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Introduction

In this article, we will discuss parametric estimation for a hypo-elliptic diffusion process. More precisely, given a stochastic basis (Ω, F , F, P ) with a right-continuous filtration F = (F t ) t∈R + , R + = [0, ∞), suppose that an F-adapted process Z t = (X t , Y t ) satisfies the stochastic differential equation dX t = A(Z t , θ 2 )dt + B(Z t , θ 1 )dw t dY t = H(Z t , θ 3 )dt (1.1) Here A : R

d Z × Θ 2 → R d X , B : R d Z × Θ 1 → R d X ⊗ R r , H : R d Z × Θ 3 → R d Y
, and w = (w t ) t∈R + is an r-dimensional F-Wiener process. The spaces Θ i (i = 1, 2, 3) are the unknown parameter spaces of the components of θ = (θ 1 , θ 2 , θ 3 ) to be estimated from the data (Z t j ) j=0,1,...,n , where t j = jh, h = h n satisfying h → 0, nh → ∞ and nh 2 → 0 as n → ∞.

Estimation theory has been well developed for diffusion processes. Even focusing on parametric estimation for ergodic diffusions, there is huge amount of studies: Kutoyants [START_REF] Kutoyants | Parameter estimation for stochastic processes[END_REF][START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF][START_REF] Kutoyants | Some problems of nonparametric estimation by observations of ergodic diffusion process[END_REF], Prakasa Rao [START_REF] Rao | Asymptotic theory for nonlinear least squares estimator for diffusion processes[END_REF][START_REF] Rao | Statistical inference from sampled data for stochastic processes[END_REF], Yoshida [START_REF] Yoshida | Estimation for diffusion processes from discrete observation[END_REF][START_REF] Yoshida | Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations[END_REF], Bibby and Sørensen [START_REF] Bibby | Martingale estimation functions for discretely observed diffusion processes[END_REF], Kessler [START_REF] Kessler | Estimation of an ergodic diffusion from discrete observations[END_REF], Küchler and Sørensen [START_REF] Küchler | Exponential families of stochastic processes[END_REF], Genon-Catalot et al. [START_REF] Genon-Catalot | Parameter estimation for discretely observed stochastic volatility models[END_REF], Gloter [START_REF] Gloter | Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient[END_REF][START_REF] Gloter | Parameter estimation for a discrete sampling of an intergrated ornsteinuhlenbeck process[END_REF][START_REF] Gloter | Efficient estimation of drift parameters in stochastic volatility models[END_REF], Sakamoto and Yoshida [START_REF] Sakamoto | Third-order asymptotic expansion of M-estimators for diffusion processes[END_REF], Uchida [START_REF] Uchida | Contrast-based information criterion for ergodic diffusion processes from discrete observations[END_REF], Uchida and Yoshida [START_REF] Uchida | Information criteria in model selection for mixing processes[END_REF][START_REF] Uchida | Estimation for misspecified ergodic diffusion processes from discrete observations[END_REF][START_REF] Uchida | Adaptive estimation of an ergodic diffusion process based on sampled data[END_REF], Kamatani and Uchida [START_REF] Kamatani | Hybrid multi-step estimators for stochastic differential equations based on sampled data[END_REF], De Gregorio and Iacus [START_REF] De Gregorio | Adaptive lasso-type estimation for multivariate diffusion processes[END_REF], Genon-Catalot and Larédo [START_REF] Genon-Catalot | Estimation for stochastic differential equations with mixed effects[END_REF], Suzuki and Yoshida [START_REF] Suzuki | Penalized least squares approximation methods and their applications to stochastic processes[END_REF] among many others. Nakakita and Uchida [START_REF] Nakakita | Inference for ergodic diffusions plus noise[END_REF] and Nakakita et al. [START_REF] Nakakita | Quasi-likelihood analysis and bayes-type estimators of an ergodic diffusion plus noise[END_REF] studied estimation under measurement error; related are Gloter and Jacod [START_REF] Gloter | Diffusions with measurement errors. I. local asymptotic normality[END_REF][START_REF] Gloter | Diffusions with measurement errors. II. optimal estimators[END_REF]. Non parametric estimation for the coefficients of an ergodic diffusion has also been widely studied : Dalayan and Kutoyants [START_REF] Dalalyan | Asymptotically efficient trend coefficient estimation for ergodic diffusion[END_REF], Kutoyants [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF], Dalalyan [START_REF] Dalalyan | Sharp adaptive estimation of the drift function for ergodic diffusions[END_REF], Dalalyan and Reiss [START_REF] Dalalyan | Asymptotic statistical equivalence for scalar ergodic diffusions[END_REF][START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF], Comte and Genon-Catalot [START_REF] Comte | Penalized projection estimator for volatility density[END_REF], Comte et al. [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF], Schmisser [START_REF] Schmisser | Penalized nonparametric drift estimation for a multidimensional diffusion process[END_REF], to name a few. Historically attentions were paid to inference for non-degenerate cases.

Recently there is a growing interest in hypo-elliptic diffusions, that appear in various applied fields. Examples of the hypo-elliptic diffusion include the harmonic oscillator, the Van der Pol oscillator and the FitzHugh-Nagumo neuronal model; see e.g. León and Samson [START_REF] León | Hypoelliptic stochastic FitzHugh-Nagumo neuronal model: Mixing, up-crossing and estimation of the spike rate[END_REF]. For parametric estimation of hypo-elliptic diffusions, we refer the reader to Gloter [START_REF] Gloter | Parameter estimation for a discretely observed integrated diffusion process[END_REF] for a discretely observed integrated diffusion process, and Samson and Thieullen [START_REF] Samson | A contrast estimator for completely or partially observed hypoelliptic diffusion[END_REF] for a contrast estimator. Comte et al. [START_REF] Comte | Adaptive estimation for stochastic damping hamiltonian systems under partial observation[END_REF] gave adaptive estimation under partial observation. Recently, Ditlevsen and Samson [START_REF] Ditlevsen | Hypoelliptic diffusions: filtering and inference from complete and partial observations[END_REF] studied filtering and inference for hypo-elliptic diffusions from complete and partial observations. When the observations are discrete and complete, they showed asymptotic normality of their estimators under the assumption that the true value of some of parameters are known. Melnykova [START_REF] Melnykova | Parametric inference for multidimensional hypoelliptic ergodic diffusion with full observations[END_REF] studied the estimation problem for the model (1.1), comparing contrast functions and least square estimates. The contrast functions we propose in this paper are different from the one in [START_REF] Melnykova | Parametric inference for multidimensional hypoelliptic ergodic diffusion with full observations[END_REF].

In this paper, we will present several estimation schemes. Since we assume discrete-time observations of Z= (Z t ) t∈R+ , quasi-likelihood estimation for θ 1 and θ 2 is known; only difference from the standard diffusion case is the existence of the covariate Y = (Y t ) t∈R+ in the equation of X= (X t ) t∈R+ but it causes no theoretical difficulty. We will give an exposition for construction of those standard estimators in Sections 7 and 8 for selfcontainedness. Thus, our first approach in Section 4 is toward estimation of θ 3 with initial estimators for θ 1 and θ 2 . The idea for construction of the quasi-likelihood function in the elliptic case was based on the local Gaussian approximation of the transition density. Then it is natural to approximate the distribution of the increments of Y by that of the principal Gaussian variable in the expansion of the increment. However, this method causes deficiency, as we will observe there; see Remark 4.6 on p. [START_REF] Gloter | Diffusions with measurement errors. II. optimal estimators[END_REF]. We present a more efficient method by incorporating an additional Gaussian part from X. The rate of convergence attained by the estimator for θ 3 is n -1/2 h 1/2 and it is much faster than the rate (nh) -1/2 for θ 2 and n -1/2 for θ 1 . Section 5 treats some adaptive estimators using suitable initial estimators for (θ 1 , θ 2 , θ 3 ), and shows joint asymptotic normality. Then it should be remarked that the asymptotic variance of our estimator θ1 for θ 1 has improved that of the ordinary volatility parameter estimator, e.g. θ0

1 recalled in Section 7, that would be asymptotically optimal if the system consisted only of X. In Section 6, we consider a non-adaptive joint quasi-maximum likelihood estimator. This method does not require initial estimators. From computational point of view, adaptive methods often have merits by reducing dimension of parameters, but the non-adaptive method is still theoretically interesting. Section 2 collects the assumptions under which we will work. Section 3 offers several basic estimates to the increments of Z.

To investigate efficiency of the presented estimators, we need the LAN property of the exact likelihood function of the hypo-elliptic diffusion. We will discuss this problem elsewhere.

Assumptions

We assume that Θ i (i = 1, 2, 3) are bounded open domain in R p i , respectively, and Θ = 3 i=1 Θ i has a good boundary so that Sobolev's embedding inequality holds, that is, there exists a positive constant C Θ such that sup

θ∈Θ |f i (θ i )| ≤ C Θ 1 k=0 ∂ k θ f L p (Θ) (2.1)
for all f ∈ C 1 (Θ) and p > 3 i=1 p i . If Θ has a Lipschitz boundary, then this condition is satisfied. Obviously, the embedding inequality (2.1) is valid for functions depending only on a part of components of θ.

In this paper, we will propose an estimator for θ and show its consistency and asymptotic normality.

Given a finite-dimensional real vector space E, denote by

C a,b p (R d Z ×Θ i ; E) the set of functions f : R d Z × Θ i → E such that f is continuously differentiable a times in z ∈ R d Z
and b times in θ i ∈ Θ in any order and f and all such derivatives are continuously extended to R d Z × Θ i , moreover, they are of at most polynomial growth in z ∈ R d Z uniformly in θ ∈ Θ. Let C = BB ⋆ , ⋆ denoting the matrix transpose. We suppose that the process (Z t ) t∈R + that generates the data satisfies the stochastic differential equation (1.1) for a true value

θ * = (θ * 1 , θ * 2 , θ * 3 ) ∈ Θ 1 ×Θ 2 ×Θ 3 . [A1 ] (i) A ∈ C i A ,j A p (R d Z × Θ 2 ; R d X ) and B ∈ C i B ,j B p (R d Z × Θ 1 ; R d X ⊗ R r ). (ii) H ∈ C i H ,j H p (R d Z × Θ 3 ; R d Y ).
We will denote F x for ∂ x F , F y for ∂ y F , and F i for ∂ θ i F .

[A2 ] (i) sup t∈R + Z t p < ∞ for every p > 1.

(ii) There exists a probability measure ν on R d Z such that

1 T T 0 f (Z t ) dt → p f (z)ν(dz) (T → ∞)
for any bounded continuous function f : R d Z → R.

(iii) The function θ 1 → C(Z t , θ 1 ) -1 is continuous on Θ 1 a.s., and (c) Fatou's lemma implies

sup θ 1 ∈Θ 1 sup t∈R + det C(Z t , θ 1 ) -1 p < ∞ for every p > 1. (iv) For the R d Y ⊗ R d Y valued function V (z, θ 1 , θ 3 ) = H x (z, θ 3 )C(z, θ 1 )H x (z, θ 3 ) ⋆ , the function (θ 1 , θ 3 ) → V (Z t , θ 1 , θ 3 ) -1 is continuous on Θ 1 × Θ 3 a.s., and 
sup (θ 1 ,θ 3 )∈Θ 1 ×Θ 3 sup t∈R + det V (Z t , θ 1 , θ 3 ) -1 p < ∞ for every p > 1.
|z| p ν(dz) + sup θ 1 ∈Θ 1 det C(z, θ 1 ) -p ν(dz) + sup (θ 1 ,θ 3 )∈Θ 1 ×Θ 3 det V (z, θ 1 , θ 3 ) -p ν(dz) < ∞
for any p > 0.

Let

Y (1) (θ 1 ) = - 1 2 Tr C(z, θ 1 ) -1 C(z, θ * 1 ) -d X + log det C(z, θ 1 ) det C(z, θ * 1 ) ν(dz). Since | log x| ≤ x + x -1 for x > 0, Y (1) (θ 1 ) is a continuous function on Θ 1 well defined under [A1] and [A2]. Let Let Y (3) (θ 3 ) = -6V (z, θ * 1 , θ 3 ) -1 H(z, θ 3 ) -H(z, θ * 3 ) ⊗2 ν(dz).
The random field Y (3) is well defined under [A1] and [A2]. Let

Y (J,3) (θ 1 , θ 3 ) = -6V (z, θ 1 , θ 3 ) -1 H(z, θ 3 ) -H(z, θ * 3 ) ⊗2 ν(dz).
We will assume all or some of the following identifiability conditions

[A3 ] (i) There exists a positive constant χ 1 such that

Y (1) (θ 1 ) ≤ -χ 1 |θ 1 -θ * 1 | 2 (θ 1 ∈ Θ 1 )
.

(i ′ ) There exists a positive constant χ ′ 1 such that Y (J,1) (θ 1 ) ≤ -χ ′ 1 |θ 1 -θ * 1 | 2 (θ 1 ∈ Θ 1 ).
(ii) There exists a positive constant χ 2 such that

Y (2) (θ 2 ) ≤ -χ 2 |θ 2 -θ * 2 | 2 (θ 2 ∈ Θ 2 ).
(iii) There exists a positive constant χ 3 such that

Y (3) (θ 3 ) ≤ -χ 3 |θ 3 -θ * 3 | 2 (θ 3 ∈ Θ 3 ).
(iii ′ ) There exists a positive constant χ 3 such that

Y (J,3) (θ 1 , θ 3 ) ≤ -χ 3 |θ 3 -θ * 3 | 2 (θ 1 ∈ Θ 1 , θ 3 ∈ Θ 3 ).

Basic estimation of the increments

We denote

U ⊗k for U ⊗ • • • ⊗ U (k-times) for a tensor U. For tensors S 1 = (S 1 i 1,1 ,...,i 1,d 1 ;j 1,1 ,...,j 1,k 1
), ..., S m = (S m i m,1 ,...,i m,dm ;j m,1 ,...,j m,km ) and and a tensor T = (T i 1,1 ,...,i 1,d 1 ,...,i m,1 ,...,i m,dm ), we write . This notation will be applied for a tensor-valued tensor T as well.

T [S 1 , ..., S m ] = T [S 1 ⊗ • • • ⊗ S m ] = i 1,1 ,...,i 1,d 1 ,...,i m,1 ,...,i m,dm T i 1,1 ,...,i
We have

h -1/2 ∆ j X = h -1/2 t j t j-1 B(Z t , θ * 1 )dw t + h -1/2 t j t j-1 A(Z t , θ * 2 )dt = h -1/2 B(Z t j-1 , θ * 1 )∆ j w + r (3.2) j (3.1)
where

r (3.2) j = h -1/2 t j t j-1 (B(Z t , θ * 1 ) -B(Z t j-1 , θ * 1 ))dw t + h -1/2 t j t j-1 A(Z t , θ * 2 )dt (3.2) Lemma 3.1. (a) Under [A1] with (i A , j A , i B , j B , i H , j H ) = (0, 0, 0, 0, 0, 0) and [A2] (i), sup s,t∈R + , |s-t|≤∆ Z s -Z t p = O(∆ 1/2 ) (∆ ↓ 0) (3.3)
for every p > 1.

(b) Under [A1] with (i A , j A , i B , j B , i H , j H ) = (0, 0, 1, 0, 0, 0) and [A2] (i), r

(3.2) j = O L ∞-(h 1/2 ), i.e., sup n sup j r (3.2) j p = O(h 1/2 )
for every p > 1.

Proof. (a) is trivial. For (b), the first term on the right-hand side of (3.2) can be estimated by the Burkholder-Davis-Gundy inequality, Taylor's formula for B(Z t , θ * 1 ) -B(Z t j-1 , θ * 1 ) and by (3.3).

We have

h -1/2 ∆ j X = h -1/2 t j t j-1 B(Z t , θ * 1 )dw t + h -1/2 t j t j-1 A(Z t , θ * 2 )dt = h -1/2 t j t j-1 B(Z t , θ * 1 )dw t + h 1/2 A(Z t j-1 , θ * 2 ) + r (3.4) j where r (3.4) j = h -1/2 t j t j-1 A(Z t , θ * 2 ) -A(Z t j-1 , θ * 2 ) dt (3.4) Then Lemma 3.2. r (3.4) j = O L ∞-(h), i.e., sup n sup j r (3.4) j p = O(h) (3.5)
for every p > 1 if [A1] for (i A , j A , i B , j B , i H , j H ) = (1, 0, 0, 0, 0, 0) and [A2] (i) hold.

Proof. Thanks to (3.3).

Let

L H (z, θ 1 , θ 2 , θ 3 ) = H x (z, θ 3 )[A(z, θ 2 )] + 1 2 H xx (z, θ 3 )[C(z, θ 1 )] + H y (z, θ 3 )[H(z, θ 3 )]. Define the R d Y -valued function G n (z, θ 1 , θ 2 , θ 3 ) by G n (z, θ 1 , θ 2 , θ 3 ) = H(z, θ 3 ) + h 2 L H z, θ 1 , θ 2 , θ 3 .
Write

ζ j = √ 3 t j t j-1 t t j-1 dw s dt
Then E ζ ⊗2 j = h 3 I r for the r-dimensional identity matrix I r . We have

∆ j Y -hG n (Z t j-1 , θ 1 , θ 2 , θ 3 ) = ∆ j Y -hH(Z t j-1 , θ 3 ) - h 2 2 L H Z t j-1 , θ 1 , θ 2 , θ 3 = hH(Z t j-1 , θ * 3 ) -hH(Z t j-1 , θ 3 ) +H x (Z t j-1 , θ * 3 )B(Z t j-1 , θ * 1 ) t j t j-1 t t j-1 dw s dt + t j t j-1 t t j-1 H x (Z s , θ * 3 )B(Z s , θ * 1 ) -H x (Z t j-1 , θ * 3 )B(Z t j-1 , θ * 1 ) dw s dt + t j t j-1 t t j-1 L H (Z s , θ * 1 , θ * 2 , θ * 3 ) -L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) dsdt = hH(Z t j-1 , θ * 3 ) -hH(Z t j-1 , θ 3 ) + κ(Z t j-1 , θ * 1 , θ * 3 )ζ j + ρ j (θ 1 , θ 2 , θ 3 ) (3.6)
where

κ(Z t j-1 , θ * 1 , θ * 3 ) = 3 -1/2 H x (Z t j-1 , θ * 3 )B(Z t j-1 , θ * 1 )
and

ρ j (θ 1 , θ 2 , θ 3 ) = t j t j-1 t t j-1 H x (Z s , θ * 3 )B(Z s , θ * 1 ) -H x (Z t j-1 , θ * 3 )B(Z t j-1 , θ * 1 ) dw s dt + t j t j-1 t t j-1 L H (Z s , θ * 1 , θ * 2 , θ * 3 ) -L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) dsdt. (3.7) Let D j (θ 1 , θ 2 , θ 3 ) = h -1/2 ∆ j X -hA(Z t j-1 , θ 2 ) h -3/2 ∆ j Y -hG n (Z t j-1 , θ 1 , θ 2 , θ 3 ) . (3.8) Lemma 3.3. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 0, 1, 0, 3, 0) and [A2] (i) are satisfied. Then (a) sup n sup j ρ j (θ * 1 , θ * 2 , θ * 3 ) p = O(h 2 ) for every p > 1. (b) sup n sup j D j (θ * 1 , θ * 2 , θ * 3 ) p < ∞ for every p > 1.
Proof. It is possible to show (a) by (3.7) and using the estimate (3.3) with the help of Taylor's formula. Additionally to the representation (3.6), by using (3.1) and (3.2), we obtain (b).

We denote by (B x B)(z, θ 2 ) the tensor defined by (

B x B)(z, θ 2 )[u 1 ⊗u 2 ] = B x (z, θ 2 )[u 2 , B(z, θ 2 )[u 1 ]] for u 1 , u 2 ∈ R r .
Moreover, we write dw s dw t for dw s ⊗dw t , and (B x B)(Z t j-1 , θ * 2 )

t j t j-1 t t j-1 dw s dw t for (B x B)(Z t j-1 , θ * 2 )
t j t j-1 t t j-1 dw s dw t . We will apply this rule in similar situations. Let

L B (z, θ 1 , θ 2 , θ 3 ) = B x (z, θ 1 )[A(z, θ 2 )] + 1 2 B xx (z, θ 3 )[C(z, θ 1 )] + B y (z, θ 3 )[H(z, θ 3 )]. (3.9) Lemma 3.4. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 0, 0, 0) and [A2] (i) are satisfied. Then h -1/2 ∆ j X -hA(Z t j-1 , θ 2 ) = ξ (3.11) j + ξ (3.12) j + r (3.13) j (θ 2 ) (3.10)
where

ξ (3.11) j = h -1/2 B(Z t j-1 , θ * 1 )∆ j w, (3.11) ξ (3.12) 
j = h -1/2 (B x B)(Z t j-1 , θ * 1 ) t j t j-1 t t j-1 dw s dw t , (3.12) 
and r

(3.13) j (θ 2 ) = h -1/2 t j t j-1 t t j-1 ((B x B)(Z s , θ * 1 ) -(B x B)(Z t j-1 , θ * 1 ))dw s dw t +h -1/2 t j t j-1 t t j-1 L B (Z s , θ * 1 , θ * 2 , θ * 3 )dsdw t +h -1/2 t j t j-1 A(Z t , θ * 2 ) -A(Z t j-1 , θ 2 ) dt. (3.13)
Moreover,

sup n sup j r (3.13) j (θ * 2 ) p = O(h) (3.14)
for every p > 1, and

r (3.13) j (θ 2 ) ≤ r (3.16) n,j h 1/2 θ 2 -θ * 2 + h (3.15)
with some random variables r for every p > 1.

Proof. 

r (3.13) j (θ 2 ) 1 {|θ 2 -θ * 2 |<r} ≤ r (3.16) n,j h 1/2 θ 2 -θ * 2 + h 1 {|θ 2 -θ * 2 |<r}
with some positive constant r and some random variables r

(3.16) n,j
satisfying (3.16). The small number r was taken to ensure convexity of the vicinity of θ * 2 . For θ 2 such that |θ 2 -θ * 2 | ≥ r, the estimate (3.15) is valid by enlarging r

(3.16) n,j if necessary. Lemma 3.5. (a) Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 0) and [A2] (i) are satisfied. Then ∆ j Y -hG n (Z t j-1 , θ 1 , θ 2 , θ * 3 ) = ξ (3.18) j + ξ (3.19) j + h 3/2 r (3.20) j (θ 1 , θ 2 ) + h 3/2 r (3.21) j (θ 1 , θ 2 ) (3.17)
where

ξ (3.18) j = κ(Z t j-1 , θ * 1 , θ * 3 )ζ j , (3.18) 
ξ (3.19) j = ((H x B) x B)(Z t j-1 , θ * 1 , θ * 3 ) t j t j-1 t t j-1 s t j-1 dw r dw s dt, (3.19) r (3.20) 
j (θ 1 , θ 2 ) = h -3/2 t j t j-1 t t j-1 s t j-1 ((H x B) x B)(Z r , θ * 1 , θ * 3 ) -((H x B) x B)(Z t j-1 , θ * 1 , θ * 3 ) dw r dw s dt +h -3/2 t j t j-1 t t j-1 s t j-1 L HxB (Z r , θ * 1 , θ * 2 , θ * 3 )drdw s dt +h -3/2 t j t j-1 t t j-1 L H (Z s , θ 1 , θ 2 , θ * 3 ) -L H (Z t j-1 , θ 1 , θ 2 , θ * 3 ) dsdt (3.20) with L HxB (z, θ 1 , θ 2 , θ 3 ) = (H x B) x (z, θ 1 , θ 3 )[A(z, θ 2 )] + 1 2 (H x B) xx (z, θ 1 , θ 3 )[C(z, θ 1 )] +(H x B) y (z, θ 1 , θ 3 )[H(z, θ 3 )],
and

r (3.21) j (θ 1 , θ 2 ) = h -3/2 t j t j-1 t t j-1 L H (Z s , θ * 1 , θ * 2 , θ * 3 ) -L H (Z s , θ 1 , θ 2 , θ * 3 ) dsdt. (3.21)
Moreover,

sup n sup j sup (θ 1 ,θ 2 )∈Θ 1 ×Θ 2 r (3.20) j (θ 1 , θ 2 ) p = O(h) (3.22)
for every p > 1, and

r (3.21) j (θ 1 , θ 2 ) ≤ h 1/2 r (3.24) n,j θ 1 -θ * 1 + θ 2 -θ * 2 (3.23)
for all (θ 1 , θ 2 ) ∈ Θ 1 × Θ 2 with some random variables r for every p > 1.

(b) Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 2, 0) and [A2] (i) are satisfied.
Then there exist random variables r

(3.25) n,j
and a number ρ such that sup

θ 3 ∈Θ 3 D j (θ 1 , θ 2 , θ 3 ) -D j (θ * 1 , θ * 2 , θ 3 ) ≤ h 1/2 r (3.25) n,j θ 1 -θ * 1 + θ 2 -θ * 2 for all (θ 1 , θ 2 ) ∈ B((θ * 1 , θ * 2 ), ρ) and that sup n sup j r (3.25) n,j p < ∞ (3.25)
for every p > 1.

Proof. By (3.6), we have

∆ j Y -hG n (Z t j-1 , θ 1 , θ 2 , θ * 3 ) = ξ (3.18) j + ρ j (θ 1 , θ 2 , θ * 3 ) (3.26) 
and

ρ j (θ 1 , θ 2 , θ * 3 ) = t j t j-1 t t j-1 H x (Z s , θ * 3 )B(Z s , θ * 1 ) -H x (Z t j-1 , θ * 3 )B(Z t j-1 , θ * 1 ) dw s dt + t j t j-1 t t j-1 L H (Z s , θ * 1 , θ * 2 , θ * 3 ) -L H (Z t j-1 , θ 1 , θ 2 , θ * 3 ) dsdt.
Then the decomposition (3.17) is obvious. The first and third terms on the right-hand side of (3.20) can be estimated with Taylor's formula and (3.3), and the second term is easy to estimate. Thus, we obtain (3.22). Since

∂ (θ 1 ,θ 2 ) L H (z, θ 1 , θ 2 , θ * 3
) is bound by a polynomial in z uniformly in (θ 1 , θ 2 ), there exist random variables r 

(θ 1 , θ 2 )-(θ * 1 , θ * 2 )| < r}, next see this estimate is valid on Θ 1 ×Θ 2 \{|(θ 1 , θ 2 )-(θ * 1 , θ * 2 )| < r} by redefining r (3.24) n,j
if necessary. We obtained (a). The assertion (b) is easy to verify with (3.6), (3.7) and Lemma 3.4. Lemma 3.6. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (0, 0, 0, 0, 2, 1) and [A2] (i) are satisfied. Then

sup (θ 1 ,θ 2 )∈Θ 1 ×Θ 2 D j (θ 1 , θ 2 , θ 3 ) -D j (θ 1 , θ 2 , θ ′ 3 ) ≤ h -1/2 r (3.27) n,j θ 3 -θ ′ 3 (θ 3 , θ ′ 3 ∈ Θ 3 )
for some random variables r for every p > 1.

Proof.

D j (θ 1 , θ 2 , θ 3 ) -D j (θ 1 , θ 2 , θ ′ 3 ) = 0 h -1/2 H(Z t j-1 , θ ′ 3 ) -H(Z t j-1 , θ 3 ) + h 1/2 2 L H (Z t j-1 , θ 1 , θ 2 , θ ′ 3 ) -L H (Z t j-1 , θ 1 , θ 2 , θ 3 )
Therefore the lemma is obvious. Apply the Taylor formula for the argument θ 3 if θ 3 and θ ′ 3 are close, otherwise and if necessary, redifine r

(3.27) n,j .
4 An adaptive estimator for θ 3

We will work with some initial estimators θ0

1 for θ 0 1 and θ0 2 for θ 2 . The following standard convergence rates, in part or fully, will be assumed for these estimators:

[A4 ] (i) θ0 1 -θ * 1 = O p (n -1/2 ) as n → ∞ (ii) θ0 2 -θ * 2 = O p (n -1/2 h -1/2 ) as n → ∞
Sections 7 and 8 recall certain standard estimators for θ 1 and θ 2 , respectively. The expansions (3.1) and (3.6) with Lemma 3.5 suggest two approaches for estimating θ 3 . The first approach is based on the likelihood of h -3/2 ∆ j Y -hG n (Z t j-1 , θ 1 , θ 2 , θ 3 ) only. The second one uses the likelihood corresponding to D j (θ 1 , θ 2 , θ 3 ). However, it is possible to show that the first approach gives less optimal asymptotic variance; see Remark 4.6. So, we will treat the second approach here.

Adaptive quasi-likelihood function for

θ 3 Let S(z, θ 1 , θ 3 ) = C(z, θ 1 ) 2 -1 C(z, θ 1 )H x (z, θ 3 ) ⋆ 2 -1 H x (z, θ 3 )C(z, θ 1 ) 3 -1 H x (z, θ 3 )C(z, θ 1 )H x (z, θ 3 ) ⋆ Then S(z, θ 1 , θ 3 ) -1 = C(z, θ 1 ) -1 + 3H x (z, θ 3 ) ⋆ V (z, θ 1 , θ 3 ) -1 H x (z, θ 3 ) -6H x (z, θ 3 ) ⋆ V (z, θ 1 , θ 3 ) -1 -6V (z, θ 1 , θ 3 ) -1 H x (z, θ 3 ) 12V (z, θ 1 , θ 3 ) -1 . (4.1)
Recall that

V (z, θ 1 , θ 3 ) = H x (z, θ 3 )C(z, θ 1 )H x (z, θ 3 ) ⋆ . Let Ŝ(z, θ 3 ) = S(z, θ0 1 , θ 3 ).
We define a log quasi-likelihood function by

H (3) n (θ 3 ) = - 1 2 n j=1 Ŝ(Z t j-1 , θ 3 ) -1 D j ( θ0 1 , θ0 2 , θ 3 ) ⊗2 + log det Ŝ(Z t j-1 , θ 3 ) . (4.2)
Let θ0 3 be a quasi-maximum likelihood estimator (QMLE) for θ 3 for H

n , that is, θ0 3 is a Θ 3valued measurable mapping satisfying H (3) n ( θ0 3 ) = max

θ 3 ∈Θ 3 H (3) n (θ 3 ).
The QMLE θ0 3 for H

n depends on n as it does on the data (Z t j ) j=0,1,...,n ; θ0 1 in the function Ŝ also depends on (Z t j ) j=0,1,...,n .

We introduce the following random fields depending on n.

Ψ 1 (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), 0 2 -1 ∂ 1 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), 0 2 -1 H xx (z, θ 3 )[∂ 1 C(Z t j-1 , θ 1 )] , Ψ 2 (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), ∂ 2 A(Z t j-1 , θ 1 , θ 2 ) 2 -1 ∂ 2 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), ∂ 2 A(Z t j-1 , θ 1 , θ 2 ) 2 -1 H x (z, θ 3 )[∂ 2 A(Z t j-1 , θ 2 )] Ψ 2 (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), ∂ 2 A(Z t j-1 , θ 2 ) 2 -1 ∂ 2 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), ∂ 2 A(Z t j-1 , θ 2 ) 2 -1 H x (z, θ 3 )[∂ 2 A(Z t j-1 , θ 2 )]
,

where

D j (θ * 1 , θ * 2 , θ * 3 ) =   ξ (3.11) j + ξ (3.12) j h -3/2 ξ (3.18) j + ξ (3.19) j   ,
and

Ψ 3 (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗ 0 ∂ 3 H(Z t j-1 , θ 3 ) + 2 -1 h∂ 3 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) Ψ 3 (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗ 0 ∂ 3 H(Z t j-1 , θ 3 ) + 2 -1 h∂ 3 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) Ψ 3,1 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), 0 ∂ 3 H(Z t j-1 , θ 3 ) Ψ 3,1 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), 0 ∂ 3 H(Z t j-1 , θ 3 ) Ψ 3,2 (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), 0 2 -1 h∂ 3 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) Ψ 3,3 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = 1 2 n j=1 S -1 (∂ 3 S)S -1 (Z t j-1 , θ 1 , θ 3 ) D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗2 -S(Z t j-1 , θ 1 , θ 3 ) Ψ 33,1 (θ 1 , θ 2 , θ 3 ) = - n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 0 ∂ 3 H(Z t j-1 , θ 3 ) + 2 -1 h∂ 3 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) ⊗2 Ψ 33,2 (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗ 0 ∂ 2 3 H(Z t j-1 , θ 3 ) + 2 -1 h∂ 2 3 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) Ψ 33,3 (θ 1 , θ 3 ) = - 1 2 n j=1 S -1 (∂ 3 S)S -1 (Z t j-1 , θ 1 , θ 3 ) ∂ 3 S(Z t j-1 , θ 1 , θ 3 ) Ψ 33,4 (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = -2 n j=1 S -1 (∂ 3 S)S -1 (Z t j-1 , θ 1 , θ 3 ) [D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗ 0 ∂ 3 H(Z t j-1 , θ 3 ) + 2 -1 h∂ 3 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) Ψ 33,5 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = 1 2 n j=1 ∂ 3 S -1 (∂ 3 S)S -1 (Z t j-1 , θ 1 , θ 3 ) D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗2 -S(Z t j-1 , θ 1 , θ 3 ) .

Consistency of θ0

3 Lemma 4.1. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (0, 0, 0, 1, 1, 1) and [A2] (i), (iii) and (iv) are fulfilled. Then

sup t∈R + sup (θ 1 ,θ 3 )∈Θ 1 ×Θ 3 S(Z t , θ 1 , θ 3 ) + det S(Z t , θ 1 , θ 3 ) -1 + S(Z t , θ 1 , θ 3 ) -1 p < ∞
for every p > 1

Proof. By [A2] (iii) and (iv), det S(Z t j-1 , θ 1 , θ 3 ) -1 as well as S(Z t j-1 , θ 1 , θ 3 ) is continuous on Θ 1 × Θ 3 a.s., and continuously differentiable on Θ 1 × Θ 3 . Moreover we see sup

t∈R + i=0,1 sup (θ 1 ,θ 3 )∈Θ 1 ×Θ 3 ∂ i (θ 1 ,θ 3 ) det S(Z t , θ 1 , θ 3 ) -1 p < ∞
for every p > 1 from (4.1). This implies that sup

t∈R + sup (θ 1 ,θ 3 )∈Θ 1 ×Θ 3 det S(Z t , θ 1 , θ 3 ) -1 p < ∞
for every p > 1 by Sobolev's inequality. The inequality

sup t∈R + sup (θ 1 ,θ 3 )∈Θ 1 ×Θ 3 S(Z t , θ 1 , θ 3 ) p < ∞
for every p > 1 is rather easy to show.

Let

Y (3) n (θ 3 ) = n -1 h H (3) n (θ 3 ) -H (3) n (θ * 3 ) . Theorem 4.2. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 1) and [A2] are satisfied. Then sup θ 3 ∈Θ 3 Y (3) n (θ 3 ) -Y (3) (θ 3 ) → p 0 (4.3) as n → ∞, if θ0 1 → p θ * 1 and θ0 2 → p θ * 2 . Moreover, θ0 3 → p θ * 3 if [A3] (iii) is additionally satisfied.
Proof of Theorem 4.2. We have

Y (3) n (θ 3 ) = n -1 h 1/2 n j=1 Ŝ(Z t j-1 , θ 3 ) -1 h 1/2 δ j ( θ0 1 , θ0 2 , θ 3 ), D j ( θ0 1 , θ0 2 , θ * 3 ) - 1 2n n j=1 Ŝ(Z t j-1 , θ 3 ) -1 h 1/2 δ j ( θ0 1 , θ0 2 , θ 3 ) ⊗2 + n -1 hR (4.4) n (θ 3 )
where 

δ j (θ 1 , θ 2 , θ 3 ) = -D j (θ 1 , θ 2 , θ 3 ) + D j (θ 1 , θ 2 , θ * 3 ) and R (4.4) n (θ 3 ) = - 1 2 n j=1 Ŝ(Z t j-1 , θ 3 ) -1 -Ŝ(Z t j-1 , θ * 3 ) -1 D j ( θ0 1 , θ0 2 , θ * 3 ) ⊗2 - 1 2 n j=1 log det Ŝ(Z t j-1 , θ 3 ) det Ŝ(Z t j-1 , θ * 3 ) (4.
n -1 h sup θ 3 ∈Θ 3 R (4.4) n (θ 3 ) = O p (h).
By definition,

h 1/2 δ j ( θ0 1 , θ0 2 , θ 3 ) = 0 H(Z t j-1 , θ 3 ) -H(Z t j-1 , θ * 3 ) + h 2 L H (Z t j-1 , θ0 1 , θ0 2 , θ 3 ) -L H (Z t j-1 , θ0 1 , θ0 2 , θ * 
3 ) Since the functions A(z, θ 2 ), H(z, θ 3 ) and L H (z, θ 1 , θ 2 , θ 3 ) are dominated by a polynomial in z uniformly in θ, by using the above formula, it is easy to show sup

θ 3 ∈Θ 3 Y (3) n (θ 3 ) -Y (4.6) n ( θ0 1 , θ 3 ) = O p (h 1/2 ) (4.5)
for

Y (4.6) n (θ 1 , θ 3 ) = - 1 2n n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 0 H(Z t j-1 θ 3 ) -H(Z t j-1 θ * 3 ) ⊗2 . (4.6) 
The derivative ∂ 1 S x (z, θ 1 , θ 3 ) is dominated by a polynomial in z uniformly in θ. Therefore sup

θ 3 ∈Θ 3 Y (4.6) n ( θ0 1 , θ 3 ) -Y (4.6) n (θ * 1 , θ 3 ) → p 0. (4.7)
Finally, the estimate (3.3) gives sup 

θ 3 ∈Θ 3 Y (4.6) n (θ * 1 , θ 3 ) + 1 2nh nh 0 S(Z t , θ * 1 , θ 3 ) -1 0 H(Z t , θ 3 ) -H(Z t , θ * 3 ) ⊗2 dt → p 0.

Asymptotic normality of θ0

3 Let M (3) n = n -1/2 n j=1 S(Z t j-1 , θ * 1 , θ * 3 ) -1 h -1/2 B(Z t j-1 , θ * 2 )∆ j w h -3/2 κ(Z t j-1 , θ * 1 , θ * 3 )ζ j , 0 ∂ 3 H(Z t j-1 , θ * 3 ) . Let Γ 33 = S(z, θ * 1 , θ * 3 ) -1 0 ∂ 3 H(z, θ * 3 ) ⊗2 ν(dz) = 12V (z, θ * 1 , θ * 3 ) -1 ∂ 3 H(z, θ * 3 ) ⊗2 ν(dz) = 12∂ 3 H(z, θ * 3 ) ⋆ V (z, θ * 1 , θ * 3 ) -1 ∂ 3 H(z, θ * 3 )ν(dz). (4.9) Lemma 4.3. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 1), [A2], [A3] (iii)
and [A4] are satisfied. Then

n -1/2 h 1/2 ∂ 3 H (3) n (θ * 3 ) -M (3) n = o p (1)
as n → ∞.

Proof. From [A3] (iii), Γ 33 is non-singular. From (4.2) and (3.8), we have

n -1/2 h 1/2 ∂ 3 H (3) n (θ * 3 ) = R (4.11) n ( θ0 1 , θ0 2 ) + R (4.12) n ( θ0 1 , θ0 2 ) + R (4.13) n ( θ0 1 , θ0 2 ) (4.10) 
where

R (4.11) n ( θ0 1 , θ0 2 ) = n -1/2 Ψ 3,1 ( θ0 1 , θ * 3 , θ0 1 , θ0 2 , θ * 3 ), (4.11) 
R (4.12) n ( θ0 1 , θ0 2 ) = n -1/2 Ψ 3,2 ( θ0 1 , θ0 2 , θ * 3 , θ0 1 , θ0 2 , θ * 3 ) (4.12)
and

R (4.13) n ( θ0 1 , θ0 2 ) = n -1/2 h 1/2 Ψ 3,3 ( θ0 1 , θ * 3 , θ0 1 , θ0 2 , θ * 3 ). (4.13)
We have

D j ( θ0 1 , θ0 2 , θ * 3 ) -D j ( θ0 1 , θ * 2 , θ * 3 ) = -h 1/2   A(Z t j-1 , θ0 2 ) -A(Z t j-1 , θ * 2 ) 2 -1 H x (Z t j-1 , θ * 3 ) A(Z t j-1 , θ0 2 ) -A(Z t j-1 , θ * 2 )   ,
and so only by algebraic computation we obtain

Ŝ(Z t j-1 , θ * 3 ) -1 D j ( θ0 1 , θ0 2 , θ * 3 ) -D j ( θ0 1 , θ * 2 , θ * 3 ), 0 ∂ 3 H(Z t j-1 , θ * 3 ) = 0. (4.14)
Applying Lemma 3.5 (b) under [A4], and next using the results in Lemmas 3.4 and 3.5, we see

R (4.11) n ( θ0 1 , θ0 2 ) = n -1/2 Ψ 3,1 ( θ0 1 , θ * 3 , θ * 1 , θ * 2 , θ * 3 ) + O p (h 1/2 ) = n -1/2 Ψ3,1 ( θ0 1 , θ * 3 , θ * 1 , θ * 2 , θ * 3 ) + o p (1) (4.15)
since (nh 2 ) 1/2 = o(1). Consider the random field

Φ (4.16) n (u 1 ) = n -1/2 Ψ 3,1 (θ * 1 + r n u 1 , θ * 3 , θ * 1 , θ * 2 , θ * 3 ) -Ψ 3,1 (θ * 1 , θ * 3 , θ * 1 , θ * 2 , θ * 3 ) (4.16)
on {u 1 ∈ R p 1 ; |u 1 | < 1} for any sequence of positive numbers r n → 0, Sobolev's inequality gives sup

u 1 :|u 1 |<1 |Φ (4.16) n (u 1 )| = o p (1)
with the help of orthogonality. In particular,

R (4.11) n ( θ0 1 , θ0 2 ) = n -1/2 Ψ 3,1 (θ * 1 , θ * 3 , θ * 1 , θ * 2 , θ * 3 ) + o p (1). (4.17)
This implies

R (4.11) n ( θ0 1 , θ0 2 ) = M (3) n + o p (1). Simpler is that R (4.12) n ( θ0 1 , θ0 2 ) = O p (n 1/2 h). Similarly, R (4.13) n ( θ0 1 , θ0 2 ) = n -1/2 h 1/2 Ψ 3,3 (θ * 1 , θ * 3 , θ * 1 , θ * 2 , θ * 3 ) + O p (h 1/2 ) = O p (h 1/2 ).

Thus, we obtained the result.

In what follows, we quite often use the estimates in Lemma 4.1 without mentioning it explicitly.

Lemma 4.4. Suppose that [A1] with

(i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 2), [A2] and [A4] are satisfied. Then sup θ 3 ∈Bn n -1 h ∂ 2 3 H (3) n (θ 3 ) + Γ 33 → p 0
for any sequence of balls B n in R p 3 shrinking to θ * 3 . Proof. We have

n -1 h ∂ 2 3 H (3) n (θ 3 ) = n -1 Ψ 33,1 ( θ0 1 , θ0 2 , θ 3 ) +n -1 h 1/2 Ψ 33,2 ( θ0 1 , θ0 2 , θ 3 , θ0 1 , θ0 2 , θ 3 ) +n -1 hΨ 33,3 ( θ0 1 , θ 3 ) +n -1 h 1/2 Ψ 33,4 ( θ0 1 , θ0 2 , θ 3 , θ0 1 , θ0 2 , θ 3 ) +n -1 hΨ 33,5 ( θ0 1 , θ 3 , θ0 1 , θ0 2 , θ 3 ).
For D j ( θ0 1 , θ0 2 , θ 3 ) in the above expression, we use Lemma 3.5 (b) to replace θ0 i by θ * i for i = 1, 2, and Lemma 3.6 to replace θ 3 ∈ B n by θ * 3 with an error uniform in θ 3 ∈ B n . Next we use Lemma 3.3 (b). Then Now we obtain the result by using [A2] and estimating the functions ∂ 3 S and

n -1 h ∂ 2 3 H (3) n (θ 3 ) = -n -1 n j=1 Ŝ(Z t j-1 , θ 3 ) -1 0 ∂ 3 H(Z t j-1 , θ 3 ) ⊗2 + r (4.
∂ 2 3 H uniformly in (θ 1 , θ 3 ). Theorem 4.5. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 2), [A2], [A3] (iii) and [A4] are satisfied. Then n 1/2 h -1/2 θ0 3 -θ * 3 -Γ -1 33 M (3) n → p 0
as n → ∞. In particular,

n 1/2 h -1/2 θ0 3 -θ * 3 → d N(0, Γ -1 33 )
as n → ∞.

Proof. Use Lemmas 4.3 and 4.4.

Remark 4.6. It is possible to construct a QMLE θ3 for θ 3 based on the quasi-log likelihood function

H (3) n (θ 3 ) = - 1 2 n j=1 3V (Z t j-1 , θ0 1 , θ 3 ) h -3/2 ∆ j Y -hG n ( θ0 1 , θ0 2 , θ 3 ⊗2 + log 3 -1 V (Z t j-1 , θ0 1 , θ 3 ) .
Then, under a certain set of conditions, we have

n 1/2 h -1/2 θ3 -θ * 3 → d N(0, 4Γ -1 33 ).

Therefore θ0

3 is superior to θ3 .

5 Adaptive one-step estimator for (θ 1 , θ 2 , θ 3 )

In this section, we will consider a one-step estimator for θ = (θ 1 , θ 2 , θ 3 ) given an initial estimators ( θ0 1 , θ0 2 , θ0

3 ) for (θ 1 , θ 2 , θ 3 ) based on (Z t j ) j=0,1,...,n . We will assume the following rate of convergence for each initial estimator

[A4 ♯ ] (i) θ0 1 -θ * 1 = O p (n -1/2 ) as n → ∞ (ii) θ0 2 -θ * 2 = O p (n -1/2 h -1/2 ) as n → ∞ (iii) θ0 3 -θ * 3 = O p (n -1/2 h 1/2 ) as n → ∞.
The initial estimator θ0 3 is not necessarily the one defined in Section 4, though we already know that one satisfies [A4 ♯ ] (iii). That is, the initial estimator θ0 3 used in this section is requested to attain the convergence rate n -1/2 h 1/2 only, not to necessarily achieve the asymptotic variance equal to Γ -1 33 or less. Thus, the estimator θ3 mentioned by Remark 4.6, as well as θ0

3 in Section 4, can serve as the initial estimator of θ 3 . As Section 7 recalls a construction of the initial estimator θ0 1 , in estimation of non-degenerate diffusion processes, there is an estimator of θ 1 satisfying Condition [A4 ♯ ] (i) based on only the first equation of (1.1). It is know that its information cannot be greater than the matrix

1 2 Tr C -1 (∂ 1 C)C -1 ∂ 1 C (z, θ * 1 ) ν(dz).
It will be turned out that the amount of information is increased by the one-step estimator.

We will recall a standard construction of θ0 2 in Section 8. Let

M (1) n = 1 2 n -1/2 n j=1 S -1 (∂ 1 S)S -1 (Z t j-1 , θ * 1 , θ * 3 ) D j (θ * 1 , θ * 2 , θ * 3 ) ⊗2 -S(Z t j-1 , θ * 1 , θ * 3 ) . Let Γ 11 = 1 2 Tr S -1 (∂ 1 S)S -1 ∂ 1 S(z, θ * 1 , θ * 3 ) ν(dz) = 1 2 Tr C -1 (∂ 1 C)C -1 ∂ 1 C (z, θ * 1 ) +Tr V -1 H x (∂ 1 C)H ⋆ x V -1 H x (∂ 1 C)H ⋆ x (z, θ * 1 , θ * 3 ) ν(dz).
If H x is an invertible (square) matrix, then Γ 11 coincides with

Tr C -1 (∂ 1 C)C -1 ∂ 1 C (z, θ * 1 ) ν(dz).
Otherwise, it is not always true. Let

Γ 22 = S(z, θ * 1 , θ * 3 ) -1 ∂ 2 A(z, θ * 2 ) 2 -1 ∂ 2 L H (z, θ * 1 , θ * 2 , θ * 3 ) ⊗2 ν(dz) = ∂ 2 A(z, θ * 2 ) ⋆ C(z, θ * 1 ) -1 ∂ 2 A(z, θ * 2 )ν(dz). (5.1) Let Γ J (θ * ) = diag Γ 11 , Γ 22 , Γ 33
, where Γ 33 is defined by (4.9).

We will use the following random fields:

H (1) n (θ 1 ) = - 1 2 n j=1 S(Z t j-1 , θ 1 , θ0 3 ) -1 D j (θ 1 , θ0 2 , θ0 3 ) ⊗2 + log det S(Z t j-1 , θ 1 , θ0 3 ) . (5.2)
and H (2,3) n

(θ 2 , θ 3 ) = - 1 2 n j=1 Ŝ(Z t j-1 , θ0 3 ) -1 D j ( θ0 1 , θ 2 , θ 3 ) ⊗2 . (5.3)
Recall Ŝ(z, θ 3 ) = S(z, θ0 1 , θ 3 ). To construct one-step estimators, we consider the functions

E n (θ 1 ) = θ 1 -∂ 2 1 H (1) n (θ 1 )] -1 ∂ 1 H (1) n (θ 1 )
and

F n (θ 2 , θ 3 ) = θ 2 θ 3 -∂ 2 (θ 2 ,θ 3 ) H (2,3) n θ 2 , θ 3 -1 ∂ (θ 2 ,θ 3 ) H (2,3) n θ 2 , θ 3 when both matrices ∂ 2 1 H (1) n (θ 1 ) and ∂ 2 (θ 2 ,θ 3 ) H (2,3) n θ 2 , θ 3 are invertible. Let X (1) n = ω ∈ Ω; ∂ 2 1 H (1) n ( θ0 1 ) is invertible and E n ( θ0 1 ) ∈ Θ 1 and 
X (2,3) n = ω ∈ Ω; ∂ 2 (θ 2 ,θ 3 ) H (2,3) n θ0 2 , θ0 3 is invertible and F n ( θ0 2 , θ0 3 ) ∈ Θ 2 × Θ 3 Let X n = X (1)
n ∩ X

(2,3) n

. The event X n is a statistic because it is determined by the data (Z t j ) j=0,...,n only. For (θ 1 , θ 2 , θ 3 ), the one-step estimator ( θ1 , θ2 , θ3 ) with the initial estimator ( θ0

1 , θ0 2 , θ0 3 ) is defined by   θ1 θ2 θ3   =      E n ( θ0 1 ) F n θ0 2 , θ0 3 on X n υ on X c n where υ is an arbitrary value in Θ. Let γ = θ2 , θ3 ⋆ , γ0 = θ0 2 , θ0 3 
⋆ and γ * = θ * 2 , θ * 3 ⋆ . Let U be an open ball in R p 2 +p 3 centered at γ * such that U ⊂ Θ 2 × Θ 3 . Let X * (2,3) n = X (2,3) n ∩ {γ 0 ∈ U}. Lemma 5.1. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 2, 2, 1, 3, 1), [A2] (i), (iii), (iv) and [A4 ♯ ] are satisfied. Then n -1/2 h -1/2 ∂ 2 H (2,3) n (γ 0 ) = O p (1)
as n → ∞.

Proof. By using Lemma 3.6 and Lemma 3.5 (b) together with the convergence rate of the initial estimators, we have

n -1/2 h -1/2 ∂ 2 H (2,3) n (γ 0 ) = n -1/2 Ψ 2 ( θ0 1 , θ0 2 , θ0 3 , θ0 1 , θ0 2 , θ0 3 ) = n -1/2 Ψ 2 ( θ0 1 , θ0 2 , θ0 3 , θ * 1 , θ * 2 , θ * 3 ) + O p (1) = n -1/2 Ψ 2 ( θ0 1 , θ0 2 , θ0 3 , θ * 1 , θ * 2 , θ * 3 ) + O p (1)
by Lemma 3.4 and Lemma 3.5 (a). The open ball of radius r centered at θ is denoted by U(θ, r). Define the random field Φ (5.4)

n (θ) = n -1/2 Ψ 2 (θ 1 , θ 2 , θ 3 , θ * 1 , θ * 2 , θ * 3 ) (5.4) on θ = (θ 1 , θ 2 , θ 3 ) ∈ U(θ * , r
) for a small number r such that U(θ * , r) ⊂ Θ. With the Burkholder-Davis-Gundy inequality and in particular twice differentiability of A in θ 2 , we obtain

sup n i=0,1 sup θ∈B(θ * ,r) |∂ i θ Φ (5.4) n (θ)| p < ∞
for every p > 1. Therefore, Sobolev's inequality ensures

sup n sup θ∈U (θ * ,r) |Φ (5.4) n (θ)| p < ∞ Consequently, Φ (5.4) 
n θ0 1 , θ0 2 , θ0 3 1 ( θ0 1 , θ0 2 , θ0 3 )∈U (θ * ,r) = O p (1). 
This completes the proof.

Lemma 5.2. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 2), [A2] (i), (iii), (iv) and [A4 ♯ ] are satisfied. Then

n -1/2 h 1/2 ∂ 3 H (2,3) n (γ 0 ) = O p (1)
as n → ∞.

Proof. The proof is similar to that of Lemma 5.1. First,

n -1/2 h 1/2 ∂ 3 H (2,3) n (γ 0 ) = n -1/2 Ψ 3 ( θ0 1 , θ0 2 , θ0 3 , θ0 1 , θ0 2 , θ0 3 ) = n -1/2 Ψ 3 ( θ0 1 , θ0 2 , θ0 3 , θ * 1 , θ * 2 , θ * 3 ) + O p (1). 
Then we can show the lemma in the same fashion as Lemma 5.1 with a random field.

Let

B n = U θ * 1 , n -1/2 log(nh) × U θ * 2 , (nh) -1/2 log(nh) × U θ * 3 , n -1/2 h 1/2 log(nh) , B ′ n = U θ * 2 , (nh) -1/2 log(nh) × U θ * 3 , n -1/2 h 1/2 log(nh)
and

B ′′ n = U θ * 1 , n -1/2 log(nh) × U θ * 3 , n -1/2 h 1/2 log(nh) .
We will use the following random fields.

Φ 22,1 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = - n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 ∂ 2 A(Z t j-1 , θ ′ 2 ) 2 -1 ∂ 2 L H (Z t j-1 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗2 Φ 22,2 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 , θ ′′ 2 , θ ′′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), ∂ 2 2 A(Z t j-1 , θ ′′ 2 ) 2 -1 H x (Z t j-1 , θ ′′ 3 ) ∂ 2 2 A(Z t j-1 , θ ′′ 2 ) Φ 22,2 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 , θ ′′ 2 , θ ′′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), ∂ 2 2 A(Z t j-1 , θ ′′ 2 ) 2 -1 H x (Z t j-1 , θ ′′ 3 ) ∂ 2 2 A(Z t j-1 , θ ′′ 2 ) Φ 23,1 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 , θ ′′ 2 , θ ′′ 3 ) = - n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 0 2 -1 ∂ 3 L H (Z t j-1 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗ ∂ 2 A(Z t j-1 , θ ′′ 2 ) 2 -1 H x (Z t j-1 , θ ′′ 3 ) ∂ 2 A(Z t j-1 , θ ′′ 2 ) Φ 23,2 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 , θ ′′ 2 , θ ′′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), 0 2 -1 ∂ 3 H x (Z t j-1 , θ ′′ 3 ) ∂ 2 A(Z t j-1 , θ ′′ 2 ) Φ 33,1 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = - n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 0 ∂ 3 H(Z t j-1 , θ ′ 3 ) + 2 -1 h∂ 3 L H (Z t j-1 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗2 Φ 33,2 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 , θ ′′ 1 , θ ′′ 2 , θ ′′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗ 0 ∂ 2 3 H(Z t j-1 , θ ′′ 3 ) + 2 -1 h∂ 2 3 L H (Z t j-1 , θ ′′ 1 , θ ′′ 2 , θ ′′ 3 ) Lemma 5.3. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 3, 2, 1, 3, 1), [A2] and [A4 ♯ ] are satisfied. Then sup (θ 2 ,θ 3 )∈B ′ n n -1 h -1 ∂ 2 2 H (2,3) n (θ 2 , θ 3 ) + Γ 22 → p 0
as n → ∞.

Proof. We have

n -1 h -1 ∂ 2 2 H (2,3) n (θ 2 , θ 3 ) = n -1 Φ 22,1 ( θ0 1 , θ0 3 , θ0 1 , θ 2 , θ 3 ) +n -1 h -1/2 Φ 22,2 ( θ0 1 , θ0 3 , θ0 1 , θ 2 , θ 3 , θ 2 , θ 3 ) (5.5) 
Apply Lemma 3.6 and Lemma 3.5 (b) to obtain sup

(θ 1 ,θ 3 )∈B ′′ n sup (θ ′ 1 ,θ ′ 2 ,θ ′ 3 )∈Bn sup (θ ′′ 2 ,θ ′′ 3 )∈B ′ n n -1 h -1/2 Φ 22,2 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 , θ ′′ 2 , θ ′′ 3 ) -n -1 h -1/2 Φ 22,2 (θ 1 , θ 3 , θ * 1 , θ * 2 , θ * 3 , θ ′′ 2 , θ ′′ 3 ) = o p (1).
(5.6)

Here we used the assumption that the functions are bound by a polynomial in z uniformly in the parameters, and the count

n -1 h -1/2 × n × h -1/2 × n -1/2 h 1/2 log(nh) = log(nh) √ nh
to estimate the error when replacing θ ′ 3 by θ * 3 , as well a similar count when replacing (θ ′ 1 , θ ′ 2 ) by (θ * 1 , θ * 2 ). We apply Lemmas 3.4 and 3.5 (a) to obtain sup

(θ 1 ,θ 3 )∈B ′′ n sup (θ ′′ 2 ,θ ′′ 3 )∈B ′ n n -1 h -1/2 Φ 22,2 (θ 1 , θ 3 , θ * 1 , θ * 2 , θ * 3 , θ ′′ 2 , θ ′′ 3 ) -n -1 h -1/2 Φ 22,2 (θ 1 , θ 3 , θ * 1 , θ * 2 , θ * 3 , θ ′′ 2 , θ ′′ 3 ) = O p (nh) -1/2 log(nh) = o p (1).
(5.7)

Since D j (θ * 1 , θ * 2 , θ * 3 ) in Φ 22,2 are martingale differences with respect to a suitable filtration, we can conclude by the random field argument with the Sobolev space of index (1, p), p > 1, that sup

(θ 1 ,θ 3 )∈B ′′ n sup (θ ′′ 2 ,θ ′′ 3 )∈B ′ n n -1 h -1/2 Φ 22,2 (θ 1 , θ 3 , θ * 1 , θ * 2 , θ * 3 , θ ′′ 2 , θ ′′ 3 ) = O p ((nh) -1/2 ) = o p (1) 
(5.8)

On the other hand, sup

(θ 1 ,θ 3 )∈B ′′ n sup (θ ′ 1 ,θ ′ 2 ,θ ′ 3 )∈Bn n -1 Φ 22,1 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) -n -1 Φ 22,1 (θ * 1 , θ * 3 , θ * 1 , θ * 2 , θ * 3 ) = o p (1) (5.9)
From (5.5)-(5.9) and [A4 ♯ ] (i), (iii), we obtain sup

(θ 2 ,θ 3 )∈B ′ n n -1 h -1 ∂ 2 2 H (2,3) n (θ 2 , θ 3 ) -n -1 Φ 22,1 (θ * 1 , θ * 3 , θ * 1 , θ * 2 , θ * 3 ) = o p (1).
(5.10)

Now the assertion of the lemma is easy to obtain if one uses [A1], [A2] and Lemma 3.1.

Let

i(z, θ) = ∂ 2 A(z, θ 2 ) ⋆ 2 -1 ∂ 2 L H (z, θ 1 , θ 2 , θ 3 ) ⋆ O ∂ 3 H(z, θ 3 ) ⋆ S(z, θ 1 , θ 3 ) -1 × ∂ 2 A(z, θ 2 ) O 2 -1 ∂ 2 L H (z, θ 1 , θ 2 , θ 3 ) ∂ 3 H(z, θ 3 )
.

(5.11)

Then simple calculus with (4.1) and

∂ 2 L H (z, θ 1 , θ 2 , θ 3 ) = H x (z, θ 3 ) ∂ 2 A(z, θ 2 ) yield i(z, θ) = ∂ 2 A(z, θ 2 ) ⋆ C(z, θ 1 ) -1 ∂ 2 A(z, θ 2 ) O O 12∂ 3 H(z, θ 3 ) ⋆ V (z, θ 1 , θ 3 ) -1 ∂ 3 H(z, θ 3 
) .

(5.12)

Lemma 5.4. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 1) and [ 
A2] are satisfied. Then

sup (θ 2 ,θ 3 )∈B ′ n n -1 ∂ 3 ∂ 2 H (2,3) n (θ 2 , θ 3 ) → p 0
as n → ∞.

Proof. From (5.11) and (5.12), we see

S(z, θ 1 , θ 3 ) -1 0 ∂ 3 H(z, θ 3 ) , ∂ 2 A(z, θ 2 ) 2 -1 ∂ 2 L H (z, θ 1 , θ 2 , θ 3 ) = 0.
Then, by definition,

n -1 ∂ 3 ∂ 2 H (2,3) n (θ 2 , θ 3 ) = n -1 hΦ 23,1 ( θ0 1 , θ0 3 , θ0 1 , θ 2 , θ 3 , θ 2 , θ 3 ) +n -1 h 1/2 Φ 23,2 ( θ0 1 , θ0 3 , θ0 1 , θ 2 , θ 3 , θ 2 , θ 3 ).
Now it is not difficult to show the desired result.

Lemma 5.5. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 2) and [A2] are satisfied. Then

sup (θ 2 ,θ 3 )∈B ′ n n -1 h ∂ 2 3 H (2,3) n (θ 2 , θ 3 ) + Γ 33 → p 0 as n → ∞.
Proof. By definition, 

n -1 h ∂ 2 3 H (2,3) n (θ 2 , θ 3 ) = n -1 Φ 33,1 ( θ0 1 , θ0 3 , θ0 1 , θ 2 , θ 3 ) +n -1 h 1/2 Φ 33,2 ( θ0 1 , θ0 3 , θ0 1 , θ 2 , θ 3 , θ0 1 , θ 2 , θ 3 ). Φ 33 
(θ 2 ,θ 3 )∈B ′ n n -1 h 1/2 Φ 33,2 ( θ0 1 , θ0 3 , θ0 1 , θ 2 , θ 3 , θ0 1 , θ 2 , θ 3 ) ≤ sup (θ 2 ,θ 3 )∈B ′ n n -1 h 1/2 Φ 33,2 ( θ0 1 , θ0 3 , θ * 1 , θ * 2 , θ * 3 , θ0 1 , θ 2 , θ 3 ) + O p (n -1/2 h 1/2 log(nh)) = O p (h 1/2 ).
Moreover, it is easy to show sup

(θ 2 ,θ 3 )∈B ′ n n -1 Φ 33,1 ( θ0 1 , θ0 3 , θ0 1 , θ 2 , θ 3 )+Γ 33 → p 0 from [A1], [A2]
with the aid of Lemma 3.1.

Let

a n = n -1/2 h -1/2 0 0 n -1/2 h 1/2 . Lemma 5.6. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 3, 2, 1, 3, 2) and [A2] are satis- fied. Then sup (θ 2 ,θ 3 )∈B ′ n a n ∂ 2 (θ 2 ,θ
3 ) H (2,3) n (θ 2 , θ 3 )a n + Γ (2,3) (θ * ) → p 0 (5.13) where Γ (2,3) 

(θ * ) = Γ 22 O O Γ 33 .
Proof. The convergence (5.13) follows from Lemmas 5.3, 5.4 and 5.5.

Lemma 5.7. Suppose that [A1] with

(i A , j A , i B , j B , i H , j H ) = (1, 3, 2, 1, 3, 2), [A2] and [A4 ♯ ] are satisfied. Then P [X * (2,3) n ] → 1 as n → ∞.
Proof. By Lemmas 5.1 and 5.2,

a n ∂ (θ 2 ,θ 3 ) H (2,3) n (γ 0 ) = O p (1)
and by Lemma 5.6,

a n ∂ 2 (θ 2 ,θ 3 ) H (2,3) n (γ 0 )a n -1 = O p (1). Therefore, ∂ 2 (θ 2 ,θ 3 ) H (2,3) n (γ 0 ) -1 ∂ (θ 2 ,θ 3 ) H (2,3) n (γ 0 ) = O p ((nh) -1/2 ) as n → ∞. This means P [X * (2,3) n ] → 1. Let M (2) n = n -1/2 n j=1 S(Z t j-1 , θ * 1 , θ * 3 ) -1 h -1/2 B(Z t j-1 , θ * 1 )∆ j w h -3/2 κ(Z t j-1 , θ * 1 , θ * 3 )ζ j , ∂ 2 A(Z t j-1 , θ * 2 ) 2 -1 ∂ 2 L H (Z t j-1 , θ * 1 , θ * 2 , θ * 3 ) = n -1/2 n j=1 C(Z t j-1 , θ * 1 ) -1 h -1/2 B(Z t j-1 , θ * 1 )∆ j w, ∂ 2 A(Z t j-1 , θ * 2 ) . (5.14) Lemma 5.8. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 1), [A2] and [A4] are satisfied. Then n -1/2 h -1/2 ∂ 2 H (2,3) n (θ * 2 , θ * 3 ) -M (2) n → p 0 as n → ∞.
Proof. By using Lemma 3.5 (b) together with the convergence rate of the estimators θ0 1 and θ0 3 , and next by Lemma 3.5 (a) and Lemma 3.4, we have

n -1/2 h -1/2 ∂ 2 H (2,3) n (θ * 2 , θ * 3 ) = n -1/2 n j=1 Ŝ(Z t j-1 , θ0 3 ) -1 D j ( θ0 1 , θ * 2 , θ * 3 ), ∂ 2 A(Z t j-1 , θ * 2 ) 2 -1 ∂ 2 L H (Z t j-1 , θ0 1 , θ * 2 , θ * 3 ) = n -1/2 n j=1 Ŝ(Z t j-1 , θ0 3 ) -1 D j (θ * 1 , θ * 2 , θ * 3 ), ∂ 2 A(Z t j-1 , θ * 2 ) 2 -1 ∂ 2 L H (Z t j-1 , θ0 1 , θ * 2 , θ * 3 ) + O p (h 1/2 ). = n -1/2 n j=1 Ŝ(Z t j-1 , θ * 3 ) -1 D j (θ * 1 , θ * 2 , θ * 3 ), ∂ 2 A(Z t j-1 , θ * 2 ) 2 -1 ∂ 2 L H (Z t j-1 , θ0 1 , θ * 2 , θ * 3 ) + O p ( √ nh) + O p (h 1/2 ).
(5.15)

Here we used the derivative ∂ 1 H. We consider the random field Φ (5.16)

n (u 1 ) = n -1/2 Ψ 2 (θ 1 (u 1 ), θ * 2 , θ * 3 , θ * 1 , θ * 2 , θ * 3 ) (5.16) on {u 1 ∈ R p 1 ; |u 1 | < 1}, where θ 1 (u 1 ) = θ * 1 + n -1/2 (log n)u 1 . Then L p -estimate of ∂ i 1 {Φ (5.16) n (u 1 ) -Φ (5.16) n (0)} (i = 0, 1) yields sup u 1 ∈U (0,1)
Φ (5.16) n (u 1 ) -Φ (5.16)

n (0) → p 0, Proof. Let X * * (2,3) n = X * (2,3) n ∩ ( θ0 1 , γ0 ) ∈ B n ∩ sup γ∈B ′ n a n ∂ 2 (θ 2 ,θ 3 ) H (2,3) n (γ)a n +Γ (2,3) (θ * ) < c .
Here c is a postive constant and we will make it sufficiently small. Then P [X * * n ] → 1 thanks to Lemmas 5.7 and 5.6. On the event X * * (2,3) n

, we apply Taylor's formula to obtain

a -1 n (γ -γ * ) = a n ∂ 2 (θ 2 ,θ 3 ) H (2,3) n (γ 0 )a n -1 -a n ∂ (θ 2 ,θ 3 ) H (2,3) n (γ * ) +a n 1 0 ∂ 2 (θ 2 ,θ 3 ) H (2,3) n (γ 0 ) -∂ 2 (θ 2 ,θ 3 ) H (2,3) n (γ(u)) dua n a -1 n γ0 -γ *
where γ(u) = γ * + u(γ 0 -γ * ). Then Lemmas 5.6 and 5.10 give (5.17). Then the martingale central limit theorem gives (5.18).

Let

b n =   n -1/2 0 0 0 n -1/2 h -1/2 0 0 0 n -1/2 h 1/2   .
The following notation for random fields will be used.

Ψ 1,1 (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = Ψ 1 (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), 0 2 -1 ∂ 1 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) Ψ 1,2 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = 1 2 n j=1 S -1 (∂ 1 S))S -1 (Z t j-1 , θ 1 , θ 3 ) D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗2 -S(Z t j-1 , θ 1 , θ 3 ) Ψ 11,1 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 0 2 -1 ∂ 1 L H (Z t j-1 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗2 Ψ 11,2 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 , θ ′′ 1 , θ ′′ 2 , θ ′′ 3 ) = n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), ⊗ 0 2 -1 ∂ 2 1 L H (Z t j-1 , θ ′′ 1 , θ ′′ 2 , θ ′′ 3 ) Ψ 11,3 (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = n j=1 ∂ 1 S -1 (∂ 1 S)S -1 (Z t j-1 , θ 1 , θ 3 ) D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗2 -S(Z t j-1 , θ ′ 1 , θ ′ 3 ) where θ1 (u) = θ * 1 + u( θ0 1 -θ * ). Then we obtain n 1/2 θ1 -θ * 1 -Γ -1 11 M (1) n → p 0 (5.28)
as n → ∞ from Lemmas 5.12 and 5.14. Therefore the convergence of b -1 n ( θ -θ * ) follows from the martingale central limit theorem and the relations (5.17) and (5.28)

Non-adaptive estimator

In this section, we consider a non-adaptive joint quasi-maximum likelihood estimator. This method does not require initial estimators. From computational point of view, adaptive methods often have merits but the non-adaptive method is still theoretically interesting. We will work with the quasi-log likelihood function H n (θ) given by

H n (θ) = - 1 2 n j=1
S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ 1 , θ 2 , θ 3 ) ⊗2 + log det S(Z t j-1 , θ 1 , θ 3 ) (6.1)

for θ = (θ 1 , θ 2 , θ 3 ). Suppose that a function θJ = ( θJ 1 , θJ 2 , θJ 3 ) of the data maximizes H n (θ) in Θ. Let

D n (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = H n (θ 1 , θ 2 , θ 3 ) -H n (θ ′ 1 , θ ′ 2 , θ ′ 3
). Let D [1] n (θ

1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = - 1 2 n j=1
S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ 1 , θ 2 , θ 3 ) -D j (θ ′ 1 , θ ′ 2 , θ ′ 3 )

⊗2

= -1 2 n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1      h 1/2 A(Z t j-1 , θ 2 ) -A(Z t j-1 , θ ′ 2 ) h -1/2 H(Z t j-1 , θ 3 ) -H(Z t j-1 , θ ′

3 ) +2 -1 h 1/2 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) -L H (Z t j-1 , θ ′ 1 , θ ′ 2 , θ ′ 3 )

  ⊗2    ,
D [2] n (θ

1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = h -1/2 n j=1
S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), 0 H(Z t j-1 , θ 3 ) -H(Z t j-1 , θ ′ 3 )

, D [3] n (θ

1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = h 1/2 n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), A(Z t j-1 , θ 2 ) -A(Z t j-1 , θ ′ 2 ) 2 -1 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) -L H (Z t j-1 , θ ′ 1 , θ ′ 2 , θ ′ 3 )
, and D [4] n (θ

1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = - 1 2 n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 -S(Z t j-1 , θ ′ 1 , θ ′ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗2
+ log det S(Z t j-1 , θ C(Z t j-1 , θ 1 ) -1 ∆ j X -hA(Z t j-1 , θ * 2 ), A(Z t j-1 , θ 2 ) -A(Z t j-1 , θ * 2 ) .

(8.3)
For Y (2) given by (2.2) on p.4, T -1 ∂ 2 2 H (2) n (θ 2 ) -Γ 22 → p 0 (8.8)

1
for any sequence of positive numbers r n satisfying r n → 0 as n → ∞.

Let Y (2) (θ 2 ) = -1 2 C(z, θ * 1 ) A(z, θ 2 ) -A(z, θ * 2 ) ⊗2 ν(dz)

Let Y (3) (θ 3 ) = -6V (z, θ * 1 , θ 3 ) -1 H(z, θ 3 ) -H(z, θ * 3 ) ⊗2 ν(dz).

The random field Y (3) is well defined under [A1] and [A2]. Let Y (J,3) (θ 1 , θ 3 ) = -6V (z, θ 1 , θ 3 ) -1 H(z, θ 3 ) -H(z, θ * 3 ) ⊗2 ν(dz).

We will assume all or some of the following identifiability conditions

[A3 ] (i) There exists a positive constant χ 1 such that

Y (1) (θ 1 ) ≤ -χ 1 |θ 1 -θ * 1 | 2 (θ 1 ∈ Θ 1 )
.

(i ′ ) There exists a positive constant χ ′ 1 such that

Y (J,1) (θ 1 ) ≤ -χ ′ 1 |θ 1 -θ * 1 | 2 (θ 1 ∈ Θ 1 ).
(ii) There exists a positive constant χ 2 such that

Y (2) (θ 1 ) ≤ -χ 2 |θ 2 -θ * 2 | 2 (θ 2 ∈ Θ 2 ).
(iii) There exists a positive constant χ 3 such that Y (3) G n (z, θ 1 , θ 2 , θ 3 ) = H(z, θ 3 ) + h 2 L H z, θ 1 , θ 2 , θ 3 .

ζ j = √ 3 t j t j-1 t t j-1 dw s dt D j (θ 1 , θ 2 , θ 3 ) = h -1/2 ∆ j X -hA(Z t j-1 , θ 2 )
h -3/2 ∆ j Y -hG n (Z t j-1 , θ 1 , θ 2 , θ 3 ) .

Remark 2 . 1 .

 21 (a) It follows from [A2] that the convergence in [A2] (ii) holds for any continuous function f of at most polynomial growth. (b) We implicitly assume the existence of C(Z T , θ 1 ) -1 and V (Z t , θ 1 , θ 3 ) -1 in (iii) and (iv) of [A2].

( 3

 3 .24) n,j that satisfy (3.23) and (3.24). [ First show (3.23) on the set {|

4 )

 4 By Lemma 3.3 (b), Lemma 3.5 (b) and Lemma 4.1, we obtain

(4. 8 )Now ( 4 . 3 )

 843 follows from (4.5), (4.7), (4.8) and [A2] (ii) since ∂ 3 i H(z, θ 1 , θ 3 ) (i = 0, 1) are dominated by a polynomial in z uniformly in θ 3 . Then the convergence θ03 → p θ 3 as n → ∞ is obvious under Condition [A3] (iii).

  ,1 involves the first derivative ∂ 3 , and Φ 33,2 does the second derivative ∂ 2 3 . First applying Lemma 3.6 and Lemma 3.5 (b), and next Lemma 3.3 (b), we have sup

(θ 3 ) 2 (θ 3 ∈ 2 (θ 1 ∈

 32321 ≤ -χ 3 |θ 3 -θ * 3 | Θ 3 ).(iii ′ ) There exists a positive constant χ 3 such thatY (J,3) (θ 1 , θ 3 ) ≤ -χ 3 |θ 3 -θ * 3 | Θ 1 , θ 3 ∈ Θ 3 ).

9. 3 3 L 2 H

 332 Section H (z, θ 1 , θ 2 , θ 3 ) = H x (z, θ 3 )[A(z, θ 2 )] + 1 xx (z, θ 3 )[C(z, θ 1 )] + H y (z, θ 3 )[H(z, θ 3 )].

  The decomposition (3.10) is obtained by Itô's formula. The estimate (3.14) is verified by (3.3) since ∂ z (B x B) and ∂ z A are bound by a polynomial in z uniformly in θ. The estimate (3.15) uses ∂ 2 A for θ 2 near θ * 2 as well as ∂ z A evaluated at θ * 2 :

  1 , θ 3 ) det S(Z t j-1 , θ ′ 1 , θ ′ 3 ) t j-1 , θ0 1 ) -1 A(Z t j-1 , θ 2 ) -A(Z t j-1 , θ * 2 )

	where					
		Φ (8.2) n	(θ 2 ) = -	1 2T	j=1 n	hC(Z ⊗2	(8.2)
	and					
			n			
	Φ (8.3) n	(θ 1 , θ 2 ) = T -1			
			j=1			
						.

  ) -Y(2) (θ 2 ) p → 0(8.4) for every p > 1. Here Conditions[A1] (i) with (i A , j A , i B , j B , i H , j H ) = (1, 1, 1, 1, 0, 0), [A2] (i)-(iii) and [A4 ♯ ] (i) were used. Then (8.4) implies , θ 2 ) p → p 0 (8.6)for every p > 1 from Lemma 3.10 applied to ∆ j X -hA(Z t j-1 , θ * 2 ) with the aid of orthogonality. The conditions we used include [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 0, 0). The embedding inequality makes sup (θ 1 ,θ 2 )∈Θ 1 ×Θ 2 The proof completes by the estimates (8.5) and (8.7).The matrix Γ 22 is defined by (5.1) on p.19. Lemma 8.2. Under Conditions [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 3, 2, 1, 0, 0), [A2] and [A4 ♯ ], Then

	i=0	sup θ 2 ∈Θ 2 (θ 2 sup ∂ i 2 Φ (8.2) n θ 2 ∈Θ 2 Φ (8.2) n (θ 2 ) -Y (2) (θ 2 ) → p 0	(8.5)
	as n → ∞. We have			
	1			
	i=0	sup (θ 1 ,θ 2 )∈Θ 1 ×Θ 2	∂ i (θ 1 ,θ 2 ) Φ (8.3) n (θ 1 Φ (8.3) n (θ 1 , θ 2 ) → p 0	(8.7)
	from (8.6).			
			sup	
		θ 2 ∈U (θ * 2 ,rn)	

* This work was in part supported by Japan Science and Technology Agency CREST JPMJCR14D7; Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research No. 17H01702 (Scientific Research); and by a Cooperative Research Program of the Institute of Statistical Mathematics.

in particular, Φ (5.16) n (u † 1 ) -Φ (5.16) n (0) → p 0 where u † 1 = n 1/2 (log n) -1 ( θ1 -θ * 1 ). Obviously, M

n -Φ

(5. [START_REF] Gloter | Efficient estimation of drift parameters in stochastic volatility models[END_REF]) n (0) → p 0. Since the first term on the right-hand side of (5.15) is nothing but Φ (5. [START_REF] Gloter | Efficient estimation of drift parameters in stochastic volatility models[END_REF]) n (u † 1 ) on an event the probability of which goes to 1, we have already obtained the result. Lemma 5.9. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 1), [A2] and [A4] are satisfied. Then n -1/2 h 1/2 ∂ 3 H (2,3) 

as n → ∞.

Proof. We have

.

Then this lemma can be proved in the same way as Lemma 5.8.

Let

M (2,3)

(3) n

.

Combining Lemmas 5.8 and 5.9, we obtain the following lemma.

Lemma 5.10. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 1), [A2] and [A4 ♯ ] are satisfied. Then a n ∂ (θ 2 ,θ 3 ) H (2,3) n (θ * 2 , θ * 3 ) -M (2,3) n → p 0 and M

(2,3) n → d N(0, Γ (2,3) (θ * )) as n → ∞. In particular, a n ∂ (θ 2 ,θ 3 ) H (2,3) n (θ * 2 , θ * 3 ) → d N(0, Γ (2,3) (θ * )) as n → ∞.

Theorem 5.11. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 3, 2, 1, 3, 2), [A2] and [A4 ♯ ] are satisfied. Then a -1 n (γ -γ * ) -(Γ (2,3) (θ * )) -1 M (2,3) n → p 0 (5.17)

as n → ∞. In particular, a -1 n (γ -γ * ) → d N(0, (Γ (2,3) (θ * )) -1 ) (5.18)

as n → ∞.

.

Lemma 5.12. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 3, 3, 1), [A2] and [A4 ♯ ] are satisfied. Then, for any sequence of positive numbers r n tending to 0, sup

n -1 ∂ 2 1 H (1) n (θ 1 ) + Γ 11 → p 0 (5. [START_REF] Kamatani | Hybrid multi-step estimators for stochastic differential equations based on sampled data[END_REF] as n → ∞.

Proof. By definition,

3 ) (this term will remain) -n -1 h 1/2 Ψ 11,5 (θ 1 , θ0 [START_REF] Bibby | Martingale estimation functions for discretely observed diffusion processes[END_REF] We remark that the used lemmas and appearing functions here require the regularity indices (i A , j A , i B , j B , i H , j H ) for [A1] as follows: (1, 0, 1, 0, 3, 0) for Lemma 3.3(b); (1, 1, 2, 1, 2, 0) for Lemma 3.5(b); (0, 0, 0, 0, 2, 1) for Lemma 3.6; j B = 3, j H = 1 for random field argument for Ψ 11,3 . Lemma 5.13. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 2, 1), [A2] and [A4 ♯ ] are satisfied. Then n -1/2 ∂ 1 H (1) n ( θ0 1 ) = O p (1) (5.20) as n → ∞.

Proof. We have the expression

We use [A4 ♯ ] together with Lemmas 3.6 and 3.5 (b) to show

and

as n → ∞. Here random field argument was used.

as n → ∞. In particular,

as n → ∞.

Proof. We have

n = (nh) -1/2 log(nh) and r

(3)

Then the Burkholder-Davis-Gundy inequality gives

, and hence

as n → ∞. From (5.23) and (5.24),

as n → ∞, where the last equality is by [A4 ♯ ].

On the other hand, by [A4 ♯ ] and Lemmas 3.6 and 3.5 (b), we obtain

(5.26) By random field argument applied to the first term on the right-hand side of (5.26),

Consequently, from (5.25) and (5.27), we obtain the convergence (5.21) since

n + o p (1) by using Lemmas 3.10 and 3.5 (a). Convergence (5.22) follows from this fact and Lemma 3.1 with [A2], Finally, we obtain a limit theorem for the joint adaptive one-step estimator. andc 1 is a sufficiently small number such that |A+Γ 11 | < c 1 implies det A = 0 any p 1 × p 1 matrix A. We obtain P [X * * * n ] → 1 from Lemmas 5.13 and 5.12. On the event X * * * n , we apply Taylor's formula to obtain [2] n (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) +D [3] n (θ 1 , θ 2 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) + D [4] n (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ). (6.2) Lemma 6.1. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (0, 0, 1, 1, 2, 1) and [A2] are satisfied. Then

By definition,

We apply Sobolev's inequality to uniformly estimate the "S"-part and the "H"-part; these estimates involve ∂ i 1 ∂ j z B and ∂ i 3 ∂ j z H for i ∈ {0, 1} and j ∈ {0, 1}. For the "L H "-part, we use the assumption that the function is bound by a polynomial in Z t j-1 uniformly in θ. More precisely, we obtain sup θ∈Θ n -1 hD [1] n (θ 1 , θ 2 , θ 3 , θ 1 , θ 2 , θ * 3 ) -Φ (6.4)

where Φ (6.4)

With the help of Lemma 3.1 (a), Taylor's formula and [A2] give sup

The uniform-in-(θ 1 , θ 3 ) convergence follows from the point-wise convergence with the aid of the derivatives with respect to (θ 1 , θ 3 ). Remark that ∂ x V therefore ∂ x B is used, and L H has H xx in its expression.

It is easy to see

and sup θ∈Θ n -1 hD [4] n (θ

This completes the proof of (a). The assertion (b) is a consequence of (a). In fact, for ǫ > 0,

3 ) ≥ 0. We will derive a rate of convergence of θJ 3 by the random field H n ( θJ 1 , θJ 2 , θ 3 ). Lemma 6.2. Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 1, 2, 1, 3, 1) and [A2] are satisfied. Then

Proof. We first use Lemmas 3.5 (b) and 3.3 (b), next take out the principal part of D j (θ * 1 , θ * 2 , θ * 3 ), and apply argument with a random field and the Burkholder-Davis-Gundy inequality. By this procedure,

) and [A2] are satisfied. Then, for any sequence of positive numbers r n tending to 0, sup

as n → ∞, where

Proof. By definition,

By Lemmass 3.5 (b) and 3.6, we have

Here Lemma 4.1 was applied to estimate the factor

Remark that ∂ 2 3 appears in Ψ 33,2 and Ψ 33,5 . We do not need further differentiation with respect to θ 3 to estimate them, because they are accompanied with the factor h and the uniform-in-θ 3 estimate for each term is carried out by simple L p estimate without random field argument.

Condition [A3] (iii ′ ) implies [A3] (iii). We obtain the rate of convergence of θJ 3 from the consistency given in Lemma 6.1 (b), Lemma 6.2 and (6.5), if applying the Taylor formula and

3 ) = 0 on an event with probability tending to 1.

Proof. We have

We have

By definition, D [START_REF] Comte | Penalized projection estimator for volatility density[END_REF] n (θ 1 , θJ 3 , θ * 1 , θ 2 , θJ 3 ) = 0. Moreover, by using the preliminary estimate θJ 3 -θ * 3 = O p (h) provided by Lemma 6.3, and the expression n -1 D [3] n (θ

, we obtain sup

by using Lemmas 3.6, 3.5 (b) and 3.3 (b). Now D [4] n (θ

.

Once again by using θJ 3 -θ * 3 = O p (h) provided by Lemma 6.3, we obtain the result with the help of Taylor's formula and Lemma 3.1.

We shall deduce a tentative rough estimate o p (n -1/2 h -1/2 ) for the error of θJ 1 . Lemma 6.5. Suppose that

Proof. We use the tentative estimate of θJ 3 -θ * 3 given by Lemma 6.3. Then

since nh 2 → 0. In the equality (6.7), we used the following estimates for the second term:

A similar estimate applies to the first term on (6.7).

Recall

Then, for any sequence of positive numbers r n tending to 0, sup

as n → ∞. In particular, θJ

). If we apply the same machinery as in the proof of Lemma 6.5, it is easy to obtain the result. [It is remarked that ∂ 2 1 appears in Ψ 11,2 and Ψ 11,3 . Uniform-in-θ 1 estimate for Ψ 11,2 is simple since it has the factor h 1/2 in front of it. On the other hand, we use random field argument for Ψ 11,3 after making the martingale differences. We need ∂ 3 1 at this stage. ] For the second assertion, the argument becomes local by Lemma 6.4, then Lemma 6.5 and the convergence (6.8) gives it by Taylor's formula.

as n → ∞. In particular, θJ

). Proof. First using an algebraic identity similar to (4.14), next using Lemma 6.6 and once again using Lemma 6.6 with Lemma 3.5(b), we have

Then, from the representation of D j (θ * 1 , θ * 2 , θ * 3 ) given by Lemmas 3.4 and 3.5 (a) with the aid of the orthogonality of the martingale parts, we obtain

Lemmas 3.5(b) and 3.3 easily ensures

Lemmas 3.5(b), 3.3 and 6.6 give

and the representation of D j (θ * 1 , θ * 2 , θ * 3 ) in Lemmas 3.4 and 3.5 (a) and the orthogonality between the martingale differences, we see

Consequently,

For the last assertion, we may apply Lemma 6.3.

Recall

as n → ∞. Moreover,

Proof. We are in the same situation as Lemma 6.5 but we can use the convergence rate θJ For the last term, we can use the decomposition

where ⊗ sym means the symmetrized tensor product. We have

3 ), we introduce the random field

With the aid of the representation of D j (θ * 1 , θ * 2 , θ * 3 ) and the orthogonality between martingale differences, a random field argument concludes sup

The orthogonality further applied gives

Consequently,

as n → ∞.

Since θJ 1 → p θ * 1 by e.g. Lemma 6.4, we can show the first order efficiency of θJ 1 by using Taylor's formula combined with (6.10) and Lemma 6.6. Lemma 6.9. Suppose that [A1] with

as n → ∞. In particular,

as n → ∞.

Proof. We elaborate the estimate in the proof of Lemma 6.7. Taking advantage of the convergence rate of θJ 1 given by Lemma 6.8, we see By Lemma 6.8, the representation of D j (θ * 1 , θ * 2 , θ * 3 ) and the orthogonality, we obtain

We have sup

Next, we consider Ξ (6.13) n

for any sequence r n of positive numbers such that r n → 0. Then a random field argument with Sobolev's inequality ensures the convergence sup u 1 ∈B(0.1)

Therefore,

From the above estimates, we already have (6.11). Moreover, Lemmas 6.3 and the martingale central limit theorem givens (6.12). [A3](iii ′ ) are satisfied. Then

Proof. We have [1] n ( θJ [3] n ( θJ

We have

by Lemmas 6.7, 6.8, 3.6 and 3.5 (b), where the order o p (1) is uniform in θ 2 ∈ Θ 2 . The last expression is

by using the exact convergence rate of θJ 1 and θJ 3 , where o p (1) is uniform in θ 2 ∈ Θ 2 . Random field argument shows that the last one converges in probability to zero uniformly in θ 2 . This shows (a). The property (b) is now easy to deduce from (a).

We will derive a convergence rate of θJ 2 .

[A3](iii ′ ) are satisfied. Then

Proof. By simple algebra and Lemma 3.2,

Here the last equation can be verified by a θ 1 -random field argument using the consistency of θJ 1 obtained in Lemma 6.4. Remark that M

n is defined by (5.14) on p.26.

Lemma 6.12. Suppose that

as n → ∞, where r n is any sequence of positive numbers such that r n → 0 and

Moreover,

as n → ∞. In particular,

as n → ∞.

Proof. We see

) (Lemmas 6.7 and 6.8)

The order o p (1) is uniform in θ 2 ∈ Θ 2 . The last equation is verified by random field argument with the shrinking B(θ * 2 , r n ), where we need ∂ 3 2 A. Since θJ 2 → p θ * 2 by Lemma 6.10(b), applying Taylor's formula with ∂ 2 2 A, we obtain (6.15) with the help of Lemma 3.1 (a). Moreover, we obtain (6.16) by combining (6.15) with Lemma 6.11.

Let θJ

as n → ∞.

Proof. By Lemmas 6.8, 6.12 and 6.9, we obtain the result. By simple linear calculus, we can see that M

(2)

n and M

n are asymptotically orthogonal. Since M

n is written by the second Wiener chaos, it is asymptotically orthogonal to M 

Estimation of θ 1

The purpose of this section is to recall a standard construction of estimator for θ 1 and to clarify what conditions we mentioned validate its asymptotic properties. Let H (1) n (θ 1 ) = -

where ∆ j X = X t j -X t j-1 . It should be remarked that the present H

n (θ 1 ) is different from the one given in (5.2) on p.20. Under [A1] and [A2] (iii), H [START_REF] Bibby | Martingale estimation functions for discretely observed diffusion processes[END_REF] n is a continuous function on Θ 1 a.s. Given the data (Z t j ) j=0,1,...,n , let us consider the quasi-maximum likelihood estimator (QMLE) θ0 1 = θ0 1,n for θ 1 , that is, θ0 1 is any measurable function of (Z t j ) j=0,1,...,n satisfying H (1) n ( θ0 1 ) = max

H (1) n (θ 1 ) a.s.

Routinely, n 1/2 -consistency and asymptotic normality of θ0 1 can be established. We will give a brief for self-containedness and for the later use. Let Γ (1) 

for u 1 ∈ R p 1 . We will see the existence and positivity of Γ (1) in the following theorem.

Theorem 7.1. (a) Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (0, 0, 1, 1, 0, 0), [A2] (i), (ii), (iii), and [A3] (i) are satisfied. Then θ0 1 → p θ * 1 as n → ∞.

(b) Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 0, 2, 3, 0, 0), [A2] (i), (ii), (iii), and [A3] (i) are satisfied. Then Γ (1) exists and is positive-definite, and

as n → ∞, where

.

as n → ∞.

Proof. (a): Let Y

n (θ 1 )-H

n (θ * 1 ) . Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (0, 0, 1, 1, 0, 0) and [A2] (i), (ii), (iii). Use (3.1) and Lemma 3.1, then

for every p > 1. By Sobolev's inequality, we obtain sup

for every p > 1. Therefore, the identifiability condition [A3] (i) ensures θ0

and

. Now, by using orthogonality and the estimate (3.5), if [A1] is satisfied for (i A , j A , i B , j B , i H , j H ) = (1, 0, 2, 1, 0, 0), then

where

At the same time Itô's formula gives

for L B (z, θ 1 , θ 2 , θ 3 ) given by (3.9). The products of the first two terms on the right-hand side of (7.3) form martingale differences, and hence

). Under [A2] (i), (ii), (iii), the martingale central limit theorem gives

if [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 0, 2, 1, 0, 0) and [A2] (i), (ii), (iii) are fulfilled. Next, suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (0, 0, 2, 3, 0, 0) and [A2] (i), (ii), (iii) are fulfilled. It is rather simple to prove

for every p > 1 and any sequence (ρ n ) n∈N of positive numbers tending to 0 as n → ∞. We apply Sobolev's embedding inequality to each component of the matrix valued random field

for every p > 1.

Suppose that [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 0, 2, 3, 0, 0), [A2] (i), (ii), (iii), and [A3] (i) are satisfied. Then differentiating Y (1) twice, we see, from [A3] (i), that Γ (1) is positivedefinite. By (a), θ0

1 → p θ * 1 . With this fact, we obtain (b) from (7.4) and (7.6).

Remark 7.2. It is possible to show that the quasi-Bayesian estimator (QBE) also enjoys the same asymptotic properties as the QMLE in Theorem 7.1, if we follows the argument in Yoshida [START_REF] Yoshida | Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations[END_REF]. This means we can use both estimators together with the estimator for θ 2 e.g. given in Section 8, to construct a one-step estimator for θ 3 based on the scheme presented in Section 4, and consequently we can construct a one-step estimator for θ = (θ 1 , θ 2 , θ 3 ) by the method in Section 5.

Estimation of θ 2

This section will recall a standard construction of estimator for θ 2 . As usual, the scheme is adaptive. Suppose that an estimator θ0 1 based on the data (Z t j ) j=0,1,...,n satisfies Condition [A4 ♯ ] (i), i.e., θ0

as n → ∞. Obviously we can apply the estimator constructed in Section 7, but any estimator satisfying this condition can be used. Define the random field H

n on Θ 2 by H (2) n (θ 2 ) = -

We will denote by θ0 2 = θ0 2,n any sequence of quasi-maximum likelihood estimator for H

n , that is, H (2) n ( θ0 2 ) = sup

n (θ * 2 ) , where

Proof.

Y (2) n (θ 2 ) = Φ (8.2) n (θ 2 ) + Φ (8.3)

Proof. From (8.1),

and

By random field argument for (8.9) with ∂ 1 C(Z t j-1 , θ 1 ) and [A4 ♯ ], we obtain

as n → ∞, if (3.10) in Lemma 3.4 applied to ∆ j X -hA(Z t j-1 , θ * 2 ). Under Conditions [A1] with (i A , j A , i B , j B , i H , j H ) = (1, 3, 2, 1, 0, 0), [A2] and [A4 ♯ ], we obtain the convergence (8.8) for any sequence of positive numbers r n satisfying r n → 0 as n → ∞.

Here we applied random field argument to the second term on the right-hand side of (8.10).

The matrix Γ 22 is given by (5.1) on p.19. Form Lemmas 8.1, 8.1 and 8.2, the following theorem follows. 

and

as n → ∞.

Remark 8.4. The estimator θ0 1 in Section7 is asymptotically orthogonal to θ0 2 constructed in this section. Therefore, for that θ0

1 , we obtain the joint convergence n 1/2 ( θ0

as n → ∞, as is well known. 9 Symbols and Conditions 9.1 Section 1

[A2 ] (i) sup t∈R + Z t p < ∞ for every p > 1.

(ii) There exists a probability measure ν on R d Z such that

for any bounded measurable function f : R d Z → R.

(iii) The function θ 1 → C(Z t , θ 1 ) -1 is continuous on Θ 1 a.s., and sup

for every p > 1.

(iv) For the

,

where

Section 5

H (1) n (θ 1 ) = -

) .

Ŝ(Z t j-1 , θ0

3 ) -1 D j ( θ0 1 , θ 2 , θ 3 ) ⊗2 .

Recall Ŝ(z, θ 3 ) = S(z, θ0 1 , θ 3 ).

.

Section 6

H n (θ) = -1 2 n j=1 S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ 1 , θ 2 , θ 3 ) ⊗2 + log det S(Z t j-1 , θ 1 , θ 3 ) for θ = (θ 1 , θ 2 , θ 3 ).

D [1] n (θ

D [3] n (θ

S(Z t j-1 , θ 1 , θ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ), A(Z t j-1 , θ 2 ) -A(Z t j-1 , θ ′ 2 ) 2 -1 L H (Z t j-1 , θ 1 , θ 2 , θ 3 ) -L H (Z t j-1 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) D [4] n (θ 1 , θ 3 , θ ′ 1 , θ ′ 2 , θ ′ 3 ) = -

S(Z t j-1 , θ 1 , θ 3 ) -1 -S(Z t j-1 , θ ′ 1 , θ ′ 3 ) -1 D j (θ ′ 1 , θ ′ 2 , θ ′ 3 ) ⊗2

+ log det S(Z t j-1 , θ 1 , θ 3 ) det S(Z t j-1 , θ ′ 1 , θ ′ 3 )