Hugo Gimbert 
email: hugo.gimbert@labri.fr
  
Soumyajit Paul 
email: soumyajit.paul@labri.fr
  
B Srivathsan 
  
A Bridge between Polynomial Optimization and Games with Imperfect Recall

Keywords: 2012 ACM Subject Classification Theory of computation → Representations of games and their complexity Non-cooperative game theory, extensive form games, complexity, Bridge, first order theory of reals, polynomial optimization

We provide several positive and negative complexity results for solving games with imperfect recall. Using a one-to-one correspondence between these games on one side and multivariate polynomials on the other side, we show that solving games with imperfect recall is as hard as solving certain problems of the first order theory of reals. We establish square root sum hardness even for the specific class of A-loss games. On the positive side, we find restrictions on games and strategies motivated by Bridge bidding that give polynomial-time complexity.

Introduction

The complexity of games of finite duration and imperfect information is a central problem in Artificial Intelligence. In the particular case of zero-sum two-player extensive form games with perfect recall, the problem was notably shown to be solvable in polynomial-time [START_REF] Koller | The complexity of two-person zero-sum games in extensive form[END_REF][START_REF] Bernhard Von | Efficient computation of behavior strategies[END_REF]. The perfect recall assumption, which states that players do not lose track of any information they previously received, is mandatory for this tractability result to hold: without this assumption, the problem was shown to be NP-hard [START_REF] Koller | The complexity of two-person zero-sum games in extensive form[END_REF][START_REF] Cermák | Approximating maxmin strategies in imperfect recall games using a-loss recall property[END_REF]. The primary motivation for our work is to investigate the complexity of the game of Bridge, a game between two teams of two players each: North and South against West and East. Bridge is a specific class of multi-player games called team games, where two teams of players have opposite interests, players of the same team have the same payoffs, but players cannot freely communicate, even inside the same team (see e.g. [START_REF] Celli | Computational results for extensive-form adversarial team games[END_REF][START_REF] Farina | Ex ante coordination and collusion in zero-sum multi-player extensive-form games[END_REF] for more details). Interestingly, dropping the perfect recall assumption in zero-sum two player games is enough to encompass team games: the lack of communication between the players about their private information can be modeled with imperfect recall. Another motivation to study games with imperfect recall is that they may be used to abstract large perfect recall games and obtain significant computational improvements empirically [START_REF] Cermak | An algorithm for constructing and solving imperfect recall abstractions of large extensive-form games[END_REF]19].

Our results exhibit tight relations between the complexity of solving games with imperfect recall and decision problems in the first-order theory of reals FOT(R). A formula in FOT(R) is a logical statement containing Boolean connectives ∨, ∧, ¬ and quantifiers ∃, ∀ over the signature (0, 1, +, * , ≤, <, =). We can consider it to be a first order logic formula in which each atomic term is a polynomial equation or inequation, for instance ∃x 1 , x 2 ∀y(0 ≤ y ≤ 1) → (4x 1 y + 5x 2 2 y + 3x 3 1 x 2 > 4) (where we have used integers freely since they can be eliminated without a significant blow-up in the size of the formula [START_REF] Schaefer | Fixed points, nash equilibria, and the existential theory of the reals[END_REF], and the implication operator → with the usual meaning). The complexity class ∃R consists of those problems which have a polynomial-time reduction to a sentence of the form ∃XΦ(X) where X is a tuple of real variables, Φ(X) is a quantifier free formula in the theory of reals. Similarly, the complexity classes ∀R and ∃∀R stand for the problems that reduce to formulae of the form ∀XΦ(X) and ∃X∀Y Φ(X, Y ) where X, Y are tuples of variables. All these complexity classes ∃R, ∀R and ∃∀R are known to be contained in PSPACE [START_REF] Canny | Some algebraic and geometric computations in pspace[END_REF][START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]. Complexity of games with respect to the ∃R class has been studied before in strategic form games, particularly for Nash equilibria decision problems in 3 player games [START_REF] Schaefer | Fixed points, nash equilibria, and the existential theory of the reals[END_REF][START_REF] Garg | Etr-completeness for decision versions of multi-player (symmetric) nash equilibria[END_REF][START_REF] Bilò | A catalog of exists-r-complete decision problems about nash equilibria in multi-player games[END_REF].

Our paper provides several results about the complexity of extensive form games with imperfect recall. First, we show a one-to-one correspondence between games of imperfect recall on one side and multivariate polynomials on the other side and use it to establish several results:

In one-player games with imperfect recall, deciding whether the player has a behavioural strategy with positive payoff is ∃R-complete (Theorem 3). The same holds for the question of non-negative payoff.

In two-player games with imperfect-recall, the problem is in the fragment ∃∀R of FOT(R) and it is both ∃R-hard and ∀R-hard (Theorem 4). Even in the particular case where the players do not have absent-mindedness, this problem is Square-Root-Sum-hard (Theorem 6). A corollary is that the case where one of the two players has A-loss recall and the other has perfect recall is Square-Root-Sum hard, a question which was left open in [START_REF] Cermák | Approximating maxmin strategies in imperfect recall games using a-loss recall property[END_REF]. While the above results show that imperfect recall games are hard to solve, we also provide a few tractability results.

We capture the subclass of one-player perfect recall games with a class of perfect recall multivariate polynomials. As a by-product we show that computing the optimum of such a polynomial can be done in polynomial-time, while it is NP-hard in general (Section 4). This also provides a heuristic to solve imperfect recall games in certain cases, by converting them to perfect recall games of the same size.

For one-player games where the player is bound to use deterministic strategies, the problem becomes polynomial-time when a parameter which we call the change degree of the game is constant (Theorem 25). We provide a model for the bidding phase of the Bridge game, and exhibit a decision problem which can be solved in time polynomial in the size of the description (Lemma 26). 

node r ∈ V ∪ L is called the root and E ⊆ V × (V ∪ L) is the edge relation. We write u → v if (u, v) ∈ E.
It is assumed that there is no edge u → r incoming to r, and there is a unique

path r → v 1 → • • • → v from the root to every v ∈ V ∪ L.
We denote this path as PathTo(v).

We consider games played between two players Max and Min along with a special player Chance to model random moves during the game. We will denote Max as Player 1 and Min as Player 2. An extensive form perfect information game is given by a tuple (T , A, Control, δ, U) where: T is a finite directed tree, A = A 1 ∪ A 2 is a set of actions for each player with A 1 ∩ A 2 = ∅, function Control : V → {1, 2} ∪ {Chance} associates each non-terminal node to one of the players, δ is a transition function which we explain below, and U : T → Q associates a rational number called the utility (or payoff) to each leaf. For i ∈ {1, 2}, let V i denote the set of nodes controlled by Player i, that is {v ∈ V | Control(v) = i} and let V Chance denote the nodes controlled by Chance. We sometimes use the term control nodes for nodes in V 1 ∪ V 2 and chance nodes for nodes in V Chance . The transition function δ associates to each edge u → v an action in A i when u ∈ V i , and a rational number when u ∈ V Chance such that v s.t. u→v δ(u → v) = 1 (a probability distribution over the edges of u). We assume that from control nodes u, no two outgoing edges are labeled with the same action by δ:

that is δ(u → v 1 ) = δ(u → v 2 ) when v 1 = v 2 .
For a control node u, we write Moves(u) for {a ∈ A i | a = δ(u → v) for some v}. Games G 1 and G 2 in Figure 1 An extensive form imperfect information game is given by a perfect information game as defined above along with two partition functions

h 1 : V 1 → O 1 and h 2 : V 2 → O 2 which respectively map V 1 and V 2 to a finite set of signals O 1 and O 2 . The partition functions h i satisfy the following criterion: Moves(u) = Moves(v) whenever h i (u) = h i (v). Each partition h -1 i (o) for o ∈ O i is called an information set of Player i.
Intuitively, a player does not know her exact position u in the game, and instead receives the corresponding signal h i (u) whenever she arrives to u. Due to the restriction on moves, we can define Moves(o) for every o ∈ O i to be equal to Moves(u) for some u ∈ h -1 i (o). In Figure 1, the blue dashed lines denote the partition of Max: in G 1 , {r, u} is one information set and in G 2 , the information sets of Max are {u 1 }, {u 2 } and {u 3 , u 4 }. Max has to play the same moves at both r and u in G 1 , and similarly at u 3 and u 4 in G 2 . Based on some structure of these information sets, imperfect information games are further characterized into different classes. We explain this next.

Histories.

While playing, a player receives a sequence of signals, called the history, defined as follows. For a vertex v controlled by player i, let hist(v) be the sequence of signals received and actions played by i along PathTo(v), the path from the root to v. For example in game G 2 , hist(u 3 ) = {u 1 } b {u 3 , u 4 } (for convenience, we have denoted the signal corresponding to an information set by the set itself). Note that the information set of a vertex is the last signal of the sequence, thus if two vertices have the same sequence, they are in the same information set. On the other hand, the converse need not be true: two nodes in the same information set could have different histories, for instance node u 4 in G 2 has sequence {u 2 } a {u 3 , u 4 }.

In such a case, what happens intuitively is that player i does not recall that she received the signals {u 1 } and {u 2 } and played the actions b and a. This gives rise to various definitions of recalls for a player in the game.

Recalls.

Player i is said to have perfect recall if she never forgets any signals or actions, that is, for every (v): every vertex in an information set has the same history with respect to i. Otherwise the player has imperfect recall.

u, v ∈ V i , if h i (u) = h i (v) then hist(u) = hist
Max has imperfect recall in G 1 , G 2 and G - √ n whereas Min has perfect recall in all of them (trivially, since there is only one signal that she receives). Within imperfect recall we make some distinctions.

Player i is said to have absent-mindedness if there are two nodes u, v ∈ V i such that u lies in the unique path from root to v and h i (u) = h i (v) (player i forgets not only her history, but also the number of actions that she has played). Max has absent-mindedness in G 1 .

Player i has A-loss recall if she is not absent-minded, and for every u, v ∈ V i with h i (u) = h i (v) either hist(u) = hist(v) or hist(u) is of the form σaσ 1 and hist(v) of the form σbσ 2 where σ is a sequence ending with a signal and a, b ∈ A i with a = b (player i remembers the history upto a signal, after which she forgets the action that she played). Max has A-loss in G - √ n since she forgets whether she played a 0 or a 1 . There are still cases where a player is not absent-minded, but not A-loss recall either, for example when there exists an information set containing u, v whose histories differ at a signal. This happens when i receives different signals due to the moves of the other players (including player Chance), and later converges to the same information set. In this document, we call such situations as signal loss for Player i. Max has signal loss in G 2 since at {u 3 , u 4 } as she loses track between {u 1 } and {u 2 }.

Plays, strategies and maxmin value.

A play is a sequence of nodes and actions from the root to a leaf: for each leaf l, the PathTo(l) is a play. When the play ends at l, Min pays U(l) to Max. The payoffs U(l) are the numbers below the leaves in the running examples. Max wants to maximize the expected payoff and Min wants to minimize it. In order to define the expected payoff, we define the notion of strategies for each player. A behavioural strategy β for Player i is a function which maps each signal o ∈ O i to ∆(Moves(o)), a probability distribution over its moves. For a ∈ Moves(o), we write β(o, a) for the value associated by β to the action a at information set o. For node u, we write β(u, a) for the probability β(h i (u), a). A pure strategy ρ is a special behavioural strategy which maps each signal o to a specific action in Moves(o). We will denote the action

No absentmindedness

With absentmindedness One player NP-complete ∃R-complete (Theorem 3)

Two players

in ∃∀R (Theorem 4) Square-Root-Sum-hard ∃R-hard and ∀R-hard (Theorem 6) (Theorem 4)

Figure 2 Complexity of imperfect recall games associated at signal o by ρ(o), and for a node u we will write ρ(u) for ρ(h i (u)). For a node u and an action a, we define ρ(u, a) = 1 if ρ(h i (u)) = a, and ρ(u, a) = 0 otherwise. A mixed strategy is a distribution over pure strategies:

λ 1 ρ 1 + λ 2 ρ 2 + • • • + λ k ρ k
where each ρ j is a pure strategy, 0 ≤ λ j ≤ 1 and Σ j λ j = 1.

Consider a game G. Fixing behavioural strategies σ for Max and τ for Min results in a game G σ,τ without control nodes: every node behaves like a random node as every edge is labeled with a real number denoting the probability of playing the edge. For a leaf t, let C(t) denote the product of probabilities along the edges controlled by Chance in PathTo(t). Let σ(t) denote the product of σ(u, a) such that u ∈ V 1 and u a -→ v is in PathTo(t). Similarly, let τ (t) denote the product of the other player's probabilities along PathTo(t). The payoff with these strategies σ and τ , denoted as Payoff(G σ,τ ) is then given by:

t∈T

U(t) • C(t) • σ(t) • τ (t)
. This is the "expected" amount that Min pays to Max when the strategies are σ and τ for Max and Min respectively. We are interested in computing max σ min τ Payoff(G σ,τ ). We denote this value as MaxMin beh (G) and call it the maxmin value (over behavioural strategies). When G is a one player game, the corresponding values are denoted as Max beh (G) or Min beh (G) depending on whether the single player is Max or Min. We correspondingly write MaxMin pure (G), Max pure (G) and Min pure (G) when we restrict the strategies σ and τ to be pure. In the one player game G 1 , Max pure (G 1 ) is 0 since the leaf l 2 is unreachable with pure strategies. Suppose Max plays a with probability x and b with 1 -x, then Max beh (G 1 ) is given by max x∈[0, [START_REF] Allender | On the complexity of numerical analysis[END_REF] x(1 -x). In G 2 , a pure strategy for Max can potentially lead to two leaves with payoffs either 1, 1 or 1, 2 or 2, 0. Based on what Max chooses, Min can always lead to the node with minimum among the two by appropriately choosing the action at r. This gives MaxMin pure (G 2 ) = 1. Observe that on the other hand, MinMax pure (G 2 ) = 2. It also turns out the MaxMin beh (G 2 ) = 1, which can be shown by exploiting the symmetry in the game.

Imperfect recall games

In this section we investigate the complexity of imperfect recall games and exhibit tight links with complexity classes arising out of the first order theory of reals. Finding the maxmin value involves computing a maxmin over polynomials where the variables are partitioned between two players Max and Min. It turns out that imperfect recall games can capture polynomial manipulation entirely if there is a single player. When there are two players, we show that certain existential and universal problems involving polynomials can be captured using imperfect recall games. Previously, the only known lower bound was NP-hardness [START_REF] Koller | The complexity of two-person zero-sum games in extensive form[END_REF]. We show that even the very specific case of two-player games without absentmindedness is hard to solve: optimal values in such games can be irrational and solving these games is Square-Root-Sum-hard. A summary of complexity results is given in Table 2. 

One player

We start with the hardness of games with a single player. The important observation is that there is a tight connection between multi-variate polynomials on one side and one-player games on the other side.

Lemma 1. For every polynomial F (x 1 , . . . , x n ) over the reals, there exists a one player game G F with information sets x 1 , . . . , x n such that the payoff of a behavioural strategy associating

d i ∈ [0, 1] to x i is equal to F (d 1 , . . . , d n ). Proof. Suppose F (x 1 , . . . , x n ) has k terms µ 1 , ..., µ k . For each term µ i in F (x 1 , . . . , x n ) we have a node s i in G F
whose depth is equal to the total degree of µ i . From s i there is a path to a terminal node t i containing d nodes for variable x, for each x d in µ i . Each of these nodes have two outgoing edges of which the edge not going to t i leads to a terminal node with utility 0. In the terminal node t i the utility is equal to kc i where c i is the co-efficient of µ i .There is a root node belonging to Chance which has transitions to each s i with probability 1 k . All the other nodes belong to the single player. All the nodes assigned due to a variable x belong to one information set. The number of nodes is equal to sum of total degrees of each term. The payoffs are the same as the co-efficients. Hence the size of the game is polynomial in size of F (x 1 , . . . , x n ). Figure 3 shows an example (probability of taking l from information set {u 1 , u 2 , u 3 } is x and the probability of taking l from {v 1 , v 2 , v 3 } is y). Clearly the reduction from a polynomial to game is not unique.

The above lemma leads to the hardness of one player games.

Lemma 2. The following two decision problems are ∃R-hard in one-player games with imperfect recall: (i)

Max beh ≥ 0 and (ii) Max beh > 0.

Proof. (i)

The problem of checking if there exists a common root in R n for a system of quadratic equations Q i (X) is ∃R-complete [START_REF] Schaefer | Fixed points, nash equilibria, and the existential theory of the reals[END_REF]. This can be reduced to checking for a common root in [0, 1] n using Lemma 3.9 of [START_REF] Schaefer | Realizability of Graphs and Linkages[END_REF]. We then reduce this problem to Max beh ≥ 0. Note that X is a solution to the system iff - 2 . It then follows that the system has a common root iff Max beh ≥ 0 in G F .

i Q i (X) 2 ≥ 0. Using Lemma 1 we construct a game G F with F = -i Q i (X)
(ii) We reduce Max beh (G) ≥ 0 to Max beh (G ) > 0 for some constructed game G . Suppose that when Max beh (G) < 0, we can show Max beh (G) < -δ for a constant δ > 0 that can be determined from G. With this claim, we have Max beh (G) ≥ 0 iff Max beh (G) + δ > 0. We will then in polytime construct a game G whose optimal payoff is Max beh (G) + δ, which then proves the lemma. We will first prove the claim. The proof proceeds along the same lines as Theorem 4.1 in [START_REF] Schaefer | Fixed points, nash equilibria, and the existential theory of the reals[END_REF].

Let g(X) be the polynomial expressing the expected payoff in the game G when the behavioural strategy is given by the variables X. Define two sets

S 1 := {(z, X) | z = g(X), X ∈ [0, 1] n } and S 2 := {(0, X) | X ∈ [0, 1] n }. If Max beh (G) < 0,
then S 1 and S 2 do not intersect. Since both S 1 , S 2 are compact, this means there is a positive distance between them. Moreover, S 1 and S 2 are semi-algebraic sets (those that can expressed by a boolean quantifier free formula of the first order theory of reals). Corollary 3.8 of [START_REF] Schaefer | Fixed points, nash equilibria, and the existential theory of the reals[END_REF] gives that this distance > 2 -2 L+5 where L is the complexity of the formulae expressing S 1 and S 2 , which in our case is proportional to the size of the game. However, since δ is doubly exponential, we cannot simply use it as a payoff to get Max beh (G) + δ.

Define new variables y 0 , y 1 , . . . , y t for t = L+5 and polynomials F i (y 0 , . . . , y t ) := y i-1 -y 2 i for i ∈ {1, . . . , t -1} and F t (y 0 , . . . , y t ) := y t -1 2 . The only common root of this system of polynomials F i gives y 0 = 2 -2 t = δ. Let P :=i F 2 i (y 0 , . . . , y t ) and let G P be the corresponding game as in Lemma 1. Construct a new game G as follows. Its root node is a Chance node with edges to three children each with probability 1 3 . To the first child, we attach the game G, and to the second child, the game G P . The third child is node which is controlled by Max and belongs to the information set for variable y 0 . It has two leaves as children, the left with payoff 0 and the right with payoff 1. Observe that the optimal payoff for max in G is 1 3 (Max beh (G) + δ). From the discussion in the first paragraph of this proof, we have Max beh (G) ≥ 0 iff Max beh (G ) > 0.

The previous lemma shows that the game problem is ∃R-hard. Inclusion in ∃R is straightforward since the payoff is given by a polynomial over variables representing the value of a behavioural strategy at each information set. For example, for the game G 1 of Figure 1, deciding Max beh (G 1 ) ≥ 0 is equivalent to checking ∃x(0 ≤ x ≤ 1 ∧ x(1 -x) ≥ 0). We thus get the following theorem.

Theorem 3. For one player games with imperfect recall, deciding Max beh ≥ 0 is ∃Rcomplete. Deciding Max beh > 0 is also ∃R-complete.

Two players

We now consider the case with two players. Analogous to the one player situation, now MaxMin beh (G) ≥ 0 can be expressed as a formula in ∃∀R. For instance, consider the game G 2 of Figure 1. Let x, y, z, w be theprobability of taking the left action in u 1 , u 2 , {u 3 , u 4 } and r respectively. Deciding MaxMin beh (G 2 ) ≥ 0 is equivalent to the formula ∃x, y, z∀w(0

≤ w ≤ 1 → (wx + 2w(1 -x)z + 2(1 -w)y(1 -z) + (1 -w)(1 -y) ≥ 0)
). This gives the upper bound on the complexity as ∃∀R. Hardness is established below.

Theorem 4. Deciding MaxMin beh (G) ≥ 0 is in ∃∀R. It is both ∃R-hard and ∀R-hard.
Proof. Inclusion in ∃∀R follows from the discussion above. For the hardness, we make use of Lemma 2. Note that when there is a single player Max, Max beh (G) ≥ 0 is the same as MaxMin beh (G) ≥ 0. As the former is ∃R-hard, we get the latter to be ∃R-hard. Now we consider the ∀R-hardness. Since Max beh (G) > 0 is also ∃R-hard, the complement problem Max beh (G) ≤ 0 is ∀R-hard. Hence the symmetric problem Min beh (G) ≥ 0 is ∀R-hard. This is MaxMin beh (G) ≥ 0 when there is a single player Min, whence MaxMin beh (G) ≥ 0 is ∀R-hard.

In these hardness results, we crucially use the squaring operation. Hence the resulting games need to have absentmindedness. Games without absentmindedness result in multilinear polynomials. The hardness here comes due to irrational numbers. Examples were already known where maxmin behavioural strategies required irrational numbers [START_REF] Koller | The complexity of two-person zero-sum games in extensive form[END_REF] but the maxmin payoffs were still rational. We generate a class of games where the maxmin payoffs are irrational as well. The next lemma lays the foundation for Theorem 6 showing square root sum hardness for this problem. The Square-Root-Sum problem is to decide if m i=1 √ a i ≤ p for given positive integers a 1 , . . . , a m , p. This problem was first proposed in [START_REF] Garey | Some np-complete geometric problems[END_REF], whose complexity was left as an open problem. The notion of Square-Root-Sumhardness was put forward in [START_REF] Etessami | Recursive markov decision processes and recursive stochastic games[END_REF] and has also been studied with respect to complexity of minmax computation [START_REF] Kristoffer | The computational complexity of trembling hand perfection and other equilibrium refinements[END_REF] and game equilibrium computations [START_REF] Etessami | On the complexity of nash equilibria and other fixed points[END_REF]. In [START_REF] Etessami | Recursive markov decision processes and recursive stochastic games[END_REF][START_REF] Kristoffer | The computational complexity of trembling hand perfection and other equilibrium refinements[END_REF] the version discussed was to decide if

m i=1
√ a i ≥ p. But our version is computationally same since the equality version is decidable in P [START_REF] Blömer | Computing sums of radicals in polynomial time[END_REF]. The Square-Root-Sum problem is not known to be in NP. It is known to lie in the Counting Hierarchy [START_REF] Allender | On the complexity of numerical analysis[END_REF] which is in PSPACE.

When Max has A-loss recall and Min has perfect recall, deciding maxmin over behavioural strategies is NP-hard [START_REF] Cermák | Approximating maxmin strategies in imperfect recall games using a-loss recall property[END_REF]. The question of whether it is Square-Root-Sum-hard was posed in [START_REF] Cermák | Approximating maxmin strategies in imperfect recall games using a-loss recall property[END_REF]. We settle this problem by showing that even with this restriction it is Square-Root-Sumhard.

Lemma 5. For each n ≥ 0, there is a two-player game

G - √ n without absentmindedness such that MaxMin beh (G - √ n ) = - √ n.
Proof. First we construct a game G 1 whose maxmin value is n(n+1-2

√ n) (n-1) 2
from which we get a game G 2 with maxmin value n + 1 -2 √ n by multiplying the payoffs of G 1 with (n-1) 2 n . Then we take a trivial game G 3 with maxmin value -(n + 1) and finally construct G - √ n by taking a root vertex r as chance node and transitions with 1/2 probability from r to G 2 and G 3 .

We now describe the game G 1 . The game tree has 7 internal nodes and 16 leaf nodes with payoffs. At the root node s , there are 2 actions a 0 and a 1 , playing which the game moves to s 0 or s 1 . Then again at s i the action b 0 and b 1 are available playing which the game can go to s 0,0 , s 0,1 , s 1,0 or s 1,1 . And finally again playing action c 0 or c 1 the game can go to the leaf states {t i,j,k | i, j, k ∈ {0, 1}}. The node s is in one information set I 1 and belongs to Max. The nodes s 0 and s 1 are in one information set I 2 and also belong to Max. Nodes s 0,0 , s 0,1 , s 1,0 and s 1,1 are in the same information set J and belong to Min. The payoff at t 0,0,0 is n and the payoff at t 1,1,1 is 1. Everywhere else the payoff is 0.

Figure 4 depicts the game G - √ n and the left subtree from chance node is G 1 after scaling the payoffs by (n-1) 2 n . We wish to compute the maxmin value obtained when both the players play behavioural strategies. Assigning variables x, y, z for information sets I 1 , I 2 , J respectively, the maxmin value is given by the expression max

x,y∈[0,1] min z∈[0,1] nxyz + (1 -x)(1 -y)(1 -z) which in this case is equivalent to max x,y∈[0,1] min(nxy, (1 -x)(1 -y))
since the best response of Min is given by a pure strategy when Min has no absentmindedness. It turns out this value is achieved when nxy = (1 -x)(1 -y). We use this to get rid of y and reduce to:

max x∈[0,1] nx(1 -x) 1 + (n -1)x (n -1) 2 c 0 0 c 1 b 0 0 c 0 0 c 1 b 1 a 0 0 c 0 0 c 1 b 0 0 c 0 (n-1) 2 n c 1 b 1 a 1 1 2 -(n + 1) 1 2 Figure 4 Game G -√ n
Calculating this we see that the maximum in [0, 1] is achieved at

x = √ n-1 n-1 . After evaluation we get MaxMin beh (G 1 ) = n(n+1-2 √ n) (n-1) 2 as intended, at x = y = √ n-1 n-1 .
Theorem 6. Deciding MaxMin beh ≥ 0 is Square-Root-Sum-hard in imperfect recall games without absentmindedness.

Proof. From the positive integers a 1 , ..., a m and p which are the inputs to the Square-Root-Sum problem, we construct the following game Ĝ. At the root there is a chance node r. From r there is a transition with probability 1 m+1 to each of the games G -√ ai (as constructed in Lemma 5) and also a trivial game with payoff p. Now Max can guarantee a payoff 0 in Ĝ iff

m i=1 √ a i ≤ p.
In the proof above since in each of G - √ n , Max has A-loss recall and Min has perfect recall, the same holds in Ĝ. Hence it is Square-Root-Sum-hard to decide the problem even when Max has A-loss recall and Min has perfect recall.

Polynomial optimization

In Section 3 we have seen that manipulating polynomials can be seen as solving one-player imperfect recall games (Lemma 1 and Figure 3). In particular, optimizing a polynomial with n variables over the domain [0, 1] n (the unit hypercube) can be viewed as finding the optimal payoff in the equivalent game. On the games side, we know that games with perfect recall can be solved in polynomial time [START_REF] Koller | The complexity of two-person zero-sum games in extensive form[END_REF][START_REF] Bernhard Von | Efficient computation of behavior strategies[END_REF]. We ask the natural question on the polynomials side: what is the notion of perfect recall in polynomials? Do perfect recall polynomials correspond to perfect recall games? We answer this question in this section. Consider a set X of real variables. For a variable x ∈ X, we write x = 1 -x and call it the complement of x. Let X = {x | x ∈ X} be the set of complements. We consider polynomials with integer coefficients having terms over X ∪ X. Among such polynomials, we restrict our attention to multilinear polynomials: each variable appearing in a term has degree 1 and no term contains a variable and its complement. Let M (X) be the set of such polynomials. For example 3xyz -5xȳz + 9z ∈ M ({x, y, z}) whereas 4xx ∈ M ({x}) and 4x 2 / ∈ M ({x}). For f, g ∈ M (X) we write f ≡ g if eliminating the negations from f and g gives the same full expansion. For example, y -yx ≡ yx and yx + x ≡ y + xȳ. By definition, the full expansion f of a polynomial f satisfies f ≡ f . Also note that ≡ is an equivalence relation.

We are interested in the problem of optimizing a polynomial f ∈ M (X) over the unit hypercube [0, 1] |X| . The important property is that the optimum occurs at a vertex. This corresponds to saying that in a one-player imperfect recall game without absentmindedness, the optimum is attained at a pure strategy (which is shown by first proving that every behavioural strategy has an equivalent mixed strategy and hence there is at least one pure strategy with a greater value). Due to this property, the decision problem is in NP. Hardness in NP follows from Corollary 2.8 of [START_REF] Koller | The complexity of two-person zero-sum games in extensive form[END_REF]. Theorem 7 ([15]). The optimum of a polynomial in M (X) over the unit hypercube [0, 1] |X| occurs at a vertex. Deciding if the maximum is greater than or equal to a rational is NP-complete.

Our goal is to characterize a subclass of polynomials which coincide with the notion of perfect recall in games. For this we assume that games have exactly two actions from each information set (any game can be converted to this form in polynomial-time). The polynomials arising out of such games will come from M (X) where going left on information set x gives terms with variable x and going right gives terms with x. When the game has perfect recall, every node in the information set of x has the same history: hence if some node in an information set y is reached by playing left from an ancestor x, every node in y will have this ancestor and action in the history. This implies that every term involving y will have x. If the action at x was to go right to come to y, then every term with y will have x. This translates to a decomposition of polynomials in a specific form.

A polynomial g given by xf 0 (X

0 )+ xf 1 (X 1 )+f 2 (X 2 ) is an x-decomposition of a polynomial f if x / ∈ X 0 ∪X 1 ∪X 2
and expanding all complements in g and f result in the same complementfree polynomial. The decomposition g is said to be disconnected if X 0 , X 1 , X 2 are pairwise disjoint. For example g := xyz + 4xy + 5 w is an x-decomposition of xyz + 4y -4xy + 5 -5w which is not disconnected due to variable y. Using these notions, we now define perfect recall polynomials in an inductive manner.

Definition 8 (Perfect recall polynomials). Every polynomial over a single variable has perfect recall. A polynomial f with variable set X has perfect recall if there exists an x ∈ X and an x-decomposition xf

0 (X 0 ) + xf 1 (X 1 ) + f 2 (X 2 ) of f such that (1) it is disconnected and (2) each f i (X i ) has perfect recall.
This definition helps us to inductively generate a perfect recall game out of a perfect recall polynomial and vice-versa, giving us the following theorem. Theorem 9. A polynomial f in M (X) has perfect recall iff there is a one-player perfect recall game whose payoff is given by f . This transformation from perfect recall polynomial to one-player perfect recall game can be computed in polynomial time.

We prove both directions of the above theorem separately in the following lemmas. The proof below showcases a stronger result that from a perfect recall polynomial, we can in fact construct a perfect information game. Lemma 10. For every perfect recall polynomial f , there is a perfect information game with payoff given by f . Proof. We construct the game inductively. For single variable polynomials c 0 x + c 1 x, the game has a single non-terminal node with two leaves as children. The left leaf has payoff c 0 and the right has payoff c 1 . The behavioural strategy at this single node is given by x to the left node and x to the right node and hence the payoff is given by c 0 x + c 1 x. Now consider a perfect recall polynomial with multiple variables. Consider the x-decomposition xf 0 (X 0 ) + xf 1 (X 1 ) + f 2 (X 2 ) which witnesses the perfect recall. Each X i has fewer variables since x is not present. By induction, there are perfect recall games G 0 , G 1 , G 2 whose payoffs are given by f 0 , f 1 , f 2 respectively. Construct game G with the root being a Chance node with two transitions each with probability 1 2 . To the right child attach the game G 2 . The left child is a control node with left child being game G 0 and the right child being G 1 . This node corresponds to variable x. Finally multiply all payoffs at the leaves with 2. The payoff of this game is given by xf 0 (X 0 ) + xf 1 (X 1 ) + f 2 (X 2 ). Since the decomposition is disconnected, the constructed is also perfect recall. This construction gives us a perfect information game.

Lemma 11. The payoff of a perfect recall game is given by a perfect recall polynomial.

Proof. Once again, proof proceeds by induction. Every game with a single information set is clearly perfect recall and the payoff polynomial is perfect recall by definition. Pick a game G with multiple information sets. We need to consider two cases depending on the root node.

Suppose the root r of G is a control node with information set x. Since G is perfect recall, no other node is present in this information set x. Let G 0 , G 1 be the left and right subtree of r. Again, as G has perfect recall, no information set straddles across the two subtrees. Hence the payoff of G can be written as a disconnected x-decomposition xf 0 (X 0 ) + xf 1 (X 1 ) where f 0 , f 1 are the payoffs of G 0 and G 1 respectively. Moreover, the games G 0 and G 1 have perfect recall. By induction, the payoffs f 0 , f 1 are perfect recall polynomials.

Suppose the root r belongs to Chance. Walking along some path from the root, we will hit the first node that is controlled by the player. Let x be the information set for this node. As the player has perfect recall, for every node in x the path from the root to it contains only Chance nodes. Let L 0 , L 1 be the set of leaves that are reached by taking respectively the left or right action from a node in x. Let L 2 be all the other leaves in G. The payoff of G can be written as xf 0 (X 0 ) + xf 1 (X 1 ) + f 2 (X 2 ) where xf 0 (X 0 ) gives the contribution of L 0 , xf 1 (X 1 ) gives that of L 1 and f 2 (X 2 ) gives the payoff from L 2 . This polynomial is an x-decomposition which is disconnected since G has perfect recall. It remains to show that f 0 , f 1 , f 2 are perfect recall polynomials. For this we show that there are perfect recall games G 0 , G 1 , G 2 with fewer variables that yield f 0 , f 1 , f 2 . Induction hypothesis then tells that they are perfect recall polynomials. Game G 0 is as follows: root node belongs to Chance; add a transition from root to all left subtrees of nodes in x; if there are m such subtrees then each transition has probability 1 m+1 ; finally multiply all payoffs by m + 1. Game G 1 is similarly constructed by taking right subtrees. Game G 2 is obtained from G by replacing subtrees starting from x by leaves with payoff 0. Each of these constructed games preserves perfect recall.

Theorem 9 allows to optimize perfect recall polynomials in polynomial-time by converting them to a game. However, for this to be algorithmically useful, we also need an efficient procedure to check if a given polynomial has perfect recall. For games, checking perfect recall is an immediate syntactic check. For polynomials, it is not direct. We establish in this section that checking if a polynomial has perfect recall can also be done in polynomial-time. The crucial observation that helps to get this is the next proposition.

Proposition 12. If a polynomial f has perfect recall, then in every disconnected

x- decomposition xf 0 (X 0 ) + xf 1 (X 1 ) + f 2 (X 2 ) of f , the polynomials f 0 (X 0 ), f 1 (X 1 ) and f 2 (X 2 ) have perfect recall.
We will first prove the above proposition through some intermediate observations. The lemma below follows by definition of perfect recall polynomials and the relation ≡ between polynomials.

Lemma 13. A polynomial f has perfect recall iff its full expansion has perfect recall.

Corollary 14. Let f, g be polynomials such that f ≡ g. Then f has perfect recall iff g has perfect recall.

Lemma 15. Let xf 0 (X 0 ) + xf 1 (X 1 ) + f 2 (X 2 ) and yg 0 (Y 0 ) + ȳg 1 (Y 1 ) + g 2 (Y 2 ) be two disconnected decompositions of f . Then: 1. either xf 0 ≡ yg 0 , xf 1 ≡ ȳg 1 and f 2 ≡ g 2 , 2. or xf 0 ≡ ȳg 1 , xf 1 ≡ yg 0 and f 2 ≡ g 2 , 3. or xf 0 + xf 1 ≡ g 2 and f 2 ≡ yg 0 + ȳg 1
Proof. When x = y, we can show the first statement of the lemma. When x = y, we need to consider the following cases: (a) y ∈ X 0 and x ∈ Y 0 , (b) y ∈ X 1 and x ∈ Y 0 and (c) y ∈ X 2 and x ∈ Y 2 . The other cases are either symmetric or impossible. Cases (a), (b), (c) entail the first, second or third statements of the lemma respectively. Proof proceeds by routine analysis of the terms in the full expansion of f .

Proof of Proposition 12.

Proof proceeds by induction on the number of variables. When there is a single variable, the proposition is trivially true. Consider polynomial f over multiple variables. Since it has perfect recall, there is a disconnected decomposition yg 0 (Y 0 ) + ȳg 1 (Y 1 ) + g 2 (Y 2 ) such that g 0 , g 1 , g 2 have perfect recall. Lemma 15 gives the three possible relations between the two decompositions xf 0 + xf 1 + f 2 and yg 0 + ȳg 1 + g 2 . For cases (1) and ( 2), we make use of Corollary 14 to conclude the proposition. For case (3), we have xf 0 + xf 1 ≡ g 2 and f 2 ≡ yg 0 + ȳg 1 . It is easy to see that f 2 has perfect recall since g 0 and g 1 have perfect recall. Let f = xf 0 + xf 1 . We know that f has perfect recall, has fewer variables than f and xf 0 + xf 1 is a disconnected decomposition of f . By induction hypothesis, f 0 and f 1 have perfect recall.

Note proposition 12 claims that "every" disconnected decomposition is a witness to perfect recall. This way the question of detecting perfect recall boils down to finding disconnected decompositions recursively.

Finding disconnected decompositions.

The final step is to find disconnected decompositions. Given a polynomial f and b ∈ {0, 1}, we say x cancels y with b if substituting x = b in f results in a polynomial without y-terms (neither y nor ȳ appears after the substitution). For a set of variables S, we say x cancels S with b if it cancels each variable in S with b. We say that x cancels y if it cancels it with either 0 or 1.

Lemma 16.

Let f be an arbitrary polynomial and x, y be variables. Variable x cannot cancel y with both 0 and 1 in f . Lemma 17. Let f ∈ M (X) and let g be the polynomial obtained by rewriting every xt by t -tx. Then, x cancels y with b in f iff x cancels y with b in g. 

(X 0 ) + xf 1 (X 1 ) + f 2 (X 2 ) be an x-decomposition of f . Then, the decomposition is disconnected iff for b ∈ {0, 1}, X b equals {y | x cancels y with b in f }. Proof. Suppose xf 0 (X 0 ) + xf 1 (X 1 ) + f 2 (X 2 ) is disconnected.
Then clearly, the conclusion to the forward implication follows. Now consider an x-decomposition xf 0 (X 0 )+ xf 1 (X 1 )+f 2 (X 2 ) which is not necessarily disconnected to start off with. Call this decomposition g. Suppose X b = {y | x cancels y with b in f }. By definition g ≡ f . From Corollary 19, f and g have the same cancellations due to x. Here we make a claim that a variable x cannot cancel y with both 0 and 1. This claim can be easily shown. This shows that X 0 ∩ X 1 = ∅. We know that x / ∈ X 2 by definition of the x-decomposition. If some y ∈ X 0 ∩ X 2 then y cannot get canceled by x with respect to 0 in g and hence also in f . This shows that X 0 ∩ X 2 = ∅. Similar argument also shows that

X 1 ∩ X 2 = ∅.
This lemma provides a mechanism to form disconnected x-decompositions starting from a polynomial f , just by finding variables that get canceled and then grouping the corresponding terms.

Theorem 21. There is a polynomial-time algorithm to detect if a polynomial has perfect recall.

Proof. Here is the (recursive) procedure. 1. Iterate over all variables to find a variable x such that the x-decomposition xf 0 (X 0 ) + xf 1 (X 1 ) + f 2 (X 2 ) of f is disconnected. If no such variable exists, stop and return No. 2. Run the procedure on f 0 , f 1 and f 2 .

Return Yes.

When the algorithm returns Yes, the decomposition witnessing the perfect recall can be computed. When the algorithm returns No, it means that the decomposition performed in some order could not be continued. However Proposition 12 then says that the polynomial cannot have perfect recall.

The combination of Theorems 9 and 21 gives a heuristic for polynomial optimization: check if it is perfect recall, if yes convert it into a game and solve it, if not perform the general algorithm that is available. This heuristic can also be useful for imperfect recall games. The payoff polynomial of an imperfect recall game could as well be perfect recall (based on the values of the payoffs). Such a structure is not visible syntactically in the game whereas the polynomial reveals it. When this happens, one could solve an equivalent perfect recall game.

Pure strategies and bridge

We have seen that maxmin computation over behavioural strategies is as hard as solving very generic optimization problems of multivariate polynomials over reals. Here we investigate the case of pure strategies. We first recall the status of the problem.

Theorem 22. [START_REF] Koller | The complexity of two-person zero-sum games in extensive form[END_REF] The question of deciding if maxmin value over pure strategies is at least a given rational is Σ 2 -complete in two player imperfect recall games. It is NP-complete when there is a single player.

In this section we refine this complexity result in two ways: we introduce the chance degree of a game and show polynomial-time complexity when the chance degree is fixed; next we provide a focus on a tractable class of games called bidding games, suitable for the study of Bridge.

Games with bounded chance

We investigate a class of games where the Chance player has restrictions. In many natural games, the number of Chance moves and the number of options for Chance are limitedfor example, in Bridge there is only one Chance move at the very beginning leading to a distribution of hands. With this intuition, we define a quantity called the chance degree of a game.

Definition 23 (Chance degree). For each node u in the game, the chance degree c-deg(u) is defined as follows:

c-deg(u) = 1 if u is a leaf, c-deg(u) = u→v c-deg(v) if u is a chance node, and c-deg(u) = max u→v c-deg(v) if u is a control node.
The chance degree of a game is c-deg(r) where r is the root.

The chance degree in essence expresses the number of leaves reached with positive probability when players play only pure strategies. For example, the chance degrees of games G 2 (Figure 1) and G - √ n (Figure 4) are 1 and 2 respectively.

Lemma 24. Let G be a one player game with imperfect recall, chance degree K and n nodes. When both players play pure strategies, the number of leaves reached is atmost K. The optimum value over pure strategies can be computed in time O(n K ).

Proof. The first statement follows from an induction on the number of non-terminal nodes.

Partition the set of leaves into bags so that leaves arising out of different actions from a common Chance node are placed in different bags. Here is an algorithm which iterates over each leaf starting from the leftmost till the rightmost, and puts it in a corresponding bag. Suppose the algorithm has visited i leaves and has distributed them into j bags. For the next leaf u, the algorithm finds the first bag where there is no v such that the longest common prefix in PathTo(u) and PathTo(v) ends with a Chance node. If there is no such bag, a new bag is created with u in it. It can be shown that the number of bags created is equal to the chance degree K of the game.

In the partitioning above, for every Chance node u and for every pair of transitions u a -→ u 1 and u b -→ u 2 , the leaves in the subtrees of u 1 and u 2 fall in different bags. Moreover two leaves differ only due to control nodes and hence while playing pure strategies, both these nodes cannot both be reached with positive probability. Therefore, once this partition is created, a pure strategy of the player can be seen as a tuple of leaves u 1 , . . . , u m with at most one leaf from each bag such that for every stochastic node u which is an ancestor of some u i , there is a leaf u j in the subtree (bag) of every child of u. The payoff of the strategy is given by the sum of C(t)U(t) for each leaf t in the tuple where U(t) is the payoff and C(t) is the chance probability to reach t. This enumeration can be done in O(n K ).

Theorem 25. Consider games with chance degree bounded by a constant K. Optimum in the one player case can be computed in polynomial-time. In the two player case, deciding if maxmin is at least a rational λ is NP-complete.

Proof. Lemma 24 says that the optimum for a single player can be computed in O(n K ) where n is the number of nodes. Since K is fixed, this gives us polynomial-time. For the two player case, note that whenever Max fixes a strategy σ, the resulting game is a one player game in which Min can find its optimum in polynomial-time. This gives the NP upper bound. The NP-hardness follows from Proposition 2.6 of [START_REF] Koller | The complexity of two-person zero-sum games in extensive form[END_REF] where the hardness gadget has no Chance nodes. Hence hardness remains even if chance degree is 1.

Since the two player decision problem is hard even when fixing the chance degree, we need to look for strong structural restrictions that can give us tractable algorithms. Perfect recall is of course one of them. In the subsequent section, we consider a model of the bidding phase of bridge as an imperfect recall game, and investigate some abstraction that can guarantee polynomial-time.

A model for Bridge bidding

We propose a model for the Bridge bidding phase. We first describe the rules of a game which abstracts the bidding phase. Then we represent it as a zero-sum extensive form imperfect recall game.

The bidding game.

There are four players N, S, W, E in this game model, representing the players North, South, West and East in Bridge. Players N, S are in team T max and E, W are in team T min . For a player i ∈ {N, S, W, E}, we write T i to denote the team of player i and T ¬i for the other team. This is a zero-sum game played between teams T max and T min . Every player has the same set of actions {0, . . . , n} where 0 imitates a pass in Bridge and action j signifies that a player has bid j. Each player i has a set H i of possible private signals (also called secrets). Let H = H N × H E × H S × H W . Initially each player i receives a private signal from H i following a probabilistic distribution ∆(H) (in Bridge, this would be the initial hand of cards for each player). The game is turn-based starting with N and followed by E, S, W and proceeds in the same order at each round. Each player can play a bid which is either 0 or strictly greater than the last played non-zero bid. The game ends when i) N starts with bid 0 and each of E, S, W also follow with bid 0 or ii) at any point, three players consecutively bid 0 or iii) some player bids n. At the end of the game the last player to have played a non-zero bid k is called the declarer, with contract k equal to this bid. It is 0 if everyone bids 0 initially. The payoff depends on a set of given functions Θ i : H → {0, . . . , m} with m ≤ n for each player i. The function Θ i ( h N , h E , h S , h W ) gives the optimal bid for player i as a declarer based on the initial private signal h received. The payoff for the teams T max and T min are now computed as follows: when i is the declarer with contract k and h ∈ H is the initial private signal for i, if Θ i (h) ≥ k, T i gets payoff k whereas T ¬i gets -k. If Θ i (h) < k , T i gets -k and T ¬i gets k.

As an example of this model consider a game where H E = H W = {⊥} and H N = H S = {♠, ♦}. There are four possible combinations of signals in H, and the players receive each of them with probability 1 4 . Players E, W have trivial private signals known to all and so Θ does not depend on their signal. A Θ function for n = 5, m = 4 is given in Figure 5. For example, when the initial private signal combination is (♠, ⊥, ♠, ⊥) and N is the declarer, then the contract has to be compared with 4. For the same secret, if S is the declarer then the contract has to be compared with 2. The longest possible bid sequence in this game is (0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5). Let us demonstrate team payoffs with a few examples of bid sequences. For the initial private signals (♠, ⊥, ♠, ⊥) and the bid sequence (0, 1, 0, 2, 4, 0, 0, 0), N is the declarer with contract 4, and T max and T min get payoff 4 and -4 respectively. On private signals (♠, ⊥, ♦, ⊥) and the bid sequence (2, 3, 0, 0, 0), E is the declarer with contract 3 and T max and T min receive payoffs 3 and -3 respectively.

Θ Player (♦, ♦) (♦, ♠) (♠, ♦) (♠, ♠) N 0 0 2 4 E 0 0 0 0 S 0 2 0 2 W 0 0 0 0

Figure 5 Example of a bidding game

Bidding games in extensive form.

Given a bidding game with the specifications as mentioned above, we can build an extensive form game corresponding to it. The root node is a Chance node with children H and transitions giving ∆(H). All the other nodes are control nodes. We consider them to belong to one of the four players N, E, S, W . However finally we will view it as a zero-sum game played between T max and T min . These intermediate nodes are characterized by sequences of bids leading to the current state of the play. Let Seq be the set of all possible sequences of bids from {0, . . . , n} due to game play. The set Seq also contains the empty sequence . The nodes in the extensive form game are the elements of Seq. For each sequence s there is a set of valid next moves which contain 0 and the bids strictly bigger than the last non-zero bid in s. These are the actions out of s. Leaves are bid sequences which signal the end of the play. The utility at each leaf is given by the payoff received by T max at the end of the associated bid sequence. Finally, we need to give the information sets for each player. Let Seq i be the sequences that end at a node of player i. Each player observes the bid of other players and is able to distinguish between two distinct sequences of bids at his turn. But, player i does not know the initial private signals received by the other players. Hence the same sequence of bids from a secret of i and each combination of secrets of the other players falls under one information set. More precisely, let H i = H i × Seq i be the set of histories of player i. Two nodes of player i are in the same information set if they have the same history in H i . Note that each individual player N, E, W, S has perfect recall. When considered as a team, T max and T min have imperfect recall. The initial signal for a team is a pair of secrets (h N , h S ) or (h E , h W ) and within an information set of say N , there are nodes u and v coming from different initial signals (h N , h S ) and (h N , h S ). This makes the game a signal-loss recall for each team. Therefore the only general upper bound for maxmin computation is ∃∀R with behavioural strategies and Σ 2 with pure strategies. Observe that the chance degree of the game is |H| since there is a single Chance node. When we bound this initial number of secrets H by some K, and vary the bids and payoff functions, we get a family of games with bounded chance degree. Theorem 25 gives slightly better bounds for computing the maxmin over pure strategies for this family of games, which is still NP-hard for the two-player case. This motivates us to restrict the kind of strategies considered in the maxmin computation. We make one such attempt below.

Non-overbidding strategies.

A pure strategy for player i is a function σ i : H i → {0, . . . , n}. In the example of Figure 5, N has to pass on the information whether she has ♦ or ♠ to S, and in the case that N has ♠, player S has to pass back information whether she has ♦ or ♠ so that in the latter case N can bid for 4 in the next turn. When E knows the strategy of N , she can try to reduce their payoff by playing 3 when N plays 2 (if she bids 4, her team loses and T max gets a payoff 4 anyway) and not let S over-bid to pass information to N . But in the process E ends up overbidding when S has ♦ and it makes no difference to the total expected payoff. This gives strategies σ N (♦) = 0, σ N (♠) = 2, σ S (♦, 0b E ) = 0, σ S (♠, 0b E ) = 2 (when possible), σ S (♠, 20) = 3 and σ S (♠, 23) = 0, where b E is a placeholder for some bid of E. When it comes back to N for the second turn and S had played 3, then N plays 4 if she can, otherwise she passes. This pair of strategies achieves the maxmin payoff.

A pure strategy σ i of player i is said to be non-overbidding if starting from her second turn, player i always bids 0: more precisely, for h ∈ H i and s ∈ Seq i , σ i (h, s) = 0 whenever there exists s 0 ∈ Seq i with s 0 a proper prefix of s. Otherwise, the strategy is said to be over-bidding. The strategy of N above is over-bidding since N could potentially bid 4 after 2. The number of non-overbidding strategies is Of course, non-overbidding strategies will not be in general the same as maxmin over pure. In particular, for the example of Table 5 the strategy σ N mentioned before is over-bidding. It turns out that in some cases, considering non-overbidding strategies is sufficient. Consider the game given in Figure 6. The only player to receive a private signal is N . All others have a publicly known trivial signal ⊥. Player N can receive one of 6 secrets h 1 , . . . , h 6 . In this case N bids 3, 4, 5 from h 1 , h 2 , h 3 making the optimal contract in her first turn. From h 4 , h 5 , h 6 she bids 0, 1, 2 in her first turn and S gaining complete information about secret of N due to her distinct actions, bids 3, 4, 5 respectively if E has not already made those bids. Here non-overbidding strategies are sufficient to obtain maxmin expected payoff.

We have exhibited a class of strategies that can be efficiently computed and which are sufficient for some games. We leave the more general question of checking how close the value computed by non-overbidding strategies is to the actual maxmin as part of future work.
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 1 Figure 1 One player game G1 on the left, and two player game G2 on the right

  without the blue dashed lines are perfect information games which do not have Chance nodes. Game G - √ n of Figure 4 without the dashed lines gives a perfect information game with Max, Min and Chance where nodes of Max, Min and Chance are circles, squares and triangles respectively.
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 3 Figure 3One player game for the polynomial 3x 2 + 5xy -8y 2 -1

Corollary 18 .

 18 For b ∈ {0, 1} and x, y ∈ X, we have x cancels y with b in f iff x cancels y with b in the full expansion of f . Corollary 19. Let f, g be polynomials such that f ≡ g. Then for b ∈ {0, 1} and x ∈ X, we have {y | x cancels y with b in f } equal to {y | x cancels y with b in g} Lemma 20. Let xf 0
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 6 Figure 6 A second example of a bidding game

  |H N | • (n + 1) for N and |H S | • (n + 1) for S and hence for team T max there are |H N | • |H S | • (n + 1) 2 non-overbidding strategies. Similarly there are |H E | • |H W | • (n + 1) 2 non-overbidding strategies for T min . These numbers are drastically smaller compared to the number of pure strategies, which is exponential in the size of the extensive form (and doubly exponential in the size of the input description). Lemma 26. Maxmin value over non-overbidding strategies can be computed in time |H| • (n + 1) 4 .
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