Supplementary Information for

Mechanistic and thermodynamic insights into anion exchange by green rust

By Myriam I. Agnel*, Sylvain Grangeon, François Fauth, Erik Elkaïm, Francis Claret, Marjorie Roulet, Fabienne Warmont, Christophe Tournassat

Myriam I. Agnel

Email: <u>myriam.agnel@cnrs-orleans.fr</u>

Contents:

Supplementary text

Figs. S1 to S7

Tables S1 to S4

References for SI reference citations

Supplementary Information Text

Scherrer equation

Scherrer equation is:¹

$$D = \frac{k \lambda}{FWHM \cos(\theta)}$$

in which D is the crystallite size (Å), k is a shape constant (equal to 1), λ is the X-ray wavelength (Å), FWHM is the full width at half-maximum of the diffraction peak (rad) and θ is the Bragg angle (rad).

Calculation of XRD patterns (Fig. S6)

XRD patterns were calculated using micro-GR(Cl) as a starting structure model (Fig. S6, black line: micro-GR(Cl)) and working with the software CALCIPOW.² Mean and maximum number of layers were set to 12 and 15 respectively (lognormal distribution). Radius of crystallite in the **a**-**b** plane was fixed to 50 Å. The amount of stacking defects were set to: 0 % - 3D-ordered structure (micro-GR(Cl) in this case, black line on Fig. S6), 50 % (light blue line on Fig. S6A) and 100 % - turbostratism (red line on Fig. S6). The model from micro-GR(Cl) was also modified to obtain a green rust with two coherently stacked sheets on average (purple line on Fig. S6B).

Supplementary Figures

Fig. S1. A: TGA results for micro-GR(Cl). Full line: mass loss (%); Dash line: mass loss derivative (mg·min⁻¹); W_P = interparticle (capillary) pore water; W_{IL} = interlayer water. B: DSC results.

Fig. S2. A: TGA results for nano-GR(SO₄). Full line: mass loss (%); Dash line: mass loss derivative (mg·min⁻¹); W_P = interparticle (capillary) pore water; W_{IL} = interlayer water. B: DSC results

Fig. S3. A: TGA results for micro-GR(SO₄). Full line: mass loss (%); Dash line: mass loss derivative (mg·min⁻¹); W_P = interparticle (capillary) pore water; W_{IL} = interlayer water. B: DSC results

Fig. S4: Rietveld refinement results (black line) on micro-GR(Cl) XRD pattern (red line). Blue line is the residue between the data and the refinement results.

Fig. S5: XRD patterns of Fougerite³ (green line), micro-GR(Cl) (black line) and nano-GR(Cl) (red line). M: magnetite impurities in micro-GR(Cl). Intensities were normalized to the maximum intensity of 003 reflection.

Fig. S6: Influence of stacking defects on micro-GR(Cl). Black line: initial micro-GR XRD pattern -0 % stacking defects (A and B). Red line: 100 % stacking defects = turbostratism (A and B). Light blue line: 50 % stacking defects in the micro-GR(Cl) model (A). Purple line: two coherently stacked green rust sheets on average, assuming a lognormal distribution (B).

Fig. S7: Two equivalent hexagonal layer symmetries. If the layer symmetry is lowered, *a* becomes different from $\sqrt{3} \times b$ and the layer would not be hexagonal anymore.

Name	Concentration NaCl (mmol.L ⁻¹)	Concentration Na ₂ SO ₄ (mmol.L ⁻¹)
C150	50	0
S25	0	25
S15	0	15
S 5	40	5
S2.4	45	2.4
S1	48	1
S0.5	49	0.5

Table S1. Nomenclature and concentrations of solutions used for batch experiments

Table S2. Protocol for the batch exchange experiments of micro-GR (see Table S1 for nomenclature of solutions, AEC = anionic exchange capacity, K_{ex} = selectivity coefficient, E= Surface equivalent fraction)

Protocol	Exp S25	Exp S5	Exp S2.4	Exp S1	Exp S0.5	
Equilibrium	200 mL C150					
phase						
Rinsing 1		30-40 mL Milli-Q Water				
		Direct Filtration				
Exchange	200 mL S25	200 mL S5	20 mL S2.4	200 mL S1	200 mL S0.5	
phase 1 - 1						
2	200 mL S25	200 mL S5	40 mL S2.4	200 mL S1	200 mL S0.5	
3	200 mL S25	200 mL S5	60 mL S2.4	200 mL S1	200 mL S0.5	
4	End of this	200 mL S5	100 mL S2.4	200 mL S1	200 mL S0.5	
	experiment					
5		200 mL S5	200 mL S2.4	200 mL S1	200 mL S0.5	
6			200 mL S2.4			
Rinsing 2		30-40 mL Milli-Q Water				
		Direct Filtration				
Exchange		200 mL S25	200 mL S15	200 mL S25	200 mL S25	
phase 2 - 1						
2			200 mL S15	200 mL S25		
Obtained	Exchange	Log K _{ex} + E				
parameters	stoichiometry +					
	AEC					

Table S3. Protocol for the batch exchange experiments of nano-GR (see Table S1 for nomenclature of solutions, AEC = anionic exchange capacity, K_{ex} = selectivity coefficient, E= Surface equivalent fraction)

Protocol	Exp S25	Exp S5	Exp S2.4	
Equilibrium phase	200 mL C150			
Rinsing 1	30-40 mL Milli-Q Water			
	Direct Filtration			
Exchange phase 1 - 1	200 mL S25	200 mL S5	10 mL S2.4	
2	200 mL S25	200 mL S5	10 mL S2.4	
3	200 mL S25	200 mL S5	10 mL S2.4	
4	End of this experiment	200 mL S5	15 mL S2.4	
5		200 mL S5	20 mL S2.4	
6			20 mL S2.4	
Rinsing 2		30-40 mL Milli-Q Water		
		Direct Filtration		
Exchange phase 2 - 1		200 mL S25	200 mL \$15	
2			200 mL S15	
Obtained parameters	Exchange	$Log K_{ex} + E$		
	stoichiometry + AEC			

Sample	n	Fe	Со	Fe(III)	Fe(II)	Cl	S
					<u> </u>		
Micro-	61	$0.67 \pm$	$0.33 \pm$	$0.25 \pm$	$0.42 \pm$	$0.25 \pm$	0 ± 0
GR (Cl)		0.04	0.04	0.04	0.08	0.04	
Micro-	49	$0.66 \pm$	$0.34 \pm$	$0.22 \pm$	$0.44 \pm$	0 ± 0	0.11 ±
		0.02	0.02	0.02	0.04		0.01
GK(SU4)		0.02	0.02	0.02	0.04		0.01
Nano-	35	$0.49 \pm$	0.51 ±	$0.2 \pm$	$0.29 \pm$	0.2 ±	0 ± 0
GR (Cl)		0.05	0.05	0.03	0.06	0.03	
Nano-	53	$0.52 \pm$	$0.48 \pm$	0.16 ±	$0.37 \pm$	0 ± 0	$0.08 \pm$
GR(SO ₄)		0.03	0.03	0.02	0.05		0.01

Table S4. Stoichiometries of Fe, Co, Cl and S contents in studied samples determined by EPMA (on the basis of Fe+Co = 1). Each number is an average on the number of independent measurements (n; \pm standard deviation). Fe(III) stoichiometry is inferred from Cl stoichiometry or SO₄ stoichiometry times 2 and Fe(II)=Fe - Fe(III).

References

- Muniz, F. T.; Aurélio, M.; Miranda, R.; Morilla, C.; Santos, D.; Sasaki, J. M. The Scherrer equation and the dynamical theory of X-ray diffraction. *Acta Crystallogr.* 2016, 72, 385– 390.
- (2) Plançon, A. CALCIPOW: a program for calculating the diffraction by disordered lamellar structures. *J. Appl. Crystallogr.* **2002**, *35*, 377–377.
- (3) Trolard, F.; Bourrié, G.; Abdelmoula, M.; Refait, P.; Feder, F. Fougerite, a new mineral of the pyroaurite-iowaite group: Description and crystal structure. *Clays Clay Miner*. **2007**, *55*, 323–334.