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Abstract

Let (N,A1, A2, . . .) be a sequence of random variables withN ∈ N∪{∞} and Ai ∈ R+. We are interested

in asymptotic properties of non-negative solutions of the distributional equation Z
(d)
=

∑N
i=1AiZi, where

Zi are non-negative random variables independent of each other and independent of (N,A1, A2, . . .),
each having the same distribution as Z which is unknown. For a solution Z with finite mean, we prove
that for a given α > 1, P(Z > x) is a function regularly varying at ∞ of index −α if and only if the
same is true for P(Y1 > x), where Y1 =

∑N
i=1Ai. The result completes the sufficient condition obtained

by Iksanov & Polotskiy (2006) on the branching random walk. A similar result on sufficient condition
is also established for the case where α = 1.

AMS Subject Classification: 60K37, 60J80

Keywords: tail behavior, regular variation, smoothing transform, branching random walk, Mandelbrot’s
martingale

1 Introduction and main results

Let us introduce the smoothing transform that interests us. As usual, we write N = {0, 1, . . .}, N∗ =
{1, 2, . . .}, N̄ = N ∪ {∞} and R+ = [0,∞). Let (N,A1, A2, . . .) be a random variable taking values in
N̄× R+ × R+ × · · · . Assume that

E
N∑
i=1

Ai = 1. (1.1)

Let M1 be the set of probability measures on R+ with finite mean. The smoothing transform T on

M1 is defined by letting T µ be the distribution of
∑N
i=1AiZi, where Zi are independent and identically

distributed (i.i.d.) random variables with law µ, independent of (N,A1, A2, ...). It is convenient to write
the fixed point equation µ = T µ in the equivalent form

Z
(d)
=

N∑
i=1

AiZi, (E)

where Zi are non-negative i.i.d. random variables independent of (N,A1, A2, . . .), each having the same law

as Z (which is unknown). By convention, the empty sum is taken to be 0, so that
∑N
i=1Ai =

∑N
i=1AiZi = 0

if N = 0. The smoothing transform T will be identified with the corresponding transform on Laplace
transforms of elements of M1, so that by writing φ(s) = Ee−sZ , the equation (E) reads

φ(s) = (T φ)(s), where (T φ)(s) = E
N∏
i=1

φ(sAi), s ≥ 0, (E′)

with the convention that the empty product is taken to be 1.

∗Corresponding author
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The study of fixed points of the smoothing transform is interesting due to a large number of applications
in a variety of applied probability settings, including branching processes, self-similar cascades, infinite
particles systems, branching random walks, random fractals, the quicksort algorithm and the Pagerank
algorithm (which is in the heart of the Google engine): see for example Bingham & Doney (1974, 1975),
Kahane & Peyrière (1976), Biggins (1977), Durrett & Liggett (1983), Rösler (1992), Liu (1998), Aldous &
Bandyopadhyay (2005), Biggins & Kyprianou (2005), Iksanov & Polotskiy (2006), Buraczewski (2009), Hu
& Shi (2009), Volkovich & Litvak (2010), Barral & Jin (2014), Buraczewski & Kolesko (2014), Chen (2015)
and Shi (2015).

A typical example for a solution of (E) is the limit of a generalized Mandelbrot’s martingale (see Liu

(2000)) constructed as follows. Let U =
⋃∞
n=0 (N∗)n be the set of all finite sequences, where (N∗)0

= {∅}
contains the null sequence ∅. Let (Nu, Au1, Au2, . . .), indexed by u ∈ U , be a sequence of independent
copies of (N,A1, A2, . . .). Let T be the Galton-Watson tree with defining elements {Nu : u ∈ U}, that is:
(i) ∅ ∈ T, (ii) ui ∈ T implies u ∈ T, (iii) if u ∈ T and i ∈ N, then ui ∈ T if and only if 1 ≤ i ≤ Nu.
Let Tn = {u ∈ T : |u| = n} be the set of individuals in generation n, where |u| denotes the length of the
sequence u. Set

Yn =
∑

u1...un∈Tn

Au1
· · ·Au1...un for n ≥ 1. (1.2)

Then (Yn)n≥1 is a non-negative martingale with respect to the filtration En = σ{(Nu, Au1, Au2, . . .) : |u| <
n}, n ≥ 1, so that the limit

Y∞ = lim
n→∞

Yn (1.3)

exists a.s. by the martingale convergence theorem, with EY∞ ≤ 1 by Fatou’s lemma. By self-similarity of
the construction, it can be easily seen that Z = Y∞ is a solution of (E). We shall see in Lemma 1.1 that
any solution of (E) with finite mean can be obtained in this way.

Another typical example concerns the natural martingale occurring in the branching random walk
(BRW) on the real line R, described as follows. The initial particle ∅ of the 0-th generation is located
at S∅ = 0 ∈ R; it gives birth to N∅ = N new particles ∅i = i (1 ≤ i ≤ N) of the first generation with
displacements L∅i = Li. In general, each particle u = u1u2 . . . un of n-th generation gives birth to Nu
new particles ui (1 ≤ i ≤ Nu) of (n + 1)-th generation, with displacements (relative to their parent) Lui
on the real line, so that their positions are Sui = Su + Lui. The random variables (Nu, Lu1, Lu2, . . .) are
independent and identically distributed. Let Zn be the counting measure on the real line R which counts
the number of particles of the n-th generation in a given set of R:

Zn(A) =
∑
u∈Tn

1A(Su), A ⊂ R, (1.4)

where 1A denotes the indicator function of A, and Tn is the set of individuals of generation n as defined
before. Let t ∈ R be fixed such that m := E

∑N
i=1 e

−tLi < ∞. Then the Laplace transform of Zn at t is

Z̃n(t) =
∫
e−txdZn(x) =

∑
u∈Tn e

−tSu , and the sequence

Wn =
Z̃n(t)

EZ̃n(t)
=
∑
u∈Tn

e−tSu

mn
(1.5)

(the normalized Laplace transform of Zn) forms a non-negative martingale with respect to the filtration
En = σ{(Nu, Lu1, Lu2, . . .) : |u| < n}, n ≥ 1. Notice that {Wn} is just {Yn} with Au = e−tLu/m, so that
the a.s. limit variable Z = limnWn is a solution of (E) with Ai = e−tLi/m.

For x ≥ 0, write

ρ(x) = E
N∑
i=1

Axi and ρ′(x) = E
N∑
i=1

Axi lnAi (1.6)

if the expectation exists with value in the extended real line R̄ = [−∞,∞]. The following result concerns
the existence and uniqueness of nontrivial solutions with finite mean, and the existence of moments of order
α > 1. As usual, we write

ln+ x = max(lnx, 0) and ln− x = max(− lnx, 0) for x ≥ 0.
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We always assume (1.1) and write Y1 =
∑N
i=1Ai, in accordance with (1.2). Define for x > 0,

J(x) :=
x

A(x)
with A(x) =

∫ x

0

E
N∑
i=1

Ai1{− lnAi>t}dt = E
N∑
i=1

Ai min(ln−Ai, x),

where the last equality holds by Fubini’s theorem. Let J(0) = limx↓0 J(x) = 1/E
∑N
i=1Ai1{− lnAi>0}.

Notice that for any x > 0, A(x) = 0 if and only if a.s. Ai ≥ 1 on {Ai > 0}, for all i = 1, · · · , N .
Consequently, if ρ′(1) < 0, then A(1) > 0, and for any x ≥ 1, A(x) ≥ A(1) > 0 and J(x) ≤ x/A(1). Notice

also that J(x) = 1/
∫ 1

0
E
∑N
i=1Ai1{− lnAi>xu}du is increasing in x.

Lemma 1.1 (i) Assume that ρ′(1) is well defined whose value may be infinite. Then the equation (E) has
a solution Z with EZ = 1 if and only if either

ρ′(1) ∈ (−∞, 0) and E[Y1 ln+ Y1] <∞, (1.7)

or
ρ′(1) = −∞ and E[Y1J(ln+ Y1)] <∞. (1.8)

Moreover, if Z is a solution of (E) with EZ = 1, then EY1 = 1 and Z = Y∞ in law, where Y∞ is defined
by (1.3). (Consequently, there is only one solution Z satisfying EZ = 1.)
(ii) Let Z be a solution of (E) with EZ = 1. For α > 1, EZα <∞ if and only if ρ(α) < 1 and EY α1 <∞.

The first conclusion in Part (i) follows from a result of Alsmeyer and Iksanov (2009). In fact, by Theorem
1.3 of Alsmeyer and Iksanov (2009), when ρ′(1) is well defined, EY∞ = 1 (see (1.3) for the definition) if and
only if (1.7) or (1.8) holds (actually their result is established in the context of branching random walks,
but can also be formulated in the context of Mandelbrot’s martingales). So to prove the conclusion we just
need to show that the equation (E) has a solution Z with EZ = 1 if and only if EY∞ = 1. The ”if” part is
evident. To see the ”only if” part, it suffices to notice that by Theorem 7.1 of Liu (1998), if Z is a solution
of (E) with EZ = 1, then

Yn → Z in law.

(To see this, it suffices to take η(t) = e−t and φ(t) = Ee−tZ in Theorem 7.1 of Liu (1998); in this case,
the condition (H1) therein is not needed). Hence Z = Y∞ in law. This argument also shows the second
conclusion of Part (i).

Part (ii) is just Theorem 2.1 of Liu (2000) (although Liu only considered the case where N < ∞ a.s.,
this condition was not needed in the proof therein).

The criterion (1.7) has been well-known in the literature. For example, Biggins (1977) proved it under
the additional condition E

∑∞
i=1Ai(lnAi)

2 <∞, Liu (1997) proved it when EN <∞, Lyons (1997) proved
it assuming only ρ′(1) is finite. In fact Biggins (1977) and Lyons (1997) also shown the sufficiency when
ρ′(1) = −∞ and E[Y1 ln+ Y1] < ∞. Notice that, by the discussion before Lemma 1.1, if ρ′(1) ∈ [−∞, 0),
then E[Y1 ln+ Y1] <∞ implies E[Y1J(ln+ Y1)] <∞.

A fundamental problem on the smoothing transform concerns the tail behavior of fixed points. Many
authors have studied this problem in various contexts, see for example: Bingham & Doney (1974, 1975)
for Galton-Watson processes and Crump-Mode-Jirina processes; Kahane & Peyrière (1976), Guivarc’h
(1990), Barral (1999), Liu (2000), Barral & Jin (2014), and Liang & Liu (2015) for Mandelbrot’s cascades;
Durrett & Liggett (1983) for some infinite particles systems; Biggins & Kyprianou (1997,2005), Iksanov
& Polotskiy (2006) and Alsmeyer & Kuhlbusch (2010) for branching random walks; Volkovich & Litvak
(2010) for the Pagerank algorithm (which is in the heart of the Google engine); Liu (1997, 1998), Aldous
& Bandyopadhyay (2005), Buraczewski(2009), Buraczewski & Kolesko (2014) and Shi (2015) for related
topics and many other references. Here we shall study the regular variation of the tail probability P(Z > x)
when x→∞, for a solution Z of (E) with finite mean.

Let α > 1 be such that ρ(α) < 1. Lemma 1.1 (ii) shows that Z and Y1 would have similar asymptotic
properties. We shall show this by establishing comparison theorems between the tail behavior of Z and
that of Y1. Throughout the paper, let

R0 =

{
` : [0,∞)→ [0,∞) : ` is measurable and lim

x→∞

`(λx)

`(x)
= 1 ∀λ > 0

}
(1.9)
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be the set of functions slowly varying at ∞ (also called the class of regularly varying functions of index 0).
Recall that a function ` ∈ R0 can be represented in the form (cf. [11], p.12)

`(x) = c(x) exp

∫ x

a

ε(u)

u
du (x ≥ a)

for some a > 0, where c(·) and ε(·) are measurable with c(x) → c ∈ (0,∞) and ε(x) → 0 as x → ∞.
Without loss of generality, we can take c(x) ≡ c. For simplicity, we take c = 1. Also, as the value of `(x)
on finite intervals have no influence on our purpose, we can take a = 1, and

`(x) =

{
exp

∫ x
1
ε(u)
u du if x > 1,

1 if x ≤ 1,
(1.10)

where ε(·) is measurable and bounded with ε(x)→ 0 as x→∞.
As usual, we write f(s) = o(g(s)) if f(s)/g(s) → 0, and f(s) ∼ g(s) if f(s)/g(s) → 1, where s → 0 or

∞ according to the context. We use

f(s) = O(g(s)), s ∈ I (resp. s→ 0),

to mean |f(s)| ≤ C|g(s)| on I (resp. for s > 0 small enough), where C > 0 is a constant. We emphasize
that C > 0 is a deterministic constant when g is a random function. For a set B we use IntB to denote
the interior of B.

In what follows we always assume that Z ≥ 0 is a solution of (E) with EZ = 1. Our main results are
Theorems 1.1 and 1.2 below about the regular variation of P(Z > x).

Theorem 1.1 Let α > 1 be such that ρ(a) < 1 and that

ρ(α+ δ0) <∞ for some δ0 > 0. (1.11)

Then the following two assertions are equivalent for ` ∈ R0:

P{Y1 > x} ∼ x−α`(x) as x→∞ , (1.12)

P{Z > x} ∼ (1− ρ(α))−1x−α`(x) as x→∞ . (1.13)

In the context of the Galton-Watson process (where Ai = 1/EN < 1 for all i) and the Crump-Mode-
Jirina process (where Ai ≤ 1 for all i), the same result was established by Bingham & Doney (1974, 1975)
when α > 1 is not an integer, and by de Meyer (1982) when α > 1 is an integer. Their argument was based
on the functional equation (E′) and a powerful Tauberian theorem on Laplace transforms. The implication
”(1.12) ⇒ (1.13)” has been extended by Iksanov & Polotskiy (2006) to the general case where Ai are not
necessarily bounded, using an elegant martingale argument. The analytic argument of Bingham & Doney
(1975) depends heavily on the boundedness of Ai, while the probabilistic argument of Iksanov & Polotskiy
(2006) does not give the converse part. Notice that the boundedness condition on Ai restricts much the
applications: for example, in the typical case of the canonical Mandelbrot’s cascade and in the branching
Brownian motion, where Ai are not bounded as lnAi are Gaussian variables. Our theorem shows that the
results of Bingham & Doney (1974, 1975) and de Meyer (1982) remain true in the general case (where Ai
are not necessarily bounded), so that they can be applied for example to general Mandelbrot’s martingales
and branching random walks; in our approach we extend the analytic arguments of Bingham & Doney
(1974, 1975) to the general case. While Ai are not bounded, the arguments become much more delicate; we
use delicate truncating technics to overcome the difficulty. Theorem 1.1 also improves the result of Iksanov
& Polotskiy (2006) in the sense that we obtain a necessary and sufficient condition, not just a sufficient
condition.

When α ∈ (1, 2), the implication ”(1.12) ⇒ (1.13)” has also been shown by Rösler, Topchii & Vatutin
(2002, 2003) for weighted branching processes with real weights and by Iksanov, Kolesko & Meiners (2019)
for a more general functional of the underlying branching random walk. Moreover, in the same work Iksanov
et al. pointed out that when α ∈ (1, 2) and when limx→∞ `(x) exists and is strictly positive and finite, the
condition (1.11) can be removed. For a similar situation, see Mikosch and Samorodnitsky (2000). In this
paper we need the condition (1.11) to establish Theorem 2.1 about the relations between the reminders
of the Taylor expansion of Laplace transforms of Y1 and Z (see e.g. the proof of Lemma 4.1 which serves
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for the proof of Theorem 2.1), and to secure a proper use of Potter’s bound while using Theorem 2.1 to
prove Theorem 1.1. We mention that we can avoid the use of Potter’s bound (so that the condition (1.11)
will not be used for this purpose), if ` is sub-multiplicative in the sense that `(xy) ≤ c `(x) `(y) for some
constants c, x0 > 0 and all x, y ≥ x0 (which holds in particular if limx→∞ `(x) ∈ (0,∞)); however we still
need (1.11) in the proof of Theorem 2.1, so that we fail to remove it in Theorem 1.1.

Closely related results on weighted moments of the form E(Zα`(Z)) have been established for example
in Alsmeyer & Kuhlbusch (2010) and Liang & Liu (2015).

Remark 1.1 Notice that under (1.12) or (1.13), the condition (1.11) is equivalent to the condition

EAα+ε <∞ for some ε > 0, where A = sup
1≤i≤N

Ai, (1.14)

which will be used in the following. In fact, if (1.11) holds, then it is clear that (1.14) holds for ε = δ0. So
we only need to show that (1.14) implies (1.11). Relation (1.12) implies EY α−δ01 < ∞ and (1.13) implies
EZα−δ0 < ∞ for δ0 ∈ (0, α − 1]. So by Lemma 1.1(b), under (1.12) or (1.13), we have EY α−δ01 < ∞. By
Hölder’s inequality,

ρ(α+ δ0) = E
N∑
i=1

Aα+δ0
i ≤ E[Y1A

α−1+δ0 ] ≤
(
EY α−δ01

)1/(α−δ0)

· E
(
Aα+δ

)(α−1−δ0)/(α−δ0)
, (1.15)

where δ = (α+1−δ0)δ0
α−1−δ0 . When δ0 > 0 is small enough, we have δ ≤ ε, so that the right side of (1.15) is finite

by (1.14).

We shall prove the equivalence between (1.12) and (1.13) under the condition (1.14), using Tauberian
theorems and truncating techniques. Our approach also gives a new proof of the result of Iksanov &
Polotskiy (2006).

Let αc ≥ 1 be the critical value for the existence of moments of Y1:

αc = sup{a ≥ 1 : EY a1 <∞}. (1.16)

Notice that Theorem 1.1 is applicable only in the case where αc > 1. When αc = 1, the following result
shows that the situation is different. For ` ∈ R0 with

∫∞
1
`(t)dt/t <∞, set ˜̀(x) = 0 for x ∈ [0, 1), and

˜̀(x) =

∫ ∞
x

`(t)

t
dt for x ≥ 1. (1.17)

Theorem 1.2 Assume that ρ(1 + δ0) <∞ for some δ0 > 0, and that µ := −ρ′(1) ∈ (0,∞). Let ` ∈ R0 be
such that

∫∞
1
`(x)dx/x <∞. If

EY11{Y1>x} ∼ `(x) (x→∞), (1.18)

then
EZ1{Z>x} ∼ µ−1 ˜̀(x) (x→∞). (1.19)

The same result was established by Bingham & Doney (1974, 1975) for the Galton-Watson process, the
Crump-Mode and Jirina processes. Notice that, just as in the result of Bingham & Doney (1974, 1975),
here we have not established the equivalence between (1.18) and (1.19). An explanation on this point will
be given in Remark 7.1.

Theorems 1.1 and 1.2, without detailed proofs, have been announced in Liang & Liu (2011). In both
Theorems 1.1 and 1.2, we are in the case where E[Y1 ln+ Y1] < ∞. In fact, in Theorem 1.1, each of the
conditions (1.12) and (1.13) implies that E[Y a1 ] <∞ for 1 < a < α, so that E[Y1 ln+ Y1] <∞; in Theorem
1.2, the conditions

∫∞
1
`(x)dx/x <∞ and (1.18) also imply that E[Y1 ln+ Y1] <∞, because, as mentioned

in Bingham & Doney (1974), ∫ ∞
1

E[Y11Y1>x]
dx

x
= E[Y1 ln+ Y1].

As information, we mention that when E[Y1 ln+ Y1] = ∞, the asymptotic behavior of Z has also been
studied in the literature, see for example Alsmeyer & Iksanov (2009) about the existence of moments of Z.
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The rest of the paper is organized as follows. In Section 2, we explain the main ideas of the approach,
and the relations between the Laplace transforms of Z and Y1 (cf. Theorems 2.1 and 2.2). Section 3
contains some preliminary results about the equation (E) and its solutions. Sections 4 and 5 are devoted
to the proof of auxiliary theorems announced in Section 2. Theorems 1.1 and 1.2 are proved respectively
in Sections 6 and 7.

In the following sections, C > 0 always stands for a deterministic constant whose value may differ from
line to line.

2 Key ideas of the approach

2.1 Tauberian theorems

For a non-negative random variable X, we write f(s) = Ee−sX for its Laplace transform and µr = EXr

for its r-moment (r = 0, 1, 2, . . .). If X has at least finite n-th moment, we set

fn(s) = (−1)n+1E

{
e−sX −

n∑
r=0

(−sX)r

r!

}
, n ≥ 0, (2.1)

and

f (n)
n (s) =

dnfn(s)

dsn
= (−1)n{f (n)(0)− f (n)(s)}

= EXn(1− e−sX), n ≥ 0. (2.2)

We shall use the following two Tauberian theorems which give necessary and sufficient conditions for
P(X > x) ∼ x−α`(x), as x →∞: see Proposition 2.1 for α 6∈ N, and Proposition 2.2 for α ∈ N. As usual,
denote by Γ(·) the gamma function.

Proposition 2.1 ([9], Theorem A) Let X be a non-negative random variable with Laplace transform f(s) =
Ee−sX . Let n ∈ N∗. If µr = EXr <∞ for r = 0, 1, . . . , n, then for α = n+β with 0 ≤ β ≤ 1, the following
statements are equivalent for ` ∈ R0:

fn(s) ∼ sα`(1/s) (s→ 0);

f (n)
n (s) ∼ Γ(α+ 1)

Γ(β + 1)
sβ`(1/s) (s→ 0);

EXn1{X>x} ∼ n! `(x) (x→∞) when β = 0;

P(X > x) ∼ (−1)n

Γ(1− α)
x−α`(x) (x→∞) when 0 < β < 1;

EXn+11{X≤x} ∼ (n+ 1)!`(x) (x→∞) when β = 1.

Proposition 2.2 Le X be a non-negative random variable with Laplace transform f(s) = Ee−sX . Let
n ≥ 0 be an integer, and assume that µn = EXn <∞. Define fn by (2.1) and

f̂n(s) = fn(s)/sn, s > 0.

Then the following two statements are equivalent for ` ∈ R0:

P(X > x) ∼ x−(n+1)`(x) (x→∞); (2.3)

f̂n(t)− f̂n(λt)

`(1/t)
∼ 1

n!
lnλ (t→ 0) ∀λ > 1. (2.4)

Proposition 2.1 was established by Bingham & Doney (1974), using Karamata’s theorem (cf. [11] or
[19]). Proposition 2.2 can be obtained from the argument by de Meyer and Teugels (1980, Section 3) via
de Haan’s theorem (cf. [11], [15] or [16]), and was used in de Meyer (1982) for extending the result of
Bingham and Doney (1974) to integer orders. However this result was not explicitly stated neither in de
Meyer and Teugels (1980) nor in de Meyer (1982). For reader’s convenience, we give the statement here
whose proof is postponed in the Appendix.
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2.2 Relations between the Laplace transforms of Y1 and Z

Assume that Z ≥ 0 is a solution of (E) with EZ = 1. In view of Propositions 2.1 and 2.2, to obtain
comparison results for the regular variations of Y1 and Z, we first show relations between hn and φn
defined below: for n ∈ N,

hn(s) = (−1)n+1E

{
e−sY1 −

n∑
r=0

(−sY1)r

r!

}
, (2.5)

φn(s) = (−1)n+1E

{
e−sZ −

n∑
r=0

(−sZ)r

r!

}
. (2.6)

Let φ(s) = Ee−sZ (s ≥ 0) be the Laplace transform of Z. Set

t(s) = − lnφ(s) and T (s) =

N∑
i=1

t(sAi). (2.7)

Since EZ = 1, by Jensen’s inequality, we have φ(s) = Ee−sZ ≥ e−sEZ = e−s, so

0 ≤ t(s) ≤ s and 0 ≤ T (s) ≤ Y1s. (2.8)

Moreover, as EZ = 1,

t(s) ∼ s and T (s) ∼
N∑
i=1

sAi = sY1 (s→ 0). (2.9)

For n ∈ N, if EZn < ∞, then φ has n-th continuous derivatives φ(n) on [0,∞). Therefore t(·) and T (·)
have also continuous n-th derivatives, denoted respectively by t(n)(s) and T (n)(s). Clearly, for s ≥ 0,

T (n)(s) =

N∑
i=1

Ani t
(n)(sAi).

Let M be a random variable whose distribution is determined by

Ef(M) = E
N∑
i=1

Aif(Ai) (2.10)

for any measurable function f : [0,∞)→ [0,∞). Set

gn(s) = EY n1 (1− e−sY1) and ψn(s) = EZn(1− e−sZ). (2.11)

Then gn(s) = h
(n)
n (s) and ψn(s) = φ

(n)
n (s), where h

(n)
n and φ

(n)
n are the n-th derivatives of hn and φn,

respectively. We have the following comparison theorem between gn and ψn.

Theorem 2.1 Let Z ≥ 0 be a solution of (E) with EZ = 1, and define gn and ψn by (2.11).

(i) Assume that ρ(α) < 1 for some α > 1, and that ρ(α + δ0) < ∞ for some δ0 > 0. Assume also that
EY γ1 < ∞ and EZγ < ∞ for all γ ∈ [1, α). Then writing α = n + β with n ∈ N∗ and β ∈ (0, 1], we
have for ε > 0 small enough and all s ≥ 0,

ψn(s)− E{Mn−1ψn(sM)} = gn(s) + cns+O(sβ+ε), (2.12)

where cn is a constant only depending on n, with cn = 0 when α is not an integer (i.e. β < 1).

(ii) Assume that ρ(1 + δ0) <∞ for some δ0 > 0. Then for ε > 0 small enough and all s ≥ 0,

ψ1(s)− Eψ1(sM) = E{T ′(s)(1− e−T (s))}+O(sε). (2.13)
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Part (i) deals with the case where E(Y γ1 ) < ∞ for some γ > 1, while Part (ii) applies without any
moment condition on Y1 (other than EY1 = 1).

To fix the idea, notice that the interesting part in (2.12) is the validity for s ∈ [0, 1] (or s→ 0), as the
validity for s ∈ (1,∞) is evident due to the condition that EY n1 < ∞ and EZn < ∞ (which implies that
each of the first three terms in (2.12) is bounded). The situation is similar for (2.13).

Integrating (2.12) and (2.13) n times, and noting that ψk(0) = gk(0) = 0 for k ≤ n, we obtain the
following relations between hn and φn.

Theorem 2.2 Let Z ≥ 0 be a solution of (E) with EZ = 1, and define hn and φn by (2.5) and (2.6).

(i) Assume that ρ(α) < 1 for some α > 1, and that ρ(α + δ0) < ∞ for some δ0 > 0. Assume also that
EY γ1 < ∞ and EZγ < ∞ for all γ ∈ [1, α). Then writing α = n + β with n ∈ N∗ and β ∈ (0, 1], we
have for ε > 0 small enough and all s ≥ 0,

φn(s)− E{M−1φn(sM)} = hn(s) + cns
n+1 +O(sα+ε), (2.14)

where cn is a constant only depending on n, with cn = 0 when α is not an integer (i.e. β < 1).

(ii) Assume that ρ(1 + δ0) <∞ for some δ0 > 0. Then for ε > 0 small enough and all s ≥ 0,

φ1(s)− E{M−1φ1(sM)} = E{e−T (s) − 1 + T (s)}+O(s1+ε). (2.15)

Just as in (2.12) and (2.13), what is essential in (2.14) and (2.15) is the validity for s ∈ [0, 1] (or s→ 0).
Part (i) will be applied for the proof of Theorem 1.1, while Part (ii) applies for the proof of Theorem 1.2.

Let us explain one of the main difficulties in our approach compared with the work of Bingham and
Doney (1975) who considered the case where Ai ≤ 1. We just consider Part (ii) as an example for
illustration. When sup1≤i≤N Ai is bounded, say sup1≤i≤N Ai ≤ C a.s. for some constant C > 0, then it

can be easily seen that the function E
(
e−T (s) − 1 + T (s)

)
appearing in Theorem 2.2 (ii) is close to h1(s)

as s → 0, which is essential for the proof of Theorem 1.2 (see Section 7). In fact, as t(s) ∼ s (s → 0), for
each ε ∈ (0, 1), there is s0 = s0(ε) > 0 such that (1− ε)s ≤ t(s) ≤ (1 + ε)s, ∀s ∈ (0, s0). As Ais ≤ Cs and

H(x) := e−x− 1 +x is increasing, it follows that for s ≤ s0/C, T (s) =
∑N
i=1 t(Ais) lies between (1± ε)sY1,

so that
E
(
e−T (s) − 1 + T (s)

)
lies between EH ((1± ε)sY1) = h1 ((1± ε)s) . (2.16)

When sup1≤i≤N Ai is not bounded, the argument above is no longer valid, so new ideas are needed to arrive
at a similar conclusion: cf. Lemma 7.1; this is the typical difficulty that we have compared with the work
of Bingham and Doney (1975).

We now summarize the key ideas for proving Theorem 1.1. In the case where α > 1 is not an integer,
by Proposition 2.1, it suffices to show that the following two assertions are equivalent:

hn(s) ∼ sα`(1/s) (s→ 0), (2.17)

φn(s) ∼ sα`(1/s)

1− ρ(α)
(s→ 0). (2.18)

This equivalence will be shown by means of Theorem 2.2 (i). In the case where α > 1 is an integer, the
argument is similar, using Proposition 2.2 instead of Proposition 2.1.

To prove Theorem 1.2, again by Proposition 2.1 (with n = 1 and β = 0), we just need to show that

h1(s) ∼ s`(1/s) (s→ 0) (2.19)

implies
φ1(s) ∼ µ−1s˜̀(1/s) (s→ 0), (2.20)

where ˜̀ is defined in (1.17). This will be done with help of Theorem 2.2 (ii). Unfortunately, we fail to
prove the equivalence between (2.19) and (2.20), which would lead to the equivalence between (1.18) and
(1.19). See Remark 7.1 on this point.

The details of the proofs of Theorems 1.1 and 1.2 are given respectively in Sections 6 and 7. Both
proofs are based on Theorem 2.2 about the comparison between hn and φn, which is a direct consequence
of Theorems 2.1 whose proof is given in Sections 4 and 5.
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3 Asymptotic properties of Laplace transforms

Let Z ≥ 0 be a random variable with EZ = 1. Set φ(s) = Ee−sZ and t(s) = − lnφ(s) for s ≥ 0. In this
section we present some asymptotic properties of φ(s), t(s) and their derivatives, as s→ 0.

As in Bingham and Doney (1975), differentiating n times the function φ(s) in the form

φ(s) = e−t(s), (3.1)

we obtain
φ(n)(s) = e−t(s){Pn,t(s) + (−t′(s))n − t(n)(s)}, (3.2)

where Pn,t(s) is a polynomial in t′(s), . . . , t(n−1)(s):

Pn,t(s) =
∑

a1,...,an−1

c(a1, . . . , an−1)(t′(s))a1 · · · (t(n−1)(s))an−1 , (3.3)

c(a1, . . . , an−1) are integers and {ak}n−1
k=1 are non-negative integers satisfying

n−1∑
k=1

kak = n and a1 6= n; (3.4)

by convention, P1,t(s) = P2,t(s) = 0. By iteration, t(n)(s) can be written in the form

t(n)(s) = Qn,φ(s) +

(
φ′(s)

φ(s)

)n
+

(
−φ

(n)(s)

φ(s)

)
, (3.5)

where Qn,φ(s) is a polynomial in φ′(s)
φ(s) , . . . ,

φ(n−1)(s)
φ(s) :

Qn,φ(s) =
∑

a1,...,an−1

d(a1, . . . , an−1)

(
φ′(s)

φ(s)

)a1

· · ·
(
φ(n−1)(s)

φ(s)

)an−1

, (3.6)

d(a1, . . . , an−1) are integers and {ak}n−1
k=1 are non-negative integers satisfying (3.4), with the convention

that Q1,φ(s) = Q2,φ(s) = 0.

The following elementary properties of φ(k)(s)
φ(s) and t(k)(s) will be frequently used.

Lemma 3.1 Let Z ≥ 0 be a non-negative random variable. Write φ(s) = Ee−sZ and t(s) = − lnφ(s).

(i) If EZn <∞ for some n ∈ N∗, then for 1 ≤ k ≤ n,

sup
s≥0

∣∣∣∣φ(k)(s)

φ(s)

∣∣∣∣ <∞ , sup
s≥0
|t(k)(s)| <∞ , (3.7)

and for 0 ≤ k ≤ n− 1,

φ(k)(s) = φ(k)(0) +O(s), t(k)(s) = t(k)(0) +O(s), s ≥ 0. (3.8)

(ii) If EZn+β <∞ for some n ∈ N∗ and β ∈ (0, 1], then

φ(n)(s) = φ(n)(0) +O(sβ) and t(n)(s) = t(n)(0) +O(sβ), s ≥ 0. (3.9)

Consequently, the function φn defined by (2.6) satisfies

φn(s) = O(sn+β), s ≥ 0. (3.10)

We mention that what is important in (3.8)-(3.10) is the validity for s ∈ [0, 1] (or s→ 0).

Proof of Lemma 3.1. (i) Without loss of generality, we assume that EZ = 1. So the law µ of Z satisfies

µ([0, 1]) > 0. In order to prove (3.7), from the representation form (3.5), it is sufficient to show that φ(k)(s)
φ(s)
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are uniformly bounded on [0,∞) for 1 ≤ k ≤ n. Recalling that φ is the Laplace transform of Z, we have
for 1 ≤ k ≤ n, ∣∣∣∣φ(k)(s)

φ(s)

∣∣∣∣ =

∫
[0,∞)

tke−tsµ(dt)∫
[0,∞)

e−tsµ(dt)

≤

∫
[0,1]

tke−tsµ(dt)∫
[0,1]

e−tsµ(dt)
+

∫
(1,∞)

tke−tsµ(dt)∫
[0,1]

e−tsµ(dt)

≤ 1 +
e−s

∫
(1,∞)

tkµ(dt)

e−s
∫

[0,1]
µ(dt)

≤ 1 +
EZk

µ([0, 1])
, (3.11)

which is finite by the assumption. This ends the proof of (3.7). (3.8) is a consequence of (3.7) by the mean
value theorem.

(ii) Notice that for n ∈ N,

φ(n)(s)− φ(n)(0) = (−1)nEZn(e−sZ − 1).

For any β ∈ (0, 1], we have 1− e−x ≤ Cxβ (x > 0), so

1− e−sZ ≤ CsβZβ .

It follows that for n ∈ N and s ≥ 0,

|φ(n)(s)− φ(n)(0)| ≤ CsβEZn+β .

This gives the first conclusion in (3.9). Using this inequality, together with (3.11), and the fact that
|φ(s)− φ(0)| ≤ Cs ≤ Csβ for s ∈ [0, 1], we have∣∣∣∣φ(k)(s)

φ(s)
− φ(k)(0)

φ(0)

∣∣∣∣ ≤ ∣∣∣∣φ(k)(s)

φ(s)
· φ(0)− φ(s)

φ(0))

∣∣∣∣+

∣∣∣∣φ(k)(s)

φ(0)
− φ(k)(0)

φ(0)

∣∣∣∣ ≤ Csβ , s ∈ [0, 1], k = 1, . . . , n.

It follows from the expression (3.5) of t(n)(s) that |t(n)(s) − t(n)(0)| ≤ Csβ for s ∈ [0, 1]; the later holds
evidently for s > 1 since sups≥0 |t(n)(s)| <∞. This gives the second conclusion in (3.9). The proof of (3.9)
is then finished.

Integrating (3.9) n times, we see that (3.10) holds. �

4 Proof of Theorem 2.1: case where α ∈ [1,∞)\{2, 3, . . .}
Let Z ≥ 0 be a solution of (E) with EZ = 1. We rewrite (E′) in the form

φ(s) = Ee−T (s). (E′′)

Differentiating n times the equation (E′′) just as we did for (3.1), we obtain

φ(n)(s) = Ee−T (s){Pn,T (s) + (−T ′(s))n − T (n)(s)}, (4.1)

where Pn,T (s) is defined as Pn,t(s) (cf. (3.3)) with t replaced by T .

Before giving the proof of Theorem 2.1, we first show two lemmas.

Lemma 4.1 If EZn+β−ε < ∞ and E
∑N
i=1A

n+β+δ0
i < ∞ for some n ∈ N∗, β ∈ (0, 1], δ0 > 0 and

ε ∈ (0, β), then we have for ε > 0 small enough,

0 ≤ EY n1
(
e−T (s) − e−sY1

)
= O(sβ+ε), s ≥ 0. (4.2)
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Proof. Notice that t′(0) = −φ
′(0)
φ(0) = 1 and that EZ1+β−ε < ∞ implies |t′(s) − t′(0)| ≤ Csβ−ε (by (3.9) of

Lemma 3.1), so |t(s)− s| ≤ C s1+β−ε

1+β−ε . Hence

0 ≤ sY1 − T (s) ≤ Cs1+β−εAβ−εY1, (4.3)

so

T (s) ≥ sY1 − Cs1+β−εAβ−εY1

= sY1(1− Csβ−εAβ−ε)
≥ sY1/2 if Csβ−εAβ−ε ≤ 1/2. (4.4)

Now by the mean value theorem, e−T (s) − e−sY1 = e−ξ(sY1 − T (s)) for some ξ ∈ [T (s), sY1], so that

e−T (s) − e−sY1 ≤ e−T (s)(sY1 − T (s)).

Hence from (4.3) and (4.4), we see that if Csβ−εAβ−ε ≤ 1/2, then

e−T (s) − e−sY1 ≤ e−sY1/2(sY1 − T (s)) ≤ Ce−sY1/2s1+β−εAβ−εY1.

Using this and the fact that e−x/2x1−2ε is bounded for x ≥ 0, we have(
e−T (s) − e−sY1

)
Y n1 1{Csβ−εAβ−ε≤1/2} ≤ Ce−sY1/2s1+β−εAβ−εY1 · Y n1 · 1

= Ce−sY1/2(sY1)1−2ε · sβ+εAβ−εY n+2ε
1

≤ Csβ+εAβ−εY n+2ε
1 . (4.5)

On the other hand, as 1{Csβ−εAβ−ε>1/2} ≤ 2bCbsβ+εAβ+ε with b = (β + ε)/(β − ε), we have(
e−T (s) − e−sY1

)
Y n1 1{Csβ−εAβ−ε>1/2} ≤ Y n1 1{Csβ−εAβ−ε>1/2}

≤ 2bCbsβ+εAβ+εY n1 . (4.6)

It follows from (4.5) and (4.6) that(
e−T (s) − e−sY1

)
Y n1 ≤ Csβ+ε

(
Aβ−εY n+2ε

1 +Aβ+εY n1
)
. (4.7)

Noting that EZn+β−ε <∞ implies EY n+β−ε
1 <∞, by Hölder’s inequality,

EAβ−εY n+2ε
1 ≤

(
EA(β−ε)p

)1/p

·
(
EY (n+2ε)p∗

1

)1/p∗

<∞ , (4.8)

EAβ+εY n1 ≤
(
EA(β+ε)q

) 1
q ·
(
EY nq

∗

1

) 1
q∗
<∞ , (4.9)

where p = n+β−ε
β−3ε , p∗ = n+β−ε

n+2ε , q = n+β−ε
β−ε , q∗ = n+β−ε

n and ε > 0 is small enough such that (β − ε)p ≤
n+ β + δ0 and (β + ε)q ≤ n+ β + δ0. Therefore (4.7) implies (4.2). �

Further, when n = 1, we also have the following lemma.

Lemma 4.2 If EZ1+β−ε < ∞ and E
∑N
i=1A

1+β+δ0
i < ∞ for some β ∈ (0, 1], δ0 > 0 and ε ∈ (0, β), then

we have for ε > 0 small enough,

ET ′(s)
(

1− e−T (s)
)

= g1(s) +O(sβ+ε), s ≥ 0. (4.10)

Proof. Recall that g1(s) = EY1(1− e−sY1), so (4.10) is equivalent to

E(K1 +K2) = O(sβ+ε), s ≥ 0, (4.11)

where

K1 = (T ′(s)− Y1)
(

1− e−T (s)
)
,

K2 = Y1

(
e−sY1 − e−T (s)

)
.
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In Lemma 4.1, we have shown that

0 ≥ EK2 ≥ Csβ+ε, s ≥ 0,

so we just need to show that
0 ≥ EK1 ≥ Csβ+ε, s ≥ 0. (4.12)

Notice that K1 ≤ 0. In fact, Recalling the definition of T ′(s), we have T ′(s)−Y1 =
∑N
i=1Ai[t

′(sAi)− t′(0)].
Since t′(s) is non-increasing, it follows that T ′(s)− Y1 ≤ 0, so that K1 ≤ 0.

As EZ1+β−ε <∞, we have |t′(s)− t′(0)| ≤ Csβ−ε for s ≥ 0 (by (3.9) of Lemma 3.1), so that

|T ′(s)− Y1| ≤ Csβ−ε
N∑
i=1

A1+β−ε
i ≤ Csβ−εAβ−εY1. (4.13)

Noting that 1− e−x ≤ x2ε for 2ε ≤ 1 and x > 0 and that T (s) ≤ sY1, we obtain

|K1| ≤ Csβ−εAβ−εY1(T (s))2ε

≤ Csβ−εAβ−εY1(sY1)2ε

= Csβ+εAβ−εY 1+2ε
1 .

As EAβ−εY 1+2ε
1 < ∞ (by (4.8)) for ε > 0 small enough, this implies (4.12). So the proof of (4.10) is

finished. �

Proof of Theorem 2.1: case where α ∈ [1,∞)\{2, 3, . . .}. For α > 1 not an integer, write α = n+ β, where
n ∈ N∗ and β ∈ (0, 1). For α = 1, define β = 0. We distinguish two cases according to α ∈ [1, 2) or α > 2.
In the following, ε always stands for a number in (0, 1− β) small enough.

(a) Case α ∈ [1, 2). When α = 1 (so β = 0), we suppose that ρ(1 + δ0) < ∞ for some δ0 > 0, and we
need to prove (2.13), that is,

ψ1(s)− Eψ1(sM) = E{T ′(s)(1− e−T (s))}+O(sε), where ψ1(s) = φ′(s) + 1; (4.14)

when α ∈ (1, 2) (so β ∈ (0, 1)), we assume that ρ(α) < 1, ρ(α + δ0) < ∞ for some δ0 > 0, and that
EY γ1 <∞ and EZγ <∞ for all γ ∈ [1, α), and we need to prove (2.12) with n = 1, that is

ψ1(s)− E{ψ1(sM)} = g1(s) +O(sβ+ε). (4.15)

To prove (4.14) and (4.15), we only need to prove that

φ′(s)− Eφ′(sM) = ET ′(s)(1− e−T (s)) +O(sβ+ε), s ≥ 0. (4.16)

In fact, since ψ1(s) = φ′(s) + 1, in (4.16) we can replace φ′ by ψ1 to obtain

ψ1(s)− Eψ1(sM) = ET ′(s)(1− e−T (s)) +O(sβ+ε). (4.17)

When β = 0, this gives (4.14). When β ∈ (0, 1), (4.17) together with Lemma 4.2 imply (4.15).
It remains to prove (4.16). Since φ′(s) = E{−T ′(s)e−T (s)} (cf. (E′)), (4.16) is equivalent to

ET ′(s) + Eφ′(sM) = O(sβ+ε), s ≥ 0. (4.18)

As T ′(s) =
∑N
i=1Ait

′(sAi) and t′(s) = −φ
′(s)
φ(s) , by the definition of M (cf. (2.10)), we obtain

ET ′(s) + Eφ′(sM) = E

{
N∑
i=1

Ait
′(sAi) +

N∑
i=1

Aiφ
′(sAi)

}

= E

{
N∑
i=1

Ai(e
t(sAi) − 1)(−φ′(sAi))

}

= E

{
N∑
i=1

Ai(1− φ(sAi)) ·
[
−φ′(sAi)
φ(sAi)

]}
. (4.19)
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Since 1−φ(x)
x → 1 (x→ 0) and 0 < β + ε ≤ 1, we have

1− φ(x) ≤ Cxβ+ε, x > 0

(the inequality is evident for x > 1; if x ≤ 1, then 1 − φ(x) ≤ Cx ≤ Cxβ+ε). So with the fact that

sup
s≥0

∣∣∣−φ′(s)φ(s)

∣∣∣ <∞ (by Lemma 3.1(i)) and EZ <∞, we have

|ET ′(s) + Eφ′(sM)| ≤ Csβ+εE
N∑
i=1

A1+β+ε
i

= Csβ+ερ(α+ ε).

This gives (4.18) and therefore (4.16).

(b) Case α > 2 not an integer. So α = n + β with n ∈ {2, 3, . . .} and β ∈ (0, 1). We assume the
conditions of Theorem 2.1 with the given α, and we need to prove (2.12). Notice that

ψn(s) = (−1)n+1[φ(n)(s)− φ(n)(0)] and gn(s) = −E[Y n1 (e−sY1 − 1)].

So (2.12) is equivalent to

[φ(n)(s)− φ(n)(0)]− EMn−1[φ(n)(sM)− φ(n)(0)] = E[(−Y1)n(e−sY1 − 1)] +O(sβ+ε). (4.20)

To prove (4.20), we only need to show that for all s ≥ 0,

φ(n)(s)− EMn−1φ(n)(sM) = Ee−sY1(−Y1)n + Ee−T (0)Pn,T (0)−DEMn−1 +O(sβ+ε), (4.21)

where D is a constant. In fact, putting s = 0 in the above equality and subtracting, we obtain (4.20).
It remains to prove (4.21). By (4.1), we can decompose the left hand side of (4.21) into three parts:

φ(n)(s)− EMn−1φ(n)(sM) = Ee−T (s)Pn,T (s) + Ee−T (s)(−T ′(s))n − [Ee−T (s)T (n)(s) + EMn−1φ(n)(sM)].
(4.22)

In the following, we will show that the three terms on the right hand side of (4.22) are equal to

Ee−T (0)Pn,T (0) +O(sβ+ε), Ee−sY1(−Y1)n +O(sβ+ε) and DEMn−1 +O(sβ+ε),

respectively. This together with (4.22) implies (4.21), which ends the proof of (4.20). The proof for the
above three terms will be done in three steps respectively.

Step 1. We first show that

E
{
e−T (s)Pn,T (s)− e−T (0)Pn,T (0)

}
= O(sβ+ε), s ≥ 0. (4.23)

Recall that Pn,T (s) is of the form

Pn,T (s) =
∑

a1,...,an−1

c(a1, . . . , an−1)(T ′(s))a1 · · · (T (n−1)(s))an−1 ,

where ak ∈ N satisfy (3.4). So we first estimate

e−T (s)
n−1∏
k=1

(T (k)(s))ak − e−T (0)
n−1∏
k=1

(T (k)(0))ak = I1 + I2, (4.24)

where

I1 = e−T (s)

[
n−1∏
k=1

(T (k)(s))ak −
n−1∏
k=1

(T (k)(0))ak

]
,

I2 =
[
e−T (s) − e−T (0)

] n−1∏
k=1

(T (k)(0))ak .
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Let us show that |EI1| ≤ Csβ+ε. As

n−1∏
k=1

ak −
n−1∏
k=1

bk =

n−1∑
l=1

(al − bl)

(
l−1∏
k=1

bk

)(
n−1∏
k=l+1

ak

)

(with the convention that the empty product is taken to be 1), we have

n−1∏
k=1

(T (k)(s))ak −
n−1∏
k=1

(T (k)(0))ak =

n−1∑
l=1

[
(T (l)(s))al − (T (l)(0))al

] l−1∏
k=1

(T (k)(0))ak ·
n−1∏
k=l+1

(T (k)(s))ak . (4.25)

Notice that for any integer l ≥ 1, al − bl = (a− b)
(∑

x+y=l−1 a
xby
)

(with an evident interpretation when

l = 1), where x and y are strictly positive integers. So we get

(T (l)(s))al − (T (l)(0))al =
[
T (l)(s)− T (l)(0)

] ∑
x+y=al−1

(T (l)(s))x(T (l)(0))y. (4.26)

Since T (k)(s) =
∑N
i=1A

k
i t

(k)(sAi) and sups≥0 |t(k)(s)| <∞ for k = 1, . . . , n−1 (by Lemma 3.1(i)), we have

|T (k)(s)| ≤
N∑
i=1

Aki |t(k)(sAi)| ≤ C
N∑
i=1

Aki ≤ CY k1 , 1 ≤ k ≤ n− 1. (4.27)

As |t(l)(s)− t(l)(0)| ≤ Csβ+ε for 1 ≤ l ≤ n− 1 and s ≥ 0 (it follows from (3.8) for s ∈ [0, 1], and from (3.7)
for s ≥ 1), we see that

|T (l)(s)− T (l)(0)| ≤
N∑
i=1

Ali

∣∣∣t(l)(sAi)− t(l)(0)
∣∣∣

≤ Csβ+ε
N∑
i=1

Al+β+ε
i , s ≥ 0, 1 ≤ l ≤ n− 1. (4.28)

From (4.25)-(4.28), we obtain

n−1∏
k=1

(T (k)(s))ak −
n−1∏
k=1

(T (k)(0))ak =

n−1∑
l=1

O(sβ+ε)

N∑
i=1

Al+β+ε
i · (Y1)(al−1)l · Y n−all1

= O(sβ+ε)Aβ+ε · Y n1 ,

and
|I1| ≤ Ce−T (s)sβ+εAβ+εY n1 ≤ Csβ+εAβ+εY n1 , s ≥ 0. (4.29)

Notice that by Hölder’s inequality,

EAβ+εY n1 ≤
(
EA(β+ε)p

) 1
p ·
(
EY np

∗

1

) 1
p∗
<∞ , (4.30)

where p = n+β−ε
β−ε , p∗ = n+β−ε

n and ε > 0 is small such that (β+ε)p = (β+ε)(n+β−ε)/(β−ε) < n+β+δ0

(recall that EY n+β−ε
1 <∞ and EAn+β+δ0 <∞). So it follows from (4.29) and (4.30) that

|EI1| ≤ Csβ+ε, s ≥ 0. (4.31)

We now consider I2. As a1 6= n, there exists l ≥ 2 with al ≥ 1, so that

|T (l)(0)| ≤
N∑
i=1

Ali|t(l)(0)| ≤ C
N∑
i=1

Al−1
i A ≤ CAY l−1

1 .
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Noting that |T (k)(s)| = CY k1 for 1 ≤ k ≤ n− 1 (cf. (4.27)), we have

n−1∏
k=1

|T (k)(0)|ak = |T (l)(0)|al ·
n−1∏
k=1
k 6=l

|T (k)(0)|ak

≤ CAalY
(l−1)al
1 Y n−lal1

= CAalY n−al1 .

On the other hand, for β + ε ∈ (0, 1], as 1− e−x ≤ xβ+ε (∀x > 0) and T (s) ≤ sY1, we have

1− e−T (s) ≤ (sY1)β+ε, s ≥ 0.

So
|I2| ≤ C(sY1)β+εAalY n−al1 ≤ Csβ+εAβ+εY n1 . (4.32)

Since EAβ+εY n1 <∞ (by (4.30)), we see that

|EI2| ≤ Csβ+ε, s ≥ 0. (4.33)

From (4.24), (4.31) and (4.33), we get

E

{
e−T (s)

n−1∏
k=1

(T (k)(s))ak − e−T (0)
n−1∏
k=1

(T (k)(0))ak

}
= O(sβ+ε), s ≥ 0. (4.34)

This gives (4.23).

Step 2. We next show that

Ee−T (s)(−T ′(s))n = Ee−sY1(−Y1)n +O(sβ+ε), s ≥ 0. (4.35)

To this end, we use the decomposition

Ee−T (s)(−T ′(s))n − Ee−sY1(−Y1)n = E
{
e−T (s)[(−T ′(s))n − (−Y1)n]

}
+ E

{
(e−T (s) − e−sY1)(−Y1)n

}
.(4.36)

We shall prove that each of the right terms is of order O(sβ+ε).
As EZ2 <∞ and β + ε ≤ 1, we have |t′(s)− t′(0)| ≤ Csβ+ε (by (3.9) of Lemma 3.1), so that

|T ′(s)− Y1| ≤
N∑
i=1

Ai|t′(sAi)− t′(0)|

≤ Csβ+ε
N∑
i=1

A1+β+ε
i ≤ Csβ+εAβ+εY1. (4.37)

Since |T ′(s)| =
∣∣∣∑N

i=1Ait
′(sAi)

∣∣∣ ≤ Y1 sups≥0 |t′(s)|, this implies that

e−T (s)|(−T ′(s))n − (−Y1)n| ≤ |T ′(s)− Y1|
n−1∑
k=1

|T ′(s)|kY n−1−k
1

≤ C

(
sup
s≥0
|t′(s)|+ 1

)n
· sβ+εAβ+εY n1 . (4.38)

Recalling that EAβ+εY n1 <∞, we thus obtain that

Ee−T (s)|(−T ′(s))n − (−Y1)n| ≤ Csβ+ε, s ≥ 0. (4.39)

By Lemma 4.1,

E
(
e−T (s) − e−sY1

)
Y n1 ≤ Csβ+ε, s ≥ 0. (4.40)

Combining (4.39) and (4.40), we get (4.35).
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Step 3. We then show that for some constant D,

Ee−T (s)T (n)(s) = −EMn−1φ(n)(sM) +DEMn−1 +O(sβ+ε), s ≥ 0. (4.41)

In fact, as 0 ≤ 1 − e−T (s) ≤ (T (s))β+ε ≤ sβ+εY β+ε
1 (∀s > 0 and β + ε ≤ 1) and sups≥0 |t(n)(s)| < ∞, we

see that

e−T (s)T (n)(s) =

{
(1 +O(sβ+ε)Y β+ε

1 )

N∑
i=1

Ani t
(n)(sAi)

}

=

{
N∑
i=1

Ani t
(n)(sAi)

}
+O(sβ+ε)Aβ+εY n1 . (4.42)

Since EZn < ∞ and t(k)(s) = t(k)(0) + O(s) for 1 ≤ k ≤ n − 1 (by (3.8) of Lemma 3.1), from the
representation form (3.2) we get

φ(n)(s) = −t(n)(s) +D +O(s), s > 0,

for some constant D (independent of s). Since φ(n)(s) and t(n)(s) are bounded, it follows that

φ(n)(s) = −t(n)(s) +D +O(sβ+ε)

for β + ε ∈ (0, 1] and s ≥ 0. Therefore,

e−T (s)T (n)(s) =

N∑
i=1

Ani

(
−φ(n)(sAi) +D

)
+O(sβ+ε)Aβ+εY n1 , s ≥ 0. (4.43)

As EAβ+εY n1 < ∞ (cf. (4.30)), by the dominated convergence theorem and (4.43), together with the
definition of M (cf. (2.10)), we obtain that

Ee−T (s)T (n)(s) = E
N∑
i=1

Ani

(
−φ(n)(sAi) +D

)
+O(sβ+ε)EAβ+εY n1

= −EMn−1φ(n)(sM) +DEMn−1 +O(sβ+ε)EAβ+εY n1

= −EMn−1φ(n)(sM) +DEMn−1 +O(sβ+ε), s ≥ 0. (4.44)

This ends the proof of (4.41).

From (4.23), (4.35) and (4.41), together with (4.22), we obtain (4.21). This ends the proof of (4.20),
which is equivalent to (2.12) according the the analysis at the beginning of Part (b).

The proof of Theorem 2.1 for α ∈ [1,∞)\{2, 3, . . .} is thus finished. �

5 Proof of Theorem 2.1: case where α ∈ {2, 3, . . .}
The proof of Theorem 2.1 in the case where α ∈ {2, 3, . . .} is similar to that in the case where α is not an
integer, but is more delicate.

Proof of Theorem 2.1: case where α = n+ 1 ∈ {2, 3, . . .}. We also distinguish two cases according to n = 1
or n > 1.

(a) Case n = 1. As in the case where α ∈ (1, 2), it is sufficient to prove that

ET ′(s) + Eφ′(sM)− ρ(2)s = O(s1+ε), s ≥ 0. (5.1)

Using (2.10) with f(x) = −φ′(sx), we have

ET ′(s) + Eφ′(sM)− ρ(2)s = E

{
N∑
i=1

Ai(e
t(sAi) − 1)(−φ′(sAi))−

N∑
i=1

sA2
i

}

= sE
N∑
i=1

A2
i

{
1− φ(sAi)

sAi

[
−φ
′(sAi)

φ(sAi)

]
− 1

}
= K3 +K4,
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where

K3 = sE
N∑
i=1

A2
i

{
1− φ(sAi)− sAi

sAi

[
−φ
′(sAi)

φ(sAi)

]}
,

K4 = sE
N∑
i=1

A2
i

{
−φ
′(sAi)

φ(sAi)
− 1

}
= sE

N∑
i=1

A2
i (t′(sAi)− 1) .

As |1− e−x − x| ≤ Cx1+ε (x ≥ 0) and EZ1+ε <∞, we see that |1− φ(s)− s| ≤ CEZ1+εs1+ε, and

|1− φ(sAi)− sAi| ≤ CEZ1+εs1+εA1+ε
i .

Combining this with the fact that sups≥0

∣∣∣−φ′(s)φ(s)

∣∣∣ <∞ (by Lemma 3.1(i)), we have

|K3| ≤ Cs1+εE
N∑
i=1

A2+ε
i = Cs1+ερ(2 + ε), s ≥ 0. (5.2)

We now consider K4. Recalling that |t′(s)− t′(0)| ≤ Csε, we have

|t′(sAi)− 1| ≤ CsεAεi ,

and

|K4| ≤ Cs1+εE
N∑
i=1

A2+ε
i = Cs1+ερ(2 + ε), s ≥ 0. (5.3)

It follows from (5.2) and (5.3) that (5.1) holds.

(b) Case n > 1. As in the case where α > 2 is not an integer, it is sufficient to prove that

φ(n)(s)− EMn−1φ(n)(sM) = (−1)nEe−sY1Y n1 + c0 + cns+O(s1+ε), s ≥ 0, (5.4)

where c0 and cn are non-negative constants. In fact, putting s = 0 in the above equality and subtracting,
and noticing that ψn(s) = (−1)n+1[φ(n)(s)− φ(n)(0)] and gn(s) = −E[Y n1 (e−sY1 − 1)], we obtain (2.12).

In the following, we will show that the three terms on the right hand side of (4.22) are respectively

Ee−T (0)Pn,T (0) +D1s+O(s1+ε), Ee−sY1(−Y1)n + (−1)nD2s+O(s1+ε) and D3 +D4s+O(s1+ε),

where Di (i = 1, 2, 3, 4) are non-negative constants. This together with (4.22) imply (5.4). The proof for
the above three terms will be done in three steps respectively.

Step 1. We first show that for some constant D1,

E
{
e−T (s)Pn,T (s)− e−T (0)Pn,T (0)

}
= D1s+O(s1+ε), s ≥ 0. (5.5)

We begin with the estimation of

e−T (s)
n−1∏
k=1

(T (k)(s))ak − e−T (0)
n−1∏
k=1

(T (k)(0))ak = J1 + J2, (5.6)

where

J1 = e−T (s)

[
n−1∏
k=1

(T (k)(s))ak −
n−1∏
k=1

(T (k)(0))ak

]
,

J2 =
[
e−T (s) − e−T (0)

] n−1∏
k=1

(T (k)(0))ak .
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We first consider J1. As t(l)(s) = t(l)(0) + t(l+1)(0)s+ O(s1+ε) for 1 ≤ l ≤ n− 1 (by (3.8) of Lemma 3.1),
we see that

T (l)(s)− T (l)(0) =

N∑
i=1

Ali

[
t(l)(sAi)− t(l)(0)

]
=

N∑
i=1

Ali

[
t(l+1)(0)sAi +O(s1+ε)A1+ε

i

]
= t(l+1)(0)s

N∑
i=1

Al+1
i +O(s1+ε)

N∑
i=1

Al+1+ε
i .

Since t(k)(s) = t(k)(0) +O(sε) for k = 1, 2, . . . , n− 1, we have

T (k)(s) =

N∑
i=1

Aki t
(k)(sAi) = t(k)(0)

N∑
i=1

Aki +O(sε)

N∑
i=1

Ak+ε
i .

Therefore, by (4.25), we obtain

n−1∏
k=1

(T (k)(s))ak −
n−1∏
k=1

(T (k)(0))ak = J3s+O(s1+ε)A1+εY n1 ,

where

J3 =

n−1∑
l=1

[
t(l+1)(0)

N∑
i=1

Al+1
i

][
t(l)(0)

N∑
i=1

Ali

]al−1 n−1∏
k=1
k 6=l

[
t(k)(0)

N∑
i=1

Aki

]ak
.

By Hölder’s inequality,

EA1+εY n+ε
1 ≤

(
EA(1+ε)p

)1/p (
EY np

∗

1

)1/p∗

<∞ , (5.7)

where p = α−ε
1−2ε , p

∗ = α−ε
n+ε and ε > 0 small enough such that (1 + ε)p = (1 + ε)(α− ε)/(1− 2ε) ≤ α + δ0.

As J3 is dominated by O(1)AY n1 with E[AY n1 ] < ∞ (by (5.7)) and e−T (s) = 1 + O(sε)Y ε1 , J1 = J3s +
O(s1+ε)(AY n+ε

1 +A1+εY n+ε
1 ), we see that

EJ1 = sEJ3 +O(s1+ε), s ≥ 0. (5.8)

Since 1− e−x − x = O(x1+ε) (0 < ε ≤ 1, x ≥ 0) and T (s) = sY1 +O(s1+ε)Y 1+ε
1 , we have

e−T (s) − 1 = −sY1 +O(s1+ε)Y 1+ε
1 .

Using this together with T (k)(0) = t(k)(0)
∑N
i=1A

k
i , we get

J2 =
[
−sY1 +O(s1+ε)Y 1+ε

1

] n−1∏
k=1

(
t(k)(0)

N∑
i=1

Aki

)ak
= −sJ4 +O(s1+ε)Y n1 A

1+ε,

where

J4 = Y1

n−1∏
k=0

(
t(k)(0)

N∑
i=1

Aki

)ak
is dominated by O(1)AY n1 with EAY n1 <∞ (by (5.7)). So by (5.7),

EJ2 = −sEJ4 +O(s1+ε), s ≥ 0. (5.9)

It follows from (5.8) and (5.9) that (5.5) holds with D1 = EJ3 − EJ4.

Step 2. We next show that, for some constant D2 and s ≥ 0,

Ee−T (s)(T ′(s))n − Ee−sY1Y n1 −D2s = O(s1+ε). (5.10)
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Notice that (5.10) holds evidently for s ∈ (1,∞) (as |T ′(s)| ≤ CY1 and EY n1 < ∞), so we only need to
prove it for s ∈ [0, 1]. To prove this, it is sufficient to show the following two estimations:

Ee−T (s) [(T ′(s))n − Y n1 ] = D2s+O(s1+ε), s ∈ [0, 1], (5.11)

E
[
e−T (s) − e−sY1

]
Y n1 = O(s1+ε), s ∈ [0, 1]. (5.12)

We first show (5.11). Notice that

(T ′(s))n − Y n1 = (T ′(s)− Y1)

[
n−1∑
k=0

(T ′(s))kY n−1−k
1

]
. (5.13)

Since T ′(s) = Y1 +O(sε)AεY1 (cf. (4.37)), writing Ā = max(A, 1), we have for s ∈ [0, 1],

n−1∑
k=0

(T ′(s))kY n−1−k
1 =

n−1∑
k=0

[1 +O(sε)Aε]
k
Y n−1

1

=

n−1∑
k=0

[
1 +O(sε)Ākε

]
Y n−1

1

=
[
n+O(sε)Ā(n−1)ε

]
Y n−1

1 , (5.14)

where the second equality holds since for 0 ≤ k ≤ n− 1,

[1 +O(sε)Āε]k − 1 =

k∑
j=1

(
k

j

)
O(sjε)Ājε = O(sε)Ākε,

using the fact that s ∈ [0, 1] and Ā ≥ 1 imply sjε ≤ sε and Ājε ≤ Ākε for each 1 ≤ j ≤ k. As
t′(s) = 1 + t′′(0)s+O(s1+ε) (s ≥ 0), we see that

T ′(s)− Y1 =

N∑
i=1

Ai(t
′(sAi)− 1)

= t′′(0)s

N∑
i=1

A2
i +O(s1+ε)

N∑
i=1

A2+ε
i . (5.15)

From (5.13), (5.14) and (5.15), we obtain that for s ∈ [0, 1],

(T ′(s))n − Y n1 =

[
t′′(0)s

N∑
i=1

A2
i +O(s1+ε)

N∑
i=1

A2+ε
i

] [
n+O(sε)Ā(n−1)ε

]
Y n−1

1

= nt′′(0)s

N∑
i=1

A2
iY

n−1
1 +O(s1+ε)

N∑
i=1

A2+ε
i Y n−1

1

+O(s1+ε)

N∑
i=1

A2
i Ā

(n−1)εY n−1
1 +O(s1+2ε)

N∑
i=1

A2+ε
i Ā(n−1)εY n−1

1 . (5.16)

Recalling that Y1 =
∑N
i=1Ai and Ā ≥ 1, we have

N∑
i=1

A2+ε
i Y n−1

1 ≤ A1+εY n1 ≤ Ā1+nεY n1 ,

N∑
i=1

A2
i Ā

(n−1)εY n−1
1 ≤ Ā1+nεY n1 ,

N∑
i=1

A2+ε
i Ā(n−1)εY n−1

1 ≤ Ā1+nεY n1 .
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Hence from (5.16), we get

(T ′(s))n − Y n1 = nt′′(0)s

N∑
i=1

A2
iY

n−1
1 +O(s1+ε)Ā1+nεY n1 . (5.17)

Since e−x = 1 +O(xε) (0 < ε ≤ 1, x ≥ 0) and 0 ≤ T (s) ≤ sY1 (cf. (2.8)), together with (5.17), we see that
for s ∈ [0, 1],

e−T (s) [(T ′(s))n − Y n1 ]

= [1 +O(sε)Y ε1 ]

[
nt′′(0)s

N∑
i=1

A2
iY

n−1
1 +O(s1+ε)Ā1+nεY n1

]

= nt′′(0)s

N∑
i=1

A2
iY

n−1
1 +O(s1+ε)

[
ĀY n+ε

1 + Ā1+nεY n1 + Ā1+nεY n+ε
1

]
= nt′′(0)s

N∑
i=1

A2
iY

n−1
1 +O(s1+ε)Ā1+nε

[
Y n1 + Y n+ε

1

]
. (5.18)

Notice that

E
n∑
i=1

A2
iY

n−1
1 ≤ EAY n1 ≤ (EAp)1/p

(
EY np

∗

1

)1/p∗

<∞ ,

where p = α+ δ0, p∗ = α+δ0
α+δ0−1 , so that np∗ < α and that

EĀ1+nεY n1 ≤ C
[
EA1+nεY n1 + EY n1

]
≤ C

{[
EA[1+nε]q

]1/q [
EY nq

∗

1

]1/q∗
+ EY n1

}
<∞ ,

EĀ1+nεY n+ε
1 ≤ C

[
EA1+nεY n+ε

1 + EY n+ε
1

]
≤ C

{[
EA[1+nε]q

]1/q [
EY (n+ε)q∗

1

]1/q∗
+ EY n+ε

1

}
<∞ ,

where q = α+δ0
1+nε , q

∗ = α+δ0
(α+δ0)−[1+nε] , δ0 and ε are small enough. By the dominated convergence theorem, it

follows from (5.18) that (5.11) holds with D2 = nt′′(0)E
∑N
i=1A

2
iY

n−1
1 .

We now prove (5.12). By the same argument as in the proof of (4.7) (choosing β = 1), we see that if
Cs1−εA1−ε ≤ 1/2, then T (s) ≥ sY1/2, so that

e−T (s) − e−sY1 ≤ Ce−sY1/2s2−εA1−εY1.

Therefore, (
e−T (s) − e−sY1

)
Y n1 1{Cs1−εA1−ε≤1/2} ≤ Ce−sY1/2(sY1)1−2εs1+εA1−εY n+2ε

1

≤ Cs1+εA1−εY n+2ε
1 .

On the other hand,(
e−T (s) − e−sY1

)
Y n1 1{Cs1−εA1−ε>1/2} ≤ CY n1

(
s1−εA1−ε)(1+ε)/(1−ε)

≤ Cs1+εA1−εY n+2ε
1 .

Hence, we have shown that (
e−T (s) − e−sY1

)
Y n1 ≤ Cs1+εA1−εY n+2ε

1 .

As EA1−εY n+ε
1 <∞ (cf. (5.7)), this gives (5.12) which ends the proof of (5.10).

Step 3. We then show that, for some constants D3 and D4,

Ee−T (s)T (n)(s) + EMn−1φ(n)(sM) = D3 +D4s+O(s1+ε), s ≥ 0. (5.19)
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Notice that 0 < x− 1 + e−x ≤ Cx1+ε (∀x > 0) and T (s) ≤ sY1, we have

e−T (s) = 1− T (s) +O(s1+ε)Y 1+ε
1 .

As EZn <∞, we have sups≥0 |t(k)(s)| <∞ for 0 ≤ k ≤ n, and t(k)(s) = t(k)(0) + t(k+1)(0)s+O(s1+ε) for

0 ≤ k ≤ n− 1 (by Lemma 3.1(i)). So from the representation form (3.2) and sups>0 |φ(n)| ≤ EZn <∞, we
see that for s ≥ 0,

t(s) = s+O(s1+ε) and t(n)(s) = −φ(n)(s) +D +D′s+O(s1+ε).

Hence from the definition of T (n)(s), we obtain that

e−T (s)T (n)(s) =

N∑
i=1

Ani t
(n)(sAi)−

N∑
i=1

t(sAi) ·
N∑
i=1

Ani t
(n)(sAi) +O(s1+ε)Y 1+ε

1

N∑
i=1

Ani t
(n)(sAi)

= −
N∑
i=1

Ani φ
(n)(sAi) +D

N∑
i=1

Ani + s

[
D′

N∑
i=1

An+1
i − Y1

N∑
i=1

Ani t
(n)(sAi)

]

+O(s1+ε)

[
N∑
i=1

An+1+ε
i +

(
N∑
i=1

A1+ε
i + Y 1+ε

1

)
N∑
i=1

Ani t
(n)(sAi)

]
.

Since EA1+εY n1 <∞ (by (5.7)) and sups>0 |t(n)(s)| <∞ (by (3.7)), we see that

E

[
N∑
i=1

An+1
i + Y1

N∑
i=1

Ani |t(n)(sAi)|

]
≤
(

1 + sup
s>0
|t(n)(s)|

)
EA1+εY n−ε1 <∞

and

E

[
N∑
i=1

An+1+ε
i +

(
N∑
i=1

A1+ε
i + Y 1+ε

1

)
N∑
i=1

Ani |t(n)(sAi)|

]
≤
[
1 + 2 sup

s>0
|t(n)(s)|

]
EA1+εY n1 <∞.

Therefore,

Ee−T (s)T (n)(s) = −E
N∑
i=1

Ani φ
(n)(sAi) +D3 +D4s+O(s1+ε)

= −EMn−1φ(n)(sM) +D3 +D4s+O(s1+ε),

where D3 = Dρ(n) and D4 = E
[
D′
∑N
i=1A

n+1
i − Y1

∑N
i=1A

n
i t

(n)(sAi)
]
. This ends the proof of (5.19).

From (5.5), (5.10) and (5.19), together with (4.22), we obtain (5.4). This ends the proof of (2.12)
according to the the analysis at the beginning of Part (b).

The proof of Theorem 2.1 for α ∈ {2, 3, . . .} is thus finished. �

6 Proof of Theorem 1.1

Recall that without loss of generality, we can take ` as the form (1.10). Therefore, by Potter’s theorem (cf.
[11], p.25), for every ε > 0, there is C = C(ε) > 0 such that

`(y)

`(x)
≤ C max

{(
y

x

)ε
,

(
x

y

)ε}
, x, y > 0. (6.1)

Proof of Theorem 1.1. We distinguish two cases according to α ∈ (1,∞)\N or α ∈ {2, 3, . . .}.

(i) Case α ∈ (1,∞)\N. By Proposition 2.1, it suffices to show that the following two assertions are
equivalent:

hn(s) ∼ sα`(1/s) (s→ 0), (6.2)

φn(s) ∼ sα`(1/s)

1− ρ(α)
(s→ 0). (6.3)
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Step 1. We first show that (6.3) implies (6.2). By Theorem 2.2, we have

φn(s)− EM−1φn(sM) = hn(s) +O(sα+ε), s ≥ 0. (6.4)

Notice that φn(s)
sn is bounded and `(1/s) = 1 for s > 1. Therefore (6.3) implies

|φn(s)| ≤ Csα`(1/s), s > 0, (6.5)

and

M−1φn(sM) ∼ M−1(sM)α`

(
1

sM

)
· 1

1− ρ(α)

∼ Mα−1sα`

(
1

s

)
· 1

1− ρ(α)
. (6.6)

By (6.5) and Potter’s theorem, we see that∣∣∣∣M−1φn(sM)

sα`(1/s)

∣∣∣∣ ≤ C

(
M−1(sM)α`

(
1
sM

)
sα`(1/s)

)

= C

(
Mα−1`

(
1

sM

)/
`(1/s)

)
≤ C max

(
Mα−1+ε,Mα−1−ε)

(recall that C > 0 may differ from line to line). Therefore by the dominated convergence theorem, we have

lim
s→0

EM−1φn(sM)

sα`(1/s)
=

EMα−1

1− ρ(α)
=

ρ(α)

1− ρ(α)
. (6.7)

As O(sε)
`(1/s) = o(1) (s→ 0), it follows from (6.4) that lims→0

hn(s)
sα`(1/s) = 1. So (6.2) holds.

Step 2. We next show that (6.2) implies (6.3). Recall that by Theorem 2.2,

φn(s)− EM−1φn(sM) = hn(s) +O(sα+ε), s ≥ 0.

Therefore φ̂n(s) := φn(s)/sα and ĥn(s) := hn(s)/sα satisfy

φ̂n(s)− EMα−1φ̂n(sM) = ĥn(s) +O(sε), s ≥ 0. (6.8)

Let
φ̂(s) = φ̂n(s)− EMα−1φ̂n(sM).

Then
φ̂(s) = φ̂n(s)− ρ(α)Eφ̂n(sB), (6.9)

where B ≥ 0 is a random variable whose distribution is determined by

Ef(B) =
1

ρ(α)
EMα−1f(M), (6.10)

for all measurable functions f ≥ 0. Let Bi be independent copies of B. Then by (6.9), ∀i ≥ 1,

ρi−1(α)φ̂(sB1 · · ·Bi−1) = ρi−1(α)φ̂n(sB1 · · ·Bi−1)− ρi(α)Eiφ̂n(sB1 · · ·Bi−1Bi), (6.11)

where Ei denotes the expectation with respect to Bi, and B1 · · ·Bi−1 = 1 if i = 1. Taking expectation and
then summing for i from 0 to k − 1, we obtain

k−1∑
i=0

ρi(α)Eφ̂(sB1 · · ·Bi) = φ̂n(s)− ρk(α)Eφ̂n(sB1 · · ·Bk). (6.12)

Let us now prove that
lim
k→∞

ρk(α)Eφ̂n(sB1 · · ·Bk) = 0. (6.13)
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As EZα−ε <∞, by (3.10),

|φ̂n(s)| ≤ Cs−ε, (6.14)

so

Eρk(α)|φ̂n(sB1 · · ·Bk)| ≤ CEρk(α)
(
s−εB−ε1 · · ·B

−ε
k

)
= Cs−ερk(α)(EB−ε)k

= Cs−ερk(α)

(
EMα−1−ε

ρ(α)

)k
= Cs−ερk(α− ε). (6.15)

As ρ(α− ε) < 1, this prove (6.13). So by (6.12), we obtain

∞∑
i=0

ρi(α)Eφ̂(sB1 · · ·Bi) = φ̂n(s). (6.16)

Notice that by the condition (6.2) and the equation (6.8), we have as s→ 0,

φ̂(s) ∼ `(1/s)

and

φ̂(sB1 · · ·Bi) ∼ `
(

1

sB1 · · ·Bi

)
∼ `(1/s).

By Potter’s bound (cf. (6.1)) and the dominated convergence theorem, this yields

lim
s→0

Eφ̂(sB1 · · ·Bi)
`(1/s)

= 1. (6.17)

From (6.16),(6.17) and the dominated convergence theorem, we obtain

lim
s→0

φ̂n(s)

`(1/s)
=

∞∑
i=0

ρi(α) =
1

1− ρ(α)
, (6.18)

which is just the desired result (6.3). Here the use of the dominated convergence theorem is justified by
the fact that there is a sequence of non-negative numbers (ai) with

∑∞
i=1 ai < ∞ such that for all i ≥ 1

and all s ∈ [0, 1],

ρi(α)Eφ̂(sB1 · · ·Bi)
`(1/s)

≤ ai. (6.19)

In fact, when sB1 · · ·Bi ≤ 1, as
∣∣∣ φ̂(s)
`(1/s)

∣∣∣ ≤ C for all s ∈ [0, 1], we have by Potter’s bound (cf. (6.1)) that

ρi(α)E|φ̂(sB1 · · ·Bi)|
`(1/s)

= ρi(α)E

[
|φ̂(sB1 · · ·Bi)|
`((sB1 · · ·Bi)−1)

· `((sB1 · · ·Bi)−1)

`(s−1)

]
≤ Cρi(α)E

[
(B1 · · ·Bi)ε + (B1 · · ·Bi)−ε

]
= Cρi(α)

[
(EBε)i + (EB−ε)i

]
,

where C > 0 differs from line to line. When sB1 · · ·Bi > 1, as `(1)
`((sB1···Bi)−1) ≤ C(sB1 · · ·Bi)ε (by (6.1)),

and |φ̂(sB1 ·Bi)| ≤ C[1 + ρ(α− ε)](sB1 · · ·Bi)−ε (which is derived from (6.14) and the definition of φ̂(·)),
we have that

ρi(α)E|φ̂(sB1 · · ·Bi)|
`(1/s)

= ρi(α)E

[
|φ̂(sB1 · · ·Bi)|

`(1)
· `(1)

`((sB1 · · ·Bi)−1)
· `((sB1 · · ·Bi)−1)

`(s−1)

]
≤ Cρi(α)E

{
(sB1 · · ·Bi)−ε · (sB1 · · ·Bi)ε ·

[
(B1 · · ·Bi)ε + (B1 · · ·Bi)−ε

]}
= Cρi(α)

[
E(B1 · · ·Bi)−ε + E(B1 · · ·Bi)ε

]
= Cρi(α)

[
(EB−ε)i + (EBε)i

]
,
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where C > 0 differs from line to line. It should be pointed out that the O(1)s above are not depending on
i. From the distribution of B (cf. (6.11)), we have

ρi(α)
[
(EB−ε)i + (EBε)i

]
= (EMα−1−ε)i + (EMα−1+ε)i = ρi(α− ε) + ρi(α+ ε),

which is summable due to the facts that ρ(α− ε) < 1 and ρ(α+ ε) < 1. Hence we have shown (6.19). This
ends the proof of Step 2. Thus the proof for the case α ∈ (1,∞)\N is finished.

(ii) Case α ∈ {2, 3, . . .}. In this case we write

ĥn−1(s) =
hn−1(s)

sn
, φ̂n−1(s) =

φn−1(s)

sn
, n = 2, 3, . . . (6.20)

(this time we have α = (n− 1) + 1, which corresponds to the preceding case with n replaced by n− 1 and
β = 1). By Proposition 2.2, we only need to prove the equivalence between the following two statements:
for any fixed λ > 1,

Ĥn−1(s) := ĥn−1(s)− ĥn−1(λs) ∼ lnλ

(n− 1)!
`(1/s) (s→ 0), (6.21)

Φ̂n−1(s) := φ̂n−1(s)− φ̂n−1(λs) ∼ lnλ

(n− 1)!
(1− ρ(n))−1`(1/s) (s→ 0). (6.22)

Recall that by Theorem 2.2,

φn−1(s)− EM−1φn−1(sM) = hn−1(s) +
cn−1

n!
sn +O(sn+ε), s ≥ 0, (6.23)

so that
φ̂n−1(s)− EMn−1φ̂n−1(sM) = ĥn−1(s) +

cn−1

n!
+O(sε), s ≥ 0. (6.24)

Evaluating the equality at λs and subtracting, we obtain

Φ̂n−1(s)− EMn−1Φ̂n−1(sM) = Ĥn−1(s) +O(sε), s ≥ 0. (6.25)

Using (6.25) instead of (6.8), the same argument as in Case (i) shows that (6.21) and (6.22) are equivalent.
This ends the proof of Theorem 1.1. �

7 Proof of Theorem 1.2

Before giving the proof of Theorem 1.2, we first show two lemmas. The first lemma states that the main
term E

[
e−T (s) − 1 + T (s)

]
of the right-hand-side of (2.15) behaves like h1.

Lemma 7.1 If ρ(1 + δ0) <∞ for some δ0 > 0, then we have for ε ∈ (0, 1) and s ≥ 0,

h1(s) ≥ E
[
e−T (s) − 1 + T (s)

]
= h1((1− ε)s) +O(s1+δ0). (7.1)

Proof. Let H(x) = e−x − 1 + x (x ≥ 0). Then we have

EH(sY1) = E
[
e−sY1 − 1 + sY1

]
= h1(s),

EH(T (s)) = E
[
e−T (s) − 1 + T (s)

]
.

For ε ∈ (0, 1), there exists s0 = s0(ε) > 0 such that t(s) ≥ (1− ε)s for all s ∈ [0, s0]. Hence for s ∈ [0, s0],
we have

T (s) ≥
N∑
i=1

(1− ε)Ais1{Ais≤s0} = (1− ε)s
N∑
i=1

Ai1{Ais≤s0}. (7.2)

As H(x) is increasing on (0,∞), from (2.8) and (7.2) we see that

EH(T (s)) ≤ EH(sY1) = h1(s), (7.3)

EH(T (s)) ≥ EH

(
(1− ε)s

n∑
i=1

Ai1{Ais≤s0}

)
. (7.4)
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Notice that by the mean value theorem, 0 ≤ H(b)−H(a) ≤ b− a if 0 ≤ a ≤ b. Hence

0 ≤ H((1− ε)sY1)−H

(
(1− ε)s

N∑
i=1

Ai1{Ais≤s0}

)

≤ (1− ε)s
N∑
i=1

Ai1{Ais>s0}

≤ (1− ε)s1+δ0

N∑
i=1

A1+δ0
i /sδ00 .

Taking expectation, we see that

0 ≤ E

[
H((1− ε)sY1)−H

(
(1− ε)s

N∑
i=1

Ai1{Ais≤s0}

)]
≤ (1− ε)s−δ00 ρ(1 + δ0)s1+δ0 . (7.5)

As EH((1− ε)sY1) = h1((1− ε)s), it follows from (7.3), (7.4) and (7.5) that (7.1) holds. �
The second lemma is a relation between ˜̀ and `. It shows that we can present ˜̀ as a sum of ` composed

with a random walk.

Lemma 7.2 Let (Xi)i≥0 be independent and identically distributed with µ = EX1 ∈ (0,∞) and Ee−δ0X1 <
∞ for some δ0 > 0. Write Sn = X1 + · · ·+Xn. Let ` ∈ R0 be non-increasing with

∫∞
1
`(t)dt/t <∞. Then

as x→∞
1

˜̀(x)

∞∑
n=0

`(xeSn)→ 1

µ
a.s. and in L1, (7.6)

where ˜̀ is defined in (1.17).

Proof. Without loss of generality, we assume that ` is given by (1.10). We first estimate the inferior limit of∑∞
n=0 E`(xeSn )

˜̀(x)
. As EX1 = µ ∈ (0,∞), by the law of large numbers we have Sn/n→ µ a.s. For ε > 0, there

exists almost surely a finite Nε such that Sn lies between n(µ ± ε) for n ≥ Nε. Since ` is non-increasing

and
∫∞

1
`(x)
x dx < ∞, we have limx→∞ `(x) = 0. Using this together with `′(x) = `(x)ε(x)/x (cf. (1.10)),

we obtain that

`(x) = −
∫ ∞
x

`′(t)dt =

∫ ∞
x

`(t)(−ε(t))dt/t.

Therefore
`(x)
˜̀(x)

=

∫∞
x
`(t)(−ε(t))dt/t∫∞
x
`(t)dt/t

≤ sup
t∈[x,∞)

(−ε(t))→ 0 (x→∞),

so that
`(x) = o(˜̀(x)) (x→∞). (7.7)

As `(xeSn) ∼ `(x), it follows that a.s.

Nε−1∑
n=0

`(xeSn) = o(˜̀(x)) (x→∞). (7.8)

On the other hand, for n ≥ Nε, as ` is non-increasing, we have a.s.

∞∑
n=Nε

`(xen(µ+ε)) ≤
∞∑

n=Nε

`(xeSn) ≤
∞∑

n=Nε

`(xen(µ−ε)). (7.9)

Notice that for any c > 0,

∞∑
n=Nε+1

`(xenc) ≤
∫ ∞
Nε

`(xect)dt ≤
∞∑

n=Nε

`(xenc),
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and that the integral above (the middle term) is

1

c

∫ ∞
xecNε

`(u)du/u =
1

c
˜̀(xecNε) ∼ 1

c
˜̀(x) (x→∞).

Therefore
∞∑

n=Nε

`(xenc) ∼ 1

c
˜̀(x) (x→∞). (7.10)

It follows from (7.8), (7.9) and (7.10) that a.s.∑∞
n=0 `(xe

Sn)
˜̀(x)

→ 1

µ
(x→∞). (7.11)

So by Fatou’s lemma,

lim inf
x→∞

∑∞
n=0 E`

(
xeSn

)
˜̀(x)

≥ E lim inf
x→∞

∑∞
n=0 `(xe

Sn)
˜̀(x)

=
1

µ
. (7.12)

We next consider the superior limit of
∑∞
n=0 E`(xeSn)

˜̀(x)
. We divide Sn into two parts according to {Sn ≤

n(µ− ε)} or {Sn > n(µ− ε)}, so that

∞∑
n=0

E`(xeSn) =

∞∑
n=0

E`(xeSn)1{Sn≤n(µ−ε)} +

∞∑
n=0

E`(xeSn)1{Sn>n(µ−ε)}. (7.13)

As ` is non-increasing, the second term is bounded by

∞∑
n=0

`(xen(µ−ε)) ∼ 1

µ− ε
˜̀(x) (x→∞) (7.14)

(cf. (7.10) with c = µ − ε). We now deal with the first term in the right hand side of (7.13). Write
X̄i = Xi − µ and S̄n = X̄1 + · · ·+ X̄n = Sn − nµ. By Potter’s theorem, for any δ > 0, we have

E`(xeSn)1{Sn≤n(µ−ε)} ≤ Aδ`(x)E
(
eδSn + e−δSn

)
1{Sn≤n(µ−ε)}

≤ Aδ`(x)E
(
enµδ + e−δSn

)
1{S̄n≤−nε}, (7.15)

where Aδ > 0 is a constant depending on δ.
We shall prove that thanks to the condition Ee−δ0X1 <∞, we have for ε > 0,

P(S̄n ≤ −nε) ≤ e−cn (7.16)

for some c = c(ε) > 0 and all n ≥ 1. In fact, as (Xi) are independent and identically distributed, we have
for all δ > 0

P(S̄n ≤ −nε) = P(e−δS̄n ≥ enδε)
≤ e−nδεEe−δS̄n

=
[
e−δεEe−δX̄1

]n
. (7.17)

Let Λ(δ) = lnEe−δX̄1 . By the dominated convergence theorem, it can be easily seen that d
dδEe

−δX̄1 =

E
[
−X̄1e

−δX̄1

]
, so that

Λ′(δ) =
E
[
−X̄1e

−δX̄1

]
Ee−δX̄1

→ −E[X̄1] = 0 (δ → 0).

Hence

lim
δ→0

Λ(δ)

δ
= lim
δ→0

Λ′(δ) = 0. (7.18)
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Therefore, for δ > 0 small enough, we have Λ(δ) < δε, which is equivalent to

Ee−δX̄1 < eδε. (7.19)

So from (7.17), we obtain (7.16) with c = − ln
[
Ee−δX̄1

eδε

]
> 0.

By the Cauchy-Schwartz inequality, it follows from (7.15) and (7.16) that

E`(xeSn)1{Sn≤n(µ−ε)} ≤ Aδ`(x)
{
enµδP(S̄n ≤ −nε) +

[
Ee−2δSn

]1/2 [P(S̄n ≤ −nε)
]1/2}

≤ Aδ`(x)
{[
eµδ · e−c

]n
+
[
Ee−2δX1 · e−c

]n/2}
. (7.20)

As Ee−2δX1 <∞ for δ ∈ [0, δ0/2], we can choose δ > 0 small enough such that

eµδ · e−c < 1 and Ee−2δX1 · e−c < 1. (7.21)

Hence from (7.20) and (7.7), we see that

∞∑
n=1

E`(xeSn)1{Sn≤n(µ−ε)} ≤ Aδ`(x)

∞∑
n=1

{[
eµδ · e−c

]n
+
[
Ee−2δX1 · e−c

]n/2}
≤ C`(x) = o

(
˜̀(x)

)
. (7.22)

It follows from (7.13), (7.14) and (7.22) that

∞∑
n=0

E`(xeSn) ≤ o
(

˜̀(x)
)

+
1

µ− ε
˜̀(x),

which implies that

lim sup
x→∞

∑∞
n=0 E`(xeSn)

˜̀(x)
≤ 1

µ− ε
.

Letting ε→ 0, we have

lim sup
x→∞

∑∞
n=0 E`(xeSn)

˜̀(x)
≤ 1

µ
. (7.23)

Combining this with (7.12), we obtain

lim
x→∞

1
˜̀(x)

∞∑
n=0

E`(xeSn) =
1

µ
. (7.24)

By Scheffé’s theorem, (7.11) and (7.24) give (7.6). �
Proof of Theorem 1.2. By Proposition 2.1 (with n = 1 and β = 0), we just need to show that

h1(s) ∼ s`(1/s) (s→ 0) (7.25)

implies
φ1(s) ∼ µ−1s˜̀(1/s) (s→ 0), (7.26)

where ˜̀ is defined in (1.17). Notice that if `1(x) ∼ `2(x) (x→∞), then
∫∞
x

`1(t)
t dt ∼

∫∞
x

`2(t)
t dt (x→∞)

by l’Hôpital’s rule. Therefore we can suppose that `(1/s) = h1(s)/s, s > 0, which is non-decreasing, so
that `(x) is non-increasing.

Recall the definitions of φ̂1(s) and φ̂(s) in the proof of Theorem 1.1(i) (with α = 1):

φ̂1(s) = φ1(s)/s and φ̂(s) = φ̂1(s)− Eφ̂1(sM).

Corresponding to (6.12), we get

k−1∑
i=0

Eφ̂(sM1 · · ·Mi) = φ̂1(s)− Eφ̂1(sM1 · · ·Mk), (7.27)

27



where {Mi} are independent copies of M . Notice that 0 < 1− e−x < x (∀x > 0), we see that 0 ≤ φ1(s) =
E(e−sZ − 1 + sZ) ≤ 2sEZ = 2s, and hence

sup
s>0
|φ̂1(s)| <∞.

Therefore, by the dominated convergence theorem and the fact that M1 · · ·Mk → 0 (which follows from
the law of large numbers), we conclude that

lim
k→∞

Eφ̂1(sM1 · · ·Mk) = 0.

So letting k →∞ in (7.27), we obtain

∞∑
n=0

Eφ̂(sM1 · · ·Mn) = φ̂1(s). (7.28)

By Lemma 7.1 and Theorem 2.2, we see that

φ̂(s) ≤ h1(s)

s
+O(sε), s ≥ 0, (7.29)

φ̂(s) ≥ h1((1− δ)s)
s

+O(sε), s ≥ 0, (7.30)

for all δ ∈ (0, 1). From (7.28) and (7.29), we have for all ε > 0,

φ̂1(s) ≤
∞∑
n=0

[
E
h1(sM1 · · ·Mn)

sM1 · · ·Mn
+O(E(sM1 · · ·Mn)ε)

]

=

∞∑
n=0

[
E`
(

1

sM1 · · ·Mn

)
+O(sε)E(M1 · · ·Mn)ε

]
. (7.31)

Since (1.14) holds for α = 1 and some δ0 > 0, we have ρ(1 + δ) < ∞ for some δ > 0 small enough (cf.
(1.15)). Hence ρ(x) is convex on (1, 1 + δ) with ρ′(1) < 0, and we can find some ε > 0 small enough such

that ρ(1 + ε) < 1. By the definition of M (cf. (2.10)), we obtain that E(M1 · · ·Mn)ε =
(
E
∑N
i=1A

1+ε
i

)n
=

ρn(1 + ε) and
∞∑
n=0

E(M1 · · ·Mn)ε =

∞∑
n=0

ρn(1 + ε) =
1

1− ρ(1 + ε)
. (7.32)

Write Mn = e−Xn and Sn = X1 + · · · + Xn. So {Xn} are independent and identically distributed, with
EX1 = −E lnM1 = −ρ′(1) = µ ∈ (0,∞) and Ee−δ0X1 = EM δ0

1 = ρ(1 + δ0) <∞. By Lemma 7.2, we have

∞∑
n=0

E`
(

1

sM1 · · ·Mn

)
=

∞∑
n=0

E`(eSn/s)

∼ µ−1 ˜̀(1/s) (s→ 0). (7.33)

Notice that ˜̀ is a function slowly varying at ∞, it follows from (7.31), (7.32) and (7.33) that

lim sup
s→0

φ̂1(s)
˜̀(1/s)

≤ lim
s→0

[
1

µ
+
O(sε)
˜̀(1/s)

]
= µ−1. (7.34)

On the other hand, from (7.28) and (7.30), we have for δ ∈ (0, 1),

φ̂1(s) ≥
∞∑
n=0

[
E
h1((1− δ)sM1 · · ·Mn)

sM1 · · ·Mn
+O(sε)E(M1 · · ·Mn)ε

]

=

∞∑
n=0

[
(1− δ)E`

(
1

(1− δ)sM1 · · ·Mn

)
+O(sε)E(M1 · · ·Mn)ε

]

=

∞∑
n=0

[
(1− δ)E`

(
eSn/[(1− δ)s]

)
+O(sε)E(M1 · · ·Mn)ε

]
. (7.35)
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Using again Lemma 7.2, we have

∞∑
n=0

E`
(
eSn/[(1− δ)s]

)
∼ µ−1 ˜̀(1/[(1− δ)s]) ∼ µ−1 ˜̀(1/s) (s→ 0), (7.36)

where the last step holds since the slow variation of ` implies that of ˜̀. It follows from (7.32), (7.35) and
(7.36) that

lim inf
s→0

φ̂1(s)
˜̀(1/s)

≥ 1− δ
µ

. (7.37)

Letting δ → 0, we see that

lim inf
s→0

φ̂1(s)
˜̀(1/s)

≥ µ−1. (7.38)

From (7.34) and (7.38), we obtain

lim
s→0

φ̂1(s)
˜̀(1/s)

= µ−1, (7.39)

which is equivalent to (7.26). This ends the proof of Theorem 1.2. �

Remark 7.1 In Theorem 1.2, we fail to show the equivalence between (1.18) and (1.19), which can be
interpreted to the equivalence between (7.25) and (7.26). In our approach, to show the implication (7.25)

⇒ (7.26), we use (7.28) (together with Lemma 7.2) to transfer information on h1 (corresponding to φ̂) to

that on φ1 (corresponding to φ̂1). The difficult for establishing the inverse implication (7.26) ⇒ (7.25) is

that from (7.28), we cannot transfer the information from φ̂1 to φ̂ (that is, from φ1 to h1).
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Appendix

Proof of Proposition 2.2. Write F for the distribution function of X. Define F1, · · · , Fn+1 by letting
F1 = F and

1− Fk+1(x) =

{∫∞
x

[1− Fk(t)]dt, x ≥ 0,

1− Fk+1(0), x < 0,
(A.1)

if 1 ≤ k ≤ n. By induction, it can be easily shown that when µn = EXn <∞, we have for k = 0, . . . , n,

1− Fk+1(x) =
E[(X − x)k1{X>x}]

k!
, x ≥ 0;

in particular, 1− Fk+1(x) is bounded by 1− Fk+1(0) = µk/k!. By definition, for 1 ≤ k ≤ n,

Fk+1(x)− Fk+1(0) =

∫ x

0

[1− Fk(t)]dt, x ≥ 0.

In other words, for k = 1, · · · , n, Fk+1(x)−Fk+1(0) is the distribution function of the measure concentrated
on (0,∞) of density 1−Fk(t) with respect to the Lebesgue measure, with mass 1−Fk+1(0) = µk/k!. Define

Fn+2(x) =

∫ x

0

[1− Fn+1(t)]dt, x ≥ 0
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and Fn+2(x) = 0 for x < 0, namely, Fn+2(x) is the distribution function of the measure concentrated on
(0,∞) of density 1−Fn+1(t) with respect to the Lebesgue measure. By induction, it can be easily checked
that for k = 0, · · · , n,

f̂k(s) =

∫
[0,∞)

e−std(Fk+2(x)− Fk+2(0)) =

∫
[0,∞)

e−st[1− Fk+1(t)]dt. (A.2)

We first show that (2.3) implies (2.4). As 1− F (x) ∼ x−(n+1)`(x) (x→∞), by induction we have

1− Fk+1(x) ∼ x−(n+1−k)

n · · · (n− k + 1)
`(x), k = 0, . . . , n,

with the convention that n · · · (n− k + 1) = 1 when k = 0. Therefore, for any λ > 0, we have

Fn+2(λx)− Fn+2(x) =

∫ λx

x

[1− Fn+1(t)]dt

∼
∫ λx

x

`(t)

n!

dt

t
∼ `(x)

n!
lnλ, x→∞,

where the last equivalence is due to the Uniform Convergence Theorem (see [11, Theorem 1.2.1]). Hence
we obtain

lim
x→∞

Fn+2(λx)− Fn+2(x)

`(x)
=

1

n!
lnλ, ∀λ > 0. (A.3)

As f̂n is the Laplace -Stieltjes transform of Fn+2, it follows from (A.2) and de Haan’s theorem (see [15] or
[11, Theorem 3.9.1]) that

lim
s→∞

f̂n( 1
λs )− f̂n( 1

s )

`(s)
=

1

n!
lnλ, ∀λ > 0, (A.4)

which gives (2.4).

We now show that (2.4) implies (2.3). Since f̂n(·) is the Laplace-Stieltjes transform of Fn+2(·), again
by de Haan’s theorem, we see that (A.3) holds true, which implies that

lim
x→∞

Fn+2(λx)− Fn+2(x)

Fn+2(ex)− Fn+2(x)
= lnλ, ∀λ > 0.

So by the lemma of [15], we see that 1−Fn+1(x), which is the derivative of Fn+2(x), is a regularly varying
function of index −1. Differentiating n times the function 1 − Fn+1(x), we know that 1 − F1(x) varies
regularly with index −(n+ 1), that is,

1− F1(x) ∼ x−(n+1)`1(x) (x→∞), (A.5)

where `1(·) is a function slowly varying at ∞. Using this and the implication ”(2.3)⇒(2.4)”, we see that
(2.4) holds also with ` replaced by `1. Thus `1(x) ∼ `(x)(x → ∞), so that (A.5) implies (2.3). This ends
the proof of the implication ”(2.4)⇒(2.3)”. �

References

[1] Aldous, D.J. and Bandyopadhyay, A.(2005). A survey of max-type recursive distributional equations.
Ann. Appl. Probab., 15(2), 1047-1110.

[2] Alsmeyer, G. and Iksanov, A.(2009). A log-type moment result for perpetuities and its application to
martingales in supercritical branching random walks. Electron. J.Prob., 14, 289-313.

[3] Alsmeyer, G. and Kuhlbusch, D.(2010). Double martingale structure and existence of φ−moments for
weighted branching processes. Münster J. of Math., 3, 163-211.
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