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Asymptotic properties of a branching random
walk with a random environment in time

Yuejiao Wang † Zaiming Liu † Quansheng Liu ‡ Yingqiu Li§

Abstract We consider a branching random walk in an independent and identically dis-
tributed random environment ξ = (ξn) indexed by the time. Let W be the limit of the
martingale Wn =

∫
e−txZn(dx)/Eξ

∫
e−txZn(dx), with Zn denoting the counting measure of

particles of generation n, and Eξ the conditional expectation given the environment ξ. We
find necessary and sufficient conditions for the existence of quenched moments and weighted
moments of W , when W is non-degenerate.

Key words Branching random walk, random environment, quenched moments, weighted
moments

1 Introduction and main results

The model of branching random walk has been studied by many authors, see e.g. [7, 8, 19, 31,
28, 13] and the references therein. A branching random walk with a random environment in
time is an important extension in which the offspring distribution of a particle of generation
n, and the distribution of the displacements of their children, depend on the environment
ξ = (ξ)n indexed by the time n, cf. e.g. [9, 27, 28, 29].

The model of branching random walk with a random environment in time can be described
as follows. As usual, let N = {0, 1, 2, · · · }, N+ = {1, 2, · · · }, R = {−∞,∞} and

U =
∞⋃
n=0

(N+)n

be the set of all finite sequences, where (N)+0 = {∅} contains the null sequence ∅. Let
ξ = (ξn)n≥0 be a sequence of independent and identically distribution random variables
taking values in some space Θ; each realization of ξn corresponds probability distribution
ηn = η(ξn) on N × R × R × · · · . Here ξn represents the random environment at time n.
When the environment sequence ξ is given, the branching random walk starts from an initial
particle ∅ of generation 0 located at the origin S∅ = 0 ∈ R. It gives birth to N∅ = N children
of the first generation whose number and displacements (relative to their parent ∅) L∅i = Li
constitute a point process (N ;L1, L2, · · · ) with distribution η0 = η(ξ0) on N× R× R× · · · .
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In general, when the environment ξ is given, each particle u = u1 · · ·un of n-th generation
with position Su gives birth to Nu children with displacements Lu,i, so that the position of
the i-th child is

Sui = Su + Lui,

where (Nu;Lu1, Lu2, · · · ) has distribution ηn = η(ξn) on N×R×R×· · · . Conditioned on the
environment ξ, all particles behave independently, which means that the family of the random
vectors (Nu;Lu1, Lu2, · · · ), indexed by all finite sequences u, are conditionally independent.

Let T be the Galton-Watson tree with defining elements {Nu : u ∈ U}: (i) ∅ ∈ T; (ii) if
u ∈ T, then ui ∈ T if only if 1 ≤ i ≤ Nu; (iii) if ui ∈ T, then u ∈ T.

The family {Su, u ∈ T} is called a branching random walk with a random environment
in time. In the following it will be termed simply as a branching random walk in a random
environment.

Let

Zn =
∑
|u|=n

δSu

be the counting measure of particles of generation n, so that for a subset A of R, Zn(A) is
the number of particles of generation n located in A :

Zn(A) =
∑
|u|=n

δSu(A) =
∑
|u|=n

IA(Su),

where δSu denotes the Dirac measure at Su and IA the indicator function of A; by convention
the summation is over all particles u of generation n.

The total probability space on which all the random variables ξn and Lui, |u| = n ≥ 0 are
defined will be denoted by (Ω,F ,P); the conditional probability given the environment ξ will
be denoted by Pξ. Therefore, by definition, for each realization of the environment sequence
ξ, the random variables Lui (|u| = n ≥ 0, i ≥ 1) are independent of each other under Pξ. The
probability P is usually called annealed law, while Pξ is called quenched law. The expectation
with respect to P and Pξ will be denoted respectively by E and Eξ.

Fix t ∈ R. Write

mn(t) = Eξ
Nu∑
i=1

e−tLui for |u| = n,

and assume that mn(t) < ∞. We are interested in the Laplace transform of the counting
measure Zn and the associated martingale:

Ẑn(t) =

∫
e−txZn(dx) =

∑
|u|=n

e−tSu , n ≥ 0,

W0(t) = 1, Wn(t) =
Ẑn(t)

EξẐn(t)
=

1∏n−1
i=1 mi(t)

∑
|u|=n

e−tSu for n ≥ 1.

It is well known that (Wn(t))n≥0 is a nonnegative martingale under Pξ with respect to the
filtration

F0 = σ(ξ),Fn = σ (ξ,Nu, Lu1, Lu2, · · · , |u| < n) for n ≥ 1,
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so that the limit W (t) = limn→∞Wn(t) exists almost surely (a.s.) with EξW (t) ≤ 1 by
Fatou’s Lemma. For simplicity, write

Wn = Wn(t) for n ≥ 0 and W = W (t).

The necessary and sufficient conditions for the non-degeneration of W have been known:
see Proposition 2.1 below applied to Aui = e−tLui . The existence of annealed moments and
weighted moments of Y have been studied in [22], see Theorems 2.1 and 2.2 cited below.
Here we are interested in the quenched moments and weighted moments of W , when W is
non-degenerate.

We first consider the existence of the quenched moments of W .

Theorem 1.1 Let α > 1, and assume that P(W = 0) < 1.

(i) If E log+ EξWα
1 <∞ and E log m0(αt)

mα0 (t)
∈ (−∞, 0), then EξWα <∞ a.s..

(ii) If E log m0(αt)
mα0 (t)

∈ (−∞, 0) and EξWα <∞ a.s., then E log+ EξWα
1 <∞.

(iii) If E(log− EξW1)
2+ε < ∞ for some ε > 0, E log+ EξWα

1 < ∞, E
(

log m0(αt)
mα0 (t)

)2
< ∞ and

EξWα <∞ a.s., then E log m0(αt)
mα0 (t)

< 0.

Part (i) gives sufficient conditions for the existence of quenched moments EξWα, while
parts (ii) and (iii) show that these conditions are also necessary under some additional as-
sumptions.

Recall that a positive and measurable function l is defined on [0,∞) is called slowly

varying at∞ if limx→∞
l(λx)
l(x)

= 1 for all λ > 0. (Throughout this paper, the term ”positive” is

used in the wide sense.) By the representation theorem (see [12],Theorem 1.3.1), any function
l slowly varying at ∞ is of the form

l(x) = c(x) exp

(∫ x

a0

ε(t)

t
dt

)
, x > a0, (1.1)

where a0 > 0, c(·) and ε(·) are measurable with c(x) → c for some constant c ∈ (0,∞) and
ε(x) → 0 as x → ∞. Moreover, it is known that any slowly varying function l posses a
smoothed version l1 in the sense that l(x) ∼ l1(x) as x→∞, with l1 of the form

l1(x) = c exp

(∫ x

a0

ε1(t)

t
dt

)
, x > a0, (1.2)

with ε1 infinitely differentiable on (a0,∞) and limx→∞ ε1(x) = 0 (see [12], Theorem 1.3.3).
The value of a0 and those of l(x) on [0, a0] will not be important. For convenience, we often
take a0 = 1. Notice also that the function c(·) in the representation of l(·) has no influence
on the finiteness of moments of W of the form EξWαl(W ), so that we can suppose without
loss of generality that c(x) = 1. Moreover, by choosing a smoothed version if necessary, we
can suppose that the function ε in the representation form (1.1) is infinitely differentiable.

We next give a description of the quenched weighted moments of W . Write W ∗ =
supn≥1Wn.
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Theorem 1.2 Assume that P(W = 0) < 1 and E log m0(αt)
mα0 (t)

∈ (−∞, 0). Let l(x) be a function

slowly varying at ∞ and φ(x) = xαl(x) with α > 1. Then the following assertions are
equivalent:
(i) E log+ Eξφ(W1) <∞; (ii) Eξφ(W ) <∞ a.s.; (iii) Eξφ(W ∗) <∞ a.s..

The rest of the paper is organized as follows. In Section 2 we describe the model of
Mandelbrot’s martingale in a random environment, and state for this martingale a variante
of Theorems 1.1 and 1.2: see Theorems 2.3 and 2.4, which imply Theorems 1.1 and 1.2. In
Section 3, we introduce some lemmas in order to prove our main results. In Sections 4 and
5, we give respectively the proof of Theorems 2.3 and 2.4.

2 Mandelbrot’s martingale in a random environment

The theorems stated in Section 1 will be proved for a slightly different but essentially e-
quivalent model, i.e., for Mandelbrot’s martingale in a random environment. This model is
described as follows. Let ξ = (ξn)n≥0 be a sequence of independent and identically distribu-
tion random variables taking values in some space Θ. Suppose that when the environment
ξ is given, {(Nu, Au1, Au2, · · · ) : u ∈ U} is a sequence of independent random variables with
values in N × RN+

+ , where R+ = [0,∞), defined on some probability space (Γ,Pξ); each
(Nu, Au1, Au2, · · · ) has distribution η(ξn) for |u| = n. For simplicity, we write (N,A1, A2, · · · )
for (N∅, A∅1, A∅2, · · · ).

Set

mn = Eξ
Nu∑
i=1

Aui, where |u| = n, n ≥ 0.

X∅ = 1, Xu =
Au1Au1u2 · · ·Au1···un∏n−1

i=0 mi

, if u = u1 · · ·un ∈ U, for n ≥ 1.

Y0 = 1 and Yn =
∑
|u|=n

Xu, for n ≥ 1.

Then, under Pξ, the sequence (Yn)n≥0 forms a nonnegative martingale with respect to the
filtration

G0 = σ(ξ) and Gn = σ(ξ,Nu, Au1, Au2, · · · , |u| < n) for n ≥ 1.

It follows that (Yn,Gn) is also a martingale under P. The martingale (Yn) is called Man-
delbrot’s martingale in a random environment. Notice that the martingale (Wn) for the
branching random walk (Su, u ∈ T) introduced in Section 1 is just Mandelbrot’s martingale
(Yn) with Aui = e−tLui for |u| = n ≥ 0.

Let

Y = lim
n→∞

Yn and Y ∗ = sup
n≥0

Yn,

where the limit exists a.s. by the martingale convergence theorem, and EξY ≤ 1 by Fatou’s
lemma.

We can image that each node of the tree T is marked with the vector (Nu, Au1, Au2, · · · ),
Aui being associated with the edge (u, ui) linking u and ui for u ∈ T and 1 ≤ i ≤ Nu;
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the values of Aui for i > Nu are of no influence for our results and will be taken as 0 for
convenience. So the model is also called weighted branching process in a random environment.
See for example [20].

Remark 2.1 If Au ≡ 1 for all u, then (Yn) becomes the natural martingale of the branching
process in a random environment, studied by many authors: see for example [1, 2, 3].

We are interested in the asymptotic properties of Mandelbrot’s martingale in a random
environment. For the existence of moments of Y in the Mandelbrot’s martingale, Liu [26]
proved that EY α <∞ if and only if EY α

1 <∞ and E
∑N

i=1A
α
i < 1. In this paper, we extend

this result to the Mandelbrot’s martingale in a random environment for the quenched law,
for which we will show that the existence condition is quite different to the annealed case.

Another interest is the existence of the weighted moments of Y of the form EξY αl(Y ),
where α > 1 and l is a positive function slowly varying at ∞. For a Galton-Watson process,
Bingham and Doney [10] showed that when α > 1 is not an integer, EY αl(Y ) < ∞ if and
only if EY α

1 l(Y1) < ∞. Alsmeyer and Rösler [4] proved that the same result remains true
for all non-dyadic integer α > 1 (not of the form 2k for some integer k ≥ 0). Liang and
Liu [23] proved that the result holds true for all α > 1. For the Mandelbrot’s martingale,
Alsmeyer and Kuhlbusch [5] showed that when α ∈ {2n : n ≥ 1}, EY αl(Y ) <∞ if and only
if EY α

1 l(Y1) <∞. Liang and Liu [25] proved that the same result remains true for all α > 1
and l is a positive function slowly varying at ∞. In [22], this result was further extended to
the Mandelbrot’s martingale in a random environment for the annealed weighted moments
of Y of the form EY αl(Y ). In this paper, we consider the quenched weighted moments of Y
for the Mandelbrot’s martingale with a random environment; we will see that the existence
condition is quite different to the annealed case.

For any x ≥ 0, write

ρξn(x) = Eξ
Nu∑
i=1

Axui
mx
n

for |u| = n, n ≥ 0.

ρ(x) = Eρξ0(x) = E
N∑
i=1

Axi
mx

0

and

ρ′(x) = E
N∑
i=1

Axi
mx

0

log
Ai
m0

if the expression is well defined (with value in [−∞,∞]). We mention that here ρ′(x) is a
notation, which coincides with the derivative of ρ(·) at x under natural regularity conditions.

For the non-degeneration of Y , a necessary and sufficient condition was shown by Biggins
and Kyprianou(2004,Theorem 7.1) and Kuhlbusch (2004,Theorem 2.5).

Proposition 2.1 (Non-degeneration [9],[20]) Assume that ρ′(1) is well-defined with value in
[−∞,∞). Then the following assertions are equivalent:

(i) ρ′(1) < 0 and EY1 log+ Y1 <∞.

(ii) EY = 1.
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(iii) P(Y = 0) < 1.

Necessary and sufficient conditions for the existence of annealed moments and weighted
moments of Y have been known. Let us recall them in the following two theorems.

Theorem 2.1 ([22]) Assume P(Y = 0) < 1. For α > 1, the following assertion are equiva-
lent:
(i) EY α

1 <∞ and ρ(α) < 1;
(ii) EY ∗ <∞;
(iii) 0 < EY α <∞.

Theorem 2.2 ([22]) Assume that P(Y = 0) < 1 and ρ(α) < 1 for α > 1. Let l : [0,∞) →
[0,∞) be a function slowly varying at ∞. Then the following assertions are equivalent:
(i) EY α

1 l(Y1) <∞;
(ii) EY ∗αl(Y ∗) <∞;
(iii) 0 < EY αl(Y ) <∞,

Here we are interested in the quenched moments and weighted moments of Y , when Y is
non-degenerate. We first consider the quenched moments.

Theorem 2.3 Let α > 1, and assume that P(Y = 0) < 1.
(i) If E log+ EξY α

1 <∞ and E log ρξ0(α) ∈ (−∞, 0), then EξY α <∞ a.s..
(ii) If E log ρξ0(α) ∈ (−∞, 0) and EξY α <∞ a.s., then E log+ EξY α

1 <∞.
(iii) If E(log− EξY1)2+ε < ∞ for some ε > 0, E log+ EξY α

1 < ∞, E log2 ρξ0(α) < ∞ and
EξY α <∞ a.s., then E log ρξ0(α) < 0.

Part (i) gives sufficient conditions for the existence of quenched moments EξY α, while
parts (ii) and (iii) show that these conditions are also necessary under some additional as-
sumptions.

Notice that since (Yn) is a nonnegative martingale under Pξ, the existence of quenched
moments EξY α is equivalent to the convergence in Lα under Pξ.

We next consider the existence of the quenched weighted moments of Y .

Theorem 2.4 Assume that P(Y = 0) < 1 and E log ρξ0(α) ∈ (−∞, 0). Let l(·) be a function
slowly varying at ∞ and φ(x) = xαl(x) with α > 1. Then the following assertions are
equivalent:
(i) E log+ Eξφ(Y1) <∞; (ii) Eξφ(Y ) <∞ a.s.; (iii) Eξφ(Y ∗) <∞ a.s..

Clearly, Theorems 1.1 and 1.2 come from Theorems 2.3 and 2.4 with Aui = e−tLui .

3 Preliminary lemmas

For the proof of our main results Theorems 1.1 and 1.2, we will use the following Lemmas.

Lemma 3.1 Let (αn, βn)n≥0 be a stationary and ergodic sequence of non-negative random
variables.
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(1) If E logα0 < 0 and E log+ β0 <∞, then

∞∑
n=0

α0 · · ·αn−1βn <∞ a.s.. (3.1)

(2) Conversely, we have:
(a) if E logα0 ∈ (−∞, 0) and (αn, βn)n≥0 is i.i.d., then (3.1) implies that E log+ β0 < ∞;
(b) if E| log β0| <∞, then (3.1) implies that E logα0 ≤ 0;
(c) if E| log β0| < ∞ and E(log− β0)

2+ε < ∞ for some ε > 0, then (3.1) implies that
E logα0 < 0, provided that E(logα0)

2 <∞ and that (αn)n is i.i.d.

For Part (1) and the first two conclusions of Part (2), see ([18], Lemma 3.1). See also [15]
and [21] for a discussion about the convergence of the series (3.1). Below we give a proof of
the last conclusion of Part (2).

Proof of Lemma 3.1. As mentioned above, we only need to prove (c) of Part (2). By (b)
of Part (2), we know that E logα0 ≤ 0. Assume that E logα0 = 0. Since E(log− β0)

2+ε <∞,
we have for any constant c > 0,

∞∑
n=3

P(βn < exp (−c
√
n log log n))

=
∞∑
n=3

P(log− βn > c
√
n log log n)

≤
∞∑
n=3

E(log− β0)
2+ε

(c
√
n log log n)2+ε

<∞. (3.2)

So by Borel-Cantelli’s lemma, we have a.s.

βn ≥ exp (−c
√
n log log n) for all n large enough. (3.3)

On the other hand, since σ2 := E(logα0)
2 <∞, by the law of iterated logarithm, we have

lim sup
n→∞

∑n−1
i=0 logαi√

σ2n log log n
= 1 a.s.. (3.4)

Therefore, choosing 0 < c < σ
2
, we see that a.s., for infinitely many n,

α0α1 · · ·αn−1βn ≥ exp((
σ

2
− c)

√
n log log n)→∞, (3.5)

which is a contradiction with (3.1). This shows that E logα0 < 0.

For the proof of our main results, we will use the Burkholder-Davis-Gundy(BDG) in-
equalities that we are going to state in the following lemma. For a martingale sequence
{(fn,Gn) : n ≥ 1} defined on some probability space (Ω,G,P), set f0 = 0, G0 = {∅,Ω},
dn = fn − fn−1 for n ≥ 1,

f ∗ = sup
n≥1
|fn| and d∗ = sup

n≥1
|dn|.
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Lemma 3.2 ([14],Theorem 2) Let Φ : [0,∞) → [0,∞) be an increasing and continuous
function with Φ(0) = 0 and Φ(2λ) ≤ cΦ(λ) for some c ∈ (0,∞) and all λ > 0.

(i) For every β ∈ (1, 2], there exists a constant B = Bc,β ∈ (0,∞) depending only on c and
β such that for any martingale {(fn,Gn) : n ≥ 1}, we have

EΦ(f ∗) ≤ BEΦ(s(β)) +BEΦ(d∗) with s(β) =

(
∞∑
n=1

E
(
|dn|β|Gn−1

))1/β

(3.6)

and

EΦ(f ∗) ≤ BEΦ(s(β)) +B

∞∑
n=1

EΦ(|dn|). (3.7)

(ii) If Φ is convex on [0,∞), then there exist constants A = Ac ∈ (0,∞) and B = Bc ∈
(0,∞), depending only on c, such that for any martingale {(fn,Gn) : n ≥ 1}, we have

AEΦ(S) ≤ EΦ(f ∗) ≤ BEΦ(S), where S =

(
∞∑
n=1

d2n

)1/2

;

moreover, for any β ∈ (0, 2],

EΦ(f ∗) ≤ BEΦ(S(β)), where S(β) =

(
∞∑
n=1

|dn|β
)1/β

.

If, additionally, for some β ∈ (0, 2] the function Φ1/β(x) = Φ(x1/β) is subadditive on
[0,∞), then

EΦ(f ∗) ≤ B
∞∑
n=1

EΦ(|dn|).

4 Proof of Theorem 2.3

Without loss of generality, we assume that mn = 1 a.s.. Otherwise we can consider Ãui :=
Aui/mn instead of Aui , for |u| = n, n ≥ 0.

For x > 0 and n ≥ 0, write

Yn(x) :=
∑
|u|=n

Xx
u and Pn(x) := Eξ

∑
|u|=n

Xx
u = ρξ0(x) · · · ρξn−1(x).

Obviously, Yn = Yn(1) and EξY1(x) = Eξ
∑N

i=1A
x
i = ρξ0(x). Let

Yn+1 − Yn =
∑
|u|=n

Xu(Y1(u)− 1),

where Y1(u) =
∑
|v|=1Auv, Pξ(Y1(u) ∈ ·) = PTnξ(Y1 ∈ ·) for |u| = n. Let

Dn = sup
k≥1

Auk, |u| = n and D∗n = sup
|u|=n

Xu ≤ D0 · · ·Dn−1.
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Proof of Theorem 2.3 Notice that since (Yn) is a martingale under Pξ, EξY α < ∞
a.s. is equivalent to supn EξY α

n < ∞ a.s.. Obviously, the condition supn EξY α
n < ∞ a.s. is

equivalent to supn Eξ|Yn − 1|α <∞ a.s..
We first prove part (i). Suppose that E log+ EξY α

1 < ∞. For α ∈ (1, 2], the result has
been proved by [17]. So we assume α > 2. Using BDG-inequality, we have

sup
n

Eξ|Yn − 1|α ≤ C Eξ
∣∣∣∣ ∞∑
n=0

(Yn+1 − Yn)2
∣∣∣∣α2 . (4.1)

Since
(
Eξ
∣∣∑∞

n=0(Yn+1 − Yn)2
∣∣α2 ) 2

α ≤
∑∞

n=0(Eξ|Yn+1 − Yn|α)
2
α , we have Eξ

∣∣∑∞
n=0(Yn+1 −

Yn)2
∣∣α2 ≤ (∑∞n=0(Eξ|Yn+1 − Yn|α)

2
α

)α
2
. Therefore, together with (4.1), we have

sup
n

Eξ|Yn − 1|α ≤
( ∞∑

n=0

(Eξ|Yn+1 − Yn|α)
2
α

)α
2

. (4.2)

So in order to prove supn Eξ|Yn − 1| < ∞ a.s., we only need to prove that
∑∞

n=1(Eξ|Yn+1 −
Yn|α)2/α <∞ a.s.. By BDG-inequality and the convexity of x

α
2 , we get

Eξ|Yn+1 − Yn|α ≤ C Eξ
( ∑
|u|=n

X2
u(Y1(u)− 1)2

)α
2

= C Eξ
( ∑
|u|=n

X2
u

Yn(2)
Yn(2)(Y1(u)− 1)2

)α
2

≤ C Eξ
∑
|u|=n

X2
u

Yn(2)

(
Yn(2)(Y1(u)− 1)2

)α
2 = C EξY

α
2
n (2)ETnξ|Y1 − 1|α. (4.3)

Since Yn(2) =
∑
|u|=nX

2
u ≤ D∗nYn(1), we have

EξY
α
2
n (2) ≤ EξD

∗α
2

n Y
α
2
n ≤ (EξY α

n )
1
2 (EξD∗αn )

1
2 ≤ (EξY α

n )
1
2 (EξDα

0 · · ·EξDα
n−1)

1
2 . (4.4)

By (4.2), (4.3) and (4.4), we have

sup
n

EξY α
n ≤ sup

n
Eξ(|Yn − 1|+ 1)α ≤ sup

n
2α(Eξ|Yn − 1|α + 1)

≤ 2α
( ∞∑
n=0

(
EξY

α
2
n (2)ETnξ|Y1 − 1|α

) 2
α

)α
2

+ 2α

≤ 2α sup
n

(EξY α
n )

1
2

[ ∞∑
n=0

(
EξDα

0 · · ·EξDα
n−1
) 1
α
(
ETnξ|Y1 − 1|α

) 2
α

]α
2

+ 2α.

Therefore,

sup
n

(EξY α
n )

1
2 ≤ 2α

[ ∞∑
n=0

(
EξDα

0 · · ·EξDα
n−1
) 1
α
(
ETnξ|Y1 − 1|α

) 2
α

]α
2

+ 2α/ inf
n

(EξY α
n )

1
2 . (4.5)

Since 1
α
E logEξDα

0 ≤ 1
α
E log ρξ0(α) < 0 and 2

α
E logEξY α

1 <∞, by Lemma 3.1, we see that[ ∞∑
n=0

(
EξDα

0 · · ·EξDα
n−1
) 1
α
(
ETnξ|Y1 − 1|α

) 2
α

]α
2
<∞ a.s.. (4.6)

9



Notice that when Y > 0, then Yn > 0 for all n ≥ n0 = n0(ω) large enough. Since Zk(R) = 0
implies Zn(R) = 0 for all n > k, it follows that infn Yn > 0 a.s. on {Y > 0}, so that
infn>0 Y

α
n > 0 a.s. on {Y > 0}. Since P(Y > 0) > 0 implies that Pξ(Y > 0) > 0 a.s.

(Pξ(Y > 0) satisfies the 0-1 law), it follows that

inf
n
EξY α

n > 0, (4.7)

so that
2α

infn(EξY α
n )

1
2

<∞ a.s.. (4.8)

From (4.5), (4.6) and (4.8), we obtain

sup
n

EξY α
n <∞ a.s.,

so that EξY α <∞ a.s..
We next prove part (ii). Assume that EξY α <∞. We only need to prove that E log+ Eξ|Y1−

1|α <∞. We divide the proof into two cases, according to α ≥ 2 and 1 < α < 2.
We first consider the case where α ≥ 2. By BDG-inequality and the convexity of x

α
2 , we

obtain

sup
n

Eξ|Yn − 1|α ≥ C Eξ
( ∞∑

n=0

(
Yn+1 − Yn

)2)α
2

≥ C
∞∑
n=0

Eξ|Yn+1 − Yn|α

≥ C
∞∑
n=0

Eξ
∣∣∣∣ ∑
|u|=n

X2
u(Y1(u)− 1)2

∣∣∣∣α2 ≥ C
∞∑
n=0

Eξ
∑
|u|=n

Xα
u |Y1(u)− 1|α

= C
∞∑
n=0

Pn(α)ETnξ|Y1 − 1|α.

Therefore, since supn Eξ|Yn − 1|α < ∞ a.s. and E log ρξ0(α) < 0, by Lemma 3.1, we have
E log+ Eξ|Y1 − 1|α <∞, which implies E log+ EξY α

1 <∞.
We next consider the case where 1 < α < 2. Let η =

∑
n Pn(α). By BDG-inequality and

the concavity of x
α
2 , we obtain

sup
n

Eξ|Yn − 1|α ≥ C Eξ
( ∞∑

n=0

(Yn+1 − Yn)2
)α

2

= C Eξ
( ∞∑

n=0

Pn(α)

η

η

Pn(α)
(Yn+1 − Yn)2

)α
2

≥ C Eξ
∞∑
n=0

Pn(α)

η

η
α
2

P
α
2
n (α)

|Yn+1 − Yn|α

= C η
α
2
−1

∞∑
n=0

P
1−α

2
n (α)Eξ|Yn+1 − Yn|α. (4.9)

For the same reason, we have

Eξ|Yn+1 − Yn|α ≥ C Eξ
( ∑
|u|=n

X2
u|Y1(u)− 1|2

)α
2

= C Eξ
( ∑
|u|=n

X2
u

Yn(2)
Yn(2)|Y1(u)− 1|2

)α
2

≥ C Eξ
∑
|u|=n

X2
u

Yn(2)

(
Yn(2)|Y1(u)− 1|2

)α
2 = C EξY

α
2
n (2)ETnξ|Y1 − 1|α

≥ C inf
n
EξY

α
2
n (2)ETnξ|Y1 − 1|α. (4.10)
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By (4.9) and (4.10), we have

sup
n

Eξ|Yn − 1|α ≥ C η
α
2
−1 inf

n
EξY

α
2
n (2)

∞∑
n=0

P
1−α

2
n (α)ETnξ|Y1 − 1|α. (4.11)

By (4.7), we have infn EξY α/2
n (2) > 0 a.s.. Since supn Eξ|Yn − 1|α <∞ and E log ρξ0(α) < 0,

by Lemma 3.1, we obtain E log+ Eξ|Y1 − 1|α <∞, which implies E log+ EξY α
1 <∞.

Finally, part (iii) follows directly from Lemma 3.1, part (2)(c).

5 Proof of Theorem 2.4

For n ≥ 0, write Mn = sup|u|=nX
β−1
u , M =

∑∞
n=1Mn.

Lemma 5.1 Let φ : [0,∞)→ [0,∞) be a convex and increasing function with φ(0) = 0 and
φ(2x) ≤ cφ(x) for some constant c ∈ (0,∞) and all x > 0. Let β ∈ (1, 2]. If the function
x 7→ φ(x1/β) is convex, then

Eξφ(|Y ∗ − 1|) ≤ C
∞∑
n=1

[
Eξ

(
Mn−1

M
φ
(
M1/βY

1/β
n−1

(
ETn−1ξ|Y1|β

)1/β))

+Eξ
∑
|u|=n−1

Xβ
u

Yn−1(β)
φ

(
Y

1/β
n−1(β)|Y1(u)− 1|

)]
, (5.1)

where C > 0 is a constant depending only on c and β.

Proof By (3.6), we have

Eξφ(Y ∗ − 1) ≤ C

(
Eξφ

(( ∞∑
n=1

Eξ
(
|Yn − Yn−1|β|Fn−1

)) 1
β
)

+
∞∑
n=1

Eξφ(|Yn − Yn−1|)

)
, (5.2)

where C > 0 is a constant only depending on c and β. By BDG-inequality, the concavity of

x
β
2 and the definition of Mn, we obtain

Eξ(|Yn − Yn−1|β|Fn−1) ≤ C Eξ
(( ∑

|u|=n−1

X2
u(Y1(u)− 1)2

)β
2
∣∣∣∣Fn−1)

≤ C Eξ
( ∑
|u|=n−1

Xβ
u |Y1(u)− 1|β

∣∣∣∣Fn−1) = C
∑
|u|=n−1

Xβ
uETn−1ξ|Y1 − 1|β

≤ C Mn−1Yn−1ETn−1ξ|Y1 − 1|β. (5.3)
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where Y1(u) =
∑
|v|=1Auv, Pξ(Y1(u) ∈ ·) = PTn−1ξ(Y1 ∈ ·) for |u| = n− 1. By (5.3), using the

fact that
∑∞

n=1MnM
−1 = 1 and the convexity of φ

(
x

1
β
)
, we have

Eξφ
(( ∞∑

n=1

Eξ(|Yn − Yn−1|β|Fn−1)
) 1

β
)

≤ Eξφ
(( ∞∑

n=1

CMn−1Yn−1ETn−1ξ|Y1 − 1|β
) 1

β
)

= Eξφ
(( ∞∑

n=1

C
Mn−1

M
MYn−1ETn−1ξ|Y1 − 1|β

) 1
β
)

≤ C Eξ
∞∑
n=1

Mn−1

M
φ
(
M

1
βY

1
β

n−1
(
ETn−1ξ|Y1 − 1|β

) 1
β

)
. (5.4)

By BDG-inequality and the convexity of φ(x
1
β ), we obtain

Eξφ(|Yn − Yn−1|) ≤ C Eξφ
(( ∑

|u|=n−1

Xβ
u |Y1(u)− 1|β

) 1
β
)

= C Eξφ
(( ∑

|u|=n−1

Xβ
u

Yn−1(β)
Yn−1(β)|Y1(u)− 1|β

) 1
β
)

≤ C Eξ
∑
|u|=n−1

Xβ
u

Yn−1(β)
φ
(
Y

1
β

n−1(β)|Y1(u)− 1|
)
. (5.5)

By (5.2), (5.4) and (5.5), we obtain (5.1).

For the proof of Theorem 1.2, we will use the following lemma.

Lemma 5.2 Let X be a non negative random variable, l be a function slowly varying at ∞
and φ(x) = xαl(x) with α > 1. The following assertions are equivalent:

(i) E log+ Eξφ(X) <∞ ;

(ii) E log+ Eξφ(|X − c|) <∞, where c > 0 is a constant.

Proof of Theorem 2.4 Let β ∈ (1, 2] and β < α. Write φ(x) = xαl(x), we can assume
that the functions φ and x 7→ φ

(
x1/β

)
are convex on [0,∞), and l(x) > 0 for all x ≥ 0

(see [24]). Moreover, by choosing a smoothed version if necessary, we can suppose that l is
differentiable.

The equivalence between (ii) and (iii) is obvious following Theorem 2.1 in [32]. The rest
of the proof is composed of the following two steps.

Step 1: prove that (i) implies (iii). Suppose that E log+ Eξφ(Y1) < ∞. By Lemma 5.1,
we have

Eξφ(Y ∗ − 1) ≤ C

∞∑
n=1

(I1(n) + I2(n)), (5.6)
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where

I1(n) = Eξ
Mn−1

M
φ
(
M

1
βY

1
β

n−1
(
ETn−1ξ|Y1 − 1|β

) 1
β

)
,

I2(n) = Eξ
∑
|u|=n−1

Xβ
u

Yn−1(β)
φ
(
Y

1
β

n−1(β)|Y1(u)− 1|
)
.

Hence, in order to prove Eξφ(|Y ∗−1|) <∞ a.s., we only need to prove that
∑∞

n=1 I1(n) <∞
a.s. and

∑∞
n=1 I2(n) <∞ a.s..

We first prove that
∑∞

n=1 I1(n) <∞ a.s.. Since l is bounded away from 0 and ∞ on any
compact subset of [0,∞), by Potter’s theorem (see [12]), for ε > 0, there exists C = C(l, ε) >
1 such that l(x) ≤ C max

(
xε, x−ε

)
for all x > 0. Therefore

∞∑
n=1

I1(n) =
∞∑
n=1

EξMn−1M
α
β
−1Y

α
β

n−1

(
ETn−1ξ|Y1 − 1|β

)α
β
l
(
M

1
βY

1
β

n−1(ETn−1ξ|Y1 − 1|β)
1
β

)
≤ C

∞∑
n=1

(I+1 (n) + I−1 (n)), (5.7)

where

I+1 (n) = EξMn−1M
α+ε
β
−1Y

α+ε
β

n−1

(
ETn−1ξ|Y1 − 1|β

)α+ε
β
,

I−1 (n) = EξMn−1M
α−ε
β
−1Y

α−ε
β

n−1

(
ETn−1ξ|Y1 − 1|β

)α−ε
β
.

Choose ε1 > 0 and ε2 > 0 small enough such that α − ε1 > β and (α+ε2)(α−ε2)
α− (β+1)ε2

β−1

∈ (1, α + γ),

where γ is defined below (see (5.9)). Let ε = min(ε1, ε2). Then α − ε > β and (α+ε)(α−ε)
α− (β+1)ε

β−1

∈

(1, α + γ). Using Hölder’s inequality twice and Jensen’s inequality, we obtain

I+1 (n) ≤
(
Eξ
(
Mn−1M

α+ε
β
−1)p1) 1

p1

(
EξY

α+ε
β
p2

n−1

) 1
p2

(
ETn−1ξ|Y1 − 1|β

)α+ε
β

≤
(
EξMp1q1

n−1

) 1
p1q1

(
EξM

(
α+ε
β
−1
)
p1q2
) 1
p1q2

(
EξY

α+ε
β
p2

n−1

) 1
p2

(
ETn−1ξ|Y1 − 1|β

)α+ε
β

≤
(
EξY

α+ε
β
p2

n−1

) 1
p2

(
EξMp1q1

n−1

) 1
p1q1

(
EξM

(
α+ε
β
−1
)
p1q2
) 1
p1q2

(
ETn−1ξ|Y1 − 1|α−ε

)α+ε
α−ε

, (5.8)

where p2 = β(α−ε)
α+ε

, q1 = α+ε
β

and 1
p1

+ 1
p2

= 1
q1

+ 1
q2

= 1. As E log ρξ0(x) is convex for

E log ρξ0(1) = 0 and E log ρξ0(α) < 0, there exists some γ ∈ (0, 1) such that

E log ρξ0(x) < 0 for x ∈ (1, α + γ]; (5.9)

in particular,

E log ρξ0(α− ε) < 0 for 0 < ε < α− 1. (5.10)

By Potter’s theorem, for ε > 0, there exists C = C(l, ε) > 0 such that l(x) ≥ Cx−ε for all
x ≥ 1. Therefore Eξ|Y1 − 1|α−ε ≤ 1 + 1

C
Eξφ(|Y1 − 1|) implies that

E log+ Eξ|Y1 − 1|α−ε ≤ E log+ Eξ
(

1 +
1

C
Eξφ(|Y1 − 1|)

)
≤ 1 + log+ 1

C
+ E log+ Eξ|Y1 − 1|αl(Y1 − 1) <∞. (5.11)
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By Theorem 2.3 together with (5.10) and (5.11), we know that

sup
n≥1

EξY α−ε
n−1 <∞ a.s.. (5.12)

Since p1q1(β − 1) = (α+ε)(α−ε)
α− (β+1)ε

β−1

∈ (1, α + γ). we have E log ρξ0(p1q1(β − 1)) < 0. So by the

triangular inequality for the norm ‖‖p1q1 in Lp1q1 , we have

(
EξMp1q1

n

) 1
p1q1 ≤

(
Eξ
( ∑
|u|=n

Xβ−1
u

)p1q1) 1
p1q1

≤
(
Eξ
∑
|u|=n

X(β−1)p1q1
u

) 1
p1q1

=

(
Pn−1

(
(β − 1)p1q1

)) 1
p1q1

(5.13)

and (
EξM

(
α+ε
β
−1
)
p1q2
) 1
p1q2 = (EξMp1q1)

1
p1q2 ≤

( ∞∑
n=1

(EξMp1q1
n−1 )

1
p1q1

)α+ε
β
−1

≤
( ∞∑

n=1

(
Pn−1((β − 1)p1q1)

) 1
p1q1

)α+ε
β
−1

<∞ a.s.. (5.14)

By (5.8) and (5.13), we have

∞∑
n=1

I+1 (n) ≤ sup
n≥1

EξY α−ε
n−1

(
EξM

(
α+ε
β
−1
)
p1q2
) 1
p1q2

∞∑
n=1

(
EξMp1q1

n−1

) 1
p1q1

(
ETn−1ξ|Y1 − 1|α−ε

)α+ε
α−ε

≤ sup
n≥1

EξY α−ε
n−1

(
EξM (α+ε

β
−1)p1q2

) 1
p1q2

∞∑
n=1

(
Pn−1((β − 1)p1q1)

) 1
p1q1

(
ETn−1ξ|Y1 − 1|α−ε

)α+ε
α−ε

.

Therefore, since E log ρξ0(p1q1(β − 1)) < 0 and E log+ EξY α−ε
1 <∞, by Lemmas 3.1 and 5.2,

together with (5.12) and (5.14), we have

∞∑
n=1

I+1 (n) <∞ a.s.. (5.15)

By an argument similar to that used above for the case of I+1 (n), choosing ε > 0 small
enough such that α− ε > β, we have

I−1 (n) ≤ (EξMp3
n−1M

p3(
α−ε
β
−1))

1
p3 (EξY

p4
α−ε
β

n−1 )
1
p4 (ETn−1ξ|Y1 − 1|β)

α−ε
β

≤
(
EξMp3q3

n−1

) 1
p3q3

(
EξM (α−ε

β
−1)p3q4

) 1
p3q4

(
EξY α−ε

n−1

) 1
p4ETn−1ξ|Y1 − 1|α−ε

=
(
EξMp3q3

n−1

) 1
p3q3

(
EξMp3q3

) 1
p3q3

(α−ε
β
−1)(

EξY α−ε
n−1

) 1
p4ETn−1ξ|Y1 − 1|α−ε

≤ C(Pn−1((β − 1)p3q3))
1

p3q3 (EξY α−ε
n−1 )

1
p4ETn−1ξ|Y1 − 1|α−ε

= C(Pn−1(α− ε))
1

p3q3 (EξY α−ε
n−1 )

1
p4ETn−1ξ|Y1 − 1|α−ε,

14



where q3 = (α− ε)/β > 1, p3 = β
β−1 > 1, 1

p3
+ 1

p4
= 1

q3
+ 1

q4
= 1. Therefore

∞∑
n=1

I−1 (n) ≤ C
∞∑
n=1

(Pn−1(α− ε))
1

p3q3 (EξY α−ε
n−1 )

1
p4ETn−1ξ|Y1 − 1|α−ε

≤ C sup
n

(EξY α−ε
n−1 )

1
p4

∞∑
n=1

(Pn−1(α− ε))
1

p3q3ETn−1ξ|Y1 − 1|α−ε. (5.16)

Hence, since E log ρξ0(α − ε) < 0 and E log+ EξY α−ε
1 < ∞, by Lemmas 3.1 and 5.2 together

with (5.12), we have

∞∑
n=1

I−1 (n) <∞ a.s.. (5.17)

By (5.7), (5.15) and (5.17), we obtain

∞∑
n=1

I1(n) <∞ a.s.. (5.18)

We next prove
∑∞

n=1 I2(n) < ∞ a.s.. By Potter’s theorem, for ε > 0, there exists
C = C(l, ε) > 0 such that l(xy) ≤ Cl(x) max{yε, y−ε}. Hence, we obtain

I2(n) = C Eξ
∑
|u|=n−1

Xβ
u

Yn−1(β)
Y

α
β

n−1(β)|Y1(u)− 1|αl
(
Y

1
β

n−1(β)|Y1(u)− 1|
)

≤ C(I+2 (n) + I−2 (n)). (5.19)

where

I+2 (n) = EξY
α+ε
β

n−1 (β)ETn−1ξφ(|Y1 − 1|),

I−2 (n) = EξY
α−ε
β

n−1 (β)ETn−1ξφ(|Y1 − 1|).

In order to prove
∑∞

n=1 I2(n) <∞ a.s., we only need to prove that
∑∞

n=1 I
+
2 (n) <∞ a.s. and∑∞

n=1 I
−
2 (n) < ∞ a.s.. We now consider

∑∞
n=1 I

+
2 (n). By Mn = sup|u|=nX

β−1
u and Höler’s

inequality, we have

I+2 (n) ≤ Eξ
(
Mn−1Yn−1

)α+ε
β ETn−1ξφ(|Y1 − 1|) ≤

(
EξM

α+ε
β
p

n−1

) 1
p
(
EξY

α+ε
β
p∗

n−1

) 1
p∗ETn−1ξφ(|Y1 − 1|),

where p∗ = β(α−ε)
α+ε

> 1, 1
p

+ 1
p∗

= 1. Therefore, we have

∞∑
n=1

I+2 (n) ≤ C

∞∑
n=1

(
EξM

α+ε
β
p

n−1

) 1
p
(EξY

α+ε
β
p∗

n−1 )
1
p∗ETn−1ξφ(|Y1 − 1|)

≤ C

∞∑
n=1

(
Eξ

∑
|u|=n−1

X
(β−1)α+ε

β
p

u

) 1
p
(
EξY

α+ε
β
p∗

n−1

) 1
p∗ETn−1ξφ(|Y1 − 1|)

≤ C sup
n≥1

(EξY α−ε
n−1 )

1
p∗

∞∑
n=1

(
Pn−1(p̃)

) 1
pETn−1ξφ(|Y1 − 1|).
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where ε > 0 is small enough such that p̃ := α+ε
β

(β − 1)p ∈ (1, α + γ), then E logm0(p̃) < 0.

Since E log ρξ0(p̃) < 0 and E log+ Eξφ(|Y1 − 1|) < ∞, by Lemma 3.1 and the above display,
we have

∞∑
n=1

I+2 (n) <∞ a.s.. (5.20)

We now consider
∑∞

n=1 I
−
2 (n). Similar to the case of I+2 (n), we have

I−2 (n) = Eξ
(
Yn−1(β)

)α−ε
β ETn−1ξφ(|Y1 − 1|) ≤ Eξ(Mn−1Yn−1)

α−ε
β ETn−1ξφ(|Y1 − 1|)

≤
(
EξM

α−ε
β
q

n−1

) 1
q
(
EξY

α−ε
β
q∗

n−1

) 1
q∗ETn−1ξφ(|Y1 − 1|),

where q∗ = β, q = β
β−1 and ε ∈ (0, α− 1). Therefore, we have

∞∑
n=1

I−2 (n) ≤
∞∑
n=1

(
EξM

α−ε
β
q

n−1

) 1
q
(
EξY

q∗ α−ε
β

n−1

) 1
q∗ETn−1ξφ(|Y1 − 1|)

≤ sup
n≥1

(
EξY α−ε

n−1

) 1
q∗
∞∑
n=1

(
EξM

α−ε
β
q

n−1

) 1
qETn−1ξφ(|Y1 − 1|)

≤ sup
n≥1

(
EξY α−ε

n−1

) 1
q∗
∞∑
n=1

(
Pn−1(α− ε)

) 1
qETn−1ξφ(|Y1 − 1|).

Therefore, since E log ρξ0(α− ε) < 0 and E log+ Eξφ(|Y1 − 1|) <∞, by Lemma 3.1, we have

∞∑
n=1

I−2 (n) <∞ a.s.. (5.21)

By (5.19), (5.20) and (5.21), we get

∞∑
n=1

I2(n) <∞ a.s.. (5.22)

Combining (5.6), (5.18) and (5.22), we obtain Eξφ(|Y ∗ − 1|) <∞ a.s. which is equivalent to
Eξφ(Y ∗) <∞ a.s..

Step 2: prove that (iii) implies (i). Assume that Eξφ(Y ∗) < ∞ a.s.. We only need to
prove that E log+ Eξφ(|Y1 − 1|) < ∞ by Lemma 5.2. We divide the proof into two cases,
according to α > 2 and 1 < α ≤ 2.

(a) We first consider the case α > 2. By Lemma 3.2(ii) and the convexity of φ1/2(x) =
φ(x1/2), we obtain

Eξφ(|Y ∗ − 1|) ≥ AEξφ
(( ∞∑

n=1

(Yn − Yn−1)2
) 1

2
)

≥ A
∞∑
n=1

Eξφ
(

((Yn − Yn−1)2)
1
2

)
= A

∞∑
n=1

Eξφ(|Yn − Yn−1|).
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For the same reason, we have

Eξφ(|Yn − Yn−1|) ≥ AEξφ
((∣∣∣∣ ∑

|u|=n−1

X2
u(Y1(u)− 1)2

∣∣∣∣) 1
2
)
≥ AEξ

( ∑
|u|=n−1

φ
(
Xu|Y1(u)− 1|

))
.

Choose ε > 0 small enough such that α−ε > 1. By Potter’s theorem, there exists C = C(l, ε)
such that l(xy) ≥ C l(x) min{yε, y−ε}, for all x > 0 and y > 0. Hence, we have

Eξφ(|Y ∗ − 1|) ≥ A
∞∑
n=1

Eξ(
∑
|u|=n−1

φ(Xu|Y1(u)− 1|))

≥ AC

∞∑
n=1

Eξ(
∑
|u|=n−1

Xα
u |Y1(u)− 1|α min(Xε

u, X
−ε
u )l(|Y1(u)− 1|))

= AC
∞∑
n=1

Eξ
∑
|u|=n−1

Xα
u min(X−εu , Xε

u)ETn−1ξφ(|Y1 − 1|)

= AC
∞∑
n=1

min
(
Pn−1(α− ε), Pn−1(α + ε)

)
ETn−1ξφ(|Y1 − 1|).

Since −∞ < E log ρξ0(α) < 0 for α > 1, by the law of large numbers, we have for δ > 0 and
n > n(ξ) large enough,

Pn−1(α− ε) > e(E log ρξ0 (α−ε)−δ)(n−1), Pn−1(α + ε) > e(E log ρξ0 (α+ε)−δ)(n−1),

then there is a(α, ε) ∈ (−∞, 0) such that a.s. Pn−1(α − ε) ≥ ea(α,ε)(n−1) and Pn−1(α + ε) ≥
ea(α,ε)(n−1) for n > n(ξ) large enough. Therefore the preceding lower bound of Eφ(Y ∗ − 1)
implies that

∞∑
n=1

ea(α,ε)(n−1)ETn−1ξφ(|Y1 − 1|) <∞ a.s..

Hence, by Lemma 3.1 we obtain E log+ Eξφ(|Y1 − 1|) < ∞ which, by Lemma 5.2, implies
E log+ Eξφ(Y1) <∞ .

(b) We next consider the case where 1 < α ≤ 2. Let F =
∑∞

n=1 Pn−1(α). By BDG-
inequality and the concavity of φ1/2(x) = φ(x1/2), we have

Eξφ(|Y ∗ − 1|) ≥ CEξφ
(( ∞∑

n=1

(Yn − Yn−1)2
) 1

2
)

= CEξφ 1
2

( ∞∑
n=1

(Yn − Yn−1)2
)

= CEξφ 1
2

(( ∞∑
n=1

Pn−1(α)

F

F

Pn−1(α)
(Yn − Yn−1)2

))
≥ CEξ

∞∑
n=1

Pn−1(α)

F
φ 1

2

(
F

Pn−1(α)
(Yn − Yn−1)2

)
= C

∞∑
n=1

Pn−1(α)

F
Eξφ

(
F

1
2P
− 1

2
n−1(α)|Yn − Yn−1|

)
.
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By BDG-inequality and the concavity of φ1/2(x), we get

Eξφ(F
1
αP
− 1

2
n−1(2)|Yn − Yn−1|) ≥ CEξφ

(( ∑
|u|=n−1

F
1

Pn−1(α)
X2
u|Y1(u)− 1|2

) 1
2
)

= CEξφ 1
2

( ∑
|u|=n−1

F
1

Pn−1(α)

X2
u

Yn−1(2)
Yn−1(2)|Y1(u)− 1|2

)

≥ CEξ
∑
|u|=n−1

X2
u

Yn−1(2)
φ

(
F

1
2

P
1
2
n−1(α)

Y
1
2
n−1(2)|Y1(u)− 1|

)
.

By Potter’s theorem, for ε > 0, there existsA = A(l, ε) > 0 such that l(xy) ≥ Al(y) min{xε, x−ε}.
Therefore

Eξφ(|Y ∗ − 1|)

≥ AC

F

∞∑
n=1

Pn−1(α)Eξ
∑
|u|=n−1

X2
u

Yn−1(2)
min

(
F

α+ε
2 Y

α+ε
2

n−1 (2)P
α+ε
2

n−1 (α), F
α−ε
2 Y

α−ε
2

n−1 (2)P
α−ε
2

n−1 (α)
)
φ(|Y1(u)− 1|)

=
AC

F

∞∑
n=1

Pn−1(α) min
(
F

α+ε
2 EξY

α+ε
2

n−1 (2), F
α−ε
2 EξY

α−ε
2

n−1 (2)
)

min
(
P

α+ε
2

n−1 (α), P
α−ε
2

n−1 (α)
)
ETn−1ξφ(|Y1 − 1|)

≥ AC

F
EξU

∞∑
n=1

min
(
P

1+α+ε
2

n−1 (α), P
1+α−ε

2
n−1 (α)

)
ETn−1ξφ(|Y1 − 1|),

where U = min
(
F

α+ε
2 infn Y

α+ε
2

n−1 (2), F
α−ε
2 infn Y

α−ε
2

n−1 (2)
)

. By (4.9), we have infn>0 Yn(2) > 0

a.s.. Hence U > 0 a.s. on {Y > 0}. Since Pξ(Y > 0) > 0, this implies that EξU > 0.
Since ∞ < E log ρξ0(α) < 0, by the law of large numbers, there is a ∈ (∞, 0) such that
a.s. Pn−1(α) ≥ e(n−1)a for n ≥ n(ξ) large enough. Therefore the preceding lower bound of
Eξφ(Y ∗ − 1) implies that

∞∑
n=1

e(n−1)a(1+
α+ε
2

)ETn−1ξφ(|Y1 − 1|) <∞ a.s..

Hence, by Lemma 3.1, we get E log+ Eξφ(|Y1 − 1|) < ∞ which, by Lemma 5.2, implies that
E log+ Eξφ(Y1) <∞ . Thus we have proved that (iii) implies (i).

Acknowledgements

The work has benefited from the support of the French government Investissements dAvenir
program ANR-11-LABX-0020-01. It has been partially supported by the National Natural
Science Foundation of China (Grants no. 11571052, no. 11401590, no. 11731012 and no.
11671404 ), and by Hunan Natural Science Foundation (China, grant no. 2017JJ2271).

References

[1] K. B. Athreya and S. Karlin. On branching processes in random environments. I: Ex-
tinction probabilities. Ann. Math. Statist. 42 (1971a) 1499-1520.

18



[2] K. B. Athreya and S. Karlin. On branching processes in random environments. II: Limit
theorems. Ann. Math. Statist. 42 (1971b) 1843-1858.

[3] K. B. Athreya and P. E. Ney. Branching processes (Berlin: Springer, 1972).

[4] G. Alsmeyer and U. Rösler. On the existence of φ-moments of the limit of a normalized
supercritical Galton-Watson process. J. Theor. Probab. 17 (2004) 905-928.

[5] G. Alsmeyer and D. Kuhlbusch. Double martingale structure and existence of φ-moments
for weighted branching processes. Münster J. Math. 3 (2010) 163-212.

[6] J. Barral. Generalized vector multiplicative cascades. Adv. Appl. Prob. 33 (2001) 874-
895.

[7] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Prob. 14
(1977), no.1, 25-37.

[8] J. D. Biggins. Uniform convergence of martingale in the branching random walk. Ann.
Prob. 20(1) (1992), 137-151.

[9] J. D. Biggins. A. E. Kyprianou. Measure change in multitype branching. Adv. in Appl.
Probab. 36 (2) (2004) 544-581.

[10] N. H. Bingham and R. A. Doney. Asymptotic properties of supercritical branching pro-
cesses. I: The Galton- Watson process. Adv. Appl. Prob. 6 (1974) 711-731.

[11] N. H. Bingham and R. A. Doney. Asymptotic properties of supercritical branching pro-
cesses. II: Crump-Mode and Jirina process. Adv. Appl. Prob. 7 (1975) 66-82.

[12] K. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular Variation. Cambridge Univ:
Press, Cambridge, 1987.

[13] X. Chen, H. He. On large deviation probabilities for empirical distribution of branching
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