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Abstract Metamaterials made of bi-stable building blocks gain their promising effective properties from a
micromechanicalmechanism, namely buckling, rather than by the chemical composition of its constituent. Both
discrete and continuum modelling of unstable metamaterials is a challenging task. It requires great care in the
stability analysis and a kinematic enhanced continuum theory to adequately describe the softening behaviour
and related size effects. This paper presents a detailed analytical and numerical investigation of the modelling
capabilities of a gradient enhanced continuum model compared to a discrete modelling approach which has
been proven to be qualitatively consistent with experimental results on small structures. It is demonstrated that
the gradient model is capable of describing size effects with respect to stability of small structures; however,
the limit of very large structures is found to be inconsistent with both the discrete model and the Maxwell rule
of a classical continuum. Based on an analytical investigation of the size of the energy barrier between local
minima, it is discussed how the consistency of the limit case of both discrete and continuum models can be
restored by redefining the classical meaning of stability.

Keywords Gradient continuum · Stability size effects · Unstable metamaterials · Softening and localization

1 Introduction

One of the fundamental assumptions of classical continuum mechanics is the assumption of a continuous
distribution of particles [1]. If this assumption fails, the kinematic description can be enhanced in the framework
of higher-order or higher-grade continua. Well-known examples of such extended theories are the Cosserat
continuum [2], the micromorphic- [1] or second gradient continua [3], and its various special cases (e.g. [4]
or [5]). Extended continuum theories become necessary if microstructural detail is relevant for the effective
material response. This is for example the case in the continuum modelling of (boundary) size effects [6], or
wave dispersion [7]. Moreover, the microstructural aspect is also relevant in the description of localization and
material failure phenomena. Both material failure and localization are driven by the microstructure, and so it
appears natural that their accurate description also requires a kinematic enhancement.Akinematic enhancement

Communicated by Andreas Öchsner.

C. Findeisen · P. Gumbsch
Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

C. Findeisen (B) · J. Hohe · P. Gumbsch
Fraunhofer Institute for Mechanics of Materials IWM, 79108 Freiburg, Germany
E-mail: Claudio.Findiesen@iwm.fraunhofer.de

S. Forest
Centre des Matériaux, Mines-ParisTech, CNRS UMR 7633, PSL Research University, BP 87, 91003 Evry Cedex, France

http://orcid.org/0000-0003-1738-9975
http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-020-00870-8&domain=pdf


C. Findeisen et al.

for localization and failure especially becomes relevant to prevent mesh dependency in the numerical analysis
of failure [8–11].

More recently, related problems arise by modelling so-called metamaterials. Metamaterials gain their
unusual and extreme effective properties mainly from micromechanical mechanisms rather than from the
chemistry of their constituent materials. It is thus not surprising that their “homogenization” also requires
extended continuum models. Examples are the description of wave dispersion and band gaps by kinematically
enhanced models [12,13], or the description of a tension-twist coupling by a Cosserat continuum as they are
observed in chiral lattices [14]. Pushing this to the limit, one can design microstructures that can only be
described within continuummechanics if one includes higher gradients of second, third or even 4th order [15].

In this paper, we focus on the continuum description of unstable metamaterials as they have been recently
presented and analysed [16,17]. The energy dissipation within these microstructures is driven by the sudden
state transformation which enables a separation of timescales between external loading and viscous dissipation
in the constituent material. This in turn leads to a non-viscous effective material response with dissipation in
the static limit. Moreover, the in-depth analysis of these metamaterials has revealed pronounced stability and
hysteresis size effects [17].

The effective material behaviour of composites or microstructured materials is often obtained by homog-
enization based on the Hill–Mandel framework, a technique well established for classical continuum theories
[18]. However, an extension of the Hill–Mandel homogenization framework towards generalized continua
is not so well established and its application is inhibited by the strong assumptions that have to be made
according to the deformation of the microstructure. Two possibilities to extend the classical Hill–Mandel
homogenization are presented and discussed in the literature. The first approach [19] assumes a polynomial
microdeformation which cannot be relaxed using a periodic microfluctuation as often done in the classical
homogenization framework. The second approach [20,21] applies Lagrange multipliers and thus assumes that
the true microdeformation can be mimicked by applying a polynomial volume force onto the unit cell. Further-
more, a promising computational homogenization approach has been presented in [22]. In there, the two-scale
numerical simulation of a periodically buckling microstructure is performed by enhancing the macroscopic
displacement field by a buckling mode modulation variable v1 (X) which is used to smoothly vary the peri-
odic buckling pattern that has to be known a priori. This method, however, requires that the buckling pattern
is periodic such that a periodic cell can be used for the homogenization. Compared with this, the unstable
microstructure that motivates this work is characterized by an instability that leads to a localization within a
single cell and hence a periodicity length of infinity.

We directly investigate the modelling capabilities of a gradient enhanced material model without homoge-
nization. The focus is on a one-dimensional strain gradient enhanced model with a strain energy density that is
quadratic in the gradient part and non-convex with respect to strain. This modelling approach will be compared
to results obtained from a discrete model which has been proven to be qualitatively consistent with experimen-
tal results [16,17]. Previous results on similar elastic discrete and gradient enhanced models with non-convex
potentials include: [23] a rigorous investigation of a discrete local model. The focus there is on the role of
the unstable region of the single element for the stability and the possible transformation processes in a finite
chain of unstable elements for both the Dirichlet and the von Neumann problem. Limited to the von Neumann
problem, this work is extended in [24] investigating the role of finite fluctuations for the possible transformation
processes. The origin of the so-called nucleation peak, experimentally observed in the phase transformation
of metals and predicted by both non-local discrete and non-local continuum models, is intensively analysed
in [25]. Finally, [26] analyses discrete models with non-local interactions and their mathematical relation to
gradient enhanced continuum models. Beside the aforementioned elastic models, gradient plasticity models
have been frequently applied to regularize compaction [8–10] and shear band instabilities [11] in metals as
well as to predict size effects in metal plasticity [27] or in microstructured materials like foams [28]. However,
an investigation of gradient enhanced continuum models with respect to localizing unstable metamaterials is
still lacking. The application to unstable metamaterials is particularly interesting since it is unclear to which
extent a continuum model is capable of describing the exotic behaviour of such structures and related size
effects.

More precisely, we investigate the continuum description of size effects in two limit cases: The upper
limit where the number of unstable cells is increased to infinity (N → ∞), and the lower limit of only a few
unstable cells (N = 1, 2, 3, 4, . . .). In the upper limit (N → ∞) the inconsistency of both the discrete and the
gradient model to the so-calledMaxwell rule of equal area [29] will be discussed. It is shown that the enhanced
continuum model is consistent with the discrete model only if one includes finite fluctuations in both models.
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(a) (b) (c)

Fig. 1 Different microstructural designs for unstable metamaterials. a Hexagonal unit cell with cosine-shaped buckling elements
(blue) which buckle upon vertical compression [16] and b, c biholar sheet as presented in [30] that exhibit a pattern transformation
from circular holes (a) to elliptical holes with different orientations (b). (Figure (a) with permission from [16] Figures (b) and
(c) are reproduced from [30])

For the lower limit of only a few cells, it is demonstrated that stability size effects can be described by a second
gradient theory.

2 Unstable metamaterials—microstructures and main mechanism

Unstable metamaterials gain their unusual effective properties from a unit cell that shows a bi-stable stress–
strain (or force displacement) behaviour as schematically shown in Fig. 2 and discussed in more detail later.

The microstructure (or unit cell) that has motivated the investigation in this paper is shown in Fig. 1a.
The bi-stability within this structure is induced by the buckling of the cosine-shaped buckling elements upon
a compression in the vertical direction. In a lattice of many of such cells, buckling appears suddenly with a
corresponding strain energy release leading to local oscillations of the microstructure. These oscillations are
damped—and thus, the corresponding energy is dissipated to heat—by the viscosity of the constituent material.
Importantly, the timescale of this dissipation process is mainly determined by the buckling process and thus
by the design of the microstructure. For a static loading or a loading with frequency much smaller than the
eigenfrequency of the oscillations initiated by the buckling, this leads to an overall energy dissipation which is
in a certain range independent of the timescale of external loading even though the constituent material behaves
viscous. At the same time, the microstructure is designed such that it also shows a fully reversible deformation
upon unloading. The latter property, i.e. the reversibility, clearly differentiates this class of materials from
usual metals where energy dissipation is related to plastic deformation. Furthermore, the bi-stability allows the
design of so-called mechanically programmable materials where the effective behaviour for the same strain or
stress state can be different due to a different loading history. All of the aforementioned properties have been
realized experimentally in [16] and analysed analytically and numerically in [17].

Clearly, the microstructure depicted in Fig. 1a is not the only possibility to realize a bi-stable stress–strain
behaviour. As a further example, the microstructure presented in [30] is represented in Fig. 1b, c; the bi-
stability is here obtained from a pattern transformation leading to the formation of an alternating arrangement
of ellipsoidal holeswith different orientations. Beside these two somehowdifferentmicrostructural approaches,
several other alternative designs have been presented that result in similar effective properties (e.g. [31,32]).

3 Analytical investigations—the discrete model

The problemof interest is here the behaviour of an array (or chain) of N unit cells (or springs)with a non-convex
free energy density w (ε) as the simplest one-dimensional discrete model for the microstructure of unstable
metamaterials. The focus will be on the displacement boundary condition where the structure is fixed at one
end (u0 = 0) and a displacement U is applied at the other end (uN = U ). Stable equilibrium configurations
ε0 are given by local minimizers of the total elastic energy
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W = L

N

N∑

i=1

w (εi ) + Lσ̄

(
ε̄ − 1

N

N∑

i

εi

)
. (1)

The first part of this equation accounts for the elastic energy of the individual unit cells and the second part
utilizes a Lagrange multiplier σ̄ (i.e. external force) to account for the boundary condition; furthermore, the
length of an individual unit cell is chosen as s = L/N , such that N unit cells give the overall length L , and
εi and ε̄ are the strain of cell i and the strain of the overall structure respectively. Necessary condition for
a minimizer of (1) is that the first derivatives with respect to the strains and with respect to the Lagrange
multiplier vanish

∂iw (εi ) = σ̄ ∀i = 1, . . . , N , (2)

1

N

N∑

i

εi = ε̄. (3)

The condition for stability is nothing but the sufficient condition for a local minimizer: An equilibrium config-
uration is said to be stable if the change in the overall potential dW due to a small perturbation dε is positive.
From the Taylor series expansion around an equilibrium state ε0

dW = W (ε0) + ∂iW (ε0) dεi + ∂i jW (ε0) dεidε j + O (|dε|3) , (4)

it can be concluded that for sufficient small perturbations dε a stable equilibrium configuration is equivalent
to a positive definite second derivative

εi∂i jWε j ≥ 0 ∀ε ∈ Z, (5)

where Z is the space of admissible deformations fulfilling condition (3).
Note that condition (5) is strictly local and thus only valid if the perturbation is small enough such that

higher-order terms O (|dε|3) can be neglected. To keep this in mind, an equilibrium configuration will be
called locally stable, if condition (5) is fulfilled. In most cases of material or structural stability analysis, it
might indeed be physically reasonable to assume that the perturbations are small enough to neglect higher-
order terms, even though this is normally not further validated. In the following, it will be seen that this is not
necessarily the case when dealing with size effects of unstable metamaterials. For this, the minimal energy
barrier separating two local minima is calculated explicitly, which gives a qualitative insight into how the
structure behaves under finite perturbations. This problem has been solved for the von Neumann boundary
condition in [23] and [24]. However, as shown in the following, the argumentation used therein can be easily
transferred to the Dirichlet boundary value problem.

To calculate theminimal energy barrier, it is first necessary to further specify the potentialw. For simplicity,
the following non-convex piecewise quadratic function is used

w (ε) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2k1ε

2 ε < εb

1
2

(
k1εb (2ε − εb) − k2 (ε − εb)

2) εb < ε < εh,

1
2

(
k1εb (2ε − εb) − k2 (ε − εh)

2 + k3 (εh − εb) (2ε − εh − εb)
)

εh < ε

(6)

which corresponds to a trilinear stress strain behaviour (see Fig. 2) with limit strains εb and εh , and stiffness
k1 > 0, k2 < 0 and k3 > 0

σ (ε) = w′ (ε) =

⎧
⎪⎪⎨

⎪⎪⎩

k1ε ε < εb

k1εb + k2 (ε − εb) εb < ε < εh .

k1εb + k2 (εh − εb) + k3 (ε − εh) εh < ε

(7)

With this potential, the local problem (2) has up to three different solutions for every unit cell which will
be denoted by εI , εII and εIII . Herein, εI and εIII correspond to an unit cell in the positive stiffness range below
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Fig. 2 Two different stress–strain relations corresponding to a non-convex potential: 4th-order polynomial (black dashed) used
for the numerical investigation in Sect. 5 and the trilinear approximation (solid blue) used for the analytical investigation in Sect. 3

εb and above εh respectively, whereas solution εII corresponds to an unit cell in the negative stiffness range
(see also Fig. 2). For a given external force σ̄ , these three solutions are calculated from (7)

εI = σ̄

k1
, (8)

εII = σ̄ + εb (k2 − k1)

k2
, (9)

εIII = σ̄ + εb (k2 − k1) + εh (k3 − k2)

k3
, (10)

where all three solutions only coexist in the non-trivial range k1εb + k2 (εh − εb) ≤ σ̄ ≤ k1εb. For stresses
below this range (σ̄ ≤ k1εb + k2 (εh − εb)), εI is the only solution, whereas for stresses above (k1εb ≤ σ̄ ),
εIII is the only solution.

Within the non-trivial range, the solution space for the global problem is given by all possible combinations
of unit cells having a strain εI , εII or εIII . Since potential (6) is the same for all cells, the spatial order does
not change the overall behaviour. Thus, a certain solution branch can be specified by three integers p, q and
r (with p + q + r = N ) giving the number of cells having a strain εI , εII and εIII respectively. For a specific
configuration C := (p, q, r), the overall behaviour is calculated from (3)

ε̄C (σ̄ ) = 1

N
(pεI + qεII + rεIII) . (11)

Together with (8)–(10), this can be inverted in order to get the overall stress–strain behaviour of a certain
configuration C

σ̄C (ε̄) = k1 (εb (k1 − k2) (k3q + k2r) + k2 (εh (k2 − k3) r + ε̄k3N ))

pk2k3 + qk1k3 + rk1k2
. (12)

As proven in [23], there exists a critical number of unit cells Ncrit abovewhich all equilibrium configurations
with any unit cell in the negative stiffness range (q ≥ 1) are unstable, i.e. a saddle point or local maximumwith
∂i jW negative definite. Clearly, the condition N ≥ Ncrit is fulfilled for the analysis of size effects in the limit
case N → ∞. However, it will also be seen in the numerical results in Sect. 5 that Ncrit is typically a rather
small value. Thus, it is sufficient for the following analysis to consider C = (i, 0, N − i) with i = 1, . . . , N
as the only stable equilibrium configurations for which σ̄ ′ (ε̄) > 0 holds.

With these preliminaries, it is now possible to show that the minimal energy barrier separating two local
minima C1 = (i, 0, N − i) and C2 = (i − 1, 0, N − i + 1) is obtained if one goes through the saddle point
C1s = (i − 1, 1, N − i). The proof for this is based on the mountain pass theorem and can be performed in
analogy to the von Neumann case given in [24]. For this the energy difference between C1 and all saddle points
Cts = (i − t, t, N − i)with t = 1, . . . , i is calculated. For the sake of demonstration, the following calculations
are restricted to the case of i = N , whereas the result is qualitatively the same as for the general case, however
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Fig. 3 Elastic energy for different non-equilibrium paths going from the stable equilibrium configuration C1 to the stable equi-
librium configuration C2 for N = 40 (a) and N = 100 (b) cells for an external strain of ε̄ = 0.18. The remaining parameters
used for the evaluation are given in the “Appendix”

with much simpler expressions. Together with (8)–(10), the energy of a certain equilibrium configuration can
be calculated from

W (ε) = L

N
(pW (εI ) + qW (εII) + rW (εIII)) (13)

and thus, the energy barrier �W between Cts and C1 with i = N can be calculated as

�W := W
(Cts

) − W (C1) = − (ε̄ − εb)
2 k1 (k1 − k2) Lt

2 (k2 (N − t) + k1t)
. (14)

From here, it follows that �W (t2) < �W (t1) if 1 ≤ t2 < t1 ≤ N , and thus, the smallest energy barrier is
indeed given by t = 1.

Equation (14) now permits the qualitative discussion of the perturbation resistance, without the need to
neglect higher-order terms in the Taylor expansion (4). First of all, the energy barrier is reduced by increasing
ε̄ and vanishes for ε̄ = εb. A vanishing energy barrier corresponds to a loss of local stability according to (5).
As will be seen by the numerical results in Sect. 5, this is true. Next, by keeping the overall structural size L
constant, the energy barrier is also reduced by increasing the number of unit cells N (�W ∝ 1/N ) and thus
also fully vanishes in the limit N → ∞. This means that with an increasing number of cells, the energy barrier
separating two local minima is getting smaller and smaller and the structure will become more sensitive to
finite perturbations.

Finally, increasing the length L with a fixed unit cell size s, also increases the total (external) energy. It is
thus physically more relevant to look at the specific energy barrier as the ratio between the energy difference
(14) and the overall energy W (C1):

�W̄ = �W

W (C1)
= − (ε̄ − εb)

2 (k1 − k2) t

ε̄2 (k2 (N − t) + k1t)
(15)

from where the same size effects are found.
To further illustrate these results, one can calculate the elastic energy for the non-equilibrium path

εne =
{

ε1 + λ
(
εts − ε1

)
, λ ∈ (

0, 1
2

)

εts + λ
(
ε2 − εts

)
, λ ∈ ( 1

2 , 1
) (16)

going from C1 to Cts and then from Cts to C2, where ε1 to εts and ε2 are the vectors with the corresponding strain
components. This path is only in equilibrium for λ = 0, λ = 1

2 and λ = 1 and is therefore only admissible
if there exists an external perturbation according to (16). Furthermore, since (16) is linear it is fulfilling the
boundary condition (3) and the elastic energy can be evaluated neglecting the second term in (1).
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In Fig. 3, the energy of this non-equilibrium path is plotted for N = 40 and N = 100 cells. As has been
argued above, the energy barrier is given by the saddle configuration Cts , whereas the path though C1s leads to
the smallest possible energy barrier. Furthermore, it can be clearly seen how the energy barrier is reduced by
increasing the number of cells.

The existence of a perturbation that exactly follows the minimum non-equilibrium path through the saddle
configuration C1s is a strong assumption. However, since all other energy barriers are reduced as well, the
probability of an earlier transformation is expected to increase by increasing the number of cells even if one
applies a random perturbation.

To differentiate stability under finite perturbations from the local stability condition (5), an equilibrium
configuration will be called globally (un)stable if the applied perturbation has an energy (larger) smaller than
that given by Eq. (14). The exact perturbation mode is not considered, and it is assumed that the applied
perturbation is indeed able to bring the structure through the saddle configuration C1s if it has a sufficient
activation energy.

4 Analytical investigation—the gradient enhanced continuum model

The discrete model is compared with a corresponding gradient enhanced continuummodel with a strain energy
density

w∇ (ε, ∂xε) = w (ε) + 1

2
A (∂xε)

2 , (17)

where w (ε) is the same as in (1), but with εi substituted by the continuous strain ε = ε (x). For the gradient
part, the simplest possible extension, namely a quadratic uncoupled part with a gradient stiffness A > 0, has
been chosen. In here, the gradient part now plays the role of a localization limiter prescribing—through A—the
length (area) where the material is in the softening phase with ∂εεw < 0. Thus, the gradient stiffness A is
somehow related to the unit cell size s = L/N which prescribes the intrinsic softening length in the discrete
model.

Stable equilibriumconfigurations of the gradientmodel are given by localminimizers of the overall potential

W =
∫ L

0
w (ε) + 1

2
A (∂xε)

2 + σ̄ (ε̄ − ε) dx + r̄1∂xε(0) + r̄2∂xε(L). (18)

In extension to the boundary condition with respect to the strain ε, higher-grade boundary conditions ∂xε (0) =
∂xε (L) = 0 with corresponding Lagrange multipliers r1 and r2 are now necessary. The latter boundary
condition is chosen such that the gradient problem still contains the homogeneous (trivial) solution. This is
consistent with the discrete problemwhere the solution is homogeneous until the first instability and subsequent
localization. A further discussion of the physical relevance of the higher-grade boundary conditionwill be given
later. The Euler–Lagrange equations follow from the first variation with respect to the displacement field u,
and the Lagrange multipliers σ̄ , r̄1 and r̄2

∂xσref − A∂xxxε = 0, (19)

σ̄ = σref (0) − A∂xxε (0) = σref (L) − A∂xxε (L) ,

r̄1 = r̄2 = A∂xε (0) = A∂xε (L) = 0,

ε̄ = 1

L

∫ L

0
εdx, (20)

where the referential stress σref := ∂εw (ε) has been introduced.

4.1 Stability analysis

Analogous to the stability of the discrete model, an equilibrium configuration of the continuum model is
locally stable if the second variation is positive. Together with the boundary conditions, the stability condition
is retrieved from (18) as

δuuW =
∫ L

0
∂εεw (ε) (δuε)

2 + A (∂xδuε)
2 dx > 0. (21)
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This condition can be seen as a special case of the stability problem investigated in [26] and thus can be further
evaluated by following the method presented therein. For this, the variation field is written as a Fourier series

δu =
∞∑

n=1

δun sin
(nπx

L

)
. (22)

Note that this ansatz is compatiblewith the essential boundary conditions in (20), and thus, no further conditions
are imposed on the Fourier coefficients δun .

Together with the orthogonality relation

∫ L

0
sin

(nπx

L

)
sin

(
kπx

L

)
dx = L

2
δnk, (23)

the second variation from (21) can be written as

δuuW =
∞∑

n=1

∞∑

k=1

∫ L

0
∂εεw (ε) cos

(nπx

L

)
cos

(
kπx

L

)
nkπ2

L2 dxδunδuk + A
L

2

∞∑

n=1

(nπ

L

)4
δu2n . (24)

For the homogeneous solution (∂εεw (ε) = const .), this can, again using the orthogonality relation, be further
simplified to

δuuW =
∞∑

n=1

(
∂εσref + A

(nπ

L

)2)

︸ ︷︷ ︸
=:ηn

n2π2

2L
δu2n > 0. (25)

Since the Fourier coefficients are linearly independent, the homogeneous solution is locally stable if the
coefficients ηn are positive for all n ≥ 1. However, A is positive by definition, and thus, η1 ≥ 0 is necessary
and sufficient for local stability. From here, it can be concluded that a homogeneous solution with a strain
corresponding to state I or I I I (see Fig. 2) is unconditionally stable, since ∂εσref ≥ 0. A homogeneous
solution with a strain corresponding to state I I (negative stiffness) is locally stable, if

−A
(π

L

)2 ≤ ∂εσref ≤ 0 (26)

This condition permits the discussion of stability size effects as predicted by the gradient model. For this,
one compares two structures with lengths L2 > L1. From (26), it follows that the homogeneous solution
with negative stiffness is stable if 0 > ∂εσref,2 > ∂εσref,1. Thus, the range where the homogeneous, negative
stiffness solution is stable decreases with the length of the structure. In the limit L → ∞, one has ∂εσref → 0 as
stability condition: The homogeneous negative stiffness solution becomes completely unstable. By rearranging
condition (26), one gets the maximum structural length Lmax until which the homogeneous solution is stable

Lmax = π

√
A

−min ∂εσref
, (27)

where min ∂εσref is the minimal stiffness within the negative stiffness range. Furthermore, the length Lmax
from (27) is also equivalent to a minimal length for which the structure will loose stability and thus show a
bifurcation into an inhomogeneous solution.

Finally, note that the stability analysis in this section has been done without reference to the exact form
of the reference potential w (ε), and thus conditions (25)–(27) are valid for arbitrary non-convex reference
potentials.
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Fig. 4 Illustration of the strain distribution of the infinite problem together with the softening zone of size 
neg with a negative
stiffness ∂εσref < 0, its discretization according to (6) and the coupling conditions given in (29)–(30)

4.2 Analytical estimate for the gradient stiffness

Going from the discrete model to the gradient enhanced continuum model, the reference potential w (ε) is
retained. However, since the discrete model does not contain any non-local interactions, the gradient stiffness
A is not defined up to now. As stated before, the gradient stiffness needs to be related to the unit cell size in
the discrete model, prescribing the length of softening material. Thus, the gradient stiffness A will be defined
here by the condition that the gradient model shows the same ratio L/
neg between overall structure size L
and softening material length 
neg with ∂εσref (x) < 0 as the discrete model (see Fig. 4). In the discrete model,
this ratio is simply given by the number of cells N = L/s.

Defining the gradient stiffness like this requires the relation between the softening length 
neg and gradient
stiffness A. To obtain this, a solution to the boundary value problem (19)–(20) is approximated adopting
the approach from [11]. For this, two approximations are introduced; first the reference potential is again
approximated as in (6), and second, instead of solving the boundary value problem for a finite length, the
differential equation (19) is solved for the infinite problem. Furthermore, without loss of generality, the solution
can be discretized into three regions Ω1, Ω2 and Ω3 (Fig. 4), where Ω1 (Ω3) is the region with a strain ε < εb
(ε > εh) and Ω2 is the region of length 
neg having a strain within the negative stiffness region (εh > ε > εb).
In general, other phase distributions with more than three phases would be possible; however as shown in [26],
these are unstable and thus not considered here. By this discretization, the nonlinear differential equation (19)
can be split into the following coupled system of linear differential equations

ki∂xεi − A∂xxxεi = 0 ∀x ∈ Ωi , i = 1, 2, 3 (no sum). (28)

Equations (19) and therefore also (28) are derived from (18) by use of partial integration and thus only valid
for a continuous strain ε. This requirement serves as a first boundary (or interface) condition for the system
(28)

ε1 (0) = ε2 (0) = εh, ε2
(

neg

) = ε3
(

neg

) = εb. (29)

Further coupling conditions are obtained from the continuity of stress and higher stress resulting from a split of
(18) into the three regions Ωi . The higher stress is given by r = A∂xε, and thus, the related interface condition
is expressed as

∂xε1 (0) = ∂xε2 (0) , ∂xε2
(

neg

) = ∂xε3
(

neg

)
. (30)

Together with (29), the continuity of stress σ = ∂εw (ε) − A∂xxε leads to the third interface condition given
by

∂xxε1 (0) = ∂xxε2 (0) , ∂xxε2
(

neg

) = ∂xxε3
(

neg

)
. (31)
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Additionally, it is required that the strain remains finite in the limits

lim
x→∞ ε1 (x) = ε∞ and lim

x→−∞ ε1 (x) = ε−∞. (32)

Since k1 > 0, k3 > 0 and k2 < 0, the general solution for (28) is

εi (x) = Ci
1 exp(ωi x) + Ci

2 exp(−ωi x) + Ci
3 ∀x ∈ Ωi , i = 1, 3 (33)

ε2 (x) = C2
1 sin(ω2x) + C2

2 sin(ω2x) + C2
3 ∀x ∈ Ω2, (34)

whereas ωi := √|ki |/A has been defined.
Equations (29)–(34) can be seen as an eigenvalue problem for the eigenvalue 
neg. After eliminating all

coefficients C j
i by conditions (29)–(32), the following condition remains to be fulfilled

(εh − ε−∞)
(
sin

(
ω2
neg

) (
ω3ω1 − ω2

2

) + cos
(
ω2
neg

)
(ω2ω1 + ω3ω2)

) = 0. (35)

This can be fulfilled if either the term in the second bracket vanishes, or if εh = ε−∞. The latter condition
leads to the homogeneous solution ε ≡ εh , and thus, the eigenvalues for an inhomogeneous solution are given
by


neg = 1

ω2

(
arctan

(
ω2 (ω3 + ω1)

ω2
2 − ω3ω1

)
+ nπ

)
with n ∈ N. (36)

For the physically relevant solution, n has to be chosen according to ω1, ω2 and ω3 such that 
neg is positive
and as small as possible, since this is related to a softening length with the smallest possible strain energy and
thus expected to be the stable configuration. Considering this, the required relation between gradient stiffness
A and softening size 
neg can be obtained by solving (36) for A

A =
⎛

⎜⎝
√|k2|
neg

arctan
(√|k2|(√k3+√

k1)
|k2|−√

k3
√
k1

)
+ nπ

⎞

⎟⎠

2

(37)

where n = 0 if ω2
2 > ω3ω1 and n = 1 if ω2

2 < ω3ω1. In case of equality (ω2
2 = ω3ω1), the gradient stiffness

is directly obtained from (35) as

A =
(
2
√|k2|
neg

π

)2

. (38)

5 Numerical results

In this section, the analytical results from Sects. 3 and 4 are complemented with numerical results from both
models. For this, the potential w (ε) in (1) and (17) is chosen to be a 5th-order polynomial and the gradient
stiffness A is calculated from (36) such that the ratio between softening zone and overall structure size is finite
and corresponds to a discrete model with N = L/s = L/
neg cells, where s is the cell size. The exact form of
the potential w (ε) as well as all other parameters is summarized in the “Appendix.”

For the discrete problem, equilibrium configurations are found by applying the Newton–Raphson method
togetherwith an arc-length constraint as has been detailed in [17].Within this solution scheme, the local stability
is investigated by numerically calculating the eigenvalues of ∂i jW . The gradient boundary value problem in
turn is solved by the shooting method. Herein, finding the homogeneous solution is trivial. The localized
solution can be found using the analytical approximation from Sect. 4.2 as a starting value. Local stability
of the homogeneous solution is evaluated by the analytical condition (26), and for the localized solution, a
numerical approximation of (24) is used.

Additionally, the gradient problem is investigated together with a global stability analysis in Sect. 5.2.
The global stability analysis is motivated by [24] as well as the related analytical investigations in Sect. 3
and is done as follows: For every equilibrium configuration, it is first checked if there exists a second locally



Discrete and continuum modelling of size effects in unstable metamaterials

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

1.25

1.5
·10−2

strain ε̄ [−]

st
re
ss

σ̄
[−

]

N = 1 stable, N = 2 unstable
N = 2 stable

(a)

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

1.25

1.5

strain ε̄ [−]

st
re
ss

σ̄
[−

]

Gradient model L = 2 stable
Gradient model L = 1 stable
Gradient model L = 2 unstable
Discrete model N = 2 stable

(b)

Fig. 5 Comparison of numerical results from the discrete model a for N = 1 and N = 2 cells with a corresponding gradient
enhanced model b with a length of L = 1 and L = 2. The two red dashed lines in (a) and (b) are superimposed

stable equilibrium configuration that has a smaller strain energy and fulfils the boundary condition. If yes,
the minimal energy barrier between these two is calculated from the saddle configuration with t = 1 (see
Sect. 3). If this energy barrier is smaller than a given perturbation energy Wpert the equilibrium configuration
is globally unstable and the structure changes to the locally stable equilibrium configuration with the smaller
strain energy. If there are more than two locally stable equilibrium configurations that fulfil the boundary
conditions the above procedure is repeated until a globally stable equilibrium configuration is found.

5.1 Local stability criterion

In what follows, the discrete and the gradient enhanced models are compared for an increasing structural size
L , keeping both the unit cell size s = L/N and the gradient stiffness A constant.

Figure 5a shows the behaviour of the discrete model for N = 1 and N = 2 unit cells. As expected,
solving the discrete problem for only one cell exactly reproduces the stress–strain behaviour derived from the
local potential w (ε). This is different for two and more cells: Stability requires that only one cell has a state
with a negative stiffness; thus, the homogeneous solution becomes unstable and the two cells are passing the
negative stiffness range one after the other. However, this transformation process still results in a smooth (i.e.
continuous) effective behaviour for N ≤ 2. Comparing this with the gradient model in Fig. 5b, the exact same
behaviour is observed for L = 1. The homogeneous solution is completely stable and there is no bifurcation
observed. However, in contrast to the discrete model, this is not an obvious fact, since in a classical model
(without the gradient term) a bifurcation following theMaxwell rule [29,33] would be expected. Consequently,
the stabilization of the homogeneous solution is a consequence of the gradient part which restricts the size of
the softening zone. If the structure is smaller than a critical LMax the energy required for a smaller softening
zone is simply too high compared to the homogeneous solution (see also Eq. (27)).

As expected from the stability analysis in Sect. 4.1, this behaviour changes with increasing length L . For
L = 2, there is a certain range where the homogeneous solution becomes unstable and bifurcates into an
inhomogeneous solution. This agrees well with the prediction from Eq. (27) which in this case gives a critical
length of Lmax = 1.4. As in the discretemodel, the reaction force for the inhomogeneous solution deviates from
the referential stress (see also Eq. 20). However, in the gradient model the reaction force does not go through
the same sequence of negative and positive stiffness branches related to the softening within the individual unit
cells in the discrete set-up but instead shows a smooth monotonic behaviour. This is related to the fact that the
continuum model does not obey the same discrete phase transitions as in the discrete model, but rather shows
a smooth propagation of the softening region from one end to the other (Illustrated for the case of L = 3 in
Fig. 6c).

Comparing the stable equilibrium path from the discrete model for N = 2 with the gradient model for
L = 2 in Fig. 5b, it can be seen that bifurcation into the inhomogeneous solution is delayed in the gradient
model. This delay can be attributed to the continuous strain profile of the gradient model compared to the
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Fig. 6 Comparison of numerical results from the discrete model a for N = 3 with a corresponding gradient enhanced model b
with a length of L = 3. Stable (unstable) equilibrium configurations are given by solid (dashed) blue lines, abrupt buckling under
loading (unloading) is indicated by green (red) arrows. Selected strain profiles from the gradient model are illustrated in (c) for
the different timesteps t1 to t8 as marked in (b)

discrete strain distribution of the discrete model. As can be seen from Fig. 4 and also Fig. 6c, the strain
outside of the softening zone Ω2 varies continuously towards the boundaries where ∂xε = 0 is prescribed.
This deviation from the homogeneous solution requires some additional energy which delays the localization.
However, this argumentation also anticipates that the influence of this transition zone from the softening to
the quasi-homogeneous strain vanishes by increasing the size L . As will be seen in the following (compare
Figs. 6b, 7b, 8b), this is the case and the delay in bifurcation is not seen any more for L = 40 in Fig. 8b.
This behaviour can also be rationalized by Eq. (26) which exactly predicted that the homogeneous solution
with a negative stiffness is gradually loosing stability and in the limit the complete negative stiffness branch is
unstable.

With N = 3 unit cells, the bifurcation behaviour changes fundamentally. As shown in Fig. 6a, there are
now several stable equilibrium configurations for the same external strain and the configuration Cs = (2, 1, 0)
with one cell in the negative stiffness region becomes partially unstable. Beyond the stress maximum at ε = εb
(see Fig. 6a), the energy barrier separating C1 = (3, 0, 0) and C2 = (2, 0, 1) vanishes as has been argued in
Sect. 3. Thus, passing the limit point at εb, one of the cells buckles suddenly changing from C1 to C2.

For ε = εb, C1 has less energy than C2, thus changing from C1 to C2, a portion of the strain energy is released.
This energy is first transformed into kinetic energy of local vibrations which are subsequently damped by for
example the viscosity of the constituent material. Due to this, a loading-/unloading cycle passing εb leads to
an overall hysteresis. How the dissipation process takes place in detail has been discussed in the literature
[17,34] and will not be further detailed in the current investigation. Analogous processes take place under
further loading during the transformation from C2 = (2, 0, 1) to C3 = (1, 0, 2) and C3 to C4 = (0, 0, 3) and
under unloading similar transformations take place in the inverse order.

The behaviour of the corresponding gradient model (Fig. 6b) is similar in some respect. Passing εb a
point is reached where the initiation of the inhomogeneous solution occurs suddenly and an overall dissipative
behaviour is observed. However, in contrast to the discrete model where there is an abrupt transformation
corresponding to the buckling of every individual cell as ε is increased, there are only two such abrupt transfor-
mations in the gradient model. These two abrupt transformations now correspond to the sudden initiation of the
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Fig. 7 Comparison of numerical results from the discrete model a for N = 5 with a corresponding gradient enhanced model b
with a length of L = 5. Stable (unstable) equilibrium configurations are given by solid (dashed) blue lines; abrupt buckling under
loading (unloading) is indicated by green (red) arrows
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Fig. 8 Comparison of numerical results from the discrete model a for N = 40 with a corresponding gradient enhanced model
b with a length of L = 40. Stable (unstable) equilibrium configurations are given by solid (dashed) blue lines; abrupt buckling
under loading (unloading) is indicated by green (red) lines

inhomogeneous solution and the sudden transformation of the inhomogeneous solution back to a homogeneous
solution with ε > εh when the softening region reaches the other end (see Fig. 6c). The origin of the energy
dissipation occurring during this transformation is the same as in the discrete model: At the transformation
strain, the inhomogeneous solution has less energy than the homogeneous solution; thus changing from one to
the other, a portion of the strain energy is released. An earlier transformation is not possible since the homo-
geneous and the inhomogeneous solutions are separated by a finite energy barrier. In between the two abrupt
transformations, the softening zone continuously propagates through the structure, and thus, the reaction force
shows a smooth behaviour without any corresponding energy release.

By further increasing the number of cells or the length of the structure (see Figs. 7, 8), the observed
behaviour does not change qualitatively and only becomes more pronounced. As expected from the discussion
of (26), the negative stiffness region becomes completely unstable in both models.

5.2 Global stability criterion

Adding a finite perturbation energy in a global stability analysis includes a second size effect which overlays
with the size effects observed in the previous section. As predicted in Sect. 3 (Eq. (14)), the required energy
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Fig. 9 Size effects predicted from a numerical solution of the discrete model together with a global stability criterion. The
influence of a finite perturbation energyWpert on the loading/unloading path for N = 40 cells (a) and the influence of the number
of cells N on the predicted energy dissipation for different perturbation energies Wpert (b)

barrier for an earlier transformation is reduced by increasing the strain towards εb, the strain where the stress
strain behaviour of the unit cell starts to decrease. Conversely, this means that the strain at which an earlier
transformation is possible is reduced by increasing the perturbation energy.

This behaviour is exemplarily illustrated for N = 40 cells in Fig. 9 where the loading and unloading
path is plotted for different perturbation energies Wpert. In here, the perturbation energy has been normalized
with respect to Wmax

diss which is the maximum possible energy dissipation which would be obtained from a
local stability condition in the limit of N → ∞ or by a force controlled loading/unloading cycle. Clearly, the
hysteresis and thus also the energy dissipation are reduced by increasing the perturbation energy. For a value of
Wpert = Wmax

diss /250, loading and unloading follows paths become indistinguishable and the energy dissipation
appears to vanishes completely.

How the energy dissipation evolves with the number of cells is summarized in Fig. 9b.Without considering
a finite perturbation energy, the energy dissipation monotonically increases towards the maximum possible
value. Adding a finite perturbation energy, this size effect is overlaid with a second size effect which effectively
leads to a non-monotonically energy dissipation. Once reaching zero energy dissipation further increasing the
number of cells obviously does not change the hysteresis size any more. This behaviour is also consistent with
the analytical predictions from Sect. 3.

6 Discussion

First mentioned in 1875, theMaxwell rule [29] is often used to describe phase transformation in systems with a
non-convex potential. TheMaxwell rule states that the negative stiffness region is inadmissible and thus passing
it is only possible by a phase separation. The effective stress–strain curve bifurcates into the so-calledMaxwell
line which separates the local stress–strain curve into two equal areas. The validity of the Maxwell rule has
been intensively discussed for liquid–gaseous phase transformations (see for example [35] and the references
therein). For solids, a phase transformation following the Maxwell line can be obtained as a local minimizer
of the strain energy potential of a classical continuum, as has been mathematically validated in [33]. However,
the instability of the negative stiffness branch clearly depends on the boundary conditions and interestingly the
negative stiffness branch can be observed experimentally if the kinematics are properly constrained. This has
been shown for low carbon steel and NiTi laminated tensile samples in [36] which showed a nonmonotonic
behaviour following the negative stiffness branch, whereas the unconstrained samples showed a transformation
on the Maxwell line.

Here, the discrete model predicts a hysteresis and no transformation on a Maxwell line. This suggests
that the Maxwell rule does not fully apply for unstable microstructures with a moderate ratio between overall
structural size and unit cell size. This is further confirmed by experimental results that also show a hysteresis
and thus a behaviour consistent with the predictions of the discrete model [16]. In the infinite limit, the gradient
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model in turn partially reproduces the prediction of the Maxwell rule, but it is not able to fully reproduce the
behaviour of the discrete model. This leads to the question of the applicability and similarities of both models.

Noting first that the discrete model and the gradient continuum model are qualitatively and quantitatively
consistent with respect to stability size effects in the sense that in both cases the homogeneous negative stiffness
solution gradually loses stability with an increased structural size. Loss of stability is related to the bifurcation
into an inhomogeneous solution initiated by a localization and subsequent propagation of the softening region.
In both models, the hysteresis is related to an energy release occurring during an abrupt transformation from a
higher to a lower energy level. However, even though the mechanisms leading to the hysteresis are comparable
and the corresponding size effect is qualitatively the same, the hysteresis size is completely different. As
indicated previously, the reason for this is that the gradient model only shows an abrupt transformation with a
corresponding energy release during the initiation of a localization and not during the (smooth) propagation
of the softening region.

Comparing the two models based on their model definition (1) and (18), one expects that the two models
are the same in the limit of N , L → ∞. In (1), one can substitute the sum operator with an integral and in
(18) the gradient contribution does not change with the length L; thus, one can neglect its contribution in the
infinite limit. The reason that the numerical results presented here do not approach each other for a finite size
is twofold:

First, according to Eq. (14) or (15) the specific energy barrier preventing an earlier transformation on a
Maxwell-like line scales with 1/N and only vanishes in the limit N → ∞. The same holds for the stability; as
long as the energy barrier is finite, the structure is said to be locally stable according to condition (5). On the
contrary, if one includes a finite activation energy assuming that there are external fluctuations which can help
to overcome a finite energy barrier, global stability is lost, and an earlier transformation on a Maxwell-like line
becomes possible (see Sect. 5.2, and also [23] and [24] for further illustration). In particular this behaviour is
qualitatively independent of the portion of the activation energy, there will always be a number of unit cells, i.e.
a structural size, according to (15) for which an earlier transformation is possible for a certain external strain
ε̄. The same argumentation can be applied to the gradient model, where an earlier initiation of the localization
is expected if additional activation energy is included. Thus, the two models can only approach each other for
finite sizes if one includes finite fluctuations.

Second, even including additional activation energy, the gradient model still shows an inconsistency to
both the Maxwell line and the discrete model. This inconsistency is observed in a small transformation peak
(marked in Fig. 8b) at the bifurcation point. As seen from Figs. 5, 6, 7 and 8, the size of this transformation
peak does indeed get smaller with an increased length. However, as has been proven in [25], it does not vanish
in the limit L/
neg → ∞.

This leads to the question if there is a physical mechanism that can be related to the transformation peak?
In the literature, the transformation peak is typically related to two different mechanisms. First, it has been
related to the different forces needed for the initiation and continuation of dislocation motion in [37] and [38].
This difference is related to the diffusion of atoms in the neighbourhood of the dislocations and leads to the
formation of so-called Lüders-bands [39,40] and [11]. A second explanation is possible by analysing a discrete
non-local model. In contrast to the discrete local model investigated in this paper, a discrete non-local model
shows the same transformation peak due to the non-local interactions [23] and [25]. Thus, it is also possible
to relate the transformation peak to the non-local interactions which for example occur at the atomistic scale.

Obviously, the first argumentation does not apply to the unstable microstructures investigated here. At first
glance, the second argumentation does not make any sense in the case of the investigated one-dimensional
discrete model either, since this model is strictly local and there is no physical reason to include non-local
interactions. However, this is different if one investigates in real two- or three-dimensional structures where
a delayed bifurcation can be observed due to a constraining effect of the boundary condition (see [5,41]).
The same holds for the gradient model where the boundary condition on the gradient ∂xε influences how a
localization is initiated at the boundary. As seen in Fig. 6c, choosing ∂xε = 0 at the boundaries forces the
localization profile to remain flat at the boundaries. This prevents the localization from initiating gradually
and thus is the reason why a small transformation peak remains. This mechanism is analogue to the delay in
bifurcation that has been observed and discussed for L = 2 in Sect. 5.1 Similar boundary effects are known
from the characterization of foams and other microstructured materials [6,15,28,42,43] where higher-order
boundary conditions are used to model stiffening size effects.
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7 Summary

Unstablemicrostructures inmetamaterials show some interesting effective propertiesmaking them a promising
alternative to well-established materials used for example as crash absorbers [16].

This paper presented a first step towards a continuummodel of these unstablemetamaterials by investigating
a one-dimensional gradient enhanced continuum model. This model is capable of modelling size effects with
respect to stability; however, it cannot quantitatively capture size effects with respect to energy dissipation
since these are related to the discrete phase transitions.

Furthermore, this paper has demonstrated that a classical stability analysismight not be sufficient and afinite
perturbation analysis becomes necessary to evaluate global stability of unstable metamaterials. Especially, this
seems to be necessary to get a smooth transition of the predicted size effects going from the discrete to the
gradient enhanced continuum model.
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Appendix: Parameters

The calculations in this paper have been done without reference to any experimental results, and thus, the
parameters used for the simulation are only fictitious values chosen to get qualitative insight. However, to
make sure the results are reproducible the parameters are summarized in the following. For the numerical
simulations in Sect. 5, the stress–strain behaviour is chosen to be of 5th-order

σ (ε) =
5∑

i=1

λiε
i . (39)

The coefficients are chosen to be λ1 = 8.9615, λ2 = −27.1160, λ3 = 28.8350, λ4 = −16.1349 and
λ5 = 6.4531. These somehow arbitrary parameters can be obtained from a very simplemicromechanicalmodel
as has been presented in [17]. The parameters for the corresponding trilinear approximation (7) (Illustrated
in Fig. 2) are k1 = k3 = 3.76 and k2 = −1.76, εb = 0.25 and εh = 0.75. From these values, the gradient
stiffness A = 0.4669 is calculated by numerically inverting (36) such that 
neg = 1 which is related to the
chosen cell size s = 1.
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