at 200Hz and
was properly calibrated. Ground truth is accurately time-
synchronized with the IMU, although each sequence contains
periodic instants of duration 0.2 s where ground truth is
unavailable as the acquisition platform was hidden from the
motion capture system, see Figure 4. We take the 6 room
sequences, which are the sequences having longest ground
truth (2-3 minutes each).

We define the train set as the first 50 s of the sequences
room 1, room 3, and room 5, the validation set as the
remaining ending parts of these sequences, and we set the
test set as the 3 other room sequences. This slipt corresponds
to 45 000 training data points (90 000 for EuRoC) which is
in the same order as the number of optimized parameters,
77 052, and requires regularization techniques such as weight
decay and dropout during training.

B. Method Implementation & Training

Our open-source method is implemented on PyTorch 1.5,
where we configure the training hyperparameters as follows.
We set weight decay with parameter 0.1, and dropout with
0.1 the probability of an element to be set equal to zero. Both
techniques reduce overfitting.

We choose the ADAM optimizer [30] with cosines warning
restart scheduler [31] where learning rate is initialized at 0.01.
We train for 1800 epochs, which is is very fast as it takes
less than 5 minutes for each dataset with a GTX 1080 GPU
device.



0

40

80

R
O
E

(d
e
g

)

EuRoC

VINS-Mono VINS-Mono (loop clos.) Open-VINS Open-VINS (prop.)
raw IMU calibrated IMU (prop.) proposed IMU zero motion

0

2

4

6

R
O
E

(d
e
g

)

EuRoC (zoom)

0

1

2

4

ya
w

(d
e
g

)

EuROC (yaw)

7 21 35

0

2

4

R
O
E

(d
e
g

)

TUM-VI

0

1

2

distance travelled (m)

ya
w

(d
e
g

)

TUM-VI (yaw)

7 21 35

Fig. 5. Relative Orientation Error (ROE) in terms of 3D orientation and
yaw errors on the test sequences. Our method outperforms calibrated IMU
and competes with VIO methods albeit based only on IMU signals. Raw
IMU and zero motion are way off. Results from OriNet are unavailable.

C. Compared Methods

We compare a set of methods based on camera and/or
IMU.

1) Methods Based on the IMU Only: we compare the
following approaches:

• raw IMU, that is an uncalibrated IMU. It refers also to
the proposed method once initialized but not trained;

• OriNet [17], which is based on recurrent neural net-
works, and whose validation set corresponds to the test
set (our training setting is thus more challenging);

• calibrated IMU, that is, our method where the 12
parameters Ĉω and ω̃n are constant, nonzero, and
optimized;

• proposed IMU, which is our learning based method
described in Section III.

2) Methods Based on Camera and the IMU: we run
each of the following method with the same setting, ten
times to then average results, and on a Dell Precision Tower
7910 workstation desktop, i.e., without deterioration due to
computational limitations [28]. We compare:

• VINS-Mono [7], a monocular VIO framework with
notable performances on the EuRoC benchmark [28];

• VINS-Mono (loop closure), which is the original
VINS-Mono [7] reinforced with loop-closure ability;

• Open-VINS [6], a versatile filter-based visual-inertial
estimator for which we choose the stereo configuration,
and that is top-ranked on the drone dataset of [32];

• Open-VINS (proposed), which is Open-VINS of [6]
but where gyro inputs are the proposed corrected gyro
measurements (5) output by our method (trained on
sequences that are of course different from those used
for evaluation).

3) Remaining Methods: we finally add a basic zero mo-
tion, that is ωn = 03 considered as the standard prior in
visual odometry when IMU is not available.

D. Evaluation Metrics

We evaluate the above methods using the following metrics
that we compute with the toolbox of [6].

1) Absolute Orientation Error (AOE): which computes the
mean square error between the ground truth and estimates for
a given sequence as

AOE =

√√√√
M∑

n=1

1

M
‖ log

(
RT

n R̂n

)
‖22, (11)

with M the sequence length, log(·) the SO(3) logarithm
map, and where the estimated trajectory has been aligned
on the ground truth at the first instant n = 0.

2) Relative Orientation Error (ROE): which is computed
as [27]

ROE = ‖ log
(
δRT

n,g(n)δR̂n,g(n)

)
‖2, (12)

for each pair of timestamps (n, g(n)) representing an IMU
displacement of 7, 21 or 35 meters. Collecting the error (12)
for all the pairs of sub-trajectories generates a collection
of errors where informative statistics such as the median
and percentiles are calculated. As [6,27,28], we strongly
recommend ROE for comparing odometry estimation meth-
ods since AOE is highly sensitive to the time when the
estimation error occurs. We finally consider slight variants
of (11)-(12) when considering yaw (only) errors, and note
that errors of visual methods generally scale with distance
travelled whereas errors of inertial only methods scales with
time. We provide in the present paper errors w.r.t. distance
travelled to favor comparison with benchmarks such as [28],
and same conclusions hold when computing ROE as function
of different times.

E. Results

Results are given in term of AOE and ROE respectively in
Table 1 and Figure 5. Figure 6 illustrates roll, pitch and yaw



140

150

160

170

180

ro
ll

(d
e
g

)

EuRoC

raw IMU calibrated IMU (prop.) ground-truth VINS-Mono Open-VINS proposed IMU

−85

−80

−75

−70

−65

−60

−55

pi
tc

h
(d
e
g

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−50

0

50

100

150

t (min)

ya
w

(d
e
g

)

−40

−20

0

20

40
TUM-VI

−40

−20

0

20

40

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−200

−100

0

100

200

t (min)

Fig. 6. Orientation estimates on the test sequence MH 04 difficult of [21] (left), and room 4 of [22] (right). Our method removes errors of the
calibrated IMU and competes with VIO algorithms.

estimates for a test sequence of each dataset, and Figure 7
shows orientation errors. We note that:

1) Uncalibrated IMU is Unreliable: raw IMU estimates
deviate from ground truth in as low as 10 s, see Figure 6,
and are barely more reliable than null rotation assumption.

2) Calibrated IMU Outperforms OriNet: only calibrating
an IMU (via our optimization method) leads to surprisingly
accurate results, see e.g., Figure 6 (right) where it is difficult
to distinguish it from ground truth. This evidences cheap
sensors can provide very accurate information once they are
correctly calibrated.

3) The Proposed Method Outperforms Inertial Methods:
OriNet [17] is outperformed. Moreover, our method improves
accurate calibrated IMU by a factor 2 to 4. Our approach
notably obtains as low as a median error of 1.34 deg /min
and 0.68 deg /min on respectively EuRoC and TUM-VI
datasets.

4) The Proposed Method Competes with VIO: our IMU
only method is accurate even on the high motion dynamics
present in both datasets, see Figure 6, and competes with
VINS-Mono and Open-VINS, although trained with only a
few minutes of data.

Finally, as the performance of each method depends on the
dataset and the algorithm setting, see Figure 5, it is difficult
to conclude which VIO algorithm is the best.

F. Further Results and Comments
We provide a few more comments, supported by further

experimental results.

1) Small Corrections Might Lead to Large Improvement:
the calibrated and corrected gyro signals are visually undis-
tinguishable: differences between them rely in corrections
ω̃n of few deg/s, as shown in Figure 8. However, they
bring drastic improvement in the estimates. This confirms the
interest of leveraging neural networks for model correction
(2)-(4).

2) The Proposed Method is Well Suited to Yaw Estimation:
according to Table 1 and Figure 5, we see yaw estimates
are particularly accurate. Indeed, VIO methods are able to
recover at any time roll and pitch thanks to accelerometers,
but the yaw estimates drift with time. In contrast our dead-
reckoning method never has access to information allowing
to recover roll and pitch during testing, and nor does it use
“future” information such as VINS-Mono with loop-closure
ability. We finally note that accurate yaw estimates could be
fruitful for yaw-independent VIO methods such as [8].

3) Correcting Gyro Slightly Improves Open-VINS [6]:
both methods based on Open-VINS perform similarly, which
is not surprising as camera alone already provides accurate
orientation estimates and the gyro assists stereo cameras.

4) Our Method Requires few Computational Ressources:
each VIO method performs here at its best while resorting to
high computational requirements, and we expect our method
- once trained - is very attractive when running onboard with
limited resources. Note that, the proposed method performs
e.g. 3 times better in terms of yaw estimates than a slightly
restricted VINS-Mono, see Figure 3 of [28].



−3

−2

−1

0

1

2

3
absence of ground truth

ro
ll

(d
e
g

)

TUM-VI

raw IMU calibrated IMU (prop.) VINS-Mono
Open-VINS proposed IMU

−4

−2

0

2

pi
tc

h
(d
e
g

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−4

−2

0

2

t (min)

ya
w

(d
e
g

)

Fig. 7. Orientation errors on the sequence room 4 of [22]. Our method
removes errors of the calibrated IMU and competes with VIO algorithms.

V. DISCUSSION

We now provide the community with feedback regarding
the method and its implementation. Notably, we emphasize
a few points that seem key to a successful implementation
when working with a low-cost high frequency IMU.

A. Key Points Regarding the Dataset

One should be careful regarding the quality of data,
especially when IMU is sampled at high-frequency. This
concerns:

1) IMU Signal: the IMU signal acquisition should be
correct with constant sampling time.

2) Ground Truth Pose Accuracy: we note that the EuRoC
ground truth accuracy is better at the beginning of the
trajectory. As such, training with only this part of data (the
first 50 s of the training sequences) is sufficient (and best) to
succeed.

3) Ground Truth Time-Alignement: the time alignment
between ground truth and IMU is significant for success,
otherwise the method is prone to learn a time delay.

We admit that our approach requires a proper dataset,
which is what constitutes its main limitation.

B. Key Points Regarding the Neural Network

Our conclusions about the neural network are as follows.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−1

−0.5

0

0.5

1

t (min)

ω̃
n

(d
e
g
/
s)

TUM-VI roll pitch yaw

Fig. 8. Gyro correction ω̃n on the sequence room 4 of [22]. We see we
manage to divide orientation errors by a factor at least 2 w.r.t. calibrated
IMU applying corrections whose amplitude is as low as 1deg/s (max).

1) Activation Function: the GELU and other smooth
activation functions [25], such as ELU, perform well, whereas
ReLU based network is more prone to overfit. We believe
ReLU activation function favors sharp corrections which does
not make sense when dealing with physical signals.

2) Neural Network Hyperparameters: increasing the
depth, channel and/or kernel sizes of the network, see Figure
2, does not systematically lead to better results. We tuned
these hyperparameters with random search, although more
sophisticated methods such as [33] exist.

3) Normalization Layer: batchnorm layer improves both
training speed and accuracy [24], and is highly recommended.

C. Key Points Regarding Training

As in any machine learning application, the neural network
architecture is a key component among others [29]. Our
comments regarding training are as follows:

1) Optimizer: the ADAM optimizer [30] performs well.
2) Learning Rate Scheduler: adopting a learning rate

policy with cosinus warning restart [31] leads to substantial
improvement and helps to find a correct learning rate.

3) Regularization: dropout and weight decay hyperparam-
eters are crucial to avoid overfitting. Each has a range of ideal
values which is quickly tuned with basic grid-search.

D. Remaining Key Points

We finally outline two points that we consider useful to
the practitioner:

1) Orientation Implementation: we did not find any dif-
ference between rotation matrix or quaternion loss function
implementation once numerical issues are solved, e.g., by
enforcing quaternion unit norm. Both implementations result
in similar accuracy performance and execution time.

2) Generalization and Transfert Learning: it may prove
useful to assess to what extent a learning method is general-
izable. The extension of the method, trained on one dataset,
to another device or to the same device on another platform
is considered as challenging, though, and left for future work.

VI. CONCLUSION

This paper proposes a deep-learning method for denoising
IMU gyroscopes and obtains remarkable accurate attitude
estimates with only a low-cost IMU, that outperforms state-
of-the-art [17]. The core of the approach is based on a careful



design and feature selection of a dilated convolutional net-
work, and an appropriate loss function leveraged for training
on orientation increment at the ground truth frequency. This
leads to a method robust to overfitting, efficient and fast
to train, which serves as offline IMU calibration and may
enhance it. As a remarkable byproduct, the method com-
petes with state-of-the-art visual-inertial methods in term of
attitude estimates on a drone and hand-held device datasets,
where we simply integrate noise-free gyro measurements.

We believe the present paper offers new perspectives for
(visual-)inertial learning methods. Future work will address
new challenges in three directions: learning from multiple
IMUs (the current method is reserved for one IMU only
which serves for training and testing); learning from mod-
erately accurate ground truth that can be output of visual-
inertial localization systems; and denoising accelerometers
based on relative increments from preintegration theory
[5,34].

ACKNOWLEDGEMENTS

The authors wish to thank Jeffrey Delmerico for sharing
the results of the VIO benchmark [28].

REFERENCES

[1] M. Kok, J. D. Hol, and T. B. Schön, “Using Inertial Sensors for
Position and Orientation Estimation,” Foundations and Trends R© in
Signal Processing, vol. 11, no. 1-2, pp. 1–153, 2017.

[2] D. Scaramuzza and Z. Zhang, “Visual-Inertial Odometry of Aerial
Robots,” Encyclopedia of Robotics, 2019.

[3] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart,
“Extending Kalibr: Calibrating the Extrinsics of Multiple IMUs and
of Individual Axes,” in International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 4304–4311.

[4] J. Rohac, M. Sipos, and J. Simanek, “Calibration of Low-cost Triaxial
Inertial Sensors,” IEEE Instrumentation & Measurement Magazine,
vol. 18, no. 6, pp. 32–38, 2015.

[5] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold
Preintegration for Real-Time Visual-Inertial Odometry,” Transactions
on Robotics, vol. 33, no. 1, pp. 1–21, 2017.

[6] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “OpenVINS:
A Research Platform for Visual-Inertial Estimation,” IROS Workshop
on Visual-Inertial Navigation: Challenges and Applications, 2019.

[7] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[8] J. Svacha, G. Loianno, and V. Kumar, “Inertial Yaw-Independent
Velocity and Attitude Estimation for High-Speed Quadrotor Flight,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1109–1116,
2019.

[9] M. Brossard, A. Barrau, and S. Bonnabel, “RINS-W: Robust Inertial
Navigation System on Wheels,” in International Conference on Intel-
ligent Robots and Systems (IROS). IEEE, 2019.

[10] ——, “AI-IMU Dead-Reckoning,” arXiv, 2019.
[11] S. Madgwick, A. Harrison, and R. Vaidyanathan, “Estimation of IMU

and MARG Orientation using a Gradient Descent Algorithm,” in
International Conference on Rehabilitation Robotics. IEEE, 2011,
pp. 1–7.

[12] A. Solin, S. Cortes, E. Rahtu, and J. Kannala, “Inertial Odometry on
Handheld Smartphones,” in International Conference on Information
Fusion, 2018.

[13] P. Furgale, J. Rehder, and R. Siegwart, “Unified Temporal and Spatial
Calibration for Multi-Sensor Systems,” in International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2013, pp. 1280–1286.

[14] C. Chen, X. Lu, A. Markham, and N. Trigoni, “IONet: Learning
to Cure the Curse of Drift in Inertial Odometry,” in Conference on
Artificial Intelligence (AAAI), 2018.

[15] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, “VINet:
Visual-Inertial Odometry as a Sequence-to-Sequence Learning Prob-
lem,” Conference on Artificial Intelligence (AAAI), 2017.

[16] H. Yan, Q. Shan, and Y. Furukawa, “RIDI: Robust IMU Double
Integration,” in European Conference on Computer Vision (ECCV),
2018.

[17] M. A. Esfahani, H. Wang, K. Wu, and S. Yuan, “OriNet: Robust 3-D
Orientation Estimation With a Single Particular IMU,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 399–406, 2020.

[18] Y. Almalioglu, M. Turan, A. E. Sari, M. R. U. Saputra, P. P. B. de
Gusmão, A. Markham, and N. Trigoni, “SelfVIO: Self-Supervised
Deep Monocular Visual-Inertial Odometry and Depth Estimation,”
arXiv, 2019.

[19] H. Yan, S. Herath, and Y. Furukawa, “RoNIN: Robust Neural Inertial
Navigation in the Wild: Benchmark, Evaluations, and New Methods,”
arXiv, 2019.

[20] F. Nobre and C. Heckman, “Learning to Calibrate: Reinforcement
Learning for Guided Calibration of Visual–Inertial Rigs,” The Interna-
tional Journal of Robotics Research, vol. 38, no. 12-13, pp. 1388–1402,
2019.

[21] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The EuRoC Micro Aerial Vehicle
Datasets,” The International Journal of Robotics Research, vol. 35,
no. 10, pp. 1157–1163, 2016.

[22] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stuckler, and
D. Cremers, “The TUM VI Benchmark for Evaluating Visual-Inertial
Odometry,” in International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 1680–1687.

[23] G. Lu and F. Zhang, “IMU-Based Attitude Estimation in the Presence
of Narrow-Band Noise,” IEEE/ASME Transactions on Mechatronics,
vol. 24, no. 2, pp. 841–852, 2019.

[24] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift,” in International
Conference on MachineLearning (ICLR), vol. 37, 2015.

[25] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activa-
tion Functions,” International Conference on Learning Representation,
2018.

[26] F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated
Convolutions,” International Conference on Learning Representation,
2016.

[27] Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative Trajectory
Evaluation for Visual(-Inertial) Odometry,” in International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 7244–
7251.

[28] J. Delmerico and D. Scaramuzza, “A Benchmark Comparison of
Monocular Visual-Inertial Odometry Algorithms for Flying Robots,” in
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 2502–2509.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT
press, 2016.

[30] D. P. Kingma and J. Ba, “ADAM: A Method for Stochastic Opti-
mization,” in International Conference on Learning Representations
(ICLR), 2014.

[31] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient Descent with
Warm Restarts,” International Conference on Learning Representation,
2016.

[32] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scara-
muzza, “Are We Ready for Autonomous Drone Racing? The UZH-
FPV Drone Racing Dataset,” in International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 6713–6719.

[33] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization,” The Journal of Machine Learning Research, vol. 18,
no. 1, pp. 6765–6816, 2017.

[34] A. Barrau and S. Bonnabel, “A Mathematical Framework for IMU
Error Propagation with Applications to Preintegration,” in International
Conference on Robotics and Automation (ICRA). IEEE, 2020.


	Introduction
	Links and Differences with Existing Literature
	Contributions

	Kinematic & Low-Cost IMU Models
	Kinematic Model based on Orientation Increments
	Low-Cost Inertial Measurement Unit (IMU) Sensor Model

	Learning Method for Denoising the IMU
	Proposed Gyro Correction Model
	Dilated Convolutional Neural Network Structure
	Loss Function based on Integrated Gyro Increments
	Efficient Computation of (8)-(10)
	Training with Data Augmentation

	Experiments
	Dataset Descriptions
	EuRoC
	TUM-VI

	Method Implementation & Training
	Compared Methods
	Methods Based on the IMU Only
	Methods Based on Camera and the IMU
	Remaining Methods

	Evaluation Metrics
	Absolute Orientation Error (AOE)
	Relative Orientation Error (ROE)

	Results
	Uncalibrated IMU is Unreliable
	Calibrated IMU Outperforms OriNet
	The Proposed Method Outperforms Inertial Methods
	The Proposed Method Competes with VIO

	Further Results and Comments
	Small Corrections Might Lead to Large Improvement
	The Proposed Method is Well Suited to Yaw Estimation
	Correcting Gyro Slightly Improves Open-VINS genevaOpenVINS2019
	Our Method Requires few Computational Ressources


	Discussion
	Key Points Regarding the Dataset
	IMU Signal
	Ground Truth Pose Accuracy
	Ground Truth Time-Alignement

	Key Points Regarding the Neural Network
	Activation Function
	Neural Network Hyperparameters
	Normalization Layer

	Key Points Regarding Training
	Optimizer
	Learning Rate Scheduler
	Regularization

	Remaining Key Points
	Orientation Implementation
	Generalization and Transfert Learning


	Conclusion
	References

