Xiequan Fan 
email: fanxiequan@hotmail.com
  
Ion Grama 
email: ion.grama@univ-ubs.fr
  
Quansheng Liu 
email: quansheng.liu@univ-ubs.fr
  
  
  
  
  
Cramér moderate deviation expansion for martingales with one-sided Sakhanenko's condition and its applications

Keywords: Xiequan Martingales, Cramér moderate deviations, quantile coupling inequality, β-mixing sequences, ψ-mixing sequences Mathematics Subject Classification (2000) 60G42, 60F10, 60E15, 60F05

HAL is

Introduction

Let (η i ) i≥1 be a sequence of independent and identically distributed (i.i.d.) centered real random variables (r.v.s) satisfying Cramér's condition E exp{c 0 |η 1 |} < ∞, for some constant c 0 > 0. Without loss of generality, assume that Eη 2 1 = 1. Cramér [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] established an asymptotic expansion of the probabilities of moderate deviations for the partial sums n i=1 η i , based on the powerful technique of conjugate distributions (see also Esscher [START_REF] Esscher | On the probability function in the collective theory of risk[END_REF]). The result of Cramér implies that uniformly in 0 ≤ x = o(n 1/2 ), log P(

n i=1 η i > x √ n) 1 -Φ(x) = O 1 + x 3 √ n as n → ∞, (1.1) 
where

Φ(x) = 1 √ 2π
x -∞ exp{-t 2 /2}dt is the standard normal distribution function. Cramér type moderate deviations for sums of independent r.v.s have been obtained by many authors. See, for instance, Feller [START_REF] Feller | Generalization of a probability limit theorem of Cramér[END_REF], Petrov [START_REF] Petrov | A generalization of Cramér's limit theorem[END_REF], Sakhanenko [START_REF] Sakhanenko | Convergence rate in the invariance principle for non-identically distributed variables with exponential moments[END_REF] and [START_REF] Fan | Sharp large deviation for sums of bounded from above random variables[END_REF]. We refer to the monographs of Petrov [START_REF] Petrov | Sums of Independent Random Variables[END_REF], Saulis and Statulevičius [START_REF] Saulis | Limit theorems for large deviations[END_REF] and the references therein.

In this paper we are concerned with Cramér moderate deviations for martingales. When the martingale differences are bounded, we refer to Bose [START_REF] Bose | Certain non-uniform rates of convergence to normality for martingale differences[END_REF][START_REF] Bose | Certain non-uniform rates of convergence to normality for a restricted class of martingales[END_REF], Račkauskas [START_REF] Račkauskas | On probabilities of large deviations for martingales[END_REF][START_REF] Račkauskas | Large deviations for martingales with some applications[END_REF][START_REF] Račkauskas | Limit theorems for large deviations probabilites of certain quadratic forms[END_REF], Grama and Haeusler [START_REF] Grama | Large deviations for martingales via Cramér's method[END_REF]. Let (η i , F i ) i=0,...,n be a sequence of square integrable martingale differences defined on a probability space (Ω, F, P), where η 0 = 0 and {∅, Ω} = F 0 ⊆ ... ⊆ F n ⊆ F. Assume that there exist absolute constants H > 0 and N ≥ 0 such that max i |η i | ≤ H and

n i=1 E[η 2 i |F i-1 ] -n ≤ N 2 .
Here and hereafter, the equalities and inequalities between random variables are understood in the P-almost sure sense. From the results in Grama and Haeusler [START_REF] Grama | Large deviations for martingales via Cramér's method[END_REF], it follows that log P(

n i=1 η i > x √ n) 1 -Φ(x) = O x 3 √ n , (1.2) 
for all √ log n ≤ x = o(n 1/4 ), n → ∞, and that

P ( n i=1 η i > x √ n) 1 -Φ (x) = 1 + o 1 (1.3)
uniformly for 0 ≤ x = o n 1/6 , n → ∞. In [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF] the expansions (1.2) and (1.3) have been extended to the case of martingale differences satisfying the conditional Bernstein condition:

E[η k i |F i-1 ] ≤ 1 2 k!H k-2 E[η 2 i |F i-1 ] for k ≥ 3 and 1 ≤ i ≤ n, (1.4) 
where H is a positive absolute constant. We note that the conditional Bernstein condition implies that the martingale differences have finite two-sided conditional exponential moments.

In this paper we extend the expansions (1.2) and (1.3) to the case of martingales with differences having finite (2 + ρ)th moments, ρ ∈ (0, 1], and finite one-sided conditional exponential moments. Assume that there exist constants L, M > 0 and N ≥ 0 such that

E[|η i | 2+ρ e L η + i |F i-1 ] ≤ M ρ E[η 2 i |F i-1 ] for all 1 ≤ i ≤ n (1.5)
and

n i=1 E[η 2 i |F i-1 ] -n ≤ N 2 . (1.6)
It is easy to see that the conditional Bernstein condition implies (1.5) with ρ = 1, while condition (1.5) generally does not imply the conditional Bernstein condition; see (2.3) for an example. In Theorem 1 of the paper, we prove that if ρ ∈ (0, 1), then for all 0 ≤ x = o n 1/2 , log P (

n i=1 η i > x √ n) 1 -Φ (x) = O 1 + x 2+ρ n ρ/2
as n → ∞.

(1.7)

The expansion (1.7) can be regard as an extension of (1.2). We would like to point out that the range of validity of (1.2) has been enlarged to the classical Cramér's one, and therefore is optimal. Moreover, it is worth mentioning that (1.7) is new even for independent r.v.s. The last expansion implies that (1.3) holds uniformly in the range 0 ≤ x = o n ρ/(4+2ρ) . We also show that when ρ = 1, equality (1.7) holds for all √ log n ≤ x = o(n 1/2 ), see Remark 1 for details.

The paper is organized as follows. Our main results for martingales are stated and discussed in Section 2. Applications to quantile coupling inequality, β-mixing and ψ-mixing sequences are discussed in Section 3. Proofs of the theorems and their preliminary lemmas are deferred to Sections 4-10. The proofs of Theorem 1 and Lemma 4 are refinements of Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF]. The applications of our results are new, and therefore are of independent interest.

Throughout the paper, c and c α , probably supplied with some indices, denote respectively a generic positive constant and a generic positive constant depending only on α. Denote by ξ + = max{ξ, 0} the positive part of ξ.

Main results

Let n ≥ 1, and let (ξ i , F i ) i=0,...,n be a sequence of martingale differences, defined on some probability space (Ω, F, P), where ξ 0 = 0, {∅, Ω} = F 0 ⊆ ... ⊆ F n ⊆ F are increasing σ-fields and (ξ i ) i=1,...,n are allowed to depend on n. Set

X 0 = 0, X k = k i=1 ξ i , k = 1, ..., n. (2.1)
Let X be the conditional variance of the martingale X = (X k , F k ) k=0,...,n :

X 0 = 0, X k = k i=1 E[ξ 2 i |F i-1 ], k = 1, ..., n. (2.2)
In the sequel we shall use the following conditions:

(A1) There exist a constant ρ ∈ (0, 1] and positive numbers ε n ∈ (0, 1 2 ] such that

E[|ξ i | 2+ρ e ε -1 n ξ + i |F i-1 ] ≤ ε ρ n E[ξ 2 i |F i-1 ] for all 1 ≤ i ≤ n. ( A2 
) There exist non-negative numbers δ n ∈ [0, 1 2 ] such that | X n -1| ≤ δ 2 n a.s. Condition (A1) can be seen as a one-sided version of Sakhanenko's condition [START_REF] Sakhanenko | Convergence rate in the invariance principle for non-identically distributed variables with exponential moments[END_REF]. In the case of normalized sums of i.i.d. random variables, conditions (A1) and (A2) are satisfied with ε n = O( 1 √ n ) and δ n = 0. In the case of martingales, ε n and δ n usually are satisfying ε n , δ n → 0 as n → ∞.

Notice that condition (A1) implies that E[e ε -1

n ξ + i |F i-1
] must be finite, which means that the positive part of the conditional distribution of ξ i /ε n has an exponential moment, and therefore has conditional moments of any order. However, such an assumption is not required for the negative part of the conditional distribution. For the negative part of ξ i , we assume a finite conditional moment of order 2+ρ. Thus, condition (A1) does not imply the conditional Cramér condition, because

E[e ε -1 n |ξi| |F i-1 ] may not exist. Let us remark that if ξ i is bounded, say |ξ i | ≤ γ n , then condition (A1) is satisfied with ε n = e 1/ρ γ n . On the other hand, if ξ i satisfies ξ i ≤ γ n and E[|ξ i | 2+ρ |F i-1 ] ≤ τ ρ n E[ξ 2 i |F i-1 ] for all 1 ≤ i ≤ n, (2.3) 
then condition (A1) is also satisfied with ε n = max{γ n , e 1/ρ τ n }. Here we assume that 0 < γ n , τ n ≤ 1 2 e -1/ρ . The following theorem gives a Cramér moderate deviation expansion for martingales.

Theorem 1 Assume conditions (A1) and (A2).

[i] If ρ ∈ (0, 1), then there is a constant α > 0, such that for all 0 ≤ x ≤ αε -1 n ,

ln P(X n > x) 1 -Φ (x) ≤ c α,ρ x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) (ε ρ n + δ n ) . (2.4) [ii] If ρ = 1, then there is a constant α > 0, such that for all 0 ≤ x ≤ αε -1 n , ln P(X n > x) 1 -Φ (x) ≤ c α x 3 ε n + x 2 δ 2 n + (1 + x) (ε n | ln ε n | + δ n ) . (2.5)
The term ε n | ln ε n | in (2.5) cannot be replaced by ε n under the stated conditions. Indeed, Bolthausen [START_REF] Bolthausen | Exact convergence rates in some martingale central limit theorems[END_REF] showed that there exists a sequence of martingale differences satisfying

|ξ i | ≤ 2/
√ n and X n = 1 a.s., such that for all n large enough,

sup x∈R P(X n ≤ x) -Φ (x) √ n log n ≥ c, (2.6) 
where c is a positive constant and does not depend on n.

If ε n | ln ε n | in (2.5
) could be improved to ε n , then we can deduce the following Berry-Esseen bound

sup x∈R |P(X n ≤ x) -Φ (x) | ≤ c (ε n + δ n ), (2.7) 
which would violate Bolthausen's result (2.6). Thus ε n | ln ε n | in (2.5) cannot be improved to ε n even for bounded martingale differences.

If the martingale differences are bounded |ξ i | ≤ ε n and satisfy condition (A2), Grama and Haeusler [START_REF] Grama | Large deviations for martingales via Cramér's method[END_REF] proved the asymptotic expansion (2.5) for all x ∈ [0, α min{ε

-1/2 n , δ -1 n }]. Now Theorem 1 holds for a larger range x ∈ [0, αε -1
n ] and a much more general class of martingales.

The following corollary states that under conditions (A1) and (A2), the tail probabilities P(X n > x) can be uniformly approximated by the tail probabilities of the standard normal random variable, when x is in a certain reduced range.

Corollary 1 Assume conditions (A1) and (A2).

[i] If ρ ∈ (0, 1), then for all 0 ≤ x = o(min{ε

-ρ/(2+ρ) n , δ -1 n }), P(X n > x) 1 -Φ (x) -1 ≤ c ρ x 2+ρ ε ρ n + (1 + x) (ε ρ n + δ n ) . (2.8) 
[ii] If ρ = 1, then for all 0 ≤ x = o(min{ε

-1/3 n , δ -1 n }), P(X n > x) 1 -Φ (x) -1 ≤ c x 3 ε n + (1 + x) (ε n | ln ε n | + δ n ) . (2.9) 
In particular, this implies that

P(X n > x) 1 -Φ (x) = 1 + o(1)
holds uniformly for 0 ≤ x = o(min{ε (2.4) and (2.5) together implies that there is a constant α > 0 such that for ρ ∈ (0, 1] and all 0

-ρ/(2+ρ) n , δ -1 n }) as max{ε n , δ n } → 0. The inequalities
≤ x ≤ αε -1 n , log P(X n > x) 1 -Φ (x) ≤ c α x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) (ε ρ n | ln ε n | + δ n ) .
(2.10) By (2.10), we obtain the following moderate deviation principle (MDP) result.

Corollary 2 Assume that conditions (A1) and (A2) are satisfied with max{δ n , ε n } → 0 as n → ∞. Let a n be any sequence of real numbers satisfying a n → ∞ and a n ε n → 0 as n → ∞. Then for each Borel set B ⊂ [0, ∞), -inf

x∈B o x 2 2 ≤ lim inf n→∞ 1 a 2 n log P 1 a n X n ∈ B ≤ lim sup n→∞ 1 a 2 n log P 1 a n X n ∈ B ≤ -inf x∈B x 2 2 , (2.11) 
where B o and B denote the interior and the closure of B respectively.

Since (2.11) may not hold for all Borel set B ⊂ (-∞, 0], inequality (2.11) does not imply the usual MDP, but it can be seen as a "half-side" MDP.

Similar MDP results for martingales can be found in Dembo [START_REF] Dembo | Moderate deviations for martingales with bounded jumps[END_REF], Gao [START_REF] Gao | Moderate deviations for martingales and mixing random processes[END_REF] and Djellout [START_REF] Djellout | Moderate deviations for martingale differences and applications to φ-mixing sequences[END_REF]. For the most recent work on MDP for martingales with the conditional Cramér condition and the assumption that E[ξ 2 i |F i-1 ] = 1/n a.s. for all i., we refer to Eichelsbacher and Löwe [START_REF] Eichelsbacher | Lindeberg's method for moderate deviations and random summation[END_REF] where the authors established a MDP result via Lindeberg's method.

Remark 1 The sequence of martingale differences (ξ i , F i ) i=0,...,n discussed so far is standardized. For a general sequence of martingale differences (η i , F i ) i≥1 , one can restate the conditions (A1) and (A2) as below.

(A1 ) There exist three positive constants ρ ∈ (0, 1], K and L such that

E[|η i | 2+ρ e Kη + i |F i-1 ] ≤ L ρ E[η 2 i |F i-1 ] for all 1 ≤ i ≤ n; (A2 ) There exists a constant N ≥ 0 such that n i=1 E[η 2 i |F i-1 ] -n ≤ N 2 a.s.
Under conditions (A1 ) and (A2 ), the inequalities (2.4)-(2.11) remain valid for

W n = n i=1 η i √ n (2.12)
instead of X n , with ε n = n -1/2 max{K, L} and δ n = n -1/2 L.

Applications

Quantile coupling inequality

Thanks to the work of Mason and Zhou [START_REF] Mason | Quantile coupling inequalities and their applications[END_REF], it is known that Cramér moderate deviations can be applied to establishing quantile coupling inequalities. When the martingale differences are bounded, a quantile coupling inequality has been established by Mason and Zhou, see Corollary 2 of [START_REF] Mason | Quantile coupling inequalities and their applications[END_REF]. Here, we give a generalization of the inequality of Mason and Zhou [START_REF] Mason | Quantile coupling inequalities and their applications[END_REF]. Let (W n ) n≥1 be a sequence of random variables and for each integer n ≥ 1, and let

F n (x) = P(W n ≤ x), x ∈ R,
denote the cumulative distribution function of W n . Its quantile function is defined by

H n (s) = inf{x : F n (x) ≥ s}, s ∈ (0, 1).
Let Z denote a standard normal random variable. Since Φ(Z) = d U the uniformly distribution random variable, then it is obvious that for each integer n ≥ 1,

H n (Φ(Z)) = d W n ,
where = d stands for equivalent in distribution. For this reason, we define

W n = H n (Φ(Z)). (3.1)
By Theorem 1, we prove the following quantile inequality.

Theorem 2 Let (η i , F i ) i≥1 be a sequence of martingale differences satisfying the following conditional Sakhanenko condition

E[|η i | 3 e K|ηi| |F i-1 ] ≤ L E[η 2 i |F i-1 ], i ≥ 1,
and

n i=1 E[η 2 i |F i-1 ] -n ≤ M a.s.,
where ρ ∈ (0, 1], K, L and M are positive constants. Assume that

W n = d n i=1 η i / √
n and W n is defined as in (3.1). There there exist constants α > 0 and D > 0 and an integer n 0 such that whenever n ≥ n 0 and

|W n | ≤ α √ n, (3.2) 
we have

√ n|W n -Z|/ ln n ≤ 2D(W 2 n + 1) a.s. (3.3) 
Furthermore, there exist two positive constants C and λ such that whenever n ≥ n 0 , we have for all x ≥ 0,

P √ n|W n -Z|/ ln n > x ≤ C exp -λ x . (3.4) 
When the martingale differences are bounded, Mason and Zhou [START_REF] Mason | Quantile coupling inequalities and their applications[END_REF] proved that (3.3) holds whenever |W n | ≤ α 4 √ n. Notice that the bounded martingale differences satisfy the conditional Sakhanenko condition. Moreover, the range |W n | ≤ α 4 √ n has been extended to a much larger one |W n | ≤ α √ n in our theorem.

β-mixing sequences

Let (η i ) i≥1 be a random process that may be non-stationary. Write S k,m = k+m i=k+1 η i . Assume that there exists a constant ρ ∈ (0, 1) such that

Eη i = 0 for all i, (3.5 
)

E|S k,m | 2+ρ ≤ m 1+ρ/2 c 2+ρ 1 , (3.6) 
and

ES 2 k,m ≥ c 2 2 m for all k ≥ 0, m ≥ 1. (3.7)
Let F j and F ∞ j+k be σ-fields generated respectively by (η i ) i≤j and (η i ) i≥j+k . We say that (η i ) i≥1 is β-mixing if

β(n) =: sup j E sup{ P(B|F j ) -P(B) : B ∈ F ∞ j+n } → ∞, n → ∞.
Assume that there exist positive numbers a 1 , a 2 and τ such that

β(n) ≤ a 1 exp{-a 2 n τ }. (3.8) 
By Theorem 4.1 of Shao and Yu [START_REF] Shao | Weak convergence for weighted empirical processes of depedent sequences[END_REF], it is known that (3.6) is implied by the condition that

E|η i | 2+ρ ≤ c 2+ρ 1
for a constant ρ > ρ. Set α ∈ (0, 1 2 ). Let m = n α and k = n/(2m) be respectively the integers part of n α and n/(2m). Let

Y j = m i=1 η 2m(j-1)+i and S n = k j=1 Y j .
Note that S n is an interlacing sum of (η i ) i≥1 , and that Var(S n ) = ES 2 n .

Theorem 3 Assume conditions (3.5)- (3.8). Suppose that η i ≤ c 3 for all i. Then for all 0 ≤ x = o(min{n

1 2 -α , n α τ /2 }), ln P(S n / ES 2 n > x) 1 -Φ (x) ≤ c ρ (1 + x) 2+ρ n ρ( 1 2 -α) . (3.9) 
In particular, we have

P(S n / ES 2 n > x) 1 -Φ (x) = 1 + o(1) (3.10 
)

uniformly for 0 ≤ x = o(min{n ρ(1-2α)/(4+2ρ) , n α τ /2 }).
For a counterpart of Theorem 3 for interlacing self-normalized sums W n = S n / k j=1 Y 2 j , we refer to Chen et al. [START_REF] Chen | Self-normalized Cramér-type moderate deviations under dependence[END_REF].

The following MDP result is a consequence of the last theorem with α = 1/(2 + τ ).

Corollary 3 Assume the conditions of Theorem 3. Let a n be any sequence of real numbers satisfying a n → ∞ and

a n n -τ /(2τ +4) → 0 as n → ∞. Then for each Borel set B ⊂ [0, ∞), -inf x∈B o x 2 2 ≤ lim inf n→∞ 1 a 2 n log P 1 a n S n ES 2 n ∈ B ≤ lim sup n→∞ 1 a 2 n log P 1 a n S n ES 2 n ∈ B ≤ -inf x∈B x 2 2 ,
where B o and B denote the interior and the closure of B respectively.

ψ-mixing sequences

Recall the notations in Section 3.2. We say that (η i ) i≥1 is ψ-mixing if

ψ(n) =: sup j sup B { P(B|F j ) -P(B) /P(B) : B ∈ F ∞ j+n } → 0, n → ∞. (3.11) Set α ∈ (0, 1 2 
). Let m = n α and k = n/(2m) be respectively the integers part of n α and n/(2m), and let

Y j = m i=1 η 2m(j-1)+i and S n = k j=1 Y j
as in Section 3.2. Denote

τ 2 n = ψ(m) + nψ 2 (m) + kψ 1/2 (m). (3.12)
We have the following Cramér moderate deviations for ψ-mixing sequences.

Theorem 4 Assume conditions (3.5)-(3.7) with ρ ∈ (0, 1]. Suppose that η i ≤ c 3 for all i, and that τ n → 0 as n → ∞.

[i] If ρ ∈ (0, 1), then for all 0 ≤ x = o(n

1 2 -α ), ln P(S n / ES 2 n > x) 1 -Φ (x) ≤ c ρ x 2+ρ n ρ( 1 2 -α) + x 2 τ 2 n + (1 + x) 1 n ρ( 1 2 -α) + τ n . (3.13) [ii] If ρ = 1, then for all 0 ≤ x = o(n 1 2 -α ), ln P(S n / ES 2 n > x) 1 -Φ (x) ≤ c x 3 n 1 2 -α + x 2 τ 2 n + (1 + x) | ln n| n 1 2 -α + τ n . (3.14) 
In particular, if

ψ(n) = O n -(2+ρ)(1-α)/α , (3.15) 
then

τ n = O(n -ρ( 1 2 -α) ) and P(S n / ES 2 n > x) 1 -Φ (x) = 1 + o(1) (3.16 
)

uniformly for 0 ≤ x = o(n ρ(1-2α)/(4+2ρ) ).
In the independent case, we have ψ(n) = 0 and τ n = 0. Let α → 0. Then (3.13) and (3.14) recover the optimal range of validity, that is 0

≤ x = o(n 1/2 ).
The following MDP result is a consequence of the last theorem.

Corollary 4 Assume the conditions of Theorem 4. Let a n be any sequence of real numbers satisfying a n → ∞ and a n /n

1 2 -α → 0 as n → ∞. Then for each Borel set B ⊂ [0, ∞), -inf x∈B o x 2 2 ≤ lim inf n→∞ 1 a 2 n log P 1 a n S n ES 2 n ∈ B ≤ lim sup n→∞ 1 a 2 n log P 1 a n S n ES 2 n ∈ B ≤ -inf x∈B x 2 2 ,
where B o and B denote the interior and the closure of B respectively.

Preliminary lemmas

Assume condition (A1). For any real

λ ∈ [0, ε -1 n ], define the exponential multiplicative martingale Z(λ) = (Z k (λ), F k ) k=0,...,n , where Z k (λ) = k i=1 e λξi E[e λξi |F i-1 ] , k = 1, ..., n, Z 0 (λ) = 1.
Then for each k = 1, ..., n, the random variable Z k (λ) defines a probability density on (Ω, F, P). This allows us to introduce the conjugate probability measure P λ on (Ω, F) defined by

dP λ = Z n (λ)dP. (4.1)
Denote by E λ the expectation with respect to P λ . For all i = 1, . . . , n, let

η i (λ) = ξ i -b i (λ) where b i (λ) = E λ [ξ i |F i-1 ].
We thus have the following decomposition:

X k = Y k (λ) + B k (λ), k = 1, ..., n, (4.2) 
where

Y (λ) = (Y k (λ), F k ) k=1,.
..,n is the conjugate martingale defined as

Y k (λ) = k i=1 η i (λ), k = 1, ..., n, (4.3) 
and

B(λ) = (B k (λ), F k ) k=1,.
..,n is the drift process defined as

B k (λ) = k i=1 b i (λ), k = 1, ..., n.
In the proofs of theorem, we need a two-sided bound for the drift process B n (λ). To this end, we prove the following lemma.

Lemma 1 If there exists an s > 2, such that

E[|ξ i | s e ε -1 n ξ + i |F i-1 ] ≤ ε s-2 n E[ξ 2 i |F i-1 ], (4.4 
)

then E[ξ 2 i |F i-1 ] ≤ ε 2 n . (4.5) 
In particular, condition (A1) implies (4.5).

Proof. By Jensen's inequality, it is easy to see that

(E[ξ 2 i |F i-1 ]) s/2 ≤ E[|ξ i | s |F i-1 ] ≤ E[|ξ i | s e ε -1 n ξ + i |F i-1 ] ≤ ε s-2 n E[ξ 2 i |F i-1 ]. Thus (E[ξ 2 i |F i-1 ]) s/2-1 ≤ ε s-2 n , which implies (4.5).
Using the last lemma, we establish a two-sided bound for the drift process B n (λ).

Lemma 2 Assume conditions (A1) and (A2). Then for all 0

≤ λ ≤ ε -1 n , |B n (λ) -λ| ≤ λδ 2 n + c λ 1+ρ ε ρ n . (4.6)
Proof. By the relation between E and E λ on F i , we have

b i (λ) = E[ξ i e λξi |F i-1 ] E[e λξi |F i-1 ] , i = 1, ..., n.
Jensen's inequality and

E[ξ i |F i-1 ] = 0 imply that E[e λξi |F i-1 ] ≥ 1, λ ≥ 0. Notice that E[ξ i e λξi |F i-1 ] = E ξ i (e λξi -1)|F i-1 ≥ 0, 0 ≤ λ ≤ ε -1 n .
Using Taylor's expansion for e x , we get

B n (λ) ≤ n i=1 E[ξ i e λξi |F i-1 ] = λ X n + n i=1 E ξ i (e λξi -1 -λξ i ) F i-1 .
Recall ρ ∈ (0, 1]. When x ≤ -1, by Taylor's expansion, it is easy to see that x(e x -1x) ≤ x(e x -1) + x 2 ≤ 2|x| 2+ρ . When x ∈ (-1, 1), again by Taylor's expansion, we get

|x(e x -1-x)| ≤ 1 2 |x| 3 e x + ≤ |x| 2+ρ e x + . When x ≥ 1, we have |x(e x -1-x)| ≤ xe x ≤ x 2+ρ e x . Thus, it holds |x(e x -1 -x)| ≤ 2|x| 2+ρ e x + , x ∈ R. (4.7)
By inequality (4.7), we obtain for all 0

≤ λ ≤ ε -1 n , B n (λ) ≤ λ X n + 2λ 1+ρ n i=1 E[|ξ i | 2+ρ e λξ + i |F i-1 ] ≤ λ X n + 2λ 1+ρ n i=1 E[|ξ i | 2+ρ e ε -1 n ξ + i |F i-1 ]. (4.8) 
Condition (A2) implies that X n ≤ 2. Combining (4.8), conditions (A1) and (A2) together, we get the upper bound of B n (λ):

B n (λ) ≤ λ X n + 2λ 1+ρ ε ρ n X n ≤ λ + λδ 2 n + 4λ 1+ρ ε ρ n .
When x ≤ -1, by Taylor's expansion, it is easy to see that e

x -1 -x -1 2 x 2 ≤ e x -1 -x + 1 2 x 2 ≤ |x| 2+ρ . When x ∈ (-1, 1
), again by Taylor's expansion, we get e

x -1 -x -1 2 x 2 ≤ 1 6 |x| 3 e x + ≤ |x| 2+ρ e x + . When x ≥ 1, we have e x -1 -x -1 2 x 2 ≤ e x -1 -x + 1 2 x 2 ≤ x 2+ρ e x . Thus, it holds e x -1 -x - 1 2 x 2 ≤ |x| 2+ρ e x + , ρ ∈ (0, 1] and x ∈ R. (4.9)
Using inequality (4.9), condition (A1) and Lemma 1, we have for all 0

≤ λ ≤ ε -1 n , E[e λξi |F i-1 ] = 1 + 1 2 λ 2 E[ξ 2 i |F i-1 ] + E e λξi -1 -λξ i - 1 2 λ 2 ξ 2 i F i-1 ≤ 1 + 1 2 λ 2 E ξ 2 i |F i-1 + λ 2+ρ E |ξ i | 2+ρ e ε -1 n ξ + i F i-1 ≤ 1 + 1 2 λ 2 + λ 2+ρ ε ρ n E ξ 2 i |F i-1 (4.10) ≤ 1 + 2(λε n ) 2 . (4.11)
By inequality (4.7) and the fact X n ≤ 2, we deduce that for all 0

≤ λ ≤ ε -1 n , n i=1 E[ξ i e λξi |F i-1 ] = λ X n + n i=1 E ξ i (e λξi -1 -λξ i ) F i-1 ≥ λ X n -2λ 1+ρ n i=1 E[|ξ i | 2+ρ e ε -1 n ξ + i |F i-1 ] ≥ λ X n -2λ 1+ρ ε ρ n X n ≥ λ -λδ 2 n -4 λ 1+ρ ε ρ n .
The last inequality together with (4.11) imply the lower bound of B n (λ): for all 0

≤ λ ≤ ε -1 n , B n (λ) ≥ λ -λδ 2 n -4 λ 1+ρ ε ρ n 1 + 2 (λε n ) 2 -1 ≥ λ -λδ 2 n -6λ 1+ρ ε ρ n ,
where the last line follows from the following inequality

λ -λδ 2 n -4 λ 1+ρ ε ρ n ≥ λ -λδ 2 n -(6 -2(λε n ) 2-ρ )λ 1+ρ ε ρ n ≥ λ -λδ 2 n -6λ 1+ρ ε ρ n 1 + 2(λε n ) 2 .
The proof of Lemma 2 is finished. Next, we consider the following predictable cumulant process

Ψ (λ) = (Ψ k (λ), F k ) k=0,...,n : Ψ k (λ) = k i=1 log E e λξi |F i-1 . (4.12) 
The following lemma gives a two-sided bound for the process Ψ (λ).

Lemma 3 Assume conditions (A1) and (A2). Then for all 0

≤ λ ≤ ε -1 n , Ψ n (λ) - λ 2 2 ≤ c λ 2+ρ ε ρ n + λ 2 δ 2 n 2 . (4.13)
Proof. Using a two-term Taylor's expansion of log(1 + x), x ≥ 0, we have

Ψ n (λ) - λ 2 2 X n = n i=1 E[e λξi |F i-1 ] -1 -λE[ξ i |F i-1 ] - λ 2 2 E[ξ 2 i |F i-1 ] - n i=1 1 2 1 + θ i (E[e λξi |F i-1 ] -1) 2 E[e λξi |F i-1 ] -1 2 ,
where

θ i ∈ (0, 1). Since E[ξ i |F i-1 ] = 0 and E[e λξi |F i-1 ] ≥ 1 for all 0 ≤ λ ≤ ε -1 n , we deduce that for all 0 ≤ λ ≤ ε -1 n , Ψ n (λ) - λ 2 2 X n ≤ n i=1 E[e λξi |F i-1 ] -1 -λE[ξ i |F i-1 ] - λ 2 2 E[ξ 2 i |F i-1 ] + 1 2 n i=1 E[e λξi |F i-1 ] -1 2 .
Using condition (A1) and the inequalities (4.9)-(4.11), we get for all 0

≤ λ ≤ ε -1 n , Ψ n (λ) - λ 2 2 X n ≤ n i=1 E[e λξ + i |λξ i | 2+ρ |F i-1 ] + 1 2 n i=1 E[e λξi |F i-1 ] -1 2 ≤ λ 2+ρ ε ρ n n i=1 E[ξ 2 i |F i-1 ] + (λε n ) 2 n i=1 E[e λξi |F i-1 ] -1 ≤ λ 2+ρ ε ρ n X n + c 1 λ 4 ε 2 n X n .
Thus

Ψ n (λ) - λ 2 2 X n ≤ 1 + c 1 (λε n ) 2-ρ λ 2+ρ ε ρ n X n .
Combining the last inequality with condition (A2) and the fact X n ≤ 2, we get for all 0

≤ λ ≤ ε -1 n , Ψ n (λ) - λ 2 2 ≤ 2 1 + c 1 (λε n ) 2-ρ λ 2+ρ ε ρ n + λ 2 δ 2 n 2 ,
which completes the proof of Lemma 3.

In the proof of Theorem 1, we make use of the following lemma, which gives us some rates of convergence in the central limit theorem for the conjugate martingale Y (λ) under the probability measure P λ . The proof of this lemma is given in Section 10.

Lemma 4 Assume conditions (A1) and (A2).

[i] If ρ ∈ (0, 1), then there is a positive constant α such that for all 0 ≤ λ ≤ α ε -1 n ,

sup x P λ (Y n (λ) ≤ x) -Φ(x) ≤ c α,ρ (λε n ) ρ + ε ρ n + δ n .
In particular, it implies that

sup x P(X n ≤ x) -Φ(x) ≤ c α,ρ ε ρ n + δ n . (4.14) 
[ii] If ρ = 1, then there is a positive constant α such that for all 0 ≤ λ ≤ α ε -1 n ,

sup x P λ (Y n (λ) ≤ x) -Φ(x) ≤ c α λε n + ε n | ln ε n | + δ n .
In particular, it implies that

sup x P(X n ≤ x) -Φ(x) ≤ c α ε n | log ε n | + δ n . (4.15)
5 Proof of Theorem 1 Theorem 1 will be deduced by the combination of the following two propositions (1 and 2), which are stated and proved respectively in Subsections 5.1 and 5.2. The proof of the propositions are similar to the proofs of Theorems 2.1 and 2.2 of Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF]. However, Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF] considered the particular case where ρ = 1.

Proof of upper bound in Theorem 1

The following assertion gives an upper bound for moderate deviation probabilities.

Proposition 1 Assume conditions (A1) and (A2).

[i] If ρ ∈ (0, 1), then there is a constant α > 0 such that for all 0 ≤ x ≤ αε -1 n ,

P(X n > x) 1 -Φ (x) ≤ exp c α,ρ,1 x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) (ε ρ n + δ n ) . ( 5.1) 
[ii] If ρ = 1, then there is a constant α > 0 such that for all 0 ≤ x ≤ αε -1 n ,

P(X n > x) 1 -Φ (x) ≤ exp c α,1,1 x 3 ε n + x 2 δ 2 n + (1 + x) (ε n | ln ε n | + δ n ) . (5.2) 
Proof. For all 0 ≤ x < 1, the assertion follows from (4.14) and (4.15). It remains to prove Proposition 1 for all 1 ≤ x ≤ α ε -1 n . Changing the probability measure according to (4.1), we get for all 0 ≤ λ ≤ ε -1 n ,

P(X n > x) = E λ Z n (λ) -1 1 {Xn>x} = E λ exp {-λX n + Ψ n (λ)} 1 {Xn>x} = E λ exp {-λY n (λ) -λB n (λ) + Ψ n (λ)} 1 {Yn(λ)+Bn(λ)>x} . (5.3) 
Let λ = λ(x) be the positive solution of the following equation

λ + λδ 2 n + cλ 1+ρ ε ρ n = x, (5.4) 
where c is given by inequality (4.6). The definition of λ implies that there exist c α,0 , c α,1 > 0, such that for all 1

≤ x ≤ α ε -1 n , c α,0 x ≤ λ ≤ x (5.5) and λ = x -c α,1 |θ|(x 1+ρ ε ρ n + xδ 2 n ) ∈ [c α,0 , α ε -1 n ]. (5.6) 
By Lemma 2, it follows that B n (λ) ≤ x. From (5.3), by Lemma 3 and equality (5.4), we deduce that for all 1 ≤ x ≤ α ε -1 n ,

P(X n > x) ≤ e cα,2 (λ 2+ρ ε ρ n +λ 2 δ 2 n )-λ 2 /2 E λ e -λYn(λ) 1 {Yn(λ)>0} . (5.7) 
Clearly, it holds

E λ e -λYn(λ) 1 {Yn(λ)>0} = ∞ 0 λe -λy P λ (0 < Y n (λ) ≤ y)dy. (5.8)
Similarly, for a standard normal random variable N , we have

E e -λN 1 {N >0} = ∞ 0
λe -λy P(0 < N ≤ y)dy.

(5.9)

From (5.8) and (5.9), it is easy to see that

E λ e -λYn(λ) 1 {Yn(λ)>0} -E e -λN 1 {N >0} ≤ 2 sup y P λ (Y n (λ) ≤ y) -Φ(y) .
Using Lemma 4, we get the following bound: for all 1

≤ x ≤ α ε -1 n , E λ e -λYn(λ) 1 {Yn(λ)>0} -E e -λN 1 {N >0} ≤ c ρ (λε n ) ρ + ε n + δ n , (5.10) 
where

ε n = ε ρ n , if ρ ∈ (0, 1), ε n | ln ε n |, if ρ = 1.
(5.11)

From (5.7) and (5.10), we deduce that for all 1

≤ x ≤ α ε -1 n , P(X n > x) ≤ e cα,2 (λ 2+ρ ε ρ n +λ 2 δ 2 n )-λ 2 /2 E e -λN 1 {N >0} + c ρ (λε n ) ρ + ε n + δ n . Since e -λ 2 /2 E e -λN 1 {N >0} = 1 √ 2π ∞ 0 e -(y+λ) 2 /2 dy = 1 -Φ (λ) (5.12) and 1 -Φ (λ) ≥ 1 √ 2π(1 + λ) e -λ 2 /2 ≥ c α,0 √ 2π(1 + c α,0 ) 1 λ e -λ 2 /2 , λ ≥ c α,0 , (5.13) 
we have the following upper bound for moderate deviation probabilities: for all 1

≤ x ≤ α ε -1 n , P(X n > x) 1 -Φ λ ≤ e cα,2 (λ 2+ρ ε ρ n +λ 2 δ 2 n ) 1 + c α,ρ,3 (λ 1+ρ ε ρ n + λ ε n + λδ n ) . (5.14) 
Next, we would like to make a comparison between 1 -Φ(λ) and 1 -Φ(x). By (5.5), (5.6) and (5.13), it follows that

1 ≤ ∞ λ exp{-t 2 /2}dt ∞ x exp{-t 2 /2}dt = 1 + x λ exp{-t 2 /2}dt ∞ x exp{-t 2 /2}dt ≤ 1 + c α,4 x(x -λ) exp{(x 2 -λ 2 )/2} ≤ exp{c α,5 (x 2+ρ ε ρ n + x 2 δ 2 n )}. (5.15) So, it holds 1 -Φ λ = 1 -Φ(x) exp |θ 1 |c α,5 (x 2+ρ ε ρ n + x 2 δ 2 n ) . (5.16) 
Implementing (5.16) in (5.14) and using (5.5), we obtain for all 1

≤ x ≤ α ε -1 n , P(X n > x) 1 -Φ (x) ≤ exp c α,6 (x 2+ρ ε ρ n + x 2 δ 2 n ) 1 + c α,ρ,7 x 1+ρ ε ρ n + x ε n + xδ n ≤ exp c α,ρ,8 x 2+ρ ε ρ n + x 2 δ 2 n + x ( ε n + δ n ) .
This completes the proof of Proposition 1.

Proof of lower bound in Theorem 1

The following assertion gives a lower bound for moderate deviation probabilities.

Proposition 2 Assume conditions (A1) and (A2).

[i] If ρ ∈ (0, 1), then there is a constant α > 0 such that for all 0

≤ x ≤ αε -1 n , P(X n > x) 1 -Φ (x) ≥ exp -c α,ρ,2 x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) (ε ρ n + δ n ) .
(5.17)

[ii] If ρ = 1, then there is a constant α > 0 such that for all 0

≤ x ≤ αε -1 n , P(X n > x) 1 -Φ (x) ≥ exp -c α,1,2 x 3 ε n + x 2 δ 2 n + (1 + x) (ε n | ln ε n | + δ n ) . ( 5 

.18)

Proof. For all 0 ≤ x < 1, the assertion follows from (4.14) and (4.15). It remains to prove Proposition 2 for all 1 ≤ x ≤ αε -1 n , where α > 0 is a small constant. Let λ = λ(x) be the smallest positive solution of the following equation

λ -λδ 2 n -cλ 1+ρ ε ρ n = x, (5.19) 
where c is given by inequality (4.6). The definition of λ implies that for all 1 ≤ x ≤ αε -1 n ,

x ≤ λ ≤ c α,1 x (5.20)

and λ = x + c α,2 |θ|(x 1+ρ ε ρ n + xδ 2 n ) ∈ [1, ε -1 n ]. (5.21) 
From (5.3), using Lemmas 2, 3 and equality (5.19), we have for all 1 ≤ x ≤ αε -1 n ,

P(X n > x) ≥ e -c1 (λ 2+ρ ε ρ n +λ 2 δ 2 n )-λ 2 /2 E λ e -λYn(λ) 1 {Yn(λ)>0} . (5.22) 
In the subsequent we distinguish λ into two cases. First, let 1 ≤ λ ≤ α 1 min{ε -ρ/(1+ρ) n

, δ -1 n }, where α 1 > 0 is a small positive constant whose exact value will be given later. Note that inequality (5.10) can be established with λ replaced by λ, which, in turn, implies that

P(X n > x) ≥ e -c1 (λ 2+ρ ε ρ n +λ 2 δ 2 n )-λ 2 /2 E e -λN 1 {N >0} -c ρ,2 (λε n ) ρ + ε n + δ n ,
where ε n is defined by (5.11). By (5.12) and (5.13), we get the following lower bound on tail probabilities:

P(X n > x) 1 -Φ (λ) ≥ e -c1 (λ 2+ρ ε ρ n +λ 2 δ 2 n ) 1 -c ρ,2 λ 1+ρ ε ρ n + λ ε n + λδ 2 n . (5.23) 
Taking

α 1 = min{ 1 (8cρ,2) 1/(1+ρ) , 1 8cρ,2 }, we have for all 1 ≤ λ ≤ α 1 min{ε -ρ/(1+ρ) n , δ -1 n }, 1 -c ρ,2 λ 1+ρ ε ρ n + λ ε n + λδ n ≥ exp -2c ρ,2 λ 1+ρ ε ρ n + λ ε n + λδ n . (5.24) 
Implementing (5.24) in (5.23), we get

P(X n > x) 1 -Φ (λ) ≥ exp -c ρ,3 λ 2+ρ ε ρ n + λ ε n + λδ n + λ 2 δ 2 n (5.25)
which holds for all 1 ≤ λ ≤ α 1 min{ε

-ρ/(1+ρ) n , δ -1 n }.
Next, consider the case of α 1 min{ε

-ρ/(1+ρ) n , δ -1 n } ≤ λ ≤ αε -1 n .
Let K ≥ 1 be a constant, whose exact value will be chosen later. It is obvious that

E λ e -λYn(λ) 1 {Yn(λ)>0} ≥ E λ e -λYn(λ) 1 {0<Yn(λ)≤Kτ } ≥ e -λKτ P λ 0 < Y n (λ) ≤ Kτ , (5.26) 
where τ = (λε n ) ρ + ε n + δ n . From Lemma 4, we get

P λ 0 < Y n (λ) ≤ Kτ ≥ P 0 < N ≤ Kτ -c ρ,5 τ ≥ Kτ e -K 2 τ 2 /2 -c ρ,5 τ ≥ Ke -8K 2 α -c ρ,5 τ.
Taking α = 1/(16K 2 ), we obtain

P λ 0 < Y n (λ) ≤ Kτ ≥ 1 2 K -c ρ,5 τ.
Letting K ≥ 8c ρ,5 , we deduce that

P λ 0 < Y n (λ) ≤ Kτ ≥ 3 8 Kτ ≥ 3 8 K max λ 1+ρ ε ρ n , λδ n λ .
Choosing K = max 8c ρ,5 ,

16α -1-ρ 1 3 √ π
and taking into account that α 1 min{ε

-ρ/(1+ρ) n , δ -1 n } ≤ λ ≤ αε -1
n , we get

P λ 0 < Y n (λ) ≤ Kτ ≥ 2 √ πλ . Since the inequality 2 √ πλ e -λ 2 /2 ≥ 1 -Φ (λ)
is valid for all λ > 0, it follows that for all α 1 min{ε

-ρ/(1+ρ) n , δ -1 n } ≤ λ ≤ αε -1 n , P λ 0 < Y n (λ) ≤ Kτ ≥ 1 -Φ (λ) e λ 2 /2 .
(5.27) From (5.22), (5.26) and (5.27), we get

P(X n > x) 1 -Φ (λ) ≥ exp -c α,6 λ 2+ρ ε ρ n + λ ε n + λδ n + λ 2 δ 2 n (5.28)
which holds for all α 1 min{ε -ρ/(1+ρ) n , δ -1 n } ≤ λ ≤ αε -1 n . Combining (5.25) and (5.28) together, we obtain for all 1

≤ λ ≤ αε -1 n , P(X n > x) 1 -Φ (λ) ≥ exp -c α,ρ,7 λ 2+ρ ε ρ n + λ ε n + λδ n + λ 2 δ 2 n .
(5.29) By a similar argument as in (5.15), it is easy to see that

1 -Φ (λ) = 1 -Φ(x) exp -|θ|c 3 (x 2+ρ ε ρ n + x 2 δ 2 n ) .
(5.30) Combining (5.20), (5.29) and (5.30) together, we find that for all 1

≤ x ≤ αε -1 n , P(X n > x) 1 -Φ (x) ≥ exp -c α,ρ,8 x 2+ρ ε ρ n + x ε n + xδ n + x 2 δ 2 n , (5.31) 
which gives the conclusion of Proposition 2.

Proof of Corollary 2

To prove Corollary 2, we need the following two-sides bound on tail probabilities of the standard normal random variable:

1 √ 2π(1 + x) e -x 2 /2 ≤ 1 -Φ(x) ≤ 1 √ π(1 + x) e -x 2 /2 , x ≥ 0. (6.1)
First, we prove that for any given Borel set B ⊂ [0, ∞),

lim sup n→∞ 1 a 2 n log P 1 a n X n ∈ B ≤ -inf x∈B x 2 2 . (6.2) Let x 0 = inf x∈B x.
Then it is obvious that x 0 ≥ 0 and x 0 ≥ inf x∈B x. By Theorem 1, we deduce that

P 1 a n X n ∈ B ≤ P (X n ≥ a n x 0 ) ≤ 1 -Φ (a n x 0 ) exp c α (a n x 0 ) 2+ρ ε ρ n + (a n x 0 ) 2 δ 2 n + (1 + (a n x 0 )) (ε ρ n | ln ε n | + δ n ) .
Using (6.1) and the assumption a n n → 0, we have lim sup

n→∞ 1 a 2 n log P 1 a n X n ∈ B ≤ - x 2 0 2 ≤ -inf x∈B x 2 2 ,
which gives (6.2). Next, we prove that for any given Borel set

B ⊂ [0, ∞), lim inf n→∞ 1 a 2 n log P 1 a n X n ∈ B ≥ -inf x∈B o x 2 2 . ( 6.3) 
For any ε 1 > 0, there exists an x 0 ∈ B o , such that

x 2 0 2 ≤ inf x∈B o x 2 2 + ε 1 . (6.4)
For x 0 ∈ B o , there exists an ε 2 > 0, such that (x 0 -ε 2 , x 0 + ε 2 ] ⊂ B. Then it is obvious that x 0 ≥ inf x∈B o x. By Theorem 1, we deduce that

P 1 a n X n ∈ B ≥ P X n ∈ (a n (x 0 -ε 2 ), a n (x 0 + ε 2 )] ≥ P X n > a n (x 0 -ε 2 ) -P X n > a n (x 0 + ε 2 ) ≥ 1 -Φ (a n (x 0 -ε 2 )) exp -c α (a n (x 0 -ε 2 )) 2+ρ ε ρ n + (a n (x 0 -ε 2 )) 2 δ 2 n +(1 + (a n (x 0 -ε 2 ))) (ε ρ n | ln ε n | + δ n ) -1 -Φ (a n (x 0 + ε 2 )) exp c α (a n (x 0 + ε 2 )) 2+ρ ε ρ n + (a n (x 0 + ε 2 )) 2 δ 2 n +(1 + (a n (x 0 + ε 2 ))) (ε ρ n | ln ε n | + δ n ) =: P 1,n -P 2,n .
Since a n n → 0, it is easy to see that lim n→∞ P 2,n /P 1,n = 0. Thus for n large enough, it holds

P 1 a n X n ∈ B ≥ 1 2 P 1,n .
Using (6.1) and the assumption a n n → 0 again, it follows that lim inf

n→∞ 1 a 2 n log P 1 a n X n ∈ B ≥ - 1 2 (x 0 -ε 2 ) 2 .
Letting ε 2 → 0, we get lim inf

n→∞ 1 a 2 n log P 1 a n X n ∈ B ≥ - x 2 0 2 ≥ -inf x∈B o x 2 2 -ε 1 .
Since ε 1 can be arbitrary small, we obtain (6.3).

Proof of Theorem 2

To prove Theorem 2, we need the following lemma.

Lemma 5 Assume the conditions of Theorem 2. Then for all x ≥ 0,

P |W n | > x ≤ 2 exp - x 2 2(1 + M n + xL 3 √ n ) . (7.1) Proof. Let T 0 = min{K, L 3 }. It is easy to see that for all 0 ≤ λ < T 0 , E[e ληi |F i-1 ] ≤ 1 + λE[η i |F i-1 ] + λ 2 2 E[η 2 i |F i-1 ] + λ 3 3! E[|η i | 3 e K|ηi| |F i-1 ] ≤ 1 + λ 2 2 (1 + 1 3 λL)E[η 2 i |F i-1 ] ≤ exp λ 2 2 (1 + 1 3 λL)E[η 2 i |F i-1 ] ≤ exp λ 2 2(1 -λT 0 ) E[η 2 i |F i-1 ] ,
which implies that for all 0 ≤ λ < T 0 ,

E exp λ n i=1 η i - λ 2 Ξ n 2(1 -λT 0 ) ≤ E exp λ n-1 i=1 η i - λ 2 Ξ n-1 2(1 -λT 0 ) E exp λη n - λ 2 E[η 2 n |F n-1 ] 2(1 -λT 0 ) F n-1 ≤ E exp λ n-1 i=1 η i - λ 2 Ξ n-1 2(1 -λT 0 ) ≤ 1,
where

Ξ n = n i=1 E[η 2 i |F i-1 ].
Since Ξ n ≤ n + M a.s., we have for all x ≥ 0 and all 0 ≤ λ < T 0 ,

P W n > x = P n i=1 η i > x √ n ≤ E exp -λx √ n + λ n i=1 η i - λ 2 Ξ n 2(1 -λT 0 ) + λ 2 (n + M ) 2(1 -λT 0 ) ≤ E exp -λx √ n + λ 2 (n + M ) 2(1 -λT 0 ) .
Thus for all x ≥ 0,

P W n > x ≤ inf 0≤λ<T0 E exp -λx √ n + λ 2 (n + M ) 2(1 -λT 0 ) ≤ exp - x 2 2(1 + M/n + xT 0 / √ n) ≤ exp - x 2 2(1 + M n + xL 3 √ n ) . (7.2)
Similarly, we have for all x ≥ 0,

P W n < -x ≤ exp - x 2 2(1 + M n + xL 3 √ n ) . (7.3) 
Combining (7.2) and ( 7.

3) together, we obtain the desired inequality. Now we are in position to prove Theorem 2. By Theorem 1, there exist constants α ∈ (0, 1] and C ≥ 1 such that for all 0 ≤ x ≤ α n 1/2 ,

P (W n > x) 1 -Φ (x) = exp θC(1 + x 3 ) ln n √ n (7.4)
and

P (W n < -x) Φ (-x) = exp θC(1 + x 3 ) ln n √ n , (7.5) 
where |θ| ≤ 1. By Theorem 1 of Mason and Zhou [START_REF] Mason | Quantile coupling inequalities and their applications[END_REF] with ε n = α and K n = C ln n, then whenever n ≥ 64C 2 (ln n) 2 and

|W n | ≤ √ n 8 ln n ,
we have

|W n -Z| ≤ 2C W 2 n + 1 ln n √ n ,
which gives (3.3). Notice that there exists an integer n 0 such that n ≥ 64C 2 (ln n) 2 for all n ≥ n 0 .

Next we give the proof of (3.4). By (3.3), we have for all 0 ≤ x ≤ C 32 n/(ln n) 2 ,

P √ n|W n -Z|/ ln n > x ≤ P √ n|W n -Z|/ ln n > x, |W n | ≤ 1 8 √ n/ ln n + P |W n | > 1 8 √ n/ ln n ≤ P 2C W 2 n + 1 > x + P |W n | > 1 8 √ n/ ln n ≤ P |W n | > x/(2C) + P |W n | > 1 8 √ n/ ln n . (7.6) Notice that 1 -Φ (x) ≤ exp{-x 2 /2}, x ≥ 0. When 0 ≤ x ≤ 2Cα 2 n/(8C ln n) 2
, n ≥ 2, by the inequalities (7.4) and (7.5), it holds that

P |W n | > x/(2C) ≤ 2 exp - 1 4 ( x/(2C)) 2 = exp 1 - 1 8C x , (7.7) 
and that

P |W n | > 1 8 √ n/ ln n ≤ 2 exp - n 8 • 32(ln n) 2 ≤ exp 1 - C 8α 2 x . (7.8) 
Returning to (7.6), we obtain for all 0

≤ x ≤ 2Cα 2 n/(8C ln n) 2 , P √ n|W n -Z|/ ln n > x ≤ 2 exp 1 -c x , (7.9) 
where c = min{ 1 8C , C 8α 2 }. When x > 2Cα 2 n/(8C ln n) 2 , it holds

P √ n|W n -Z|/ ln n > x ≤ P √ n|W n |/ ln n > x/2 + P √ n|Z|/ ln n > x/2 . (7.10)
By Lemma 5, there exists a positive constant λ such that for all x > 2Cα 2 n/(8C ln n) 2 ,

P √ n|W n |/ ln n > x/2 ≤ 2 exp - 3 8L x √ n ln n √ n ≤ exp 1 - 3 8L x ,
and that

P √ n|Z|/ ln n > x/2 ≤ 2 exp - 1 8 x 2 ln n √ n ≤ exp 1 - α 2 256C
x .

Returning to (7.10), we have for all x > 2Cα 2 n/(8C ln n) 2 ,

P √ n|W n -Z|/ ln n > x ≤ 2 exp 1 -c x , (7.11) 
where c = min{ 3 8L , α 2 256C }. Combining (7.9) and (7.11) together, we get (3.4).

Proof of Theorem 3

The main idea of the proof of Theorem 3 is to use m-dependence approximation. We make use of the following lemma of Berbee [START_REF] Berbee | Convergence rates in the strong law for bounded mixing sequences[END_REF].

Lemma 6 Let (Y i ) 1≤i≤n be a sequence of random variables on some probability space and define

β (i) = β(Y i , (Y i+1 , ..., Y n )).
Then the probability space can be extended with random variables Y i distributed as Y i such that ( Y i ) 1≤i≤n are independent and

P(Y i = Y i for some 1 ≤ i ≤ n) ≤ β (1) + ... + β (n-1) .
Now we are in position to prove Theorem 3. Recall m = n α and k = n/(2m) . By Lemma 6, there exists a sequence of independent random variables ( Y j ) 1≤j≤k such that Y j and Y j have the same distribution for each 1 ≤ j ≤ k and

P(Y i = Y i for some 1 ≤ i ≤ k) ≤ kβ(m) ≤ a 1 exp{-0.5a 2 n α τ }. (8.1) 
Therefore, we have

P S n / ES 2 n > x -P S n / ES 2 n > x ≤ a 1 exp -0.5a 2 n α τ , (8.2) 
where S n = k j=1 Y j . By (3.6) and (3.7), we have

E| Y i | 2+ρ ≤ c 2+ρ 1 c -2 2 m ρ/2 E Y 2 i
for all 1 ≤ j ≤ k, and Var( S n ) n. By (8.1) and (3.6), it is easy to see that

E S 2 n -ES 2 n = E[( S 2 n -S 2 n )1 {Yi = Yi for some 1≤i≤k} ] ≤ 2E[e 1 4 a2n ατ 1 {Yi = Yi for some 1≤i≤k} ] + E[ S 2 n 1 { Sn>e 1 8 a 2 n ατ } ] + E[S 2 n 1 {Sn>e 1 8 a 2 n ατ } ] ≤ 2e 1 4 a2n ατ P(Y i = Y i for some 1 ≤ i ≤ k) + e -ρ 8 a2n ατ E| S n | 2+ρ + e -ρ 8 a2n ατ E|S n | 2+ρ ≤ O(1) exp - ρ 16 a 2 n ατ = O(n -2 ).
It is obvious that Y j ≤ n α c 3 a.s. Applying Theorem 1 to S n / ES 2 n , we deduce that there is a constant α > 0, such that for all 0 ≤ x = o(n

1 2 -α ), P( S n / ES 2 n > x) 1 -Φ (x) = exp θ 1 c ρ (1 + x) 2+ρ n ρ( 1 2 -α) . (8.3) 
The inequalities (8.2) and (8.3) together implies that

P(S n / ES 2 n > x) 1 -Φ (x) = exp θ 1 c 1,ρ (1 + x) 2+ρ n ρ( 1 2 -α) + a 1 exp{-0.5a 2 n α τ } 1 -Φ (x) = exp θ 2 c 2,ρ (1 + x) 2+ρ n ρ( 1 2 -α) uniformly for 0 ≤ x = o(min{n 1 2 -α , n ατ /2 }).
9 Proof of Theorem 4

We only give a proof for the case of ρ ∈ (0, 1). The proof for the case of ρ = 1 is similar to the case of ρ ∈ (0, 1). In the proof of theorem, we use the following lemma. The proof of the lemma is similar to the proof of Theorem A.6 of Hall and Heyde [START_REF] Hall | Martingale Limit Theory and Its Application[END_REF].

Lemma 7 Suppose that X and Y are random variables which are F ∞ j+n -and F j -measurable, respectively, and that E|X| p < ∞, E|Y | q < ∞, where p, q > 1, p -1 + q -1 = 1. Then

EXY -EXEY ≤ 2[ψ(n)] 1/p E|X| p 1/p E|Y | q 1/q . Denote by F l = σ{η i , 1 ≤ i ≤ 2ml -m}. Then Y j is F j -measurable. Since Eη i = 0 for all i, it is easy to see that for 1 ≤ j ≤ k, E[Y j |F j-1 ] = m i=1 E[η 2m(j-1)+i |F j-1 ] -Eη 2m(j-1)+i ≤ m i=1 ψ(m + i)E|η 2m(j-1)+i | ≤ m i=1 ψ(m + i)(E|η 2m(j-1)+i | 2+ρ ) 1/(2+ρ) ≤ m i=1 ψ(m + i)c 1 ,
where c 1 is defined in (3.6). Thus

k j=1 E[Y j |F j-1 ] ≤ c 1 k j=1 m i=1 ψ(m + i) ≤ nψ(m)c 1 .

By (3.6), we have

E[|Y j -E[Y j |F j-1 ]| 2+ρ |F j-1 ] ≤ 2 1+ρ E[|Y j | 2+ρ + |E[Y j |F j-1 ]| 2+ρ |F j-1 ] ≤ 2 2+ρ E[|Y j | 2+ρ |F j-1 ] ≤ 2 2+ρ (1 + ψ(m))E|Y j | 2+ρ ≤ 2 2+ρ (1 + ψ(m))m 1+ρ/2 c 2+ρ 1 . (9.1) 
Notice that τ n → 0 implies that mψ 2 (m) → 0 as n → ∞. Similarly, by (3.7), it holds

E[(Y j -E[Y j |F j-1 ]) 2 |F j-1 ] = E[Y 2 j |F j-1 ] -(E[Y j |F j-1 ]) 2 ≥ (1 -ψ(m))EY 2 j -(E[Y j |F j-1 ]) 2 ≥ 1 2 c 2 2 m. (9.2) 
Combining (9.1) and (9.2), we deduce that

k j=1 E[|Y j -E[Y j |F j-1 ]| 2 |F j-1 ] n, E[|Y j -E[Y j |F j-1 ]| 2+ρ |F j-1 ] ≤ c ρ m ρ/2 E[(Y j -E[Y j |F j-1 ]) 2 |F j-1 ]
and, by Lemma 7,

k j=1 E[(Y j -E[Y j |F j-1 ]) 2 |F j-1 ] -ES 2 n ≤ k j=1 E[(Y j -E[Y j |F j-1 ]) 2 |F j-1 ] - k j=1 EY 2 j + ES 2 n - k j=1 EY 2 j ≤ k j=1 E[Y 2 j |F j-1 ] -EY 2 j + k j=1 E[Y j |F j-1 ] 2 + j =l EY j Y l ≤ kψ(m)EY 2 j + k m i=1 ψ(m + i)c 1 2 + 2ψ(m) 1/2 j =l EY 2 j EY 2 l ≤ 2nψ(m)c 2 1 + nmψ 2 (m)c 2 1 + 2nψ(m) 1/2 kc 2 1 .
Denote by

2 n = ψ(m) + mψ 2 (m) + kψ(m) 1/2 .
Applying Theorem 1 to

X n := k j=1 (Y j -E[Y j |F j-1 ])/ ES 2 n , we have for all 0 ≤ x = o(n 1 2 -α ), ln P(X n > x) 1 -Φ (x) ≤ c ρ (1 + x) 2+ρ n ρ( 1 2 -α) + x 2 2 n + (1 + x) 1 n ρ( 1 2 -α) + n . (9.3) 
Notice that for x ≥ 0 and |ε| ≤ 1,

1 -Φ (x + ε) 1 -Φ (x) = exp O(1)(1 + x)|ε| and 1 √ n k j=1 E[Y j |F j-1 ] ≤ √ nψ(m)c 1 . Thus ln P(S n / ES 2 n > x) 1 -Φ (x) ≤ c ρ (1 + x) 2+ρ n ρ( 1 2 -α) + x 2 τ 2 n + (1 + x) 1 n ρ( 1 2 -α) + τ n , (9.4) 
where τ 2 n is defined by (3.12).

10 Proof of Lemma 4

The proof is a refinement of the proof of Lemma 3.1 of Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF]. See also Grama and Haeusler [START_REF] Grama | Large deviations for martingales via Cramér's method[END_REF] for an earlier result. Notice that Grama and Haeusler assumed that |η i | ≤ 2ε n , while we only assume that η i has moments of order 2 + ρ, ρ > 0 (cf. condition (B1)).

Compared to the case of Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF], the main difference comes from the control of I 1 defined in (10.7) and the rest of this section is similar to the proof of Lemma 3.1 of Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF].

In this section, α denotes any a given positive number, ϑ denotes a real number satisfying 0 ≤ ϑ ≤ 1, and ϕ(t) denotes the density function of the standard normal distribution. For the sake of simplicity, we also denote Y (λ), Y n (λ) and η(λ) by Y, Y n and η, respectively.

Notice that

|η i | t ≤ 2 t-1 (|ξ i | t + E λ [|ξ i ||F i-1 ] t ) for any 2 ≤ t ≤ 2 + ρ. We have for all 0 ≤ λ ≤ ε -1 n , E λ |η i | 2+ρ F i-1 ≤ 2 1+ρ E λ |ξ i | 2+ρ + E λ [|ξ i ||F i-1 ] 2+ρ F i-1 ≤ 2 2+ρ E λ [|ξ i | 2+ρ F i-1 ].
Using the fact E[e λξi |F i-1 ] ≥ 1 and condition (A1), we get for ρ ∈ (0, 1] and all 0 ≤ λ ≤ ε -1 n ,

E λ |η i | 2+ρ F i-1 ≤ 2 2+ρ E[|ξ i | 2+ρ e λξi F i-1 ] ≤ 8 E[|ξ i | 2+ρ e ε -1 n ξ + i F i-1 ]. Denote Y k = i≤k E λ [η 2 i |F i-1 ], ∆ Y k = E λ [η 2 k |F k-1 ] and ∆ X k = E[ξ 2 k |F k-1 ]. It is easy to see that for k = 1, ..., n, ∆ Y k = E λ (ξ k -b k (λ)) 2 |F k-1 = E[ξ 2 k e λξ k |F k-1 ] E[e λξ k |F k-1 ] - E[ξ k e λξ k |F k-1 ] 2 E[e λξ k |F k-1 ] 2 . (10.1) Since E[e λξi |F i-1 ] ≥ 1, we deduce that for all 0 ≤ λ ≤ ε -1 n , |∆ Y k -∆ X k | ≤ E[ξ 2 k e λξ k |F k-1 ] E[e λξ k |F k-1 ] -E[ξ 2 k |F k-1 ] + E[ξ k e λξ k |F k-1 ] 2 E[e λξ k |F k-1 ] 2 ≤ E[ξ 2 k e λξ k |F k-1 ] -E[ξ 2 k |F k-1 ]E[e λξ k |F k-1 ] + E[ξ k e λξ k |F k-1 ] 2 = E[ξ 2 k (e λξ k -1)|F k-1 ] -E[ξ 2 k |F k-1 ]E[(e λξ k -1 -λξ k - 1 2 λ 2 ξ 2 k )|F k-1 ] + 1 2 λE[ξ 2 k |F k-1 ] 2 + λE[ξ 2 k |F k-1 ] + E[ξ k (e λξ k -1 -λξ k )|F k-1 ] 2 .
Using condition (A1) and Lemma 1, we have for all 0

≤ λ ≤ ε -1 n , |∆ Y k -∆ X k | ≤ c ρ,1 λ -2 E[e λξ k |λξ k | 2+ρ |F k-1 ] + E[ξ 2 k |F k-1 ]E[e λξ k |λξ k | 2+ρ |F k-1 ] +λ 2 E[ξ 2 k |F k-1 ] 2 + E[e λξ k λ 1+ρ |ξ k | 2+ρ |F k-1 ] 2 ≤ c ρ,1 λ -2 E[e ε -1 n ξ + i |λξ k | 2+ρ |F k-1 ] + E[ξ 2 k |F k-1 ]E[e ε -1 n ξ + i |λξ k | 2+ρ |F k-1 ] +λ 2 E[ξ 2 k |F k-1 ] 2 + E[e ε -1 n ξ + i λ 1+ρ |ξ k | 2+ρ |F k-1 ] 2 ≤ c ρ,2 λ ρ ε ρ n E[ξ 2 k |F k-1 ] + λ 2 ε 2 n E[ξ 2 k |F k-1 ] ≤ c ρ (λε n ) ρ ∆ X k . (10.2) Therefore | Y n -1| ≤ | Y n -X n | + | X n -1| ≤ c ρ (λε n ) ρ X n + δ 2 n .
Thus the martingale Y satisfies the following conditions: for all 0

≤ λ ≤ α ε -1 n , (B1) E λ |η i | 2+ρ F i-1 ≤ c ε ρ n E[ξ 2 i |F i-1 ]; (B2) | Y n -1| ≤ c ρ ((λε n ) ρ + δ 2 n
). We first prove Lemma 4 for all 1 ≤ λ ≤ α ε -1 n . Without loss of generality, we can further assume that α ≤ 1 4 , otherwise we take c ≥ 4 in the assertion of the lemma. Set T = 1 + δ 2 n . We introduce the following modification of the quadratic characteristic X :

V k = X k 1 {k<n} + T 1 {k=n} . (10.3)
It is obvious that V 0 = 0, V n = T and that (V k , F k ) k=0,...,n is a predictable process. Set

γ = (λε n ) ρ + δ n .
Let c * ≥ 4 be a constant, whose exact value will be chosen later. Consider the non-increasing discrete time predictable process

A k = c 2 * γ 2 + T -V k , k = 1, ..., n.
For any fixed u, x ∈ R and y > 0, set

Φ u (x, y) = Φ u -x √ y . ( 10.4) 
We need the following two technical lemmas of Bolthausen [START_REF] Bolthausen | Exact convergence rates in some martingale central limit theorems[END_REF].

Lemma 8 Let X and Y be random variables. Then

sup u P (X ≤ u) -Φ (u) ≤ c 1 sup u P (X + Y ≤ u) -Φ (u) + c 2 E Y 2 |X 1/2 ∞ .
Lemma 9 Let G(x) be an integrable function on R of bounded variation ||G|| V , X be a random variable and a, b = 0 are real numbers. Then

E G X + a b ≤ ||G|| V sup u P (X ≤ u) -Φ (u) + ||G|| 1 |b|, where ||G|| 1 is the L 1 (R)-norm of G(x).
Let N c 2 * γ 2 = N (0, c * γ) be a normal random variable independent of Y n . Using a smoothing procedure (which employs Lemma 8), we deduce that

sup u P λ (Y n ≤ u) -Φ(u) ≤ c 1 sup u E λ [Φ u (Y n , A n )] -Φ(u) + c 2 γ ≤ c 1 sup u E λ [Φ u (Y n , A n )] -E λ [Φ u (Y 0 , A 0 )] + c 1 sup u E λ [Φ u (Y 0 , A 0 )] -Φ(u) + c 2 γ = c 1 sup u E λ [Φ u (Y n , A n )] -E λ [Φ u (Y 0 , A 0 )] + c 1 sup u Φ u c 2 * γ 2 + T -Φ(u) + c 2 γ ≤ c 1 sup u E λ [Φ u (Y n , A n )] -E λ [Φ u (Y 0 , A 0 )] + c 3 γ, (10.5) 
where

E λ [Φ u (Y n , A n )] = P λ (Y n + N c 2 * γ 2 ≤ u) and E λ [Φ u (Y 0 , A 0 )] = P λ (N c 2 * γ 2 +T ≤ u).
By telescoping, we get

E λ [Φ u (Y n , A n )] -E λ [Φ u (Y 0 , A 0 )] = E λ n k=1 Φ u (Y k , A k ) -Φ u (Y k-1 , A k-1 ) .
Taking into account that (η i , F i ) i=0,...,n is a P λ -martingale and that

∂ 2 ∂x 2 Φ u (x, y) = 2 ∂ ∂y Φ u (x, y),
we get

E λ [Φ u (Y n , A n )] -E λ [Φ u (Y 0 , A 0 )] = I 1 + I 2 -I 3 , (10.6) 
where

I 1 = E λ n k=1 Φ u (Y k , A k ) -Φ u (Y k-1 , A k ) - ∂ ∂x Φ u (Y k-1 , A k )η k - 1 2 ∂ 2 ∂x 2 Φ u (Y k-1 , A k )η 2 k , (10.7 
)

I 2 = 1 2 E λ n k=1 ∂ 2 ∂x 2 Φ u (Y k-1 , A k ) ∆ Y k -∆V k , (10.8) 
I 3 = E λ n k=1 Φ u (Y k-1 , A k-1 ) -Φ u (Y k-1 , A k ) - ∂ ∂y Φ u (Y k-1 , A k )∆V k . (10.9) 
Next, we give estimates of I 1 , I 2 and I 3 . To shorten notations, set

T k-1 = u -Y k-1 √ A k . 
a) Control of I 1 . Let f be a three times differentiable function on R. Then it is easy to see that for all |∆x| ≤ 1,

f (x + ∆x) -f (x) -f (x)∆x - 1 2 f (x)(∆x) 2 = 1 6 f (x + ϑ 1 ∆x)(∆x) 3 ≤ |f (x + ϑ 1 ∆x)| |∆x| 2+ρ and f (x + ∆x) -f (x) -f (x)∆x - 1 2 f (x)(∆x) 2 = 1 2 f (x + ϑ 2 ∆x)(∆x) 2 - 1 2 f (x)(∆x) 2 ≤ 1 2 |f (x + ϑ 2 ∆x)| + |f (x)| |∆x| 2 ≤ |f (x + ϑ 3 ∆x)| |∆x| 2 ≤ |f (x + ϑ 3 ∆x)| |∆x| 2+ρ for all |∆x| > 1. Moreover, if f is bounded, then for all |∆x| > 1 2 (2 + |x|), f (x + ∆x) -f (x) -f (x)∆x - 1 2 f (x)(∆x) 2 = f (x + ∆x) -f (x) |∆x| 2+ρ + |f (x)| + 1 2 f (x) |∆x| 2+ρ ≤ 4 f (x + ∆x) -f (x) (2 + |x|) 2 + |f (x)| + |f (x)| |∆x| 2+ρ ≤ c (2 + |x|) 2 + |f (x)| + |f (x)| |∆x| 2+ρ . Taking f (u) = Φ(x), x = T k-1 and ∆x = η k √ A k , we have |I 1 | ≤ E λ n k=1 F T k-1 + ϑη k √ A k η k √ A k 2+ρ 1 {|ηk/ √ A k |≤ 1 2 (2+|T k-1 |)} + E λ n k=1 H(T k-1 ) η k √ A k 2+ρ 1 {|ηk/ √ A k |> 1 2 (2+|T k-1 |)} , (10.10) 
where

F t = max Φ t , Φ t , H(x) = c (2 + |x|) 2 + |Φ (x)| + |Φ (x)| and ϑ = ϑ 1 1 {|∆x|≤1} + ϑ 3 1 {|∆x|>1} .
In order to bound |I 1 | we distinguish two cases as follows.

Case

1 : Assume |η k / √ A k | ≤ 1 2 (2 + |T k-1 |). By the inequality F (t) ≤ ϕ(t)(1 + t 2 ), we deduce that F T k-1 + ϑη k √ A k ≤ ϕ T k-1 + ϑη k √ A k 1 + T k-1 + ϑη k √ A k 2 ≤ sup |t-T k-1 |≤ 1 2 (2+|T k-1 |) ϕ(t)(1 + t 2 ). Define g 1 (z) = sup |t-z|≤ 1 2 (2+|z|) f 1 (t), where f 1 (t) = ϕ(t)(1 + t 2 ). Then F T k-1 + ϑη k √ A k 1 {|ηk/ √ A k |≤ 1 2 (2+|T k-1 |)} ≤ g 1 (T k-1 ). (10.11) Case 2 : Assume |η k / √ A k | > 1 2 (2 + |T k-1 |). It is easy to see that H(T k-1 ) η k 2+ρ 1 {|ηk/ √ A k |> 1 2 (2+|T k-1 |)} ≤ c 0 |η k | 2+ρ (2 + |T k-1 |) 2 .
(10.12)

Next we bound the conditional expectation of |η k | 2+ρ . Using condition (B1), we get

E λ [|η k | 2+ρ |F k-1 ] ≤ c ∆ X k ε ρ n .
By the definition of the process V (cf. (10.3)), it follows that ∆

X k ≤ ∆V k = V k -V k-1 and that E λ [|η k | 2+ρ |F k-1 ] ≤ c ∆V k ε ρ n . (10.13)
Thus, from (10.11) and (10.13), we have

E λ F T k-1 + ϑη k √ A k η k 2+ρ 1 {|ηk/ √ A k |≤ 1 2 (2+|T k-1 |)} F k-1 ≤ c g 1 (T k-1 )∆V k ε ρ n . (10.14) 
Similarly, from (10.12) and (10.13), we obtain

E λ H(T k-1 ) η k 2+ρ 1 {|ηk/ √ A k |> 1 2 (2+|T k-1 |)} F k-1 ≤ E λ c |η k | 2+ρ (1 + |T k-1 |) 2 F k-1 ≤ cg 2 (T k-1 )∆V k ε ρ n , (10.15) 
where

g 2 (t) = c0 (1+|t|) 2 . Set G(t) = c (g 1 (t) + g 2 (t)).
Returning to (10.10), by (10.14) and (10.15), we deduce that

|I 1 | ≤ J 1 , (10.16) 
where

J 1 = c ε ρ n E λ n k=1 1 A 1+ρ/2 k G (T k-1 ) ∆V k . (10.17) 
To bound J 1 , we introduce the time change τ t as follows: for any real t ∈ [0, T ], 

τ t = min{k ≤ n : V k >
V n -V τt-1 ≤ V n -V τt + ∆V τt ≤ c * (ε 2 n + δ 2 n ) + T -t ≤ a t . (10.23) 
Thus

E λ (Y n -Y τt-1 ) 2 |F τt-1 = E λ n k=τt E λ [η 2 k |F k-1 ] F τt-1 ≤ c E λ n k=τt ∆ X k F τt-1 = c E λ X n -X τt-1 |F τt-1 ≤ c E λ [V n -V τt-1 |F τt-1 ]
≤ c a t .

Then, by Lemma 8, we find that for any t ∈ [0, T ], 

I 3 = 1 8 E λ n k=1 1 (A k -ϑ k ∆A k ) 2 ϕ u -Y k-1 √ A k -ϑ k ∆A k ∆A 2 k . Since |∆A k | = ∆V k ≤ ε 2 n + 2 δ 2 n and c * ≥ 4, it follows that A k ≤ A k -ϑ k ∆A k ≤ c 2 * γ 2 + T -V k + 12γ 2 ≤ 2A k . (10.30) 
Using (10.30) and the inequalities |ϕ (z)| ≤ G(z), we get

|I 3 | ≤ c (ε 2 n + 2 δ 2 n )E λ n k=1 1 A 2 k G T k-1 √ 2 ∆V k .
Proceeding in the same way as for estimating J 1 in (10.17 We are now in a position to end the proof of Lemma 4. From (10.6), using (10.27), (10.29) and (10.31), we obtain

E λ [Φ u (Y n , A n )] -E λ [Φ u (Y 0 , A 0 )] ≤ c ρ,3 c ρ * sup z P λ (Y n ≤ z) -Φ(z) + c ρ,4 (λε n ) ρ + ε n + δ n ,
where ε n is defined by (10.28). Implementing the last bound into (10.5), we get 

1 A 1 AG

 11 t}, where min ∅ = n.(10.18) Clearly, for any t ∈ [0, T ], the stopping time τ t is predictable. Let (σ k ) k=1,...,n+1 be the increasing sequence of moments when the increasing stepwise function τ t , t ∈ [0, T ], has jumps. It is obvious that∆V k = [σ k ,σ k+1 ) dt and that k = τ t , for t ∈ [σ k , σ k+1 ). Since τ T = n, we get n k=1 1+ρ/2 k G (T k-1 ) ∆V k = n k=1 [σ k ,σ k+1 ) (T τt-1 ) dt.

J 1 ≤ c 5 P

 15 sup z P λ (Y τt-1 ≤ z) -Φ(z) ≤ c 3 sup z P λ (Y n ≤ z) -Φ(z) + c 4 √ a t .(10.24)Combining (10.21),(10.22) and (10.24) together, we obtain λ (Y n ≤ z) -Φ(z) + c 6 ε .23) and elementary computations, we see that (since λ ≥ 1 and ρ ∈ (0, 1]) (ε2 n + δ 2 n ) + T -t) 1+ρ/2 ≤ if ρ ∈ (0, 1), c |log ε n | , if ρ = 1. Then |I 1 | ≤ J 1 ≤ c ρ,1 c ρ * sup z P(Y n ≤ z) -Φ(z) + c ρ,2 ε n ,(10.27)whereε n = ε ρ n , if ρ ∈ (0, 1), ε n | ln ε n |, if ρ = 1. (10.28) b) Control of I 2 . Set G(z) = sup |v|≤2 ψ(z + v), where ψ(z) = ϕ(z)(1 + z 2 ) 3/2 . Since ∆A k = -∆V k , we have |I 2 | ≤ I 2,1 + I 2,2 , k-1 ) (∆V k -∆ X k )| , k-1 ) (∆ Y k -∆ X k )| .Proceeding in the same way as for estimating I 1 , we get the estimations|I 2,1 | ≤ c 1 c * sup z P λ (Y n ≤ z) -Φ(z) + c 2 γ and |I 2,2 | ≤ c 3 c * sup z P λ (Y n ≤ z) -Φ(z) + c 4 (λε n ) ρ .Collecting the bounds for I 2,1 and I 2,2 , we get |I 2 | ≤ c 5 c * sup z P λ (Y n ≤ z) -Φ(z) + c 6 γ. (10.29) c) Control of I 3 . By Taylor's expansion, it holds

  ), we obtain|I 3 | ≤ c 1 c * sup z P λ (Y n ≤ z) -Φ(z) + c 2 γ. (10.31) 

  sup z P λ (Y n ≤ z) -Φ(z) ≤ c ρ,3 c ρ * sup z P λ (Y n ≤ z) -Φ(z) + c ρ,4 (λε n ) ρ + ε n + δ n ,from which, choosing c ρ * = max{2c ρ,3 , 4}, we deduce thatsup z P λ (Y n ≤ z) -Φ(z) ≤ 2c ρ,4 (λε n ) ρ + ε n + δ n ,(10.32)which proves Lemma 4 for all 1 ≤ λ ≤ α ε -1 n . For all 0 ≤ λ < 1, we can prove Lemma 4 similarly by taking γ = ε ρ n + δ n .

  Set a t = c 2 * γ 2 + T -t. Since ∆V τt ≤ ε 2 n + 2δ 2 n (cf. Lemma 1), we deduce that t ≤ V τt ≤ V τt-1 + ∆V τt ≤ t + ε 2 n + 2δ 2 n , t ∈ [0, T ]. (10.19)Taking into account that c * ≥ 4, we obtain1 2 a t ≤ A τt = c 2 * γ 2 + T -V τt ≤ a t , t ∈ [0, T ]. (10.20)Note that G(z) is symmetric and is non-increasing in z ≥ 0. The bounds(10.20) implies that Notice that G(t) is also an integrable function of bounded variation on R. By Lemma 9, it is easy to see thatE λ G u -Y τt-1 a t 1/2 ≤ c 1 sup z P λ (Y τt-1 ≤ z) -Φ(z) + c 2 √ a t . (10.22) Since V τt-1 = V τt -∆V τt , V τt ≥t (cf. (10.19)) and ∆V τt ≤ ε 2 n + 2 δ 2 n , we get

	J 1 ≤ c ε ρ n	0	T	1 1+ρ/2 a t	E λ G	u -Y τt-1 t a 1/2	dt.	(10.21)
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