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A rigorous scattering approach to quasifree
fermionic systems out of equilibrium
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Abstract

Within the rigorous axiomatic framework for the description of quantum mechanical
systems with a large number of degrees of freedom, we construct the so-called nonequi-
librium steady state for the quasifree fermionic system corresponding to the isotropic XY
chain in which a finite sample, subject to a local gauge breaking anisotropy perturbation,
is coupled to two thermal reservoirs at different temperatures. Using time dependent and
stationary scattering theory, we rigorously prove, from first principles, that the nonequi-
librium system under consideration is thermodynamically nontrivial, i.e., that its entropy
production rate is strictly positive.
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1 Introduction

In recent years, a wide range of important thermodynamic properties of open quantum sys-
tems have successfully been derived from first principles. A precise analysis of such sys-
tems having a large, i.e., often, in physically idealized terms, an infinite number of degrees
of freedom, is most clearly carried out within the axiomatic framework of operator algebras.
As a matter of fact, after having been heavily used in the 1960s, in particular for the de-
scription of quantum systems in thermal equilibrium (see, for example, [8]), the benefits of
this framework have again started to unfold more recently in the physically much more gen-
eral situation of open quantum systems out of equilibrium. In the latter field, most of the
rare mathematically rigorous results have been obtained for the so-called nonequilibrium
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steady states (NESSs) introduced in [13] by means of scattering theory on the algebra of
observables.

In quantum statistical mechanics both in and out of equilibrium, an important role is
played by the so-called quasifree fermionic systems, and this is true not only because of
their mathematical accessibility but also when it comes to real physical applications. Indeed,
from a mathematical point of view, these systems allow for a simple and powerful descrip-
tion by means of scattering theory restricted to the underlying 1-particle Hilbert space over
which the fermionic algebra of observables is constructed. The restriction of the dynamics to
the 1-particle sector opens the way for a rigorous mathematical analysis of many properties
which are of fundamental physical interest. But, beyond their importance due to their mathe-
matical accessibility, quasifree fermions also constitute a class of systems which effectively
describe nature. Aside from the various electronic systems in their independent electron ap-
proximation, they also play a part in the rigorous approach to spin systems. One of the most
prominent representatives of the latter is the so-called XY spin chain, introduced in 1961 in
[11], for which a physical realization has already been identified in the late 1960s (see, for
example, [9]). Its impact on the interplay between the experimental, numerical, theoretical,
and mathematical research activity in the field of low-dimensional magnetic systems is being
felt ever since (see, for example, [12]).

In the present paper, we rigorously analyze, from first principles, the entropy produc-
tion rate in the quasifree fermionic system over the two-sided discrete line Z which, in the
spin picture, corresponds to the isotropic XY spin chain perturbed by a local anisotropy (in
contrast to [6], where the anisotropy acts as a global and homogeneous perturbation).

In order to specify the desired nonequilibrium configuration, we first fix n ∈ Z with n ≥ 1
and cut the finite piece

ZS := {x ∈ Z | |x| ≤ n} (1)

of length 2n+1 out of the two-sided discrete line. This piece plays the role of the configuration
space of the confined sample, whereas the remaining infinite parts,

ZL := {x ∈ Z |x ≤ −(n+ 1)}, (2)
ZR := {x ∈ Z |x ≥ n+ 1}, (3)

act as the configuration spaces of the extended thermal reservoirs. Over these configuration
spaces, we define the initial state to be the decoupled product of three thermal equilibrium
states carrying the corresponding inverse temperatures

0 = βS < βL < βR <∞. (4)

The NESS is then constructed with respect to the full time evolution which, by definition, not
only couples the sample to the reservoirs but also exposes the sample to a local anisotropy
perturbation of strength

γ ∈ R, (5)
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whose support resides on the sites {a, a+ 1}, where a ∈ Z satisfies

−n ≤ a ≤ n− 1. (6)

The paper is organized as follows.
Section 2 specifies the nonequilibrium setting we are interested in, i.e., it introduces the

canonical anticommutation relation (CAR) algebra of observables, its selfdual version, the
quasifree dynamics generated by the 1-particle Hamiltonians, and the quasifree initial state.

Section 3 is devoted to the definition and the construction of the NESS in the nonequilib-
rium setting at hand. It turns out that the absolutely continuous part of its 2-point operator,
computed by means of time dependent scattering theory, is determined through the so-called
intermediate wave operator which, by definition, compares the free isotropic XY dynamics
with the free isotropic XY dynamics perturbed by a local anisotropy.

Section 4 contains the derivation of the action of the intermediate wave operator using
stationary scattering theory. Due to the fact that the local anisotropy is a 2-site perturbation
breaking gauge invariance, the action of the intermediate wave operator is substantially more
complicated than the one from [5] for a gauge invariant local 1-site perturbation.

Section 5 introduces the notions of heat flux and entropy production rate. A general for-
mula is derived for the NESS expectation value of the extensive energy current observable
describing the energy flow through the sample as a function of the strength of the anisotropy
perturbation. It is proven that the nonequilibrium system under consideration is thermo-
dynamically nontrivial, i.e., that its entropy production rate, the first fundamental physical
quantity for systems out of equilibrium, is strictly positive.

2 Nonequilibrium setting

In this section, we specify the nonequilibrium setting we are interested in. First recall that,
in the operator algebraic formalism of quantum statistical mechanics, a physical system is
characterized by an algebra of observables, by a group of time evolution automorphisms,
and by a normalized positive linear state functional on the observable algebra (see, for ex-
ample, [8] for a detailed description of this formalism). Definitions 1, 4, and 8 below spell out
the corresponding three ingredients for the quasifree nonequilibrium setting to be studied.
Here and there, we will also make brief remarks on the underlying general framework.

In the following, for all complex Hilbert spaces H, we denote by L(H) and L̄(H) the
sets of bounded linear and antilinear operators on H, respectively. Moreover, L0(H) stands
for the finite rank operators and L1(H) for the trace class operators on H. For elements
A,B in the various sets in question below, the commutator and the anticommutator of A
and B are denoted by [A,B] := AB − BA and {A,B} := AB + BA, respectively. Finally,
σ1, σ2, σ3 ∈ C2×2 are the usual Pauli matrices and, for all m ∈ N, we denote by Cm×m the
complex m×m matrices.



4 Walter H. Aschbacher

Definition 1 (Observables)
(a) 1-particle Hilbert space
Let Z be the configuration space of the system and let

h := `2(Z) (7)

be the separable complex 1-particle Hilbert space of square-summable complex-valued
functions on Z. Moreover, we set H := h ⊕ h and, on both h and H, we denote the scalar
products and the corresponding induced norms by (·, ·) and ‖ · ‖, respectively.
(b) Algebra of observables
The algebra of observables is defined to be the CAR algebra over h, denoted by

A := CAR(h), (8)

whose generators are written, as usual, as 1, a(f), and a∗(f) for all f ∈ h.
(c) Selfdual generators
The complex linear map B : H→ A, defined, for all F := f1 ⊕ f2 ∈ H, by

B(F ) := a∗(f1) + a(ζf2), (9)

where ζf := f̄ stands for the complex conjugation on h, satisfies the relations

B∗(F ) = B(ΓF ), (10)
{B∗(F ), B(G)} = (F,G)1, (11)

where the antiunitary involution Γ ∈ L̄(H) is defined to act as the operator matrix Γ := ζσ1 on
the direct sum H = h⊕ h, and (11), called the selfdual CARs, follows from the usual CARs.
(d) Selfdual second quantization
The complex linear map b : L0(H) → A, defined, for all m ∈ N, all F1, . . . , Fm ∈ H, all
G1, . . . , Gm ∈ H, and A :=

∑m
i=1(Fi, · )Gi, by

b(A) :=
m∑
i=1

B(Gi)B
∗(Fi), (12)

is called the selfdual second quantization of A.

Remark 2 The algebra of observables A is a so-called C∗-algebra. It is ∗-isomorphic to
SDC(H,Γ), the (C∗-completed) selfdual CAR algebra over H and Γ. The selfdual framework
is a useful general concept which has been developed in [3] and [1] (see there for a more
detailed description of the selfdual objects used in the following).

Remark 3 Note that (12) does not depend on the choice of the functions F1, . . . , Gm which
represent A. Moreover, the definition of b can be extended to L1(H) using the fact that L0(H)
is dense in L1(H) with respect to the so-called trace norm.
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We next specify the 2nd ingredient. As discussed in the introduction, the Hamiltonians
which we will introduce describe the decoupling of the reservoirs from the sample and the
coupled system with and without the local anisotropy perturbation.

In the following, the completely localized elements of the orthonormal Kronecker basis
{δx}x∈Z of h are given, for all x, y ∈ Z, by δx(y) := 1 if y = x and δx(y) := 0 if y 6= x. Moreover,
for all A ∈ L(H), we will use the notation Re[A] := (A+ A∗)/2 and Im[A] := (A− A∗)/(2i).

Definition 4 (Dynamics)
(a) 1-particle Hamiltonians
Using the right translation u ∈ L(h) and the localization operator px,y ∈ L(h), given by
(uf)(x) := f(x− 1) and px,yf := f(x)δy for all f ∈ h and all x, y ∈ Z, we define

h := Re[u], (13)

vd := Re[u−np0,0u
n+1] + Re[un+1p0,0u

−n], (14)
v := Im[pa+1,a]. (15)

The liftings to L(H) are given by H := hσ3, Vd := vdσ3, Hd := H − Vd, and

V := vσ2, (16)
Hγ := H + γV. (17)

The Hamiltonians H and Hd, diagonal with respect to H = h ⊕ h, are called the XY Hamil-
tonian and the decoupled Hamiltonian, respectively, whereas Hγ is non-diagonal and called
the anisotropy Hamiltonian.
(b) Dynamics
The quasifree dynamics generated by the XY Hamiltonian, the decoupled Hamiltonian, and
the anisotropy Hamiltonian are defined, for all t ∈ R and all F ∈ H, by

τ t(B(F )) := B(eitHF ), (18)

τ td(B(F )) := B(eitHdF ), (19)

τ tγ(B(F )) := B(eitHγF ), (20)

and by a suitable extension to the whole of A (see Remark 5). The dynamics τ t, τ td, and τ tγ are
called the XY dynamics, the decoupled dynamics, and the anisotropy dynamics, respectively.

Remark 5 In the selfdual framework, an operator A ∈ L(H) is called a Hamiltonian if A∗ = A
and ΓAΓ = −A. The second condition is a consequence of (10), of the fact that, by definition,
the dynamics σt generated by A as in (18) – (20) is, for all t ∈ R, a ∗-automorphism on A,
i.e., a map from A to A preserving the vector space structure, the algebra multiplication, and
the ∗-operation on A (we will denote by Aut(A) the set of all such maps), and of ‖F‖/

√
2 ≤

‖B(F )‖ ≤ ‖F‖ (where ‖B(F )‖is the C∗-norm of B(F ) ∈ A). Both conditions are satisfied for
all the Hamiltonians of Definition 4(b).

In addition, the dynamics {σt}t∈R ⊆ Aut(A) is defined to be a strongly continuous group,
i.e., the map R 3 t 7→ σt ∈ Aut(A) is a group homomorphism and, for all A ∈ A, the map
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R 3 t 7→ σt(A) ∈ A is continuous with respect to the C∗-norm on A. Such a pair (A, σt) is
sometimes called a C∗-dynamical system.

Remark 6 Defining parity θ ∈ L(h) and the local gauge transformation ξ ∈ L(h) by (θf)(x) :=
f(−x) and (ξf)(x) := eiπxf(x) for all f ∈ h and all x ∈ Z, we get the symmetries

[h, u] = 0, (21)
[h, θ] = 0, (22)
{h, ξ} = 0, (23)

which we will use below in the proof of Proposition 16.

Remark 7 The model specified by Definition 4 has its origin in the XY model whose Hamil-
tonian density has the form

(1 + γ)σ
(x)
1 σ

(x+1)
1 + (1− γ)σ

(x)
2 σ

(x+1)
2 , (24)

where the superscripts denote the sites in Z of the local Hilbert space of the spin chain on
which the Pauli matrices act. Indeed, using the so-called Araki-Jordan-Wigner transforma-
tion introduced in [2] for 1-dimensional systems whose configuration space extends infinitely
in both directions, (24), in the fermionic picture, reads (up to a global prefactor)

a∗xax+1 + a∗x+1ax + γ(a∗xa
∗
x+1 + ax+1ax), (25)

where we set ax := a(δx) and a∗x := a∗(δx) for all x ∈ Z.
In order to treat the anisotropic case γ 6= 0, i.e., the case in which there is an asymmetry

between the 1st and the 2nd term in (24), the selfdual quasifree setting is most natural since
gauge invariance is broken in (25). Hence, due to the presence of the γ-term, the anisotropy
Hamiltonian acquires non-diagonal components with respect to H = h ⊕ h (see (16) and
(17)). In many respects, the truly anisotropic XY model is substantially more complicated
than the isotropic one.

We now arrive at the specification of the initial state, the 3rd and last ingredient needed
for the construction of the NESS we are interested in. As discussed in the introduction, it
describes the initial configuration in which the left and right reservoirs are decoupled from
the sample.

In the following, for all M ⊆ R, we denote by 1M the usual characteristic function of M on
R, i.e., 1M(x) equals 1 if x ∈ M and is 0 otherwise. Moreover, recall again that a state ω is
a normalized positive linear functional on the observable algebra A, and let us denote by EA
the set of all states.

Definition 8 (Initial state)
(a) Fermi-Dirac function
For all β ∈ R and all e ∈ R, the Fermi-Dirac function is defined by

ρβ(e) :=
1

1 + eβe
. (26)
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Figure 1: Some of the pairings for m = 3. The number of intersections I per graph relates
to the signature of the corresponding permutation π as sign(π) = (−1)I .

(b) Projected 1-particle Hamiltonians
With the help of the orthogonal projections pL, pR ∈ L(h), given by pLf := 1ZLf and pRf :=
1ZRf for all f ∈ h, the 1-particle Hamiltonians hL, hR ∈ L(h) are defined by

hL := pLhpL, (27)
hR := pRhpR, (28)

and their liftings to L(H) by HL := hLσ3 and HR := hRσ3.
(c) Initial state
We define the initial state ωd ∈ EA to be the decoupled quasifree state whose 2-point operator
Sd ∈ L(H) has the form

Sd := (1− sd)⊕ ζsdζ, (29)
sd := ρ1(βLhL + βRhR), (30)

where the operator sd ∈ L(h) is defined with the help of the spectral theorem.

Remark 9 In the selfdual framework, an operator S ∈ L(H) is called a 2-point operator if
S∗ = S, 0 ≤ S ≤ 1, and ΓSΓ = 1 − S (the last condition comes, in particular, from (10),
(11), and (31) below). For any (not necessarily quasifree) state ω ∈ EA, there exists a unique
2-point operator S such that, for all F,G ∈ H, it holds that

ω(B∗(F )B(G)) = (F, SG). (31)

If ω is a quasifree state induced by the 2-point operator S, it is completely characterized
by its 2-point function (31) since, by definition, ω is even and the nonvanishing many-point
functions factorize in Pfaffian form, i.e., for all m ∈ N and all F1, . . . , F2m ∈ H, we have

ω(B(F1) . . . B(F2m)) = pf
(
[(ΓFi, SFj)]

2m
i,j=1

)
, (32)

and we recall that the Pfaffian is defined by pf(A) :=
∑

π sign(π)
∏m

i=1Aπ(2i−1),π(2i) for all A ∈
C2m×2m, where the sum is running over all the (2m)!/(2mm!) pairings of the set {1, . . . , 2m},
i.e., over all the permutations π in the permutation group of 2m elements satisfying π(2i−1) <
π(2i+ 1) for all i ∈ {1, . . . ,m− 1} and π(2i− 1) < π(2i) for all i ∈ {1, . . . ,m} (see Figure 1).
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3 Nonequilibrium steady state

In this section, we give a precise definition of the NESS discussed in the introduction.

Definition 10 (NESS) The state ωγ ∈ EA, defined, for all A ∈ A, by

ωγ(A) := lim
T→∞

1

T

∫ T

0

dt ωd(τ tγ(A)), (33)

is called the anisotropy NESS associated with the initial state ωd and the anisotropy dynamics
τ tγ. Moreover, its 2-point operator is denoted by Sγ ∈ L(H).

Remark 11 The general definition, which we already specialized to our case in Definition 10
(we will see below that the limit in (33) exists), stems from [13] and defines the NESSs to
be the limit points in the weak-∗ topology of the net defined by the ergodic mean between 0
and T > 0 of the given initial state time evolved by the perturbed dynamics of interest (note
that, due to the Banach-Alaoglu theorem, the set of such NESSs is not empty). In general,
the averaging procedure allows to treat a nonvanishing contribution to the point spectrum of
the Hamiltonian which generates the full time evolution.

In the following, for all selfadjoint operators A ∈ L(H), we denote by 1ac(A), 1sc(A), and
1pp(A) the orthogonal projections onto the absolutely continuous subspace, the singular
continuous subspace, and the pure point subspace of A, respectively. Moreover, eig(A)
stands for the set of eigenvalues of A, and 1e(A) denotes the spectral projection onto the
eigenspace associated with the eigenvalue e ∈ eig(A). Furthermore, the limit with respect to
the strong operator topology on L(H) is written as s− lim.

The main objects for our scattering approach are the wave operators which are defined
as follows.

Definition 12 (Wave operators) The operators Wd,γ,Wd,Wγ ∈ L(H), defined by

Wd,γ := s− lim
t→∞

e−itHdeitHγ1ac(Hγ), (34)

Wd := s− lim
t→∞

e−itHdeitH , (35)

Wγ := s− lim
t→∞

e−itHeitHγ1ac(Hγ), (36)

are called the anisotropy wave operator, the XY wave operator, and the intermediate wave
operator, respectively.

Remark 13 The Kato-Rosenblum theorem from scattering theory for perturbations of trace
class type guarantees the existence (and completeness) of (34), (35), and (36) (see, for
example, [7] or [14]). Indeed, (14) and (15) imply that Vd, V ∈ L0(H) and, hence, all the
differences between the corresponding Hamiltonians satisfyHd−Hγ, Hd−H,H−Hγ ∈ L1(H).
Moreover, note that 1ac(H) = 1 since h is the Laplacian on the discrete line (see also the
proof of Proposition 16 below).
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In the next theorem, we determine the 2-point operator of the anisotropy NESS.

Theorem 14 (NESS 2-point operator) The anisotropy NESS ωγ associated with the initial
state ωd and the anisotropy dynamics τ tγ exists and its 2-point operator has the form

Sγ = W ∗
d,γSdWd,γ +

∑
e∈eig(Hγ)

1e(Hγ)Sd1e(Hγ). (37)

Proof.
(a) Evolution matrix
We start off by studying (33) for elements of A of the form B(F1) . . . B(F2m) for all m ∈ N and
all F1, . . . , F2m ∈ H. Since the initial state ωd satisfies (32), we can write

ωd(τ tγ[B(F1) . . . B(F2m)]) = pf([Ωi,j(t)]
2m
i,j=1), (38)

where the following matrix, called the evolution matrix, is defined, for all i, j ∈ {1, . . . , 2m}
and all t ∈ R, by

Ωi,j(t) := (eitHγΓFi, SdeitHγFj), (39)

and we used the fact from Remark 5 that [Γ, eitHγ ] = 0.
Next, let us first concentrate on the limit (33) for 2-point functions.

(b) Spectral decomposition
Since we know from [10] that 1sc(Hγ) = 0, spectral theory yields the decomposition 1 =
1ac(Hγ) + 1pp(Hγ) which we insert into both arguments of the scalar product (39) between
the propagators and the wave functions. The evolution matrix can thus be written as Ωi,j(t) =

Ωac
i,j(t) + Ωpp

i,j(t) +R
(1)
i,j (t) +R

(2)
i,j (t), where we set

Ωac
i,j(t) := (eitHγ1ac(Hγ)ΓFi, SdeitHγ1ac(Hγ)Fj), (40)

Ωpp
i,j(t) := (eitHγ1pp(Hγ)ΓFi, SdeitHγ1pp(Hγ)Fj), (41)

as well as R
(1)
i,j (t) := (eitHγ1ac(Hγ)ΓFi, SdeitHγ1pp(Hγ)Fj) and analogously for R(2)

i,j (t) with
1ac(Hγ) and 1pp(Hγ) interchanged.
(c) Large time ergodic mean
In order to study the limit (33), we will treat the foregoing terms separately.

As for the ac-term, using that the initial state is invariant under the decoupled dynamics,
i.e., that [Sd, Hd] = 0, we can write Ωac

i,j(t) = (e−itHdeitHγ1ac(Hγ)ΓFi, Sde−itHdeitHγ1ac(Hγ)Fj)
and, hence, the large time ergodic mean from (33) becomes

lim
t→∞

Ωac
i,j(t) = (ΓFi,W

∗
d,γSdWd,γFj), (42)

and we denote the right hand side of (42) by Ωac
i,j.
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Next, we also know from [10] that eig(Hγ) is a finite set containing eigenvalues of finite
multiplicity only (in the case at hand, the eigenvalues of Hγ and their corresponding eigen-
functions can be computed explicitly but we do not need them to determine the heat flux
in Theorem 22 below which is the main purpose of the present study). Hence, plugging
1pp(Hγ) =

∑
e∈eig(Hγ) 1e(Hγ) into (41), and using that eitHγ1e(Hγ) = eite1e(Hγ), the large time

ergodic mean of the pp-term reads

lim
T→∞

1

T

∫ T

0

dt Ωpp
i,j(t) =

∑
e∈eig(Hγ)

(ΓFi, 1e(Hγ)Sd1e(Hγ)Fj). (43)

Moreover, since |R(1)
i,j (t)| ≤ ‖1pp(Hγ)SdeitHγ1ac(Hγ)ΓFi‖‖Fj‖ due to the Cauchy-Schwarz

inequality, and since 1pp(Hγ) ∈ L0(H), we know from scattering theory that the right hand
side of the foregoing estimate vanishes if t→∞. The term R

(2)
i,j (t) is treated analogously.

We finally study the large time ergodic mean for observables of the form (38) and for
general A ∈ A.
(d) Existence
Since the Pfaffian is a polynomial function of the entries of the matrix on which it acts and
since Ωpp

i,j(t) is a trigonometric polynomial in t, the large time ergodic mean of pf([Ωac
i,j +

Ωpp
i,j(t)]

2m
i,j=1) also exists (recall that, in general, the complex-valued functions on R which are

almost periodic [in the sense of H. Bohr, the brother of N. Bohr] form an algebra with respect
to the usual pointwise linear operations and multiplication, and the large time ergodic mean
plays the role of a scalar product). Moreover, since, in addition, Ωi,j(t) and Ωac

i,j + Ωpp
i,j(t) are

both uniformly bounded in t, we have limt→∞ |pf([Ωi,j(t)]
2m
i,j=1) − pf([Ωac

i,j + Ωpp
i,j(t)]

2m
i,j=1)| = 0

which implies that

lim
T→∞

1

T

∫ T

0

dt ωd(τ tγ[B(F1) . . . B(F2m)]) = lim
T→∞

1

T

∫ T

0

dt pf([Ωac
i,j + Ωpp

i,j(t)]
2m
i,j=1). (44)

Finally, since A is, by definition, the C∗-completion of the ∗-algebra generated by the
identity 1 and the elements B(F ) and B∗(F ) satisfying (10) and (11) and since |ωd(τ tγ(A))| ≤
‖A‖ for all A ∈ A, the existence of the limits (44) and the uniform convergence in t of the
ergodic mean for the approximant define the anisotropy NESS (33).

Hence, we arrive at the conclusion. �

Remark 15 Since we know from [6] that, for the case at hand, the so-called XY 2-point
operator S := W ∗

dSdWd is given by

S = (1− s)⊕ ζsζ, (45)

where, in momentum space, s ∈ L(h) acts through multiplication by the function sβL,βR ,
where for all α, β ∈ R, we set

sα,β(k) := 1[0,π](k)ρα(cos(k)) + 1[−π,0](k)ρβ(cos(k)), (46)
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and since the chain rule for wave operators from scattering theory implies that Wd,γ = WdWγ,
we can rewrite the first term on the right hand side of (37) in the form

W ∗
d,γSdWd,γ = W ∗

γSWγ. (47)

4 Stationary scattering theory

In this section, motivated by (47), we determine the action of the intermediate wave operator
Wγ. To this end, we will make use of the so-called stationary approach to scattering the-
ory (see, for example, [7] or [14] for a mathematical presentation of the theory and for the
ingredients used in the proof of Proposition 16 below).

In the following, we switch to momentum space,

ĥ := L2
(
[−π, π]; dk

2π

)
, (48)

by means of the unitary Fourier transform f : h → ĥ. The latter is defined, as usual, by
ff :=

∑
x∈Z f(x)ex, where the plane wave ex ∈ ĥ is given by ex(k) := eikx for all x ∈ Z.

Moreover, we extend it through F := f ⊕ f to Ĥ := ĥ ⊕ ĥ (the scalar products on ĥ and Ĥ are
again both denoted by (·, ·)). For all a ∈ L(h) and all A ∈ L(H), we set â := faf∗ ∈ L(ĥ) and
Â := FAF∗ ∈ L(Ĥ).

Proposition 16 (Wave operator) In momentum space Ĥ, the action of the wave operator
Wγ on completely localized wave functions is given, for all x ∈ Z, by

Ŵγex ⊕ 0 = ex ⊕ 0− γ

2

(
w(1)
γ,x ⊕ 0 + 0⊕ w(2)

γ,x

)
, (49)

where the functions w(1)
γ,x, w

(2)
γ,x ∈ ĥ are defined by

w(1)
γ,x := w

(1)
γ,x,a,a+1 + w

(1)
γ,x,a+1,a, (50)

w(2)
γ,x := w

(2)
γ,x,a,a+1 − w

(2)
γ,x,a+1,a, (51)

and, for all a1, a2 ∈ Z, we set

w(1)
γ,x,a1,a2

(k) :=
γ

2

ea1(k)

Dγ(k) sin2(k)
·

·
[
e|x−a2|+1(|k|) + e|x−a1|(|k|) + i

γ2

2

e1(|k|)
sin(|k|)

(
e|x−a2|+1(|k|)− e|x−a1|(|k|)

)]
, (52)

w(2)
γ,x,a1,a2

(k) := i(−1)x−a1
ea1(k)

Dγ(k) sin(|k|)
·

·
[
e|x−a2|(−|k|) +

γ2

2

e1(−|k|)
sin2(k)

(
e|x−a2|(−|k|) cos(k)− e|x−a1|(−|k|)

)]
, (53)
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and also

Dγ(k) := 1 + γ2
e1(|k|)
sin2(k)

(
cos(k)− γ2

4
e1(|k|)

)
. (54)

Remark 17 Note that |Dγ(k)|2 sin4(k) = γ4(4 − γ2)2/16 + γ2[(2 − γ2)2 + γ2] sin2(k)/2 + (1 −
γ2)2 sin4(k). Hence, for |γ| = 2, we have, in general, that w(i)

γ,x,a1,a2
6∈ ĥ but still w(i)

γ,x ∈ ĥ.

Remark 18 Since Γδx ⊕ 0 = 0 ⊕ δx, since [Γ, e−itH ] = [Γ, e−itHγ ] = 0 due to Remark 5,
and since [Γ, 1ac(Hγ)] = 0 due to the spectral theorem and the reflection invariance of the
Lebesgue-Borel measure (implying that ΓF belongs to the absolutely continuous subspace
of Hγ if F does so), we get [Γ,Wγ] = 0 and, hence, Ŵγ0⊕ ex = Γ̂Ŵγex ⊕ 0 for all x ∈ Z.

In the following, for all a ∈ L(h) and all A ∈ L(H), we denote by rz(a) := (a − z1)−1 and
Rz(A) := (A − z1)−1 the resolvents of a and A at points z in the corresponding resolvent
sets.

Proof.
(a) Stationary approach
The stationary approach to scattering theory expresses the wave operator as a weak abelian
limit and subsequently transforms the time dependent propagators into time independent
resolvents with the help of Parseval’s identity, i.e., for all F,G ∈ H, we have

(G,WγF ) = lim
ε→0

+
2ε

∫ ∞
0

dt e−2εt(G, e−itHeitHγ1ac(Hγ)F )

= lim
ε→0

+

∫ ∞
−∞

de
ε

π
(Re−iε(H)G,Re−iε(Hγ)1ac(Hγ)F ). (55)

(b) Interaction matrix
In order to compute the integrand in (55), we express the resolvent of Hγ in terms of the
resolvent of H by means of the 2nd resolvent identity, i.e., by Re−iε(Hγ) = Re−iε(H) −
γRe−iε(Hγ)V Re−iε(H). For all e ∈ R, all ε > 0, and all F = f1 ⊕ f2 ∈ H, we then get

Re−iε(Hγ)F = Re−iε(H)F − γ

2
Re−iε(Hγ)

(
[r−e+iε(h)f2](a+ 1)δa ⊕ 0

− [r−e+iε(h)f2](a)δa+1 ⊕ 0

+ [re−iε(h)f1](a+ 1)0⊕ δa
− [re−iε(h)f1](a)0⊕ δa+1

)
, (56)

where we used that Re−iε(H) = re−iε(h)⊕ [−r−e+iε(h)].
Next, we set E1 := δa ⊕ 0, E2 := δa+1 ⊕ 0, E3 := 0 ⊕ δa, and E4 := 0 ⊕ δa+1, take the

scalar product of (56) with G ∈ H from the left, and set µ := [(G,Re−iε(Hγ)Ei)]
4
i=1 ∈ C4 and

analogously for ν ∈ C4 with Hγ replaced by H. Then, plugging successively F = Ei for all
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i ∈ {1, 2, 3, 4} into the terms from (56) and defining αe±iε(x) := (δx, re±iε(h)δ0) for all e ∈ R,
all ε > 0, and all x ∈ Z, we can compactly write the resulting four equations as Aγ,e−iεµ = ν,
where the interaction matrix Aγ,e−iε ∈ C4×4 is defined by

Aγ,e−iε := 1 +
γ

2

(
αe−iε(1)σ1 ⊗ σ3 + αe−iε(0)σ2 ⊗ σ2

)
, (57)

and we made use of the symmetries (21), (22), and (23), implying, in particular, that αe−iε(−x)
= αe−iε(x) and α−e+iε(x) = (−1)x+1αe−iε(x).

Moreover, since (1+γV Re−iε(H))(1−γV Re−iε(Hγ)) = 1 due to the 2nd resolvent identity,
since Aγ,e−iε = [(Ei, (1 + γV Re−iε(H))Ej)]

4
i,j=1, and since the range of V is spanned by E1,

E2, E3, and E4, the interaction matrix is invertible. Hence, taking again the scalar product of
(56) with G ∈ H from the left and plugging µ into the resulting equation leads to

(G,Re−iε(Hγ)F ) = (G,Re−iε(H)F )− γ

2

4∑
i,j=1

(E ′i, Re−iε(H)F )[A−1γ,e−iε]i,j(G,Re−iε(H)Ej), (58)

where we set E ′1 := −E4, E
′
2 := E3, E

′
3 := E2, and E ′4 := −E1 (note that, using this notation,

we can write V =
∑4

i=1(E
′
i, · )Ei/2).

(c) Boundary values
We know from stationary scattering theory that, if the limit of ε(Re−iε(H)G,Re−iε(Hγ)F )/π
for ε → 0+ exists for all F,G ∈ H and almost all e ∈ R (where here and in the follow-
ing, the set of full measure in R may depend on F and G), the limit and the integration in
(55) can be interchanged, the limit for ε → 0+ of the integrand in (55) equals the limit of
ε(Re−iε(H)G,Re−iε(Hγ)F )/π for all F,G ∈ H and almost all e ∈ R, and the integral extends
over [−1, 1] only since spec(H) = [−1, 1].

In order to verify the existence in question, we use (58) and replace G in (58) by the
term (ε/π)Re−iε(H)G. Since stationary scattering theory also guarantees the existence of
the limits lim

ε→0
+(G,Re±iε(H)F ) for almost all e ∈ R (the existence argument holds for any

Hamiltonian), and since (ε/π)Re+iε(H)Re−iε(H) = (Re+iε(H) − Re−iε(H))/(2πi) due to the
1st resolvent identity, the limits of the 1st, 2nd, and 4th term on the right hand side of (58)
exist. As for the 3rd term, we know from [5] that, for all e ∈ (−1, 1) and all x ∈ Z, the limit
αe−i0(x) := lim

ε→0
+ αe−iε(x) exists and has the form

αe−i0(x) = −i

(
e+ i

√
1− e2

)|x|√
1− e2

. (59)

Since the limit from above of the expectation value of the resolvent of Hγ (instead of H) also
exists, and proceeding as in (b), we find that the matrix Aγ,e−i0 := lim

ε→0
+ Aγ,e−iε is invertible,

too. Since taking the inverse is a continuous operation, we also have that lim
ε→0

+ A−1γ,e−iε =

A−1γ,e−i0.
Moreover, for all e ∈ (−1, 1), we can compute the inverse and get

A−1γ,e−i0 =
1

det(Aγ,e−i0)

(
β(1)
γ,e1 + β(2)

γ,eσ3 ⊗ σ1 + β(3)
γ,eσ1 ⊗ σ3 + β(4)

γ,eσ2 ⊗ σ2
)
, (60)



14 Walter H. Aschbacher

where we set

β(1)
γ,e := 1 +

γ2

2

e
(
e+ i

√
1− e2

)
1− e2

, (61)

β(2)
γ,e := −γ

2

2

e+ i
√

1− e2

1− e2
, (62)

β(3)
γ,e := i

γ

2

e+ i
√

1− e2√
1− e2

(
1 + i

γ2

2

e+ i
√

1− e2√
1− e2

)
, (63)

β(4)
γ,e := i

γ

2

1√
1− e2

(
1− i

γ2

2

e+ i
√

1− e2√
1− e2

)
, (64)

and the determinant has the form

det(Aγ,e−i0) = 1 + γ2
e+ i

√
1− e2

1− e2

(
e− γ2

4

(
e+ i

√
1− e2

))
. (65)

(d) Energy space representation
We next switch to energy space,

h̃ := L2([−1, 1],C2; de), (66)

by means of the unitary operator f̃ : ĥ → h̃ defined in [5] on the momentum space ĥ as
(̃fϕ)(e) := [ϕ(arccos(e)), ϕ(− arccos(e))]/(

√
2π

4
√

1− e2). Since we want the XY Hamiltonian
H to become the operator acting through multiplication by the free variable in H̃ := h̃ ⊕ h̃
(i.e., we want to make use of the multiplication operator version of the spectral theorem),
we extend f̃ to F̃ := f̃ ⊕ θ̃ξ̃ f̃ because of the 2nd factor in H, where, for all a ∈ L(h) and all
A ∈ L(H), we set ã := f̃ẫf∗ ∈ L(h̃) and Ã := F̃ÂF̃∗ ∈ L(H̃), and we note that (θ̃η)(e) = σ1η(e)
and (ξ̃η)(e) = σ1η(−e) for all η ∈ h̃. Hence, since (ĥϕ)(k) = cos(k)ϕ(k) for all ϕ ∈ ĥ, the
XY Hamiltonian H indeed becomes the desired multiplication operator under conjugation
with F̃ because (h̃η)(e) = eη(e) and (θ̃ξ̃h̃θ̃ξ̃η)(e) = −eη(e) for all η ∈ h̃, where we used that
(θ̃ξ̃)∗ = θ̃ξ̃ and that, for all η = [η1, η2] ∈ h̃, the adjoint of f̃ has the form

(̃
f
∗
η
)
(k) =

√
2π

4

√
1− cos2(k)

[
1[0,π](k)η1(cos(k)) + 1[−π,0](k)η2(cos(k))

]
. (67)

Furthermore, since the spectral core of H equals spec(H) = [−1, 1], stationary scattering
theory also yields, for all F = f1 ⊕ f2 ∈ H and all G = g1 ⊕ g2 ∈ H, that

lim
ε→0

+

ε

π
(Re−iε(H)G,Re−iε(H)F ) = 〈g̃1(e), f̃1(e)〉+ 〈(θ̃ξ̃g̃2)(e), (θ̃ξ̃f̃2)(e)〉, (68)

where we set f̃ := f̃ff for all f ∈ h, and 〈·, ·〉 stands for the complex Euclidean scalar product
on the constant fiber C2 of the direct integral (66).
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Now, plugging (58) into (55), commuting the limit and the integration, restricting the inte-
gration domain to [−1, 1] as discussed in (c), and substituting (68) into the resulting expres-
sion, we get

W̃γF̃ = F̃ − γ

2

4∑
i,j=1

(E ′i, R ·−i0(H)F )[A−1γ,·−i0]i,j Ẽj, (69)

where we set F̃ := F̃FF for all F ∈ H and (E ′i, Re−i0(H)F ) := lim
ε→0

+(E ′i, Re−iε(H)F ) exists
as discussed in (c).
(e) Momentum space representation
Next, let x ∈ Z and plug F = δx ⊕ 0 into (69). Then, applying F̃ = f̃ ⊕ θ̃ξ̃ f̃ on both sides of
(69) and noting that (E ′1, R ·−i0(H)δx ⊕ 0) = (E ′2, R ·−i0(H)δx ⊕ 0) = 0 and that

(E ′3, R ·−i0(H)δx ⊕ 0) = α ·−i0(x− (a+ 1)), (70)
(E ′4, R ·−i0(H)δx ⊕ 0) = −α ·−i0(x− a), (71)

the action, in momentum space Ĥ, of the intermediate wave operator Wγ on completely
localized wave functions becomes

Ŵγex ⊕ 0 = ex ⊕ 0

− γ

2

4∑
j=1

f̃
∗
⊕ f̃

∗
θ̃ξ̃
[(
α ·−i0(x− (a+ 1))[A−1γ,·−i0]3,j − α ·−i0(x− a)[A−1γ,·−i0]4,j

)
Ẽj

]
. (72)

Finally, we plug (59) – (65) and (70) – (71) into (72) and use (67) and the fact that δ̃x(e) =

[(e+ i
√

1− e2)x, (e− i
√

1− e2)x]/(
√

2π
4
√

1− e2) for all x ∈ Z.
Hence, we arrive at the conclusion. �

5 Entropy production rate

In this section, we determine the expectation value in the anisotropy NESS of the energy
flowing between the reservoirs through the sample system.

In the following, we will make use of the second quantization b in the selfdual framework
introduced in Definition 1(d).

Definition 19 (Entropy production)
(a) 1-particle energy current
The energy flow from the left reservoir into the sample is described by the 1-particle energy
current observable Φ ∈ L0(H) given by

Φ := − d

dt

∣∣∣∣
t=0

eitHγHLe−itHγ . (73)
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(b) Heat flux
The heat flux Jγ is defined to be the NESS expectation value of the extensive energy current
observable, i.e.,

Jγ := ωγ(b(Φ)). (74)

Moreover, the entropy production rate is given by σγ := (βR − βL)Jγ.

Remark 20 Let us denote by Jγ,R the NESS expectation value of the extensive energy cur-
rent observable b(ΦR) whose 1-particle observable ΦR describes the energy flow from the
right reservoir into the sample, i.e., ΦR is defined as in (73) but with HL replaced by HR. We
thus get that the sum of the derivative (in the Banach space L(H)) from (73) and its analog
for the right reservoir can be written as Φ + ΦR = −i[Hγ, HR + HL] = i[Hγ, Q], where we set
Q := Hγ − (HR +HR), and we note that Q ∈ L0(H) because Q = HS + Vd + γV . Here, as in
Definition 8(b), hS ∈ L(h) is the 1-particle sample Hamiltonian defined by hS := pShpS, and
the orthogonal projection pS ∈ L(h) is given by pSf := 1ZSf for all f ∈ h. Moreover, the lifting
of hS to L(H) is denoted by HS := hSσ3.

Since (12) and (31) imply that ωγ(b(A)) = −tr(SγA) for all A ∈ L0(H) with A = A∗ and
ΓAΓ = −A, where tr(·) stands for the trace on L1(H), we get, with Remark 5, that

Jγ + Jγ,R = −i tr(Sγ[Hγ, Q]). (75)

Since it follows from (33) that the anisotropy NESS ωγ is invariant with respect to the anisotropy
dynamics, i.e., since ωγ(τ

t
γ(A)) = ωγ(A) for all t ∈ R and all A ∈ A, we have [Sγ, Hγ] = 0.

Therefore, due to the cyclicity of the trace (i.e., tr(AB) = tr(BA) for all A ∈ L1(H) and all
B ∈ L(H)), (75) implies that Jγ + Jγ,R = 0, i.e., we obtain the first law of thermodynamics.

Remark 21 Due to Remark 20, the entropy production from Definition 19(b) has its usual
form, i.e., we can write σγ = −(βRJγ,R + βLJγ).

We now arrive at the main result of our study (see Figure 2).

Theorem 22 (Heat flux) For all γ ∈ R, the heat flux has the form

Jγ =
1

2

∫ π

−π

dk

2π
sin(2|k|)∆(cos(k))

[
1−

Pγ(sin(k))

Qγ(sin(k))

]
, (76)

where we set ∆ := ρβL − ρβR and the even polynomials

Pγ(e) :=
bγ
2
e2 + cγ, (77)

Qγ(e) := aγe
4 + bγe

2 + cγ, (78)
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Figure 2: The heat flux γ 7→ Jγ for βL = 1 and βR = 2 (being an even function of the strength
γ of the anisotropy perturbation).

have the nonnegative coefficients

aγ :=
(
1− γ2

)2
, (79)

bγ :=
γ2

2

[(
2− γ2

)2
+ γ2

]
, (80)

cγ :=
γ4

16

(
4− γ2

)2
. (81)

Remark 23 Since 1/(1 + ex)− 1/(1 + ey) = sinh([y− x]/2)/(cosh([y− x]/2) + cosh([y+ x]/2))
for all x, y ∈ R, the difference of the Fermi-Dirac functions can be written as

∆(e) =
sinh([βR − βL]e/2)

cosh([βR − βL]e/2) + cosh([βR + βL]e/2)
. (82)

Remark 24 Note also that (76) is independent of the sample size n and of the supporting
sites {a, a+ 1} of the local anisotropy perturbation.

Remark 25 In the light of (24), the values γ = 1 and γ = 2 correspond to a vanishing and, up
to a global sign, an isotropic σ2-contribution, respectively (see Figure 2). Moreover, Corollary
27 below yields that Jγ > 0. The regularity of the heat flux function γ 7→ Jγ will be discussed
elsewhere (see also [4]).

Proof.
(a) Flux structure
The 1-particle energy current observable (73) has the form

Φ = −i[Hγ, HL]

= −i[h, hL]σ0 + γ{v, hL}σ1

=
1

2
Im[p−(n+2),−n]σ0, (83)
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where, in the last equality, we used that vhL = hLv = 0 due to (6).
Since Φ = Φ∗ ∈ L0(H) and ΓΦΓ = −Φ, we have ωγ(b(Φ)) = −tr(SγΦ) as in Remark 20.

Hence, using (37) and (47), we write Jγ = −(Jγ,ac + Jγ,pp) and we define

Jγ,ac := tr(W ∗
γSWγΦ), (84)

Jγ,pp :=
∑

e∈eig(Hγ)

tr(1e(Hγ)Sd1e(Hγ)Φ). (85)

(b) Term Jγ,ac
Using (83) and computing the trace (for example with respect to the orthonormal basis {δx⊕
0, 0⊕ δx}x∈Z of H), we get Jγ,ac = J (1)

γ,ac + J (2)
γ,ac, where we define

J (1)
γ,ac :=

1

2
Im[(Wγδ−(n+2) ⊕ 0, SWγδ−n ⊕ 0)], (86)

J (2)
γ,ac :=

1

2
Im[(Wγ0⊕ δ−(n+2), SWγ0⊕ δ−n)]. (87)

Let us first determine (86) by switching to momentum space and by specializing (49) –
(54) to the case x = −n and x = −(n+ 2). Using (6), we can write

w
(1)
γ,−n,a,a+1(k) = γ

ea(|k|+ k)en+1(|k|)
Dγ(k) sin2(k)

(
cos(k)− γ2

2
e1(|k|)

)
, (88)

w
(1)
γ,−n,a+1,a(k) = γ

ea+1(|k|+ k)en(|k|)
Dγ(k) sin2(k)

, (89)

and also

w
(2)
γ,−n,a,a+1(k) = i(−1)n+a

ea(k − |k|)en+1(−|k|)
Dγ(k) sin2(k)

(
sin(|k|)− i

γ2

2
e1(−|k|)

)
, (90)

w
(2)
γ,−n,a+1,a(k) = i(−1)n+a

ea(k − |k|)en(−|k|)e1(k)

Dγ(k) sin2(k)

(
sin(|k|) + i

γ2

2
e1(−|k|)

)
. (91)

Moreover, for (a1, a2) ∈ {(a, a + 1), (a + 1, a)}, we get w(1)
γ,−(n+2),a1,a2

(k) = e2(|k|)w
(1)
γ,−n,a1,a2(k)

and w
(2)
γ,−(n+2),a1,a2

(k) = e2(−|k|)w
(2)
γ,−n,a1,a2(k). Next, we plug (88) – (91) and (45) into the

scalar product on the right hand side of (86) and note that f(1 − s)f∗ and fζsζf∗ act through
multiplication by the functions s−βL,−βR and sβR,βL from (46), respectively. Decomposing the
resulting expressions with respect to positive and negative momenta, taking the imaginary
parts, regrouping with respect to the inverse temperatures, and using that, for all α, β ∈ R,
we have ρ−α−ρ−β = −(ρα−ρβ) due to Remark 23 and ρ−α(cos(k)) 7→ ρα(cos(k)) if k 7→ k+π
(the symmetry ξ from Remark 6), a lengthy computation yields minus the right hand side of
(76) divided by 2.

We next turn to (87). Using Remarks 9 and 18, we can write

J (2)
γ,ac = J (1)

γ,ac −
1

2
Im[(Wγδ−(n+2) ⊕ 0,Wγδ−n ⊕ 0)]. (92)
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Since, for all (α, β) ∈ {(−βL,−βR), (βR, βL)}, we have limβR→0 limβL→0 sα,β(k) = 1/2 and
|sα,β(k)| ≤ 1 for all k ∈ [−π, π], Lebesgue’s dominated convergence theorem implies, on one
hand, that limβR→0 limβL→0 J

(1)
γ,ac is equal to minus the second term on the right hand side of

(92) divided by 2. On the other hand, it also implies that limβR→0 limβL→0 J
(1)
γ,ac = 0 since we

know from above that J (1)
γ,ac is equal to minus the right hand side of (76) divided by 2, since

limβR→0 limβL→0 ∆(cos(k)) = 0 for all k ∈ [−π, π], and since |∆(cos(k))| ≤ 1/2 due to (82) and
0 ≤ 1− Pγ(sin(k))/Qγ(sin(k)) ≤ 1 for all γ ∈ R and all k ∈ [−π, π] due to (77) – (81). Hence,
we find that Jγ,ac = 2J (1)

γ,ac.
(c) Term Jγ,pp
Using the cyclicity of the trace, all the summands on the right hand side of (85) can be written
as tr(Sd1e(Hγ)Φ1e(Hγ)). Since 1e(Hγ)Φ1e(Hγ) = −i1e(Hγ)[Hγ, HL]1e(Hγ) = −i1e(Hγ)(eHL −
HLe)1e(Hγ) = 0, we get Jγ,pp = 0.

Hence, we arrive at the conclusion. �

Remark 26 Since scattering theory yields that W ∗
γWγ = 1ac(Hγ), and since 1ac(Hγ) = 1 −

1pp(Hγ), the second term on the right hand side of (92) can also be determined using the
eigenfunctions of Hγ.

Finally, we derive the strict positivity of the entropy production for the case at hand, i.e.,
in particular, we obtain the second law of thermodynamics.

Corollary 27 (Entropy production) For all γ ∈ R, we have 0 < σγ ≤ (βR − βL)/2.

Proof.
(a) Case γ 6= 0
Due to the symmetry properties of the integrand in (76), the flux can be rewritten as an inte-
gral over the domain [0, π/2] on which all the factors of the integrand are nonnegative. Using,
on this domain, the straightforward estimates 1 − Pγ(sin(k))/Qγ(sin(k)) ≥ bγ sin2(k)/[2(aγ +
bγ + cγ)] and ∆(cos(k)) ≥ sinh(δ cos(k))/e0, where we set e0 := cosh(δ) + cosh(β) with
δ := (βR − βL)/2 and β := (βR + βL)/2, and carrying out the remaining integration d0 :=∫ π/2
0

dk/(4π) sin(2k) sin2(k) sinh(δ cos(k)) = [(3 + δ2) sinh(δ) − 3δ cosh(δ)]/(πδ4), we get the
lower bound Jγ ≥ 2bγd0/[(aγ + bγ + cγ)e0] > 0.
(b) Case γ = 0
Since Pγ(sin(k)) = 0 due to (80) and (81), we get the lower bound Jγ ≥ 4d1/e0 > 0 as in
(a), where d1 :=

∫ π/2
0

dk/(4π) sin(2k) sinh(δ cos(k)) = [δ cosh(δ)− sinh(δ)]/(2πδ2) (we already
know from [6] that Jγ > 0 in this case).

Hence, as soon as the system is truly out of equilibrium, i.e., if βR > βL, there exists a
nonvanishing heat flux flowing through the sample from the left (hotter) to the right (colder)
reservoir. Due to (4) and Definition 19(b), we also find that σγ > 0. Moreover, the upper
bound follows from the estimates after (92) in part (b) of the proof of Theorem 22.

Hence, we arrive at the conclusion. �
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Remark 28 The upper bound can also be derived directly since |ωγ(b(Φ))| ≤ ‖b(Φ)‖ =
‖Φ‖1/2, where ‖ · ‖1 stands for the trace norm, and we used [1] for the last equality.
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