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Abstract

The collection-disassembly problem plays an important role in the reverse
supply chain management. The focus of the problem is to coordinate the ac-
tivities associated with the collection and the disassembly of the end-of-life
(EOL) products. Most existing works consider the problem under determin-
istic settings. However, in practice, the demands of components of EOL prod-
ucts that can be reused may be uncertain, due to various factors. Besides,
it is usually difficult to obtain the probability distribution of the uncertain
demands, as the historical data may be inadequate. This paper investigates
a stochastic collection-disassembly problem, in which handling modules of
disassembly system, corresponding to different disassembly capacities, have
to be selected and partial distributional information of component demands
(i.e., the mean and covariance matrix of demands) is known. The objectives
are to minimize the system cost and to maximize the average customer service
level (i.e., the average probability of meeting each demand) simultaneously.
For the problem, a novel distributionally robust bi-objective formulation is
proposed. Based on the proposed model, the Monte carlo simulation and an
ambiguity set, a sample average approximation (SAA) model and an approx-
imated mixed integer programming (MIP) model are constructed. Then the
two approximated formulations are solved, via the ε-constraint framework,
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and compared.

Keywords: Reverse supply chain; Collection of EOL products; Service
level; Bi-objective optimization; Handling module selection

1. Introduction

In recent decades, governments and customers have paid more attention
to the sustainabile manufacturing and supply chain management. As recy-
cling or remanufacturing End-of-Life (EOL) products can realize resource
re-utilisation, saving energy and air pollutant reduction as well, thus it is
getting more emphasized (Ilgin and Gupta, 2010a). Recycling EOL prod-
ucts mainly includes various activities: the collection, disassembly, recycling
and storing materials and disposal of waste (Ilgin and Gupta, 2010b; Benta-
ha et al., 2014a). Among them, the collection and the disassembly of EOL
products are essential and important (Habibi et al., 2017a). Existing studies
usually consider the collection of EOL products and the subsequent disassem-
bly activities separately (Mcgovern and Gupta, 2007; Agrawal and Tiwari,
2008). Habibi et al. (2017b) introduce the collection-disassembly problem
and show that the joint optimization of collection and disassembly decisions
can provide both economic profile and customer satisfaction improvement.
As shown in Figure 1, the problem is to design vehicle routes to collect E-
OL products from collection centers to disassembly site, and select handling
modules for the disassembly system, and then disassemble the EOL products
into components, to satisfy the demands.

Related works on the collection-disassembly problem mainly focus on
the deterministic settings (Habibi et al., 2017a; Habibi et al., 2017b). In
practical reverse supply chain, however, the demand of components of EOL
products that can be reused may be uncertain, due to the volatile market
and environmental policies and seasonal trends (Özceylan and Paksoy, 2014;
Tuncel et al., 2014; Ivanov et al., 2017). To our best knowledge, Habibi
et al. (2019) first study the collection-disassembly problem with uncertain
demands of components. They assume that the probability distribution of
uncertain demands is known. However, for some products with high regener-
ation and replacement speed, such as the electrical and electronic equipment,
the historical data may be not representative (Delage and Ye, 2010). Thus
the complete probability distribution of the uncertain demands may not be
well estimated. For this concern, this work considers a stochastic collection-
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disassembly problem, under partial known distributional information (i.e.,
the empirical mean and covariance matrix of demands).

In addition to the common target of reducing system cost, increasing
customer service level (i.e., the reduction of the risk level) has always been
an important goal in supply chain management (Cardona-Valds et al., 2011;
Cardona-Valds et al., 2014). Customer satisfaction and service level are
usually considered as an important performance indicator of supply chain
(Bijvank and Vis, 2012). In this work, EOL product are first collected from
collection centers to disassembly site, and then disassembled into components
which are required by customers, as shown in Figure 1. Failing to fulfill the
demand for the components may cause great loss for companies, such as low
customer satisfaction and loyalty loss (Tiwari et al., 2010). Therefore, to
provide better scientific support for the decision makers, the pursued objec-
tive is to minimize the system cost and to maximize the customer service
level simultaneously.

Moreover, it is usually assumed in the literature that the disassembly
line capacity is fixed (Habibi et al., 2017a; Habibi et al., 2019). However, in
practice, a disassembly system possesses a set of machines and equipments
(Paksoy, 2013), and different machine and equipment combinations can be
considered as handling modules, corresponding to different disassembly line
capacities (Li et al., 2011; Liu et al., 2019), as shown in Figure 1. Appropri-
ately selecting handling module for each disassembly line may improve the
overall performance of the reverse supply chain.

Motivated by the above observations, this work studies a stochastic bi-
objective collection-disassembly problem with handling module selection and
partial distributional information of demands of components (i.e., the empir-
ical mean and covariance matrix). The two objectives are to minimize the
system cost and to maximize the customer service level simultaneously. The
contribution of this paper mainly includes:

(1) A new stochastic bi-objective collection-disassembly problem with par-
tial distributional information on the demands of components and han-
dling module selection is investigated.

(2) For the problem, a distributionally robust bi-objective formulation is
first proposed, to minimize the system cost and maximize the service
level.

(3) Based on two approximation methods for the partial known probability
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distribution, two approximated models are developed and solved via the
ε-constraint framework.

Figure 1: An illustrative example of the problem during one period

The paper is organized as follows. A brief literature review is given in
Section 2. Section 3 gives the problem description and proposes a distribu-
tionally robust bi-objective formulation. In Section 4, based on two approx-
imation methods for the partial probability distribution, two approximated
models are constructed. Computational results are reported and analyzed
in Section 5. Section 6 summarize this paper and suggests future research
directions.

2. Literature review

The collection-disassembly problem is first introduced by Habibi et al.
(2017a), which focuses on collecting EOL products, selecting the handling
modules for the disassembly system and the subsequent disassembly. As this
work considers the bi-objective collection-disassembly problem with partial
distributional information of the component demands, to minimize the sys-
tem cost and maximize the customer service level, we only review the most
related studies in the following.

Stochastic disassembly line balancing problem has been studied by var-
ious researchers (Bentaha et al., 2012; Bentaha et al., 2013; Bentaha et al.,
2014a; Bentaha et al., Bentaha et al.; Bentaha et al., 2015; Özceylan et al.,
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2018). However, most existing works considering uncertain task processing
times, while the studies for the uncertain demand are very few. Özceylan and
Paksoy (2014) investigate a disassembly line balancing problem with uncer-
tain demands that are described by fuzzy membership function. Tuncel et al.
(2014) investigate a stochastic disassembly line balancing problem, where the
demand for individual components is assumed to be stochastic. The authors
develop a Monte-Carlo-based reinforcement learning technique to solve it.

The collection-disassembly problem, which focuses on designing the vehi-
cle routes to collect EOL products and the disassembly decisions to satisfy
the demands of components, has been investigated by the following works.
Habibi et al. (2017a) first consider the coordination of the collection and
disassembly of EOL products in the deterministic settings. They propose an
integrated model for incorporating the two aspects, and they also show the
coordination of collection and disassembly decisions can provide the perfor-
mance improvement of the reverse supply chain, in terms of the total cost
and the component demand satisfaction. The same problem under determin-
istic environment is further considered by Habibi et al. (2017b). A two-phase
iterative heuristic is developed, to solve large-scale instances. Habibi et al.
(2019) first investigate a multi-vehicle collection-disassembly problem The
quality, the available EOL products and the demands are assumed to be un-
certain, under known probability distributions. The objective is to minimize
the expected cost. Then a two-stage stochastic programming formulation is
proposed, and a two-phase iterative heuristic is developed.

Concluding, to our best knowledge, there is no research on the bi-objective
collection-disassembly problem in the literature, with only partial distribu-
tional information on the uncertain demands. We broaden the realm of the
collection-disassembly problem via considering (i) partial demand informa-
tion, i.e., in a distributionally robust fashion, (ii) handling module selection
and (iii) service level maximization.

3. Problem description and formulation

In this section, we first describe the problem in detail and give basic
assumptions and then propose a new distributionally robust bi-objective for-
mulation.
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3.1. Problem description

This work investigates a stochastic collection-disassembly problem with
alternative handling modules for disassembly line. The problem consists of a
set T = {1, 2, ..., |T |} of periods, and the problem during one period is shown
in Figure 1. There is a set of nodes N = {0, 1, 2, ..., |N |}, where 0 denotes
the depot and set Nc = {1, 2, ..., |N |} denotes the set of collection centers.
In Figure 1, for example, there is a disassemble site (i.e., the depot 0) and 3
collection centers, i.e., nodes 1, 2 and 3. In the problem:

(1) There is a set K = {1, 2, ..., |K|} of vehicles. During each period t ∈
T , EOL products are first collected from collection centers and then
disassembled into components, and all components are included in set
L = {1, 2, ..., |L|}.

(2) We assume that the EOL products are regular, such as toys, daily
necessities and common electronic products. The amount Sit of avail-
able EOL products at collection center i ∈ Nc during period t ∈ T is
assumed to be fixed.

(3) For the disassembly system, as stated above, there is a set H of alter-
native handling modules, i.e., H = {1, 2, ..., |H|}, and each handling
module h ∈ H corresponds to operating cost CM

h and disassembly line
capacity V dis

h .

(4) The amount of component l ∈ L in each EOL product is fixed and de-
noted as nl. The demand ξlt of component l ∈ L during period t ∈ T is
assumed to be uncertain, and all demands are represented by an uncer-
tain vector ξ = [ξ1,1, ξ1,2, ...ξ1,|T |, ξ2,1, ..., ξ2,|T |, ..., ξ|L|,|T |]. Only partial
distributional knowledge of ξ, i.e., the empirical mean and covariance
matrix, is known.

(5) The vehicle capacity and the inventory capacity of the disassembly site
(i.e., the maximum number of EOL products stored at the disassembly
site) are fixed and denoted by Q and V inv, respectively.

As stated above, the accurate probability distribution of demands, denot-
ed by P, is unavailable. A finite set R = {1, 2, ..., |R|} of historical samples,

i.e., {ξr}|R|r=1, is given. The empirical mean vector µ and covariance matrix
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Γ can be estimated as:

µ =
1

|R|
∑
r∈R

ξr, Γ =
1

|R|
∑
r∈R

(ξr − µ)(ξr − µ)>,

where (·)> denotes the transpose of a vector.
During each period, the considered problem is to (i) deploy vehicles and

design the vehicle routes, to collect EOL products, (ii) select handling module
for the disassembly line, (iii) determine the amount of EOL products disas-
sembled and the inventory level at the disassemble site. The objectives are
to minimize the system cost and to maximize the average customer service
level (i.e., the average probability of meeting each demand) simultaneously.

3.2. Formulation

In this subsection, a distributionally robust bi-objective formulation for
the considered problem is proposed. In the following, we first describe basic
notations and decision variable, and then present the formulation.

Parameters

- N : Set of nodes indexed by i, j ∈ {0, 1, 2, ..., |N |}, in which node 0 denotes
the depot (i.e., the disassembly site).

- Nc: Set of collection centres indexed by i, j ∈ {1, 2, ..., |N |}.

- L: Set of components indexed by l ∈ {1, 2, ..., |L|}.

- T : Planning horizon and T = {1, 2, ..., |T |}.

- K: Set of vehicles indexed by k ∈ {1, 2, ..., |K|}.

- H: Set of handling modules indexed by h ∈ {1, 2, ..., |H|} for the disas-
sembly line.

- nl: Number of component l ∈ L in an EOL product.

- Sit: Number of EOL products available at collection center i ∈ Nc during
period t ∈ T .

- Q: Vehicle capacity.

- ξlt: Demand of component l ∈ L during period t ∈ T , which is stochastic.

7



- V inv: Inventory capacity of the disassembly site for storing EOL products.

- V dis
h : Disassembly capacity of handling module h ∈ H.

- CM
h : Fixed operating cost for handling module h ∈ H.

- Cf : Fixed vehicle deploying cost.

- cij: Cost for a vehicle traveling from node i to j.

- Cinv: Inventory cost in each time unit.

- Cd: Unit disassembly cost.

- θlt: the weight coefficient of each individual service level (i.e., the proba-
bility of meeting demand) of component l ∈ L during period t ∈ T , and∑

l∈L
∑

t∈T θlt = 1.

Decision variables

- zt: Number of vehicles deployed during period t ∈ T .

- ηht: Binary variable, equal to 1 if handling module h ∈ H is selected during
period t ∈ T .

- xkijt: Binary variable, equal to 1 if node j is visited immediately after i by
vehicle k during period t ∈ T .

- ykit: The load of vehicle k after visiting node i during period t.

- It: Inventory level of EOL products during period t.

- Pt: Quantity of EOL products disassembled during period t.

A distributionally robust bi-objective formulation [P1] for the problem is
proposed as follows:

[P1] :

min f1 =

{∑
t∈T

(∑
h∈H

CM
h ηht + Cfzt +

∑
k∈K

∑
i,j∈N ,i 6=j

cijx
k
ijt + CinvIt + CdPt

)}
(1)

max f2 =
{∑

l∈L

∑
t∈T

θlt ·
(
ProbP (nl · Pt ≥ ξlt)

)}
(2)
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s.t.
∑
k∈K

∑
j∈N ,i 6=j

xkijt ≤ 1, ∀i ∈ Nc, t ∈ T (3)∑
i∈Nc

xk0it ≤ 1, ∀k ∈ K, t ∈ T (4)∑
k∈K

∑
i∈Nc

xk0it ≤ zt, ∀t ∈ T (5)∑
j∈N ,i 6=j

xkijt =
∑

j∈N ,i 6=j

xkjit, ∀i ∈ N , k ∈ K, t ∈ T (6)∑
h∈H

ηht = 1, ∀t ∈ T (7)

ykit + (Q− Sit) · xk0it ≤ Q, ∀i ∈ Nc, k ∈ K, t ∈ T (8)

ykit − ykjt +Q · xkijt + (Q− Sjt − Sit) · xkjit ≤ Q− Sjt,
∀i, j ∈ Nc, k ∈ K, t ∈ T (9)

It = It−1 +
∑
k∈K

∑
i,j∈N ,i 6=j

Sit · xkijt − Pt, ∀t ∈ T (10)

Pt ≤
∑
h∈H

Vh · ηht, ∀t ∈ T (11)

ykit ≥
∑

j∈N ,i 6=j

Sit · xkijt, i ∈ N , k ∈ K, t ∈ T (12)

ykit ≤
∑

j∈N ,i 6=j

Q · xkijt, i ∈ N , k ∈ K, t ∈ T (13)

It ≤ V inv, ∀t ∈ T (14)

zt ≤ |K|, ∀t ∈ T (15)

xkijt, ηlt ∈ {0, 1}, ∀i, j ∈ N , k ∈ K, t ∈ T , l ∈ L (16)

zt ∈ Z+,∀t ∈ T (17)

ykit, It, Pt ≥ 0,∀l ∈ L, i ∈ N , k ∈ K, t ∈ T (18)

Objective (1) is to minimize the system cost, including the handling mod-
ule operating cost, i.e.,

∑
t∈T
∑

h∈HC
M
h ηht, the vehicle deployment cost, i.e.,∑

t∈T C
fzt, the vehicle traveling cost, i.e.,

∑
t∈T
∑

k∈K
∑

i,j∈N ,i 6=j cijx
k
ijt, the

inventory holding cost, i.e.,
∑

t∈T C
invIt, and the cost for disassembling E-

OL products, i.e.,
∑

t∈T C
dPt. In objective function (2), ProbP(·) is used to

denote the probability of the event included in the parentheses under prob-
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ability distribution P. Objective function (2) is to maximize the average
customer service level.

Constraints (3) ensure that one collection center can be visited at most
once by any vehicle during period t. Constraints (4) guarantee that each
vehicle is deployed at most one time during period t. Constraints (5) define
the number of vehicles deployed during each period. Constraints (6) serve
as the flow conservation. Constraints (7) ensure that one handling module is
selected during each period. Constraints (8) guarantee that the capacity of
vehicle k is respected at each node. Constraints (9) serve as the subtour e-
limination. Constraints (10) estimate the inventory level during each period.
Constraints (11) respect the disassembly capacity under the selected han-
dling module. Constraints (12) and (13) give the limitation of vehicle load.
Constraints (14) are inventory capacity respect. Constraints (15) mean that
the number of employed vehicles cannot exceed the total number of vehicles.
Constraints (16)-(18) provides the domains of decision variables.

4. Solution approaches

As indicated by Birge and Louveaux (2011), it is relatively difficult to
find exact solutions for general stochastic optimization problems. The stud-
ied problem is really complicated to be exactly solved, because the probability
of uncertain parameters is partial known, and one of the objective functions
is probabilistic. To better solve the problem, an equivalent transformation
of the original objective function is firstly proposed, leading to an equiva-
lent formulation [P2]. Then two common approximation methods, i.e., the
SAA method and the ambiguity-set-based approximation method, are ap-
plied for the problem. The ε-constraint method is further adapted to solve
the problem.

4.1. An equivalent formulation

In this part, to tackle the probabilistic objective function (2), we first
introduce new decision variables α and αlt, where 0 ≤ α, αlt ≤ 1, denot-
ing average customer service level and individual customer service level of
demand of component l ∈ L during period t ∈ T , respectively. Objective
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function (2) can be equivalently transformed into:

max {α}
s.t. inf

P
{ProbP (nlPt ≥ ξlt)} ≥ αlt, ∀l ∈ L, t ∈ T (19)∑

l∈L

∑
t∈T

θltαlt = α (20)

0 ≤ αlt, α ≤ 1, ∀l ∈ L, t ∈ T (21)

where infP{·} is used to imply the minimum value in the parentheses under
probability distribution P. Note that only partial knowledge of P is given.
By introducing a new decision variable β = 1 − α and 0 ≤ β ≤ 1, which is
called the risk level, objective function (2) is equivalent to:

min β

s.t. (19)∑
l∈L

∑
t∈T

θltαlt = 1− β (22)

0 ≤ αlt, β ≤ 1, ∀l ∈ L, t ∈ T (23)

According, the original formulation [P1] can be equivalently rewritten as
the following bi-objective model [P2]:

[P2] : min f1

min f ′2 = β

s.t. (3)− (19), (22), (23)

According to Sun et al. (2014), if α is a given parameter and θlt = 1, i.e.,
for equality

∑
l∈L
∑

t∈T αlt = α, it is difficult to find the optimal combination
of αlt. For our problem, α and αlt are considered as a decision variable
and

∑
lt θlt = 1 and

∑
l∈L
∑

t∈T θltαlt = α, in the following, we consider
α = αlt, ∀l ∈ L, t ∈ T . Due to the partial known probability distribution
P and the chance constraint (19), it is intractable to solve [P2]. Therefore,
approximation methods are applied in the following.

4.2. The SAA

The SAA focuses on solving the stochastic optimization programs, by us-
ing Monte Carlo simulation (i.e., a finite set of scenarios) and techniques for
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deterministic optimization problems (Kleywegt et al., 2002). For the prob-
lem, only partial distributional information, i.e., the empirical mean and
covariance of demands, is given. Based on the basic idea of the SAA, the
partial known probability distribution P is replaced by an empirical one, cor-
responding to a finite set Ω of randomly generated scenarios which satisfy the
given information (Nemirovski and Shapiro, 2006; Pagnoncelli et al., 2009).
Following the idea in Zhang et al. (2015) and Jebali and Diabat (2017), we
construct an SAA-based model [P3] with expected penalty, via introducing
a new decision variable ζlt(ω) to estimate the unmet demands of component
l at period t under scenario ω ∈ Ω. In the model, the minimization of f ′2 = β
and chance constraint (19) are approximated by minimizing the expected
sum of penalty for ζlt(ω). Before constructing the model [P3], additional
parameters and decision variables are presented as follows:

New parameters:

- Ω: Set of scenarios indexed by ω, and Ω = {1, 2, ..., |Ω|}.

- ξlt(ω): Demand of component l ∈ L in period t ∈ T under scenario ω ∈ Ω.

- CP : Unit penalty cost for unmet demand.

New decision variables:

- ζlt(ω): Continuous variable, unmet demand of component l ∈ L during
period t under scenario ω ∈ Ω.

[P3] :

min f1 =

{∑
t∈T

(∑
h∈H

CM
h ηht + Cfzt +

∑
k∈K

∑
i,j∈N ,i 6=j

cijx
k
ijt + CinvIt + CdPt

)}

min f ′′2 =
CP

|Ω|
∑
ω∈Ω

∑
t∈T

∑
l∈L

ζlt(ω) (24)

s.t. (3)− (17)

nlPt + ζlt(ω) ≥ ξlt(ω), ∀l ∈ L, t ∈ T , ω ∈ Ω (25)

ζlt(ω) ≥ 0, ∀l ∈ L, t ∈ T , ω ∈ Ω (26)

The objective function f ′′2 in (24) focuses on minimizing the expected
sum of penalty cost for unmet demand ζlt(ω). The ε-constraint method for
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multi-optimization can be applied to solve the mixed integer programming
formulation [P3] in Section 4.4. We observe that the computational time of
the SAA increases dramatically with the problem size, due to the NP-hard
nature of the problem. Thus we adopt another approximation method in the
following, to achieve computational efficiency.

4.3. The approximated MIP model

In this part, we first construct an ambiguity set, which is based on the
known empirical mean and covariance matrix of demands, to portray the
partial known distribution P. Then a set of individual chance constraints
is then applied to conservatively approximate the chance constraint (19), to
construct an approximated MIP model [P4].

4.3.1. The ambiguity set

For the partial known distributional information, a common method is
to construct an ambiguity set, which is assumed to include a family of prob-
ability distributions that satisfy the given information. The ambiguity set
introduced by Delage and Ye (2010), which takes the inevitable estimation
errors into consideration, has been widely and successfully used (Cheng et al.,
2013; Zhang et al., 2017). In the work, following Delage and Ye (2010), we
introduce an ambiguity set P(µ,Γ, γ1, γ2) for the uncertain vector ξ:

P(µ,Γ, γ1, γ2) =

P :
(EP [ξ]− µ)T(Σ)−1(EP [ξ]− µ) ≤ γ1,

EP [(ξ − µ)(ξ − µ)T] � γ2Γ.

 ,

where E[·] implies the expected value, and P denotes the candidate prob-
ability distribution, and P is an ambiguity set in which the partial known
distribution P is assumed to be included in it, and γ1 ≥ 0 and γ2 ≥ γ1 are
two parameters which restrict that: (i) the true mean vector of ξ is in an
ellipsoid with center µ and radius γ1; (ii) the true covariance matrix of ξ is in
a positive semi-definite cone bounded by γ2Γ. Accordingly, chance constraint
(19) can be approximated as:

inf
P∈P
{ProbP (nlPt ≥ ξlt)} ≥ αlt, ∀l ∈ L, t ∈ T

⇔ inf
P∈P
{ProbP (ξlt ≤ nlPt)} ≥ αlt, ∀l ∈ L, t ∈ T (27)
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4.3.2. The approximated model

By introducing a vector πlt = [0, ..., 0, 1, 0, ..., 0]>, where the ((l−1)·|T |+
t)-th element is equal to 1, and other elements are 0, item ξlt in Constraint
(27) can be rewritten as π>lt ξ, thus Constraint (27) is equivalent to:

inf
P∈P

{
ProbP

(
π>lt ξ ≤ nlPt

)}
≥ αlt, ∀l ∈ L, t ∈ T (28)

Constraint (28) can be approximated based on the method introduced by
Zhang et al. (2017) as:√

1

1− a− b

1 +

√
(1− αlt)b

αlt

√πltTΣπlt ≤
√

1− αlt
αlt

(
nlPt − µTπlt

)
,

∀l ∈ L, t ∈ T (29)

where parameters a, b and γ1, γ2 satisfy the following equalities:

γ1 =
b

1− a− b
, γ2 =

1 + b

1− a− b

Then an approximated bi-objective MIP model [P4] can be formulated:

[P4] : min f1

min f ′′′2 = β

s.t. (3)− (18), (22), (23), (29)

4.4. The ε-constraint framework

To solve the above approximated bi-objective formulations [P3] and [P4],
we apply a classic ε-constraint method, to solve them.

For the sake of simplicity, the bi-objective optimization problem can be
rewritten as: min {f1(x), f2(x)|x ∈ X}, where f1(x) and f2(x) denote the
above system cost f1 and the risk level f ′2 = β in [P2], and x denotes a
decision variable vector with feasible region X defined by Constraints (3)-
(19), (22) and (23). A non-dominated solution can be defined as follows: a
solution x is non-dominated if there exists no solution x′ ∈ X with f1(x′) ≤
f1(x) and f2(x′) < f2(x) or f1(x′) < f1(x) and f2(x′) ≤ f2(x) (T’kindt
and Billaut, 2001). The two objective values of a non-dominated solution
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correspond to a non-dominated point, and all non-dominated points form
the Pareto front.

The basic idea of the ε-constraint method is to iteratively optimize trans-
formed single-objective ε-constraint problems, in which the main objective is
considered as their objectives and another one is restricted by ε and added
as ε constraints:

min f1(x)

s.t. f2(x) ≤ ε, ∀x ∈ X

The definition of the value of ε during each iteration is critical, and the
range of ε is denoted by [f I2 , f

N
2 ], determined by solving the following single-

objective problems (Bérubé et al., 2009): (i) f I1 = min
x∈X
{f1(x)} and f I2 =

min
x∈X
{f2(x)}; (ii) fN1 = min

x∈X
{f1(x) : f2(x) = f I2 } and fN2 = min

x∈X
{f2(x) :

f1(x) = f I1 }. The framework of the ε-constraint method is presented in
Algorithm 1.

For formulation [P3], we first calculate f I1 , f ′′I2 , fN1 and f ′′N2 . At each
iteration, the first objective f1 is minimize by adding constraint f ′′2 ≤ ε1, to
form [P3(ε)], with ε ∈ [f ′′I2 , f ′′N2 ]. For formulation [P4], we also minimize the
first objective function f1 by adding constraint f ′′′2 ≤ ε2, i.e., β ≤ ε2, to form
[P4(ε)] during each iteration. As 0 ≤ β ≤ 1, the range of ε2 is [0, 1]. Note
that the step sizes of ε1 and ε2 are denoted by ∆1 and ∆2, respectively.

Algorithm 1: The framework of the ε-constraint method

Input: Parameters for the problem.
1 Obtain f I1 , f I2 , fN1 and fN2 ;
2 Initialize ε = fN2 −∆ (∆ is the preset step size of ε).
3 Initialize the non-dominated set S = ∅;
4 while ε ≥ f I2 do
5 Solve the single-objective problem via adding an ε-constraint:

f2(x) ≤ ε;
6 Obtain the optimal solution x∗ and add its objectives to set S;
7 ε = ε−∆;

8 end
9 Sort the points in S.

Output: The non-dominated set.
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5. Computational experiments

In this section, the proposed two approximated models are solved by the
ε-constraint method. The transformed single-objective ε-constrained mod-
els [P3(ε)] and [P4(ε)] are coded in MATLAB 2014b and solved by calling
CPLEX12.6 solver. All numerical experiments are conducted on a personal
computer with Core I7 and 3.60GHz processor and 8GB RAM under Win-
dows 7 Operation System. Each instance is tested 10 times to obtain its
average value.

5.1. Out-of-sample test

We test the non-dominated solutions obtained by solving the two forma-
tions [P3] and [P4], via the ε-constraint method, in a large set of randomly
generated scenarios, i.e., the out-of-sample test (Zhang et al., 2017; Zhang
et al., 2018; Liu et al., 2019). In each scenario, demands of components
are randomly generated following a Log-Normal distribution, satisfying the
known mean vector µ and covariance matrix Γ (Xie and Ahmed, 2018). The
number of tested scenarios is set to be 10000 in this work. For each non-
dominated solution obtained by the ε-constraint method via solving each
formulation, based on its obtained vehicle deployment, vehicle routes, han-
dling module selection and the number of disassembled EOL products and
inventory level during each period,

(1) Under each scenario ω out of the 10000 ones, the (out-of-sample) in-
dividual service level αlt(ω), i.e., αlt(ω) = 1 if nlPt ≥ ξlt(ω), and
αlt(ω) = nlPt

ξlt(ω)
otherwise, can be easily calculated.

(2) Then the (out-of-sample) average risk level (i.e., the second objective

f ′2 = β in [P2]), which is estimated by
(

1−
∑

l∈L
∑

t∈T θlt
∑10000

ω=1 αlt(ω)

10000

)
×

100%, can be calculated.

The following well-known metrics are used to evaluate the out-of-sample
performance:

(i) The number of non-dominated solutions.

(ii) Inverted generational distance (Coello and Cortés, 2005):
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ID(A,P ∗) =
1

P ∗

∑
x′∈P ∗

min
x∈A
{d(x,x′)}

where A denotes the obtained set of non-dominated solutions, and P ∗

is the reference set, and x and x′ denote the solutions. As the opti-
mal Pareto solutions cannot be obtained for the problem, we consider
that P ∗ includes all non-dominated solutions obtained by the two for-
mulations via ε-constraint method, as in line with Liu et al. (2018).
Besides, d(x,x′) denotes the Euclidean distance between solutions x
and x′, which is calculated as

d(x,x′) =

√(
f1(x)− f1(x′)

fmax1 − fmin1

)2

+

(
f2(x)− f2(x′)

fmax2 − fmin2

)2

where fmax1 and fmin1 denote the maximum and minimum system costs
(i.e., the first objective in [P2]) of all non-dominated solutions in the
reference set P ∗, and fmax2 and fmin2 are the maximum and minimum
(out-of-sample) risk levels (i.e., the second objective in [P2]) of all
non-dominated solutions in the reference set P ∗. A smaller ID(A,P ∗)
implies that the non-dominated set A approximates the reference set
P ∗ better.

(iv) Set coverage indicator (Zitzler et al., 2000):

C(A,B) =
|x ∈ B|∃x′ ∈ A : x′ � x|

|B|
,

where A and B are the obtained non-dominated sets obtained by the
two formulations [P3] and [P4] via ε-constraint method, and x ∈ A
and x′ ∈ B, and x′ � x denotes that solution x′ dominates solution x.
It can be obtained that C(A,B) = 1 if all solutions in B are dominated
by some solutions in A. That is, if C(A,B) ≥ C(B,A), A is better than
B in terms of dominance relation.
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(v) Maximum spread indicator (Liu et al., 2016; Liu et al., 2018):

MS(A) =

√√√√ 2∑
i=1

(
max
x∈A

fi(x)− fmini

fmaxi − fmini

−min
x∈A

fi(x)− fmini

fmaxi − fmini

)2

MS(A) evaluates the distance between the boundary solutions in a set
A of non-dominated solutions. A larger MS(A) denotes a wider range
of objective values covered by set A.

Besides, we also use the average standard deviation σ =
∑

l∈L
∑

t∈T θltσlt,
where σlt denotes the standard deviation of the individual service level αlt,
i.e., σlt = 1

10000

∑10000
ω=1 (αlt(ω) − E(αlt))

2 and E(αlt) = 1
10000

αlt(ω). Note that
a smaller σ implies that the solutions are more stable, in terms of the service
level.

5.2. An illustrative example

Preliminary experiments are analysed, to adjust the input parameters.
Parameters are shown in Table 1, where (i) for the SAA model [P3], the
number |Ω| of scenarios and the unit penalty cost θ1 for unmet demand are
set to be 200 and 1, and the step size ∆ and 1 (i.e., the smallest unit of
penalty cost), respectively; and (ii) for the approximated MIP model [P4],
γ1 and γ2 are set to be 0.8 and 1, and the step size ∆2 is set to be 0.05 for
efficiency. Besides, without loss of generality, θlt is set to be 1

|L|·|T | .

Table 1: Parameters for the solution methods

SAA model [P3] Approximated MIP model [P4]

Parameters |Ω| CP ∆1 γ1 γ2 ∆2

Values 200 1 1 0.8 1 0.05

An illustrative example based on a small network is investigated, to com-
pare the proposed two approximated models. The parameters of the example
are detailed in Table 2, where there are 4 collection centers, 10 time periods,
5 components, 5 vehicles and 3 alternative handling modules in total. The
data is generated as in line with Habibi et al. (2017a), which focus on the
deterministic and single-objective collection-disassembly problem, such that
(i) the inventory capacity V inv is set to be 50; (ii) the fixed vehicle deploying
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cost Cf , the traveling cost cij from node i to j, the unit inventory cost Cinv

and the unit disassembly cost Cd are set to be 10, 1, 1 and 10, respectively;

(iii) the vehicle capacity is set to be 2 ·
∑

i∈Nc
Sit

|T | ; (iv) Sit, µlt are randomly

and uniformly generated from intervals [9, 11] and [0.6, 1.4] ·
∑

i∈Nc

∑
t∈T Sit

|N |·|T | .
The fixed operating costs and disassembly line capacities for the 3 handling
modules are [10,20,30] and [10,20,30]. The correlation between demands de-
pends on the specific application. To illustrate the proposed approximated
models, we assume there is a neutral correlation, i.e., demands are assumed
to be independently distributed (Chen et al., 2010). The standard deviation
of each demand ξlt is set to be 0.2 · µlt.

Table 2: Input parameters for the small network

Collection centers\ Periods 1 2 3 4 5 6 7 8 9 10

Sit

1 11 11 10 9 11 10 10 10 9 11

2 11 9 9 9 9 10 9 10 9 9

3 10 11 10 9 10 9 11 11 9 9

4 10 11 10 11 9 11 11 11 10 11

Components\ Periods 1 2 3 4 5 6 7 8 9 10

µlt

1 11 5 9 11 8 6 11 7 5 8

2 11 10 9 10 9 11 11 10 11 11

3 8 10 6 5 5 11 5 5 6 6

4 8 9 5 8 11 9 5 6 8 11

5 10 7 6 6 8 7 6 10 6 8

Pareto fronts obtained by the SAA method and the approximated MIP
model are illustrated in Figure 2. Comparison between the two methods
for the illustrative example is reported in Table 3, where “Num” denotes
the number of non-dominated solutions. We can observe from Table 3 that
the computational time of the SAA is 869.4 seconds, which is about 8.3
times larger than that of the approximated MIP model. Besides, it can also
be observed from Figure 2 and Table 3 that the SAA method can obtain
a larger number of non-dominated solutions than the approximated MIP
model. Besides, the inverted generational distances of the SAA method is
0.062, which is slightly smaller than that of the approximated MIP model.
That is, the SAA method performs better, in terms of the number of non-
dominated solutions and the ID indicator. However, the average standard
deviation σ of the service level of the non-dominant set obtained by the SAA
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Figure 2: Pareto fronts obtained by the two solution methods for the illustrative example

is 0.060, which is a little larger than that of the approximated MIP model.
The C(B,A) of the approximated MIP model is 0.312, and C(A,B) of the
SAA method is 0.062. In terms of the maximum spread indicator MS, the
approximated MIP model can obtain non-dominated solutions covering a
wider range of objective values. Moreover, we can also observe from Figure
2 that the approximated MIP can obtain solutions with larger service levels,
and the SAA can obtain solutions with smaller costs.

In sum, the numerical results of the tested instance show that the SAA
can obtains more non-dominated solutions. The approximated MIP performs
better, in terms of the dominance relation, the range of objective values and
the computational time.

Table 3: Comparison between the two methods for the illustrative example

The SAA (referred to as A) Approximated MIP model (referred to as B)

Time (s) σ Num ID C(A,B) MS Time (s) σ Num ID C(B,A) MS

869.4 0.060 77 0.062 0.058 0.881 93.4 0.056 17 0.078 0.312 1.075
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5.3. Computational results

Computational experiments on randomly generated instances of different
scales are conducted. The parameters are set as mentioned above. Besides,
the problem scales of the tested instances are in line with Habibi et al. (2019).
Numerical results are reported in Table 4, where the first 4 columns report the
problem scales, including the number of nodes |N |, the number of periods
|T |, the number of components |A| and the number of the vehicles |K|,
respectively.

In Table 4, we mark the better metrics in average in bold. The average
computational time of the approximated MIP model is 130.1 seconds, which
is only 6.55% of that obtained by the SAA model. In terms of the average
standard deviation σ of the customer service level, the approximated MIP
performs better, and is about 36.95% smaller than that of the SAA method.
That means, the non-dominated solutions obtained by the approximated MIP
model are more stable, in terms of the customer service level. In terms of
set coverage indicator C(A,B), we can observe that obtained by the approx-
imated MIP model is 0.308, which is larger than that of the SAA method.
That is, the approximated MIP model performs better in terms of dominance
relation. We can also observe that the number of non-dominated solutions
and the average inverted generational distance obtained by the SAA method
are better than those proposed by the approximated MIP model. Besides,
the SAA method achieves larger values, in terms of MS indicator.

According to the above numerical results, we obtain that the SAA method
performs better than the approximated MIP model, in terms of the number,
the efficiency and the range of non-dominated solutions. The approximated
MIP model has very great superiorities, in terms of the computational time,
the stability of customer service level and the dominance relations of its
non-dominated solutions. In sum, the SAA model may be chosen, if a large
number of solutions are required and the decision maker can wait for a long
time. Otherwise, we recommend the approximated MIP model, as it can
obtain solutions with high quality within a reasonable time.

6. Conclusion

This work investigate a stochastic collection-disassembly problem with
handling module selection for disassembly site, to minimize the system cost
and maximize the average customer service level. Customer demands of com-
ponents that can be reused are assumed to be stochastic, and only partial
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information on the probability distribution is known (i.e., the empirical mean
vector and covariance matrix). For the problem, we first construct a distribu-
tionally robust bi-objective formulation. The formulation cannot be directly
solved by calling off-the-shelf solvers, thus we equivalently transform the for-
mulation into a distributionally robust bi-objective chance constrained mod-
el. An SAA-based model and an approximated MIP model are constructed
and solved via the ε-constraint method framework. Various numerical exper-
iments are conducted, to evaluate the applicability and the performance of
the two models. Numerical results show that the approximated MIP model
can obtain solutions with high quality within a reasonable time.

Future research directions may include: (i) to develop bi-objective al-
gorithms that can solve the problem more efficiently, (ii) to consider the
uncertain amount of available EOL products at each collection center, and
(iii) to take the environmental impacts of the remanufacturing process in to
consideration.
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