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On self-dual and LCD

double circulant and double negacirculant codes

over Fq + uFq
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Minjia Shi,†Hongwei Zhu,‡Liqin Qian,§Lin Sok,¶and Patrick Solé‖

Abstract

Double circulant codes of length 2n over the semilocal ring R = Fq + uFq, u
2 = u,

are studied when q is an odd prime power, and −1 is a square in Fq. Double negacircu-

lant codes of length 2n are studied over R when n is even and q is an odd prime power.

Exact enumeration of self-dual and LCD such codes for given length 2n is given. Em-

ploying a duality-preserving Gray map, self-dual and LCD codes of length 4n over Fq

are constructed. Using random coding and the Artin conjecture, the relative distance

of these codes is bounded below. The parameters of examples of the modest length are

computed. Several such codes are optimal.
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1 Introduction

Double circulant and double negacirculant self-dual codes over finite fields have been studied

recently in [1] and [3], respectively, from the viewpoint of enumeration and asymptotic

performance. The main tool there is the CRT approach to quasi-cyclic codes as introduced

in [12], and generalized to quasi-twisted codes in [10]. It is natural to extend these results

to other classes of ring alphabets, beyond finite fields, building on the theory developed

in [13]. Double circulant self-dual codes over a commutative ring can only exist if there

is a square root of −1 over that ring [13]. For the ring R = Fq + uFq, u
2 = u, a ring of

current interest [18], this requirement leads to the condition that −1 is a square in Fq. This

ring is studied here because of a duality preserving Gray map that turns self-dual codes

into self-dual codes, and similarly, LCD codes into LCD codes. While this Gray map was

defined already in [20], its duality properties were not considered there. LCD codes are

defined as codes intersecting trivially with their dual. They enjoy a wealth of combinatorial

and algebraic properties [5, 7]. In particular quasi-cyclic codes over fields have been proved

to contain infinite families of good long LCD codes [7]. In this paper we study both self-

dual and LCD double circulant and double negacirculant codes over R and show that all

four families contain arbitrarily long codes with fixed rate and with relative distance of the

Gray image bounded below by a nonzero constant. These results are based on the complete

enumeration of the codes in these four families for given length 2n. While, for asymptotic

purposes, only the case of n a prime with q primitive modulo n is needed, the counting

results are developed for all n’s. The said arithmetic condition holds for infinitely many

n’s by Artin conjecture [15], which is proved conditionally under GRH [8]. In the case of

negacirculant codes, n is supposed to be a power of 2 for asymptotics, and the truth of Artin

conjecture is not needed. The factorization of xn + 1 in that case depends on properties of

Dickson polynomials.

The material is organized as follows. Section 2 contains the preliminary requisite nec-

essary to the further sections. Section 3 develops the machinery of the CRT approach

to double circulant and double negacirculant codes, and derives the main enumeration re-

sults. Section 4 is dedicated to asymptotic bounds on the relative Hamming distance of the

Gray image of these codes when their lengths tends to infinity. Section 5 computes some

numerical examples. Section 6 concludes the article and discusses open problems.
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2 Preliminaries

2.1 The Ring Fq + uFq

Let q be a prime power, and let Fq be the finite field of order q. Consider the ring R =

Fq + uFq where u2 = u. It is semi-local with maximal ideals (u) and (u − 1). The group

of units R∗ is isomorphic, as a multiplicative group, to the product of two cyclic groups

of order (q − 1). To construct double circulant codes, we need to know when the ring

R = Fq + uFq contains a square root of −1.

Theorem 2.1. The ring R contains a square root of −1 if one and only one of the following

three conditions is true:

• q is a power of 2;

• q = pb, where p is a prime congruent to 1 mod 4;

• q = p2b, where p is a prime congruent to 3 mod 4, and b ≥ 1 is an integer.

Proof. Note first that Fq contains a square root of −1 iff one of the above three conditions

is true [13]. The condition is sufficient. If one of the three cases is true, then Fq, a subring

of R, already contains such a root. The condition is necessary. Write such a root as x+ uy

with x, y ∈ Fq . Then (x+ uy)2 = x2 + u(y2 + 2xy), showing that x2 = −1, and that x is a

square root of −1 in Fq.

Remark: Note that for each x in the above proof there are two possible value of y that

is y = 0, or y = −2x. There are thus zero or four distinct square roots of −1 in R.

2.2 Norm Function over Finite Field

For all x ∈ Fqn , the norm of x over Fq is a map Norm: Fqn −→ Fq defined by

Norm(x) = x(q
n−1)/(q−1).

Moreover, Norm is a multiplicative homomorphism which is surjective ([11, Theorem 2.28]).

Norm(0) = 0, so it maps F∗
qn onto F

∗
q, where each nonzero element in F

∗
q has a preimage of

size (qn − 1)/(q − 1) in F
∗
qn .

2.3 Codes

A linear code C over R of length n is an R-submodule of Rn. If x = (x1, x2, . . . , xn)

and y = (y1, y2, . . . , yn) are two elements of Rn, their standard (Euclidean) inner product

3



is defined by 〈x, y〉 =
n
∑

i=1
xiyi, where the operation is performed in R. The Euclidean dual

code of C is denoted by C⊥ and defined as C⊥ = {y ∈ Rn | 〈x, y〉 = 0,∀x ∈ C}. A linear

code C of length n over R is called self-dual if C = C⊥. A linear code C of length n over

R is called linear complementary dual (LCD) if C ∩C⊥ = {0}.

A matrix A over R is said to be circulant (resp. negacirculant) if its rows are obtained

by successive shifts (resp. negashifts) from the first row. A code C is called double

circulant (resp. double negacirculant) over R if its generator matrix G will be of the

form G = (I,A), where I is the identity matrix of order n and A is a circulant (resp.

negacirculant) matrix of the same order.

If C(n) is a family of codes with parameters [n, kn, dn] over Fq, the rate ρ and relative

distance δ are defined as ρ = lim sup
n→∞

kn
n and δ = lim inf

n→∞

dn
n , respectively. A family of code

is good if ρδ > 0. Both limits are finite as limits of bounded quantities.

2.4 Gray Map

2.4.1 q Odd

The Gray map φ over the ring R is defined by φ(a + ub) = (−b, 2a + b) for a, b ∈ Fq from

R to F
2
q. Clearly, φ is a bijection from R to F

2
q, which extends naturally to a map from Rn

to F
2n
q . Adopting the idea of [5, Theorem 2.10.3], we can prove the following result.

Theorem 2.2. If C is a self-dual (resp. LCD) code of length n over R, then φ(C) is a

self-dual (resp. LCD) code of length 2n over Fq.

Proof. Consider a pair of codewords w = (w1, w2, . . . , wn), v = (v1, v2, . . . , vn) ∈ C, where

wi = ai + biu, vi = ci + diu and ai, bi, ci, di ∈ Fq for 1 ≤ i ≤ n. If C is a self-dual code over

R, then 〈w, v〉 =
n
∑

i=1
(ai + biu)(ci + diu) =

n
∑

i=1
(aici + (aidi + bici + bidi)u) = 0, which implies

that
n
∑

i=1

aici = 0 and
n
∑

i=1

(aidi + bici + bidi) = 0.

According to the definition of the Gray map, we have

〈φ(w), φ(v)〉 = 〈φ(a1 + b1u, . . . , an + bnu), φ(c1 + d1u, . . . , cn + dnu)〉

=

n
∑

i=1

(bidi + 4aici + 2aidi + 2bici + bidi)

=

n
∑

i=1

(4aici + 2(aidi + bici + bidi)) = 0.

4



It implies that φ(C⊥) ⊆ φ(C)⊥. Since the Gray map φ is a bijection from R to F
2
q, then

φ(C⊥) = φ(C)⊥.

If C is a LCD code over R, then C ∩C⊥ = {0}. We can easily obtain that φ(C ∩C⊥) ⊆

φ(C) ∩ φ(C⊥). Because φ is a bijection from R to F
2
q, equality holds in the preceding

inclusion and

φ(C) ∩ φ(C)⊥ = φ(C) ∩ φ(C⊥) = φ(C ∩ C⊥) = {0}.

Thus φ(C) is a LCD code of length 2n over Fq.

2.4.2 q Arbitrary

We can generalize the map β of [4] as follows. Define a map β : R → F
2
q by the formula

β(a+ ub) = (a, a+ b), for all a, b ∈ Fq.

Theorem 2.3. If C is a self-dual (resp. LCD) code of length n over R, then β(C) is a

self-dual (resp. LCD) code of length 2n over Fq.

Proof. We claim that β(C⊥) = β(C)⊥. The rest of the proof follows in the same way as the

proof of Theorem 2.2. To prove the claim note that if 〈w, v〉 = 0 like in the said proof, then

〈β(w), β(v)〉 =

n
∑

i=1

aici + (ai + bi)(ci + di) =

n
∑

i=1

aidi + bici + bidi = 0.

This shows that β(C⊥) ⊆ β(C)⊥, and β being bijective, that β(C⊥) = β(C)⊥.

3 Algebraic Structure of Double Circulant and Double Ne-

gacirculant Codes

3.1 Double Circulant Codes of Odd Length

In this subsection, we assume that n is an odd integer, q is a prime power and gcd(n, q) = 1.

We can cast the factorization of xn − 1 into distinct irreducible polynomials over R in the

form

xn − 1 = α(x− 1)
s
∏

i=2

gi(x)
t
∏

j=1

hj(x)h
∗
j (x),

where α ∈ R∗, gi(x) is a self-reciprocal polynomial with degree 2ei for 2 ≤ i ≤ s, and

h∗j (x) is the reciprocal polynomial of hj(x) with degree dj for 1 ≤ j ≤ t. By the Chinese

5



Remainder Theorem (CRT), we have

R[x]

(xn − 1)
≃

R[x]

(x− 1)
⊕

(

s
⊕

i=2

R[x]/(gi(x))

)

⊕





t
⊕

j=1

(R[x]/(hj(x))⊕ (R[x]/(h∗j (x))))





≃ R⊕

(

s
⊕

i=2

Fq[u, x]

(u2 − u, gi(x))

)

⊕





t
⊕

j=1

Fq[u, x]

(u2 − u, hj(x))
⊕

Fq[u, x]

(u2 − u, h∗j (x))





≃ R⊕

(

s
⊕

i=2

Fq2ei + uFq2ei

)

⊕





t
⊕

j=1

(F
qdj

+ uF
qdj

)⊕ (F
qdj

+ uF
qdj

)





:= R⊕

(

s
⊕

i=2

R2ei

)

⊕





t
⊕

j=1

Rdj ⊕Rdj



 ,

where we let Rℓ = Fqℓ + uFqℓ, for any nonegative integer ℓ. Note that all of these rings are

extensions of R. This decomposition naturally extends to
(

R[x]
(xn−1)

)2
as

(

R[x]

(xn − 1)

)2

≃ R2 ⊕

(

s
⊕

i=2

(R2ei)
2

)

⊕





t
⊕

j=1

(Rdj )
2 ⊕ (Rdj )

2



 .

In particular, each linear code C of length 2 over R[x]
(xn−1) can be decomposed as the “CRT

sum”

C ≃ C1 ⊕

(

s
⊕

i=2

Ci

)

⊕





t
⊕

j=1

(C ′
j ⊕ C ′′

j )



 ,

where C1 is a linear code over R, for each 2 ≤ i ≤ s, Ci is a linear code over R2ei , and for

each 1 ≤ j ≤ t, C ′
j and C ′′

j are linear codes over Rdj , which are called the constituents of C.

In self-reciprocal case, we give the definition of the Hermitian inner product over R2ei .

For all z = z1 + uz2 ∈ R2ei , where z1, z2 ∈ Fq2ei , the conjugate of z over R2ei is z =

zq
ei

1 + uzq
ei

2 , and the Hermitian inner product is defined as: (z, z′) · (w,w′) = zw + z′w′,

where z, z′, w,w′ ∈ R2ei .

Theorem 3.1. Let n denote a positive odd integer, and let q be a prime power coprime with

n. Assume that the factorization of xn − 1 into irreducible polynomials over R is of the

form

xn − 1 = α(x− 1)

s
∏

i=2

gi(x)

t
∏

j=1

hj(x)h
∗
j (x),

6



with α ∈ R∗, n = 1 +
s
∑

i=2
2ei + 2

t
∑

j=1
dj . Then the total number of self-dual double circulant

codes over R is

4

s
∏

i=2

(1 + qei)2
t
∏

j=1

(

qdj − 1
)2

.

Proof. We can count the number of self-dual double circulant codes by counting their con-

stituent codes. There are four self-dual codes C1 of length 2 over R, whose generators are

(1, ω), (1,−ω), (1, ω(1 − 2u)) and (1, ω(2u − 1)), respectively, where ω2 = −1 and ω ∈ Fq.

More generally, a factor gi(x) of degree 2ei leads to counting self-dual Hermitian codes Ci

of length 2 over R2ei . If (1, cei) is the generator of Ci then (1, cei) · (1, cei) = 1 + ceicei =

1 + ceicei
qei = 0. Let cei = x+ uy, where x, y ∈ Fq2ei , we then have

1 + (x+ uy)(xq
ei + uyq

ei ) = 0 ⇐⇒

{

x · xqei = −1,

(x+ y)(x+ y)q
ei

= −1,
⇐⇒

{

Norm(x) = −1,

Norm(x + y) = −1,

where Norm is a map from Fq2ei to Fqei . So there are qei +1 roots for Norm(x) = −1 and

qei + 1 roots for Norm(x+ y) = −1. Therefore, the number of ordered pairs (x, y) is equal

to (qei + 1)2.

In the last case about reciprocal pairs, note that hj(x) and h∗j(x) of both degree dj

leads to counting dual pairs of codes (for the Euclidean inner product) of length 2 over

Rdj , that is to count the number of solutions of the equation 1 + c′djc
′′
dj

= 0, where (1, c′dj )

and (1, c′′dj ) are the generators of C ′
j and C ′′

j , respectively. If c′dj ∈ R∗
dj
, then c′′dj = − 1

c′
dj

.

There are |R∗
dj
| = (qdj − 1)2 choices for (c′dj , c

′′
dj
). If c′dj ∈ Rdj\R

∗
dj
, then c′dj = ux ∈ (u) or

c′dj = (u−1)x ∈ (u−1). In this case, we claim that 1+ c′dj c
′′
dj

= 0 cannot occur. Otherwise,

by reducing the equation modulo u or u−1, we would get 1 = 0 in F
qdj

, contradiction. The

proof of the theorem is now completed.

Theorem 3.2. Keep the same notations as above, then the total number of LCD double

circulant codes over R is

(q2 − 4)

s
∏

i=2

(q4ei − (qei + 1)2)

t
∏

j=1

(q4dj − 2q3dj + 3q2dj − 2qdj + 1).

Proof. Like in the self-dual case, we can count the number of LCD double circulant codes

C by considering each constituent of C. Note that if a double circulant code of length

2 over some extension of R is not self-dual, then it is LCD because of having single-row

generator matrix. Combined with the results of Theorem 3.1, the total number of LCD

double circulant constituent codes C1 over R is q2− 4 and the total number of LCD double

circulant constituent codes Ci over R2ei is q
4ei − (qei + 1)2.
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In the last case about reciprocal pairs, note that hj(x) and h∗j(x) of degree dj leads to

counting pairs of codes of length 2 over Rdj with certain intersection properties [7]. Let

(1, a) and (1, b) be the generators of C ′
j and C ′′

j , respectively.

{

C′

j ∩ C′′

j

⊥
= {0},

C′′

j ∩ C′

j

⊥
= {0}.

⇐⇒ 1 + ab ∈ R∗
dj
.

Without loss of generality, we discuss on the unit character of a as follows.

• If a ∈ R∗
dj
, then b ∈ −1

a +R∗
dj

and |−1
a + R∗

dj
| = |R∗

dj
|. In this case, we have |R∗

dj
|2 =

(qdj − 1)4 choices for (a, b).

• If a ∈ Rdj\{R
∗
dj
∪{0}}, then a = uα or a = (u−1)α. Let b = β′+uβ′′, where α ∈ F

∗
qdj

and β′, β′′ ∈ F
qdj

. When a = uα, we then have

1 + ab = 1 + uα(β′ + uβ′′) = 1 + uα(β′ + β′′) ∈ R∗
dj .

This is equivalent to α(β′ + β′′) 6= −1. There are qdj (qdj − 1)2 choices for (α, β′, β′′).

When a = (u− 1)α, then we have

1 + ab = 1 + (u− 1)α(β′ + uβ′′) = 1 + (u− 1)αβ′ ∈ R∗
dj .

This is equivalent to αβ′ 6= 1 and β′′ is arbitrary in F
qdj

. There are also qdj (qdj − 1)2

choices for (α, β′, β′′).

• If a is zero, then b is arbitrary in Rdj . There are q2dj choices for b.

Hence, the number of the last case about reciprocal pairs is (qdj − 1)4 + qdj (qdj − 1)2 +

qdj (qdj − 1)2 + q2dj = q4dj − 2q3dj + 3q2dj − 2qdj + 1. The proof of the theorem is now

completed.

3.2 Double Negacirculant Codes of Even Length

For our purpose, we assume in this subsection that n is an even integer, q is an odd prime

power, and that gcd(n, q) = 1 . We can cast the factorization of xn + 1 into distinct

irreducible polynomials over R in the form

xn + 1 = α

s
∏

i=1

gi(x)

t
∏

j=1

hj(x)h
∗
j (x),

where α ∈ R∗, gi(x) is a self-reciprocal polynomial with degree 2ei for 1 ≤ i ≤ s, and h∗j(x)

is the reciprocal polynomial of hj(x) with degree dj for 1 ≤ j ≤ t. Using the same notations
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and arguments as above, we can easily carry out the results as follows:

R[x]

(xn + 1)
≃

(

s
⊕

i=1

R2ei

)

⊕





t
⊕

j=1

Rdj ⊕Rdj



 ,

and

C ≃

(

s
⊕

i=1

Ci

)

⊕





t
⊕

j=1

(C ′
j ⊕ C ′′

j )



 .

Similar to the proof of Theorem 3.1 and Theorem 3.2, we have the following two enu-

meration results. Their proofs are omitted.

Theorem 3.3. Let n denote a positive even integer, and q a prime power coprime with n.

Assume that the factorization of xn + 1 into irreducible polynomials over R = Fq + uFq is

of the form

xn + 1 = α
s
∏

i=1

gi(x)
t
∏

j=1

hj(x)h
∗
j (x),

with α ∈ R∗, n =
s
∑

i=1
2ei + 2

t
∑

j=1
dj . Then the total number of self-dual double negacirculant

codes over R is
s
∏

i=1

(1 + qei)2
t
∏

j=1

(qdj − 1)2.

Theorem 3.4. Keep the same notations as above, then the total number of LCD double

negacirculant codes over R is

s
∏

i=1

(q4ei − (qei + 1)2)

t
∏

j=1

(q4dj − 2q3dj + 3q2dj − 2qdj + 1).

4 Distance Bound

4.1 Distance Bound for Double Circulant Codes

Let q be a primitive root mod n and n be an odd prime. Recall that xn−1 = (x−1)(xn−1+

. . .+ x+ 1) = (x− 1)h(x). Note that h(x) is irreducible over R, because Fq is a subring of

R, and h(x) is irreducible over Fq.

By the Chinese Remainder Theorem (CRT), we have

R[x]

(xn − 1)
≃

R[x]

(x− 1)
⊕

R[x]

(h(x))
≃ R⊕

Fq[u, x]

(u2 − u, h(x))
≃ R⊕ Fqn−1 + uFqn−1 .

Let R denote the ring R[x]
(h(x)) , so R is a subring of R. The nonzero codewords of the cyclic

code of length n generated by h(x) is called constant vector.
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Lemma 4.1. If the nonzero vector z = (e, f) with e not a constant vector, then there are at

most qn+1 generators (1, a) such that z ∈ Ca and Ca is a double circulant code over R.

Proof. By the Chinese Remainder Theorem (CRT), (e, f) ≃ (e1, f1)⊕(e2, f2). Since (e, f) ∈

Ca, then f = ea, f1 = e1a1 and f2 = e2a2, where e1, f1, a1 ∈ R and e2, f2, a2 ∈ R. Let

a1 = a′1 + ua′′1 , a2 = a′2 + ua′′2, where a′1, a
′′
1 ∈ Fq and a′2, a

′′
2 ∈ Fqn−1 .

In the first constituent of Ca, we discuss on the unit character of e1 as follows.

• If e1 ∈ R∗, there exists only one solution for a1 =
f1
e1
.

• If e1 ∈ (u)\{0}, then e1 = ue′1 and f1 = uf ′
1, where e′1 ∈ F

∗
q, f

′
1 ∈ Fq. Since u2 = u,

then f1 = uf ′
1 = ue′1a1 = ue′1(a

′
1 + ua′′1) = ue′1a

′
1 +ue′1a

′′
1 ⇐⇒

f ′
1

e′
1

= a′1 + a′′1 . There are

q choices for a1.

• If e1 ∈ (u− 1)\{0}, then e1 = (u− 1)e1
′ and f1 = (u− 1)f ′

1, where e′1 ∈ F
∗
q, f

′
1 ∈ Fq.

Since u2 = u, then f1 = (u−1)f ′
1 = (u−1)e′1a1 = (u−1)e′1(a

′
1+ua′′1) = (u−1)e′1a

′
1 ⇐⇒

f ′
1

e′
1

= a′1 and a′′1 is arbitrary in Fq. There are q choices for a1.

• If e1=0, then a1 is arbitrary in R, there are q2 choices for a1.

In the second constituent of Ca, we discuss on the unit character of e2 as follows.

• If e2 ∈ R∗, there exists only one solution of a2.

• If e2 ∈ (u)\{0}, then e2 = ue′2 and f2 = uf ′
2, where e′2 ∈ F

∗
qn−1 , f

′
2 ∈ Fqn−1 . Since

u2 = u, then f2 = uf ′
2 = ue′2a2 = ue′2(a

′
2 + ua′′2) = ue′2a

′
2 + ue′2a

′′
2 ⇐⇒

f ′
2

e′
2

= a′2 + a′′2 .

There are qn−1 choices for a2.

• If e2 ∈ (u − 1)\{0}, then e2 = (u − 1)e2
′ and f2 = (u − 1)f ′

2, where e′2 ∈ F
∗
qn−1 ,

f ′
2 ∈ Fqn−1 . Since u2 = u, then f2 = (u− 1)f ′

2 = (u− 1)e′2a2 = (u− 1)e′2(a
′
2 + ua′′2) =

(u− 1)e′2a
′
2 ⇐⇒

f ′
2

e′
2

= a′2 and a′′2 is arbitrary in Fqn−1 . There are qn−1 choices for a2.

• If e2 = 0, then e ≡ 0 mod h(x), then e is a constant vector, contradiction.

Thus, there are at most qn+1 generators (1, a) such that z ∈ Ca.

Lemma 4.2. If z = (e, f) ∈ R2n with e is not a constant vector, then there are at most

4(1 + q
n−1

2 ) generators (1, a) such that z ∈ Ca and Ca is a self-dual double circulant code

over R.

Proof. Keep the same notations as Lemma 4.1. In the first constituent of Ca, there are

at most 4 generators (1, a1) such that C1 is self-dual double circulant code over R due to

Theorem 3.1.
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In the second constituent of Ca, let a2 = a′2 + ua′′2 , where a′2, a
′′
2 ∈ Fqn−1 , we discuss on

the unit character of e2 as follows.

• If e2 ∈ R∗, then there exists a unique solution of a2 =
f2
e2
.

• If e2 ∈ (u)\{0}, then e2 = ue′2, f2 = uf ′
2 and

f2 = ua2e
′
2 = u(a′2 + ua′′2)e

′
2 = u(a′2 + a′′2)e

′
2 ⇐⇒ a′2 + a′′2 =

f ′
2

e′2
,

where e′2 ∈ F
∗
qn−1 and f ′

2 ∈ Fqn−1 . Since Ca is a self-dual double circulant code, then

(1, a2) · (1, a2) = 1 + a2a2 = 1 + a2a2
q
n−1
2 = 0. This is equivalent to







a′2a
′

2

q
n−1

2

= −1,

(a′2 + a′′2)(a
′
2

q
n−1

2

+ a′′2
q

n−1

2

) = −1.
⇐⇒

{

Norm(a′2) = −1,

Norm(a′
2
+ a′′

2
) = −1,

whereNorm is a map from Fqn−1 to F
q
n−1
2

. So there are q
n−1

2 +1 roots forNorm(a′2) =

−1 and q
n−1

2 + 1 roots for Norm(a′2 + a′′2) = −1. But a′′2 is determined by a′2, then

there are at most 1 + q
n−1

2 choices for a′2, hence for a2.

• If e2 ∈ (u − 1)\{0}, then e2 = (u − 1)e′2 and f2 = (u − 1)f ′
2, where e′2 ∈ F

∗
qn−1 and

f ′
2 ∈ Fqn−1 , which implies that

f2 = (u− 1)a2e
′
2 = (u− 1)(a′2 + ua′′2)e

′
2 ⇐⇒ a′2 =

f ′
2

e′2
.

Since Ca is a self-dual double circulant code, using the same procedure as above, we

have
{

Norm(a′
2
) = −1,

Norm(a′2 + a′′2) = −1.

Hence, there are 1 + q
n−1

2 choices for a2 because a′2 =
f ′
2

e′
2

and 1 + q
n−1

2 roots for a′′2 .

• If e2 = 0, then e ≡ 0 mod h(x), then e is a constant vector, contradiction.

So there are at most 4(1+q
n−1

2 ) generators (1, a) such that z ∈ Ca. The proof is done.

In number theory, Artin’s conjecture on primitive roots states that a given integer q

which is neither a perfect square nor −1 is a primitive root modulo infinitely many primes

l [15]. This was proved conditionally under the Generalized Riemann Hypothesis (GRH)

by Hooley [8]. Hence we can get infinite families of double circulant codes C(2n) over R

where the analysis made for xn − 1 with only two irreducible factors applies.
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Recall the q-ary entropy function defined for 0 ≤ t ≤ q−1
q by

Hq(t) =







0, if t = 0,

tlogq(q − 1)− tlogq(t)− (1− t)logq(1− t), if 0 < t ≤ q−1
q .

This quantity is instrumental in the estimation of the volume of high-dimensional Hamming

balls when the base field is Fq. The result we are using is that the volume of the Hamming

ball of radius tn is asymptotically equivalent, up to subexponential terms, to qnHq(t), when

0 < t < 1, and n goes to infinity [9, Lemma 2.10.3]. The main result obtained in this paper

is as follows.

Theorem 4.3. Let n be an odd prime, n > q, and q be a primitive root modulo n. The

family of Gray images of self-dual double circulant codes over R of length 2n, of relative

distance δ, and rate 1/2, satisfies Hq(δ) ≥ 1
8 . The family of Gray images of LCD double

circulant codes over R of length 2n, of relative distance δ, and rate 1/2, satisfies Hq(δ) ≥
1
4 .

In particular, both families codes are good.

Proof. Let Ωn denote the size of the family. Thus, for n → ∞, we have, by Theorem 3.1,

Ωn ∼ 4qn−1 for self-dual double circulant codes, and by Theorem 3.2, Ωn ∼ q2n−2 for LCD

double circulant codes. Assume we can prove that for n large enough Ωn > λnB(dn), where

B(r) denotes the number of vectors in R2n with Hamming weight of their Fq image < r.

Here λn = 4(1 + q(n−1)/2) for self-dual codes, and λn = qn+1 for LCD codes.

This would imply, by Lemmas 4.1 and 4.2, that there are codes of length 2n in the

family with minimum Hamming distance of their Fq image ≥ dn. Denote by δ the relative

distance of this family of q-ary codes.

If we take dn the largest number satisfying Ωn > λnB(dn), and assume a growth of the

form dn ∼ 4δ0n, and thus Ωn ∼ λnB(dn), for n → ∞ then, using an entropic estimate

for B(dn) ∼ q4nHq(δ0) [9, Lemma 2.10.3] yields, with the said values of Ωn and λn the

estimate Hq(δ0) =
1
8 for self-dual codes and Hq(δ0) =

1
4 for LCD codes. The result follows

by observing that, by the definition of δ, we have δ ≥ δ0.

4.2 Distance Bound for Double Negacirculant Codes

4.2.1 Factorization of xn + 1

In order to describe the factorization of xn + 1 over R, where n = 2a, we first recall the

definition of Dickson polynomials. For α ∈ R, we define the Dickson polynomial of
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paramater α and degree n as

Dn(x, α) =

⌊n/2⌋
∑

j=0

n

n− j

(

n− j

j

)

(−α)jxn−2j .

The complete factorization of x2
n
+ 1 over Fq with q ≡ 3 (mod 4) is given in the following

theorem [14].

Theorem 4.4. [14] Let q ≡ 3 (mod 4), where q = 2Am− 1, A ≥ 2 and m is an odd integer.

Let n ≥ 2,

(a) if n < A, then x2
n
+ 1 is the product of 2n−1 irreducible trinomials over Fq

x2
n

+ 1 =
∏

γ∈Γ

(x2 + γx+ 1),

where Γ is the set of all roots of D2n−1(x, 1).

(b) if n ≥ A, then x2
n
+ 1 is the product of 2A−1 irreducible trinomials over Fq

x2
n

+ 1 =
∏

δ∈△

(x2
n−A+1

+ δx2
n−A

− 1),

where △ is the set of all roots of D2A−1(x,−1).

Example 4.5. If q = 3, i.e., q ≡ 3 (mod 4), then q = 22 · 1− 1. This implies A = 2,m = 1,

and D2(x,−1) = 0, i.e., △ = {1, 2}. By Theorem 4.4

x2
n

+ 1 = (x2
n−1

+ x2
n−2

− 1)(x2
n−1

+ 2x2
n−2

− 1).

Example 4.6. If q = 11, i.e., q ≡ 3 (mod 4), then q = 22 ·3−1. This implies A = 2,m = 3,

and D2(x,−1) = 0, i.e., △ = {3, 8}. By Theorem 4.4

x2
n

+ 1 = (x2
n−1

+ 3x2
n−2

− 1)(x2
n−1

+ 8x2
n−2

− 1).

Example 4.7. If q = 7, i.e., q ≡ 3 (mod 4), then q = 23 · 1− 1. This implies A = 3,m = 1,

and D4(x,−1) = 0, i.e., △ = {1, 3, 4, 6}. By Theorem 4.4

x2
n

+ 1 = (x2
n−2

+ x2
n−3

− 1)(x2
n−2

+ 3x2
n−3

− 1)(x2
n−2

+ 4x2
n−3

− 1)(x2
n−2

+ 6x2
n−3

− 1).

Next, we need the analogous factorization theorem when q ≡ 1 (mod 4) as follows.

Theorem 4.8. [2] Let q ≡ 1 (mod 4), where q = 2A+1m + 1, A ≥ 1,m is an odd integer.

Denote the set of all primitive 2k-th roots of unity in Fq by Uk. If n ≥ 2, then
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(a) if n ≤ A, then ord2n+1(q) = 1, x2
n
+ 1 is the product of 2n linear factors over Fq

x2
n

+ 1 =
∏

u∈Un+1

(x+ u).

(b) if n ≥ A+1, then ord2n+1(q) = 2n−A, x2
n
+1 is the product of 2A irreducible binomials

over Fq of degree 2n−A

x2
n

+ 1 =
∏

u∈UA+1

(x2
n−A

+ u).

Example 4.9. If q = 5, i.e., q ≡ 1 (mod 4), then q = 22 · 1+1. This implies A = 1,m = 1,

and U2 = {2, 3}. By Theorem 4.8

x2
n

+ 1 = (x2
n−1

+ 2)(x2
n−1

+ 3).

Example 4.10. If q = 13, i.e., q ≡ 1 (mod 4), then q = 22 ·3+1. This implies A = 1,m = 3,

and U2 = {5, 8}. By Theorem 4.8

x2
n

+ 1 = (x2
n−1

+ 5)(x2
n−1

+ 8).

Example 4.11. If q = 41, i.e., q ≡ 1 (mod 4), then q = 23 ·5+1. This implies A = 2,m = 5,

and U3 = {3, 14, 27, 38}. By Theorem 4.8

x2
n

+ 1 = (x2
n−2

+ 3)(x2
n−2

+ 14)(x2
n−2

+ 27)(x2
n−2

+ 38).

Remark: There is an error in the case (b) of Theorem 4 in [1], i.e., “x2
n
+ 1 =

∏

γ∈△

(xn−A+1 + δxn−A − 1)” should be changed to “x2
n
+ 1 =

∏

γ∈△

(x2
n−A+1

+ δx2
n−A

− 1)”.

According to [14], there is another error of Theorem 6 in [1], “q = 2Am+ 1, A ≥ 2” should

be changed to “q = 2A+1m+ 1, A ≥ 1”.

So we can cast the factorization xn +1 over Fq into two or four irreducible polynomials

by limiting the size of △ and U in Theorems 4.4 and 4.8. This factorization carries over R

because Fq is subring of R.

The polynomial xn + 1 factors into two irreducible polynomials that are reciprocal of

each other over R, this is the case if q ≡ ±1 (mod 4), where q = 22m±1,m odd, it happens

if q = 3, 5, 11, 13, 19, 27, 29, 37, etc. The polynomial xn + 1 factors into four irreducible

polynomials which are pairwise reciprocal of each other over R, this is the case if q ≡

±1 (mod 4), where q = 23m± 1,m odd, it happens if q = 7, 23, 25, 41, etc.

4.2.2 Distance Bounds for Decomposition I and II

Decomposition I: If xn+1 = h(x)h∗(x), where h(x) and h∗(x) are irreducible polynomials

and reciprocal of each other, where deg(h(x)) = n
2 , then R[x]/(h(x)) ≃ R[x]/(h∗(x)) ≃
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F
q
n
2
+uF

q
n
2
. For convenience, K1 = R[x]/(h(x)) and K2 = R[x]/(h∗(x)). We have provided

several examples of that situation, such as Examples 4.5, 4.6, 4.9 and 4.10.

Lemma 4.12. Let q be odd, n be a power of 2, xn+1 with Decomposition I. If z = (e, f) ∈

R2n is a nonzero vector, then there are at most q
3n
2 generators (1, a) such that z ∈ Ca and

Ca is a double negacirculant code over R.

Proof. By the Chinese Remainder Theorem (CRT), (e, f) = (e1, f1)⊕(e2, f2). Since (e, f) ∈

Ca, then f = ea, f1 = e1a1 and f2 = e2a2, where e1, f1, a1 ∈ K1 and e2, f2, a2 ∈ K2. Let

a1 = a′1 + ua′′1 , a2 = a′2 + ua′′2, where a′1, a
′′
1, a

′
2, a

′′
2 ∈ F

q
n
2
.

In the first constituent of Ca, we discuss on the unit character of e1 as follows.

• If e1 ∈ K∗
1 , there exists only one solution for a1 =

f1
e1
.

• If e1 ∈ (u)\{0}, then e1 = ue′1 and f1 = uf ′
1, where e

′
1 ∈ F

∗

q
n
2
, f ′

1 ∈ F
q
n
2
. Since u2 = u,

then f1 = uf ′
1 = ue′1a1 = ue′1(a

′
1 + ua′′1) = ue′1a

′
1 +ue′1a

′′
1 ⇐⇒

f ′
1

e′
1

= a′1 + a′′1 . There are

q
n
2 choices for a1.

• If e1 ∈ (u − 1)\{0}, then e1 = (u − 1)e1
′ and f1 = (u − 1)f ′

1, where e′1 ∈ F
∗

q
n
2
,

f ′
1 ∈ F

q
n
2
. Since u2 = u, then f1 = (u − 1)f ′

1 = (u − 1)e′1a1 = (u − 1)e′1(a
′
1 + ua′′1) =

(u− 1)e′1a
′
1 ⇐⇒

f ′
1

e′
1

= a′1 and a′′1 is arbitrary in Fq. There are q
n
2 choices for a1.

• If e1 = 0, then a1 is arbitrary in K1, there are qn choices for a1.

Using the same argument as above in the second constituent of Ca, there are also at most

qn choices for a2. But if z is not zero, then e1 and e2 cannot both be zero. Hence there are

only at most q
3n
2 generators (1, a) such that z ∈ Ca. We have thus proved the lemma.

Lemma 4.13. Let q be odd, n be a power of 2. Assume xn + 1 satisfies decomposition I. If

z = (e, f) ∈ R2n is a nonzero vector, then there are at most q
n
2 generators (1, a) such that

z ∈ Ca and that Ca is self-dual double negacirculant code of length 2n over R.

Proof. Keep the same notations as Lemma 4.12. Since Ca is a self-dual code, then 〈(1, a1), (1,

a2)〉 = 1 + a1a2 = 0. Clearly, a1, a2 are units and a2 is determined by a1. Since e1 and e2

can not both be zero, without loss of generality, we may assume e1 6= 0, then we just need

to consider the first constituent of Ca by symmetry. Next, we discuss on the unit character

of e1 as follows.

• If e1 ∈ K∗
1 , there exists only one solution of a1 =

f1
e1
.
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• If e1 ∈ (u)\{0}, then e1 = ue′1 and f1 = uf ′
1, where e′1 ∈ F

∗

q
n
2
and f ′

1 ∈ F
q
n
2
. Since

u2 = u, then f1 = uf ′
1 = ue′1a1 = ue′1(a

′
1 + ua′′1) = ue′1a

′
1 + ue′1a

′′
1 ⇐⇒

f ′
1

e′
1

= a′1 + a′′1 .

There are q
n
2 choices for a1.

• If e1 ∈ (u − 1)\{0}, then e1 = (u − 1)e1
′ and f1 = (u − 1)f ′

1, where e′1 ∈ F
∗

q
n
2
and

f ′
1 ∈ F

q
n
2
. Since u2 = u, then f1 = (u − 1)f ′

1 = (u − 1)e′1a1 = (u − 1)e′1(a
′
1 + ua′′1) =

(u− 1)e′1a
′
1 ⇐⇒

f ′
1

e′
1

= a′1 and a′′1 is arbitrary in Fq. There are q
n
2 choices for a1.

Hence there are at most q
n
2 generators (1, a) such that z ∈ Ca. We have thus proved the

lemma.

Decomposition II: If xn + 1 = u1(x)u
∗
1(x)u2(x)u

∗
2(x), where u1(x) (resp. u2(x)) and

u∗1(x) (resp. u∗2(x)) are irreducible polynomials and reciprocal of each other, deg(ui(x)) =

q
n
4 , i = {1, 2}, then R[x]/(u1(x)) ≃ R[x]/(u∗1(x)) ≃ R[x]/(u2(x)) ≃ R[x]/(u∗2(x)) ≃ F

q
n
4
+

uF
q
n
4
. For convenience, let I1 = R[x]/(u1(x)), I2 = R[x]/(u∗1(x)), I3 = R[x]/(u2(x)) and

I4 = R[x]/(u∗2(x)). We have provided several examples of that situation, such as Examples

4.7 and 4.11.

Lemma 4.14. Let q be odd, n be a power of 2, and xn + 1 satisfying Decomposition II . If

z = (e, f) ∈ R2n is a nonzero vector, then there are at most q
7n
4 generators (1, a) such that

z ∈ Ca and Ca is a double negacirculant code of length 2n over R.

Proof. By the Chinese Remainder Theorem (CRT), (e, f) = (e1, f1) ⊕ (e2, f2) ⊕ (e3, f3) ⊕

(e4, f4). Since (e, f) ∈ Ca, then f = ea, f1 = e1a1, f2 = e2a2, f3 = e3a3 and f4 = e4a4,

where e1, f1, a1 ∈ I1, e2, f2, a2 ∈ I2, e3, f3, a3 ∈ I3 and e4, f4, a4 ∈ I4.

In the first constituent of Ca, Let a1 = a′1 + ua′′1, where a′1, a
′′
1 ∈ F

q
n
4
, we discuss on the

unit character of e1 as follows.

• If e1 ∈ I∗1 , then there exists only one solution for a1 that is a1 =
f1
e1
.

• If e1 ∈ (u)\{0}, then e1 = ue′1 and f1 = uf ′
1, where e′1 ∈ F

∗

q
n
4
and f ′

1 ∈ F
q
n
4
. Since

u2 = u, then f1 = uf ′
1 = ue′1a1 = ue′1(a

′
1 + ua′′1) = ue′1a

′
1 + ue′1a

′′
1 ⇐⇒

f ′
1

e′
1

= a′1 + a′′1 .

There are q
n
4 choices for a1.

• If e1 ∈ (u − 1)\{0}, then e1 = (u − 1)e1
′ and f1 = (u − 1)f ′

1, where e′1 ∈ F
∗

q
n
4
and

f ′
1 ∈ F

q
n
4
. Since u2 = u, then f1 = (u − 1)f ′

1 = (u − 1)e′1a1 = (u − 1)e′1(a
′
1 + ua′′1) =

(u−1)e′1a
′
1 ⇐⇒

f ′
1

e′
1

= a′1, while a
′′
1 is arbitrary in Fq. Thus there are q

n
4 choices for a1.

• If e1 = 0, then a1 is arbitrary in I1, there are q
n
2 choices for a1.
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Using the same argument as above in the three remaining constituents of Ca. There are

also at most q
n
2 choices for ai, where i = 2, 3, 4. But z is not zero, then e1, e2, e3 and e4

can not be zero at the same time. Hence there are at most q
3n
2 × q

n
4 generators (1, a) such

that z ∈ Ca. We have thus proved the lemma.

Lemma 4.15. Let q be odd, n be a power of 2, and xn + 1 satisfying Decomposition II. If

z = (e, f) ∈ R2n is a nonzero vector, then there are at most q
3n
4 generators (1, a) such that

z ∈ Ca, and Ca is a self-dual double negacirculant code over R.

Proof. Keep the same notations as Lemma 4.14. Since Ca is a self-dual code, we then have

{

〈(1, a1), (1, a2)〉 = 0,

〈(1, a3), (1, a4)〉 = 0.
⇐⇒

{

1 + a1a2 = 0,

1 + a3a4 = 0.

So we just need to consider a1 and a3, because a2 and a4 are determined by a1 and a3,

respectively. Since z is not zero, then we may assume e1 6= 0. Using a similar argument as

in the proof of Lemma 4.13, we see that there are only at most q
n
4 choices for a1 and q

n
2

choices for a3. Hence, there are at most q
3n
4 generators such that z ∈ Ca.

The following results can be proved by the same method as employed in the last sub-

section.

Theorem 4.16. Under the condition of the Decomposition I (resp. Decomposition II),

if q is an odd prime power, and n is a power of 2, then the family of Gray images of self-dual

double negacirculant codes over R of length 2n, of relative distance δ, and rate 1/2, satisfies

Hq(δ) ≥
1
8 (resp. Hq(δ) ≥

1
16). In particular, these families of codes are good.

Proof. The proof follows the method of the proof of Theorem 4.3 with Ωn ∼ qn for both

Decomposition I and Decomposition II, by Theorem 3.4 and λn = q
n
2 and λn = q

3n
4 by

Lemmas 4.13 and 4.15, respectively. The details are omitted.

Theorem 4.17. Under the condition of the Decomposition I (resp. Decomposition II),

if q is an odd prime power, and n is a power of 2, then the family of Gray images of LCD

double negacirculant codes over R of length 2n, of relative distance δ, and rate 1/2, satisfies

Hq(δ) ≥
1
8 (resp. Hq(δ) ≥

1
16). In particular, these families of codes are good.

Proof. The proof follows the method of the proof of Theorem 4.3 with Ωn ∼ q2n for both

Decomposition I and Decomposition II, by Theorem 3.4 and λn = q
3n
2 and λn = q

7n
4 by

Lemmas 4.12 and 4.14, respectively. The details are omitted.
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Table 1: Gray image of LCD double circulant codes over F5 + uF5,
∗: optimal codes

n a1(x) a2(x) Parameters over F5 Distance [6]

2 40 42 [8, 4, 4]∗ 4

3 121 402 [12, 6, 6]∗ 6

4 0334 3242 [16, 8, 6] 7

5 43030 04131 [20, 10, 8]∗ 8

6 010044 132202 [24, 12, 8] 9

7 1402124 2113424 [28, 14, 10] 11

8 34430110 24023121 [32, 16, 11]∗ 11

9 033302122 314321000 [36, 18, 12]∗ 12

5 Numerical Examples

We need the following lemma, before doing any computation.

Lemma 5.1. If C has generator matrix G = (I,A), with A = A1 + uA2, where A1, A2 are

q-ary matrices of order n, and I denotes the identity matrix of order n, then φ(C) has

generator matrix
(

−I I −A1 −A2 A1 +A2

0 2I −A2 2A1 +A2

)

.

Proof. The first row of the first matrix is φ(uG), and its second row is φ(G). The matrix

spans subsets of φ(C). Since the rank is 2n, the result follows.

In Table 1 and Table 2, we have provided some examples of LCD and self-dual dou-

ble circulant codes respectively with the best parameters obtained by Magma search and

Lemma 5.1. The coefficients of degree n polynomial a1(x) and a2(x) in F5[x] are written in

decreasing powers of x. For example for n = 3, the entry 311 means 3x2+x+1. The param-

eters over F5 are given in the form [4n, 2n, d] where d is the minimum distance. The entry

in the rightmost column is the best known distance of a [4n, 2n] (self-dual) code over F5,

obtained by looking up the tables in [6] and [19]. When the distance of the code constructed

reaches that value the parameters are starred.

6 Conclusion and Open Problems

In this paper we have studied double circulant and double negacirculant codes over the ring

R = Fq + uFq. It might be worth looking at quasi-cyclic codes of higher index, or more

18



Table 2: Gray image of self-dual double circulant codes over F5 + uF5,
∗: optimal codes

n a1(x) a2(x) Parameters over F5 Distance [19]

2 20 32 [8, 4, 4]∗ 4

3 313 240 [12, 6, 4] 6

4 4144 2020 [16, 8, 4] 7

5 22314 12003 [20, 10, 8]∗ 8

6 031243 032004 [24, 12, 8] 9

7 2220222 1214201 [28, 14, 8] 10

8 03310024 24022212 [32, 16, 8] 10

9 331421003 423002122 [36, 18, 10] 12

generally, at quasi-twisted codes of higher index. Four-circulant or four-negacirculant codes

are natural candidates for this exploration [17].

While passing from fields to rings increases significantly the complexity of the proofs

and calculations, it might still be worth looking at other polynomial rings with u having a

minimal polynomial of higher degree, or defined by several variables.
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