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Let (N, A1, A2, . . .) be a sequence of random variables with N ∈ N∪{∞} and Ai ∈ R+. We are interested in asymptotic properties of non-negative solutions of the distributional equation

 on the branching random walk. A similar result on sufficient condition is also established for the case where α = 1.

Introduction and main results

Let us introduce the smoothing transform that interests us. As usual, we write N = {0, 1, . . .}, N * = {1, 2, . . .}, N = N ∪ {∞} and R + = [0, ∞). Let (N, A 1 , A 2 , . . .) be a random variable taking values in

N × R + × R + × • • • . Assume that E N i=1 A i = 1.
(1.1)

Let M 1 be the set of probability measures on R + with finite mean. The smoothing transform T on M 1 is defined by letting T µ be the distribution of N i=1 A i Z i , where Z i are independent and identically distributed (i.i.d.) random variables with law µ, independent of (N, A 1 , A 2 , ...). It is convenient to write the fixed point equation µ = T µ in the equivalent form

Z (d) = N i=1 A i Z i , (E) 
where Z i are non-negative i.i.d. random variables independent of (N, A 1 , A 2 , . . .), each having the same law as Z (which is unknown). By convention, the empty sum is taken to be 0, so that

N i=1 A i = N i=1 A i Z i = 0 if N = 0.
The smoothing transform T will be identified with the corresponding transform on Laplace transforms of elements of M 1 , so that by writing φ(s) = Ee -sZ , the equation (E) reads

φ(s) = (T φ)(s), where (T φ)(s) = E N i=1 φ(sA i ), s ≥ 0, (E )
with the convention that the empty product is taken to be 1.

The study of fixed points of the smoothing transform is interesting due to a large number of applications in a variety of applied probability settings, including branching processes, self-similar cascades, infinite particles systems, branching random walks, random fractals, the quicksort algorithm and the Pagerank algorithm (which is in the heart of the Google engine): see for example [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF][START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF], [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF], [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF], [START_REF] Durrett | Fixed points of the smoothing transformation[END_REF], [START_REF] Rösler | A fixed point theorem for distributions[END_REF], [START_REF] Liu | Fixed points of a generalized smoothing transform and applications to the branching random walk[END_REF], [START_REF] Aldous | A survey of max-type recursive distributional equations[END_REF], [START_REF] Biggins | Fixed points of the smoothing transform: the boundary case[END_REF], [START_REF] Iksanov | Regular variation in the branching random walk[END_REF], [START_REF] Buraczewski | On tails of fixed points of the smoothing transform in the boundary case[END_REF], [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF], [START_REF] Volkovich | Asymptotic analysis for personalized web search[END_REF], [START_REF] Barral | On exact scaling log-infinitely divisible cascades[END_REF], [START_REF] Buraczewski | Linear stochastic equations in the critical case[END_REF], [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] and [START_REF] Shi | Branching random walks[END_REF].

A typical example for a solution of (E) is the limit of a generalized Mandelbrot's martingale (see [START_REF] Liu | On generalized multiplicative cascades[END_REF]) constructed as follows. Let U = ∞ n=0 (N * ) n be the set of all finite sequences, where (N * ) 0 = {∅} contains the null sequence ∅. Let (N u , A u1 , A u2 , . . .), indexed by u ∈ U , be a sequence of independent copies of (N, A 1 , A 2 , . . .). Let T be the Galton-Watson tree with defining elements {N u : u ∈ U }, that is: (i) ∅ ∈ T, (ii) ui ∈ T implies u ∈ T, (iii) if u ∈ T and i ∈ N, then ui ∈ T if and only if 1 ≤ i ≤ N u . Let T n = {u ∈ T : |u| = n} be the set of individuals in generation n, where |u| denotes the length of the sequence u. Set Y n = u1...un∈Tn

A u1 • • • A u1...un for n ≥ 1. (1.2)
Then (Y n ) n≥1 is a non-negative martingale with respect to the filtration E n = σ{(N u , A u1 , A u2 , . . .) : |u| < n}, n ≥ 1, so that the limit

Y ∞ = lim n→∞ Y n (1.
3) exists a.s. by the martingale convergence theorem, with EY ∞ ≤ 1 by Fatou's lemma. By self-similarity of the construction, it can be easily seen that Z = Y ∞ is a solution of (E). We shall see in Lemma 1.1 that any solution of (E) with finite mean can be obtained in this way.

Another typical example concerns the natural martingale occurring in the branching random walk (BRW) on the real line R, described as follows. The initial particle ∅ of the 0-th generation is located at S ∅ = 0 ∈ R; it gives birth to N ∅ = N new particles ∅i = i (1 ≤ i ≤ N ) of the first generation with displacements L ∅i = L i . In general, each particle u = u 1 u 2 . . . u n of n-th generation gives birth to N u new particles ui (1 ≤ i ≤ N u ) of (n + 1)-th generation, with displacements (relative to their parent) L ui on the real line, so that their positions are S ui = S u + L ui . The random variables (N u , L u1 , L u2 , . . .) are independent and identically distributed. Let Z n be the counting measure on the real line R which counts the number of particles of the n-th generation in a given set of R:

Z n (A) = u∈Tn 1 A (S u ), A ⊂ R, (1.4) 
where 1 A denotes the indicator function of A, and T n is the set of individuals of generation n as defined before. Let t ∈ R be fixed such that m := E N i=1 e -tLi < ∞. Then the Laplace transform of Z n at t is Zn (t) = e -tx dZ n (x) = u∈Tn e -tSu , and the sequence

W n = Zn (t) E Zn (t)
= u∈Tn e -tSu m n (1.5)

(the normalized Laplace transform of Z n ) forms a non-negative martingale with respect to the filtration E n = σ{(N u , L u1 , L u2 , . . .) : |u| < n}, n ≥ 1. Notice that {W n } is just {Y n } with A u = e -tLu /m, so that the a.s. limit variable Z = lim n W n is a solution of (E) with A i = e -tLi /m.

For x ≥ 0, write

ρ(x) = E N i=1 A x i and ρ (x) = E N i=1 A x i ln A i (1.6)
if the expectation exists with value in the extended real line R = [-∞, ∞]. The following result concerns the existence and uniqueness of nontrivial solutions with finite mean, and the existence of moments of order α > 1. As usual, we write ln + x = max(ln x, 0) and ln -x = max(-ln x, 0) for x ≥ 0.

We always assume (1.1) and write Y 1 = N i=1 A i , in accordance with (1.2). Define for x > 0,

J(x) := x A(x) with A(x) = x 0 E N i=1 A i 1 {-ln Ai>t} dt = E N i=1 A i min(ln -A i , x),
where the last equality holds by Fubini's theorem. Let J(0) = lim x↓0 J(x) = 1/E N i=1 A i 1 {-ln Ai>0} . Notice that for any x > 0, A(x) = 0 if and only if a.s.

A i ≥ 1 on {A i > 0}, for all i = 1, • • • , N .
Consequently, if ρ (1) < 0, then A(1) > 0, and for any x ≥ 1, A(x) ≥ A(1) > 0 and J(x) ≤ x/A [START_REF] Aldous | A survey of max-type recursive distributional equations[END_REF]. Notice also that J

(x) = 1/ 1 0 E N i=1 A i 1 {-ln Ai>xu} du is increasing in x. Lemma 1.1 (i) Assume that ρ (1)
is well defined whose value may be infinite. Then the equation (E) has a solution Z with EZ = 1 if and only if either

ρ (1) ∈ (-∞, 0) and E[Y 1 ln + Y 1 ] < ∞, (1.7 
)

or ρ (1) = -∞ and E[Y 1 J(ln + Y 1 )] < ∞. (1.8) Moreover, if Z is a solution of (E) with EZ = 1, then EY 1 = 1 and Z = Y ∞ in law, where Y ∞ is defined by (1.3). (Consequently, there is only one solution Z satisfying EZ = 1.) (ii) Let Z be a solution of (E) with EZ = 1. For α > 1, EZ α < ∞ if and only if ρ(α) < 1 and EY α 1 < ∞.
The first conclusion in Part (i) follows from a result of [START_REF] Alsmeyer | A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks[END_REF]. In fact, by Theorem 1.3 of [START_REF] Alsmeyer | A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks[END_REF], when ρ (1) is well defined, EY ∞ = 1 (see (1.3) for the definition) if and only if (1.7) or (1.8) holds (actually their result is established in the context of branching random walks, but can also be formulated in the context of Mandelbrot's martingales). So to prove the conclusion we just need to show that the equation (E) has a solution Z with EZ = 1 if and only if EY ∞ = 1. The "if" part is evident. To see the "only if" part, it suffices to notice that by Theorem 7.

1 of Liu (1998), if Z is a solution of (E) with EZ = 1, then Y n → Z in law.
(To see this, it suffices to take η(t) = e -t and φ(t) = Ee -tZ in Theorem 7.1 of [START_REF] Liu | Fixed points of a generalized smoothing transform and applications to the branching random walk[END_REF]; in this case, the condition (H1) therein is not needed). Hence Z = Y ∞ in law. This argument also shows the second conclusion of Part (i). Part (ii) is just Theorem 2.1 of Liu (2000) (although Liu only considered the case where N < ∞ a.s., this condition was not needed in the proof therein).

The criterion (1.7) has been well-known in the literature. For example, [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] proved it under the additional condition [START_REF] Liu | Sur une équation fonctionelle et ses applications: une extension du théorème de Kesten-Stigum concernant des processus de branchement[END_REF] proved it when EN < ∞, [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF] proved it assuming only ρ (1) is finite. In fact [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] and Lyons (1997) also shown the sufficiency when

E ∞ i=1 A i (ln A i ) 2 < ∞,
ρ (1) = -∞ and E[Y 1 ln + Y 1 ] < ∞. Notice that, by the discussion before Lemma 1.1, if ρ (1) ∈ [-∞, 0), then E[Y 1 ln + Y 1 ] < ∞ implies E[Y 1 J(ln + Y 1 )] < ∞.
A fundamental problem on the smoothing transform concerns the tail behavior of fixed points. Many authors have studied this problem in various contexts, see for example: [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF][START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF] for Galton-Watson processes and Crump-Mode-Jirina processes; [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF], Guivarc'h (1990), [START_REF] Barral | Moments, continuité, et analyse multifractale des martingales de Mandelbrot[END_REF], [START_REF] Liu | On generalized multiplicative cascades[END_REF], Barral [START_REF] Shi | Branching random walks[END_REF] for related topics and many other references. Here we shall study the regular variation of the tail probability P(Z > x) when x → ∞, for a solution Z of (E) with finite mean.

Let α > 1 be such that ρ(α) < 1. Lemma 1.1 (ii) shows that Z and Y 1 would have similar asymptotic properties. We shall show this by establishing comparison theorems between the tail behavior of Z and that of Y 1 . Throughout the paper, let

R 0 = : [0, ∞) → [0, ∞) : is measurable and lim x→∞ (λx) (x) = 1 ∀λ > 0 (1.9)
be the set of functions slowly varying at ∞ (also called the class of regularly varying functions of index 0). Recall that a function ∈ R 0 can be represented in the form (cf. [START_REF] Bingham | Regular Variation[END_REF], p.12)

(x) = c(x) exp x a (u) u du (x ≥ a)
for some a > 0, where c(•) and (•) are measurable with c(x) → c ∈ (0, ∞) and (x) → 0 as x → ∞. Without loss of generality, we can take c(x) ≡ c. For simplicity, we take c = 1. Also, as the value of (x) on finite intervals have no influence on our purpose, we can take a = 1, and

(x) = exp x 1 (u) u du if x > 1, 1 if x ≤ 1, (1.10) 
where (•) is measurable and bounded with (x) → 0 as x → ∞.

As usual, we write

f (s) = o(g(s)) if f (s)/g(s) → 0, and f (s) ∼ g(s) if f (s)/g(s) → 1
, where s → 0 or ∞ according to the context. We use

f (s) = O(g(s)), s ∈ I (resp. s → 0), to mean |f (s)| ≤ C|g(s)| on I (resp.
for s > 0 small enough), where C > 0 is a constant. We emphasize that C > 0 is a deterministic constant when g is a random function. For a set B we use Int B to denote the interior of B.

In what follows we always assume that Z ≥ 0 is a solution of (E) with EZ = 1. Our main results are Theorems 1.1 and 1.2 below about the regular variation of P(Z > x).

Theorem 1.1 Let α > 1 be such that ρ(a) < 1 and that

ρ(α + δ 0 ) < ∞ for some δ 0 > 0. (1.11)
Then the following two assertions are equivalent for ∈ R 0 :

P{Y 1 > x} ∼ x -α (x) as x → ∞ , (1.12 
)

P{Z > x} ∼ (1 -ρ(α)) -1 x -α (x) as x → ∞ . (1.13)
In the context of the Galton-Watson process (where A i = 1/EN < 1 for all i) and the Crump-Mode-Jirina process (where A i ≤ 1 for all i), the same result was established by [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF][START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF] when α > 1 is not an integer, and by de Meyer (1982) when α > 1 is an integer. Their argument was based on the functional equation (E ) and a powerful Tauberian theorem on Laplace transforms. The implication "(1.12) ⇒ (1.13)" has been extended by [START_REF] Iksanov | Regular variation in the branching random walk[END_REF] to the general case where A i are not necessarily bounded, using an elegant martingale argument. The analytic argument of [START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF] depends heavily on the boundedness of A i , while the probabilistic argument of [START_REF] Iksanov | Regular variation in the branching random walk[END_REF] does not give the converse part. Notice that the boundedness condition on A i restricts much the applications: for example, in the typical case of the canonical Mandelbrot's cascade and in the branching Brownian motion, where A i are not bounded as ln A i are Gaussian variables. Our theorem shows that the results of [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF][START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF]) and de Meyer (1982) remain true in the general case (where A i are not necessarily bounded), so that they can be applied for example to general Mandelbrot's martingales and branching random walks; in our approach we extend the analytic arguments of [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF][START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF] to the general case. While A i are not bounded, the arguments become much more delicate; we use delicate truncating technics to overcome the difficulty. Theorem 1.1 also improves the result of [START_REF] Iksanov | Regular variation in the branching random walk[END_REF] in the sense that we obtain a necessary and sufficient condition, not just a sufficient condition.

When α ∈ (1, 2), the implication "(1.12) ⇒ (1.13)" has also been shown by [START_REF] Rösler | Convergence rate for stable weighted branching processes[END_REF][START_REF] Rösler | The rate of convergence for weighted branching processes[END_REF] for weighted branching processes with real weights and by Iksanov, Kolesko & Meiners (2019) for a more general functional of the underlying branching random walk. Moreover, in the same work Iksanov et al. pointed out that when α ∈ (1, 2) and when lim x→∞ (x) exists and is strictly positive and finite, the condition (1.11) can be removed. For a similar situation, see [START_REF] Mikosch | The supremum of a negative drift random walk with dependent heavy-tailed steps[END_REF]. In this paper we need the condition (1.11) to establish Theorem 2.1 about the relations between the reminders of the Taylor expansion of Laplace transforms of Y 1 and Z (see e.g. the proof of Lemma 4.1 which serves for the proof of Theorem 2.1), and to secure a proper use of Potter's bound while using Theorem 2.1 to prove Theorem 1.1. We mention that we can avoid the use of Potter's bound (so that the condition (1.11) will not be used for this purpose), if is sub-multiplicative in the sense that (xy) ≤ c (x) (y) for some constants c, x 0 > 0 and all x, y ≥ x 0 (which holds in particular if lim x→∞ (x) ∈ (0, ∞)); however we still need (1.11) in the proof of Theorem 2.1, so that we fail to remove it in Theorem 1.1.

Closely related results on weighted moments of the form E(Z α (Z)) have been established for example in [START_REF] Alsmeyer | Double martingale structure and existence of φ-moments for weighted branching processes[END_REF] and [START_REF] Liang | Weighted moments for Mandelbrot's martingales[END_REF].

Remark 1.1 Notice that under (1.12) or (1.13), the condition (1.11) is equivalent to the condition

EA α+ε < ∞
for some ε > 0, where A = sup

1≤i≤N A i , (1.14) 
which will be used in the following. In fact, if (1.11) holds, then it is clear that (1.14) holds for ε = δ 0 . So we only need to show that (1.14) implies (1.11). Relation (1.12) implies EY α-δ0 1 < ∞ and (1.13) implies EZ α-δ0 < ∞ for δ 0 ∈ (0, α -1]. So by Lemma 1.1(b), under (1.12) or (1.13), we have EY α-δ0 1 < ∞. By Hölder's inequality,

ρ(α + δ 0 ) = E N i=1 A α+δ0 i ≤ E[Y 1 A α-1+δ0 ] ≤ EY α-δ0 1 1/(α-δ0) • E A α+δ (α-1-δ0)/(α-δ0) , (1.15) 
where δ = (α+1-δ0)δ0 α-1-δ0 . When δ 0 > 0 is small enough, we have δ ≤ ε, so that the right side of (1.15) is finite by (1.14).

We shall prove the equivalence between (1.12) and (1.13) under the condition (1.14), using Tauberian theorems and truncating techniques. Our approach also gives a new proof of the result of [START_REF] Iksanov | Regular variation in the branching random walk[END_REF].

Let α c ≥ 1 be the critical value for the existence of moments of Y 1 :

α c = sup{a ≥ 1 : EY a 1 < ∞}. (1.16) 
Notice that Theorem 1.1 is applicable only in the case where α c > 1. When α c = 1, the following result shows that the situation is different. For ∈ R 0 with ∞ 1

(t)dt/t < ∞, set ˜ (x) = 0 for x ∈ [0, 1), and

˜ (x) = ∞ x (t) t dt for x ≥ 1.
(1.17)

Theorem 1.2 Assume that ρ(1 + δ 0 ) < ∞ for some δ 0 > 0, and that µ := -ρ (1) ∈ (0, ∞). Let ∈ R 0 be such that

∞ 1 (x)dx/x < ∞. If EY 1 1 {Y1>x} ∼ (x) (x → ∞), (1.18) 
then EZ1 {Z>x} ∼ µ -1 ˜ (x) (x → ∞). (1.19)
The same result was established by [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF][START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF] for the Galton-Watson process, the Crump-Mode and Jirina processes. Notice that, just as in the result of [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF][START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF]), here we have not established the equivalence between (1.18) and (1.19). An explanation on this point will be given in Remark 7.1.

Theorems 1.1 and 1.2, without detailed proofs, have been announced in [START_REF] Liang | Tail behavior of laws stable by random weighted mean[END_REF]. In both Theorems 1.1 and 1.2, we are in the case where E[Y 1 ln + Y 1 ] < ∞. In fact, in Theorem 1.1, each of the conditions (1.12) and (1.13) 

implies that E[Y a 1 ] < ∞ for 1 < a < α, so that E[Y 1 ln + Y 1 ] < ∞; in Theorem 1.2, the conditions ∞ 1 (x)dx/x < ∞ and (1.18) also imply that E[Y 1 ln + Y 1 ] < ∞, because, as mentioned in Bingham & Doney (1974), ∞ 1 E[Y 1 1 Y1>x ] dx x = E[Y 1 ln + Y 1 ].
As information, we mention that when E[Y 1 ln + Y 1 ] = ∞, the asymptotic behavior of Z has also been studied in the literature, see for example [START_REF] Alsmeyer | A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks[END_REF] about the existence of moments of Z.

The rest of the paper is organized as follows. In Section 2, we explain the main ideas of the approach, and the relations between the Laplace transforms of Z and Y 1 (cf. Theorems 2.1 and 2.2). Section 3 contains some preliminary results about the equation (E) and its solutions. Sections 4 and 5 are devoted to the proof of auxiliary theorems announced in Section 2. Theorems 1.1 and 1.2 are proved respectively in Sections 6 and 7.

In the following sections, C > 0 always stands for a deterministic constant whose value may differ from line to line.

2 Key ideas of the approach

Tauberian theorems

For a non-negative random variable X, we write f (s) = Ee -sX for its Laplace transform and µ r = EX r for its r-moment (r = 0, 1, 2, . . .). If X has at least finite n-th moment, we set

f n (s) = (-1) n+1 E e -sX - n r=0 (-sX) r r! , n ≥ 0, (2.1) 
and

f (n) n (s) = d n f n (s) ds n = (-1) n {f (n) (0) -f (n) (s)} = EX n (1 -e -sX ), n ≥ 0. (2.2)
We shall use the following two Tauberian theorems which give necessary and sufficient conditions for P(X > x) ∼ x -α (x), as x → ∞: see Proposition 2.1 for α ∈ N, and Proposition 2.2 for α ∈ N. As usual, denote by Γ(•) the gamma function.

Proposition 2.1 ([9], Theorem A) Let X be a non-negative random variable with Laplace transform f (s) = Ee -sX . Let n ∈ N * . If µ r = EX r < ∞ for r = 0, 1, . . . , n, then for α = n + β with 0 ≤ β ≤ 1, the following statements are equivalent for ∈ R 0 : f n (s) ∼ s α (1/s) (s → 0); f (n) n (s) ∼ Γ(α + 1) Γ(β + 1) s β (1/s) (s → 0); EX n 1 {X>x} ∼ n! (x) (x → ∞) when β = 0; P(X > x) ∼ (-1) n Γ(1 -α) x -α (x) (x → ∞) when 0 < β < 1; EX n+1 1 {X≤x} ∼ (n + 1)! (x) (x → ∞) when β = 1.
Proposition 2.2 Le X be a non-negative random variable with Laplace transform f (s) = Ee -sX . Let n ≥ 0 be an integer, and assume that µ n = EX n < ∞. Define f n by (2.1) and

fn (s) = f n (s)/s n , s > 0.
Then the following two statements are equivalent for ∈ R 0 :

P(X > x) ∼ x -(n+1) (x) (x → ∞); (2.3) fn (t) -fn (λt) (1/t) ∼ 1 n! ln λ (t → 0) ∀λ > 1.
(2.4) Proposition 2.1 was established by [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF], using Karamata's theorem (cf. [START_REF] Bingham | Regular Variation[END_REF] or [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]). Proposition 2.2 can be obtained from the argument by de Meyer and Teugels (1980, Section 3) via de Haan's theorem (cf. [START_REF] Bingham | Regular Variation[END_REF], [START_REF] De Haan | An Abel-Tauber theorem for Laplace transforms[END_REF] or [START_REF] De Meyer | On the asymptotic behavior of the distributions of the busy period and service time in M/G/1[END_REF]), and was used in de Meyer (1982) for extending the result of [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF] to integer orders. However this result was not explicitly stated neither in de Meyer and Teugels (1980) nor in de Meyer (1982). For reader's convenience, we give the statement here whose proof is postponed in the Appendix.

Relations between the Laplace transforms of Y 1 and Z

Assume that Z ≥ 0 is a solution of (E) with EZ = 1. In view of Propositions 2.1 and 2.2, to obtain comparison results for the regular variations of Y 1 and Z, we first show relations between h n and φ n defined below: for n ∈ N,

h n (s) = (-1) n+1 E e -sY1 - n r=0 (-sY 1 ) r r! , (2.5 
)

φ n (s) = (-1) n+1 E e -sZ - n r=0 (-sZ) r r! . (2.6) Let φ(s) = Ee -sZ (s ≥ 0) be the Laplace transform of Z. Set t(s) = -ln φ(s) and T (s) = N i=1 t(sA i ).
(2.7)

Since EZ = 1, by Jensen's inequality, we have φ(s) = Ee -sZ ≥ e -sEZ = e -s , so

0 ≤ t(s) ≤ s and 0 ≤ T (s) ≤ Y 1 s. (2.8) Moreover, as EZ = 1, t(s) ∼ s and T (s) ∼ N i=1 sA i = sY 1 (s → 0). (2.9) For n ∈ N, if EZ n < ∞, then φ has n-th continuous derivatives φ (n) on [0, ∞). Therefore t(•) and T (•)
have also continuous n-th derivatives, denoted respectively by t (n) (s) and T (n) (s). Clearly, for s ≥ 0,

T (n) (s) = N i=1 A n i t (n) (sA i ).
Let M be a random variable whose distribution is determined by

Ef (M ) = E N i=1 A i f (A i ) (2.10) for any measurable function f : [0, ∞) → [0, ∞). Set g n (s) = EY n 1 (1 -e -sY1 ) and ψ n (s) = EZ n (1 -e -sZ ). (2.11) Then g n (s) = h (n) n (s) and ψ n (s) = φ (n) n (s), where h (n) n and φ (n) n
are the n-th derivatives of h n and φ n , respectively. We have the following comparison theorem between g n and ψ n .

Theorem 2.1 Let Z ≥ 0 be a solution of (E) with EZ = 1, and define g n and ψ n by (2.11).

(i) Assume that ρ(α) < 1 for some α > 1, and that ρ(α

+ δ 0 ) < ∞ for some δ 0 > 0. Assume also that EY γ 1 < ∞ and EZ γ < ∞ for all γ ∈ [1, α).
Then writing α = n + β with n ∈ N * and β ∈ (0, 1], we have for > 0 small enough and all s ≥ 0,

ψ n (s) -E{M n-1 ψ n (sM )} = g n (s) + c n s + O(s β+ ), (2.12)
where c n is a constant only depending on n, with c n = 0 when α is not an integer (i.e. β < 1).

(ii) Assume that ρ(1 + δ 0 ) < ∞ for some δ 0 > 0. Then for > 0 small enough and all s ≥ 0,

ψ 1 (s) -Eψ 1 (sM ) = E{T (s)(1 -e -T (s) )} + O(s ). (2.13)
Part (i) deals with the case where E(Y γ 1 ) < ∞ for some γ > 1, while Part (ii) applies without any moment condition on Y 1 (other than EY 1 = 1).

To fix the idea, notice that the interesting part in (2.12) is the validity for s ∈ [0, 1] (or s → 0), as the validity for s ∈ (1, ∞) is evident due to the condition that EY n 1 < ∞ and EZ n < ∞ (which implies that each of the first three terms in (2.12) is bounded). The situation is similar for (2.13).

Integrating (2.12) and (2.13) n times, and noting that ψ k (0) = g k (0) = 0 for k ≤ n, we obtain the following relations between h n and φ n .

Theorem 2.2 Let Z ≥ 0 be a solution of (E) with EZ = 1, and define h n and φ n by (2.5) and (2.6).

(i) Assume that ρ(α) < 1 for some α > 1, and that ρ(α + δ 0 ) < ∞ for some δ 0 > 0. Assume also that EY γ 1 < ∞ and EZ γ < ∞ for all γ ∈ [1, α). Then writing α = n + β with n ∈ N * and β ∈ (0, 1], we have for > 0 small enough and all s ≥ 0,

φ n (s) -E{M -1 φ n (sM )} = h n (s) + c n s n+1 + O(s α+ ), (2.14) 
where c n is a constant only depending on n, with c n = 0 when α is not an integer (i.e. β < 1).

(ii) Assume that ρ(1 + δ 0 ) < ∞ for some δ 0 > 0. Then for > 0 small enough and all s ≥ 0,

φ 1 (s) -E{M -1 φ 1 (sM )} = E{e -T (s) -1 + T (s)} + O(s 1+ ). (2.15)
Just as in (2.12) and (2. [START_REF] Buraczewski | Linear stochastic equations in the critical case[END_REF], what is essential in (2.14) and (2.15) is the validity for s ∈ [0, 1] (or s → 0). Part (i) will be applied for the proof of Theorem 1.1, while Part (ii) applies for the proof of Theorem 1.2.

Let us explain one of the main difficulties in our approach compared with the work of [START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF] who considered the case where A i ≤ 1. We just consider Part (ii) as an example for illustration. When sup 1≤i≤N A i is bounded, say sup 1≤i≤N A i ≤ C a.s. for some constant C > 0, then it can be easily seen that the function E e -T (s) -1 + T (s) appearing in Theorem 2.2 (ii) is close to h 1 (s) as s → 0, which is essential for the proof of Theorem 1.2 (see Section 7). In fact, as t(s) ∼ s (s → 0), for each ∈ (0, 1), there is

s 0 = s 0 ( ) > 0 such that (1 -)s ≤ t(s) ≤ (1 + )s, ∀s ∈ (0, s 0 ). As A i s ≤ Cs and H(x) := e -x -1 + x is increasing, it follows that for s ≤ s 0 /C, T (s) = N i=1 t(A i s) lies between (1 ± )sY 1 , so that E e -T (s) -1 + T (s) lies between EH ((1 ± )sY 1 ) = h 1 ((1 ± )s) . (2.16)
When sup 1≤i≤N A i is not bounded, the argument above is no longer valid, so new ideas are needed to arrive at a similar conclusion: cf. Lemma 7.1; this is the typical difficulty that we have compared with the work of [START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF]. We now summarize the key ideas for proving Theorem 1.1. In the case where α > 1 is not an integer, by Proposition 2.1, it suffices to show that the following two assertions are equivalent:

h n (s) ∼ s α (1/s) (s → 0), (2.17) 
φ n (s) ∼ s α (1/s) 1 -ρ(α) (s → 0). (2.18)
This equivalence will be shown by means of Theorem 2.2 (i). In the case where α > 1 is an integer, the argument is similar, using Proposition 2.2 instead of Proposition 2.1.

To prove Theorem 1.2, again by Proposition 2.1 (with n = 1 and β = 0), we just need to show that

h 1 (s) ∼ s (1/s) (s → 0) (2.19) implies φ 1 (s) ∼ µ -1 s ˜ (1/s) (s → 0), (2.20) 
where ˜ is defined in (1.17). This will be done with help of Theorem 2. 

Asymptotic properties of Laplace transforms

Let Z ≥ 0 be a random variable with EZ = 1. Set φ(s) = Ee -sZ and t(s) = -ln φ(s) for s ≥ 0. In this section we present some asymptotic properties of φ(s), t(s) and their derivatives, as s → 0.

As in [START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF], differentiating n times the function φ(s) in the form

φ(s) = e -t(s) , (3.1) 
we obtain

φ (n) (s) = e -t(s) {P n,t (s) + (-t (s)) n -t (n) (s)}, (3.2) 
where P n,t (s) is a polynomial in t (s), . . . , t (n-1) (s):

P n,t (s) = a1,...,an-1 c(a 1 , . . . , a n-1 )(t (s)) a1 • • • (t (n-1) (s)) an-1 , (3.3) 
c(a 1 , . . . , a n-1 ) are integers and {a k } n-1 k=1 are non-negative integers satisfying

n-1 k=1 ka k = n and a 1 = n; (3.4)
by convention, P 1,t (s) = P 2,t (s) = 0. By iteration, t (n) (s) can be written in the form

t (n) (s) = Q n,φ (s) + φ (s) φ(s) + - φ (n) (s) φ(s) , (3.5) 
where

Q n,φ (s) is a polynomial in φ (s) φ(s) , . . . , φ (n-1) (s) φ(s) 
:

Q n,φ (s) = a1,...,an-1 d(a 1 , . . . , a n-1 ) φ (s) φ(s) a1 • • • φ (n-1) (s) φ(s) an-1 , (3.6) 
d(a 1 , . . . , a n-1 ) are integers and {a k } n-1 k=1 are non-negative integers satisfying (3.4), with the convention that

Q 1,φ (s) = Q 2,φ (s) = 0.
The following elementary properties of φ (k) (s) φ(s) and t (k) (s) will be frequently used.

Lemma 3.1 Let Z ≥ 0 be a non-negative random variable. Write φ(s) = Ee -sZ and t(s) = -ln φ(s).

(i) If EZ n < ∞ for some n ∈ N * , then for 1 ≤ k ≤ n, sup s≥0 φ (k) (s) φ(s) < ∞ , sup s≥0 |t (k) (s)| < ∞ , (3.7 
)

and for 0 ≤ k ≤ n -1, φ (k) (s) = φ (k) (0) + O(s), t (k) (s) = t (k) (0) + O(s), s ≥ 0. (3.8) (ii) If EZ n+β < ∞ for some n ∈ N * and β ∈ (0, 1], then φ (n) (s) = φ (n) (0) + O(s β ) and t (n) (s) = t (n) (0) + O(s β ), s ≥ 0. (3.9)
Consequently, the function φ n defined by (2.6) satisfies are uniformly bounded on [0, ∞) for 1 ≤ k ≤ n. Recalling that φ is the Laplace transform of Z, we have for 1

φ n (s) = O(s n+β ), s ≥ 0. ( 3 
≤ k ≤ n, φ (k) (s) φ(s) = [0,∞) t k e -ts µ(dt) [0,∞) e -ts µ(dt) ≤ [0,1] t k e -ts µ(dt) [0,1] e -ts µ(dt) + (1,∞) t k e -ts µ(dt) [0,1] e -ts µ(dt) ≤ 1 + e -s (1,∞) t k µ(dt) e -s [0,1] µ(dt) ≤ 1 + EZ k µ([0, 1]) , (3.11) 
which is finite by the assumption. This ends the proof of (3.7). (3.8) is a consequence of (3.7) by the mean value theorem.

(ii) Notice that for n ∈ N,

φ (n) (s) -φ (n) (0) = (-1) n EZ n (e -sZ -1).
For any β ∈ (0, 1], we have 1 -e -x ≤ Cx β (x > 0), so

1 -e -sZ ≤ Cs β Z β .
It follows that for n ∈ N and s ≥ 0,

|φ (n) (s) -φ (n) (0)| ≤ Cs β EZ n+β .
This gives the first conclusion in (3.9). Using this inequality, together with (3.11), and the fact that

|φ(s) -φ(0)| ≤ Cs ≤ Cs β for s ∈ [0, 1], we have φ (k) (s) φ(s) - φ (k) (0) φ(0) ≤ φ (k) (s) φ(s) • φ(0) -φ(s) φ(0)) + φ (k) (s) φ(0) - φ (k) (0) φ(0) ≤ Cs β , s ∈ [0, 1], k = 1, . . . , n.
It follows from the expression (3.5) of t (n) (s) that |t (n) (s) -t (n) (0)| ≤ Cs β for s ∈ [0, 1]; the later holds evidently for s > 1 since sup s≥0 |t (n) (s)| < ∞. This gives the second conclusion in (3.9). The proof of (3.9) is then finished. Integrating (3.9) n times, we see that (3.10) holds.

4 Proof of Theorem 2.1: case where α ∈ [1, ∞)\{2, 3, . . .}

Let Z ≥ 0 be a solution of (E) with EZ = 1. We rewrite (E ) in the form

φ(s) = Ee -T (s) . (E )
Differentiating n times the equation (E ) just as we did for (3.1), we obtain

φ (n) (s) = Ee -T (s) {P n,T (s) + (-T (s)) n -T (n) (s)}, (4.1) 
where P n,T (s) is defined as P n,t (s) (cf. (3.3)) with t replaced by T .

Before giving the proof of Theorem 2.1, we first show two lemmas.

Lemma 4.1 If EZ n+β-< ∞ and E N i=1 A n+β+δ0 i < ∞ for some n ∈ N * , β ∈ (0, 1]
, δ 0 > 0 and ∈ (0, β), then we have for > 0 small enough,

0 ≤ EY n 1 e -T (s) -e -sY1 = O(s β+ ), s ≥ 0. (4.2) Proof. Notice that t (0) = -φ (0) φ(0) = 1 and that EZ 1+β-< ∞ implies |t (s) -t (0)| ≤ Cs β-(by (3.9) of Lemma 3.1), so |t(s) -s| ≤ C s 1+β- 1+β-. Hence 0 ≤ sY 1 -T (s) ≤ Cs 1+β-A β-Y 1 , (4.3) so T (s) ≥ sY 1 -Cs 1+β-A β-Y 1 = sY 1 (1 -Cs β-A β-) ≥ sY 1 /2 if Cs β-A β-≤ 1/2. (4.4)
Now by the mean value theorem, e -T (s) -e -sY1 = e -ξ (sY 1 -T (s)) for some ξ ∈ [T (s), sY 1 ], so that e -T (s) -e -sY1 ≤ e -T (s) (sY 1 -T (s)).

Hence from (4.3) and (4.4), we see that if

Cs β-A β-≤ 1/2, then e -T (s) -e -sY1 ≤ e -sY1/2 (sY 1 -T (s)) ≤ Ce -sY1/2 s 1+β-A β-Y 1 .
Using this and the fact that e -x/2 x 1-2 is bounded for x ≥ 0, we have

e -T (s) -e -sY1 Y n 1 1 {Cs β-A β-≤1/2} ≤ Ce -sY1/2 s 1+β-A β-Y 1 • Y n 1 • 1 = Ce -sY1/2 (sY 1 ) 1-2 • s β+ A β-Y n+2 1 ≤ Cs β+ A β-Y n+2 1 . (4.5) 
On the other hand, as

1 {Cs β-A β->1/2} ≤ 2 b C b s β+ A β+ with b = (β + )/(β -), we have e -T (s) -e -sY1 Y n 1 1 {Cs β-A β->1/2} ≤ Y n 1 1 {Cs β-A β->1/2} ≤ 2 b C b s β+ A β+ Y n 1 . (4.6) 
It follows from (4.5) and (4.6) that

e -T (s) -e -sY1 Y n 1 ≤ Cs β+ A β-Y n+2 1 + A β+ Y n 1 . (4.7) 
Noting that EZ n+β-< ∞ implies EY n+β- 1 < ∞, by Hölder's inequality,

EA β-Y n+2 1 ≤ EA (β-)p 1/p • EY (n+2 )p * 1 1/p * < ∞ , (4.8 
)

EA β+ Y n 1 ≤ EA (β+ )q 1 q • EY nq * 1 1 q * < ∞ , (4.9) 
where p = n+β- β-3 , p * = n+β- n+2 , q = n+β- β-, q * = n+β- n and > 0 is small enough such that (β -)p ≤ n + β + δ 0 and (β + )q ≤ n + β + δ 0 . Therefore (4.7) implies (4.2).

Further, when n = 1, we also have the following lemma.

Lemma 4.2 If EZ 1+β-< ∞ and E N i=1 A 1+β+δ0 i < ∞ for some β ∈ (0, 1], δ 0 > 0 and ∈ (0, β), then we have for > 0 small enough, ET (s) 1 -e -T (s) = g 1 (s) + O(s β+ ), s ≥ 0. (4.10) Proof. Recall that g 1 (s) = EY 1 (1 -e -sY1
), so (4.10) is equivalent to

E(K 1 + K 2 ) = O(s β+ ), s ≥ 0, (4.11) 
where

K 1 = (T (s) -Y 1 ) 1 -e -T (s) , K 2 = Y 1 e -sY1 -e -T (s) .
In Lemma 4.1, we have shown that 0 ≥ EK 2 ≥ Cs β+ , s ≥ 0, so we just need to show that 0 ≥ EK 1 ≥ Cs β+ , s ≥ 0. (4.12)

Notice that K 1 ≤ 0. In fact, Recalling the definition of T (s), we have

T (s) -Y 1 = N i=1 A i [t (sA i ) -t (0)]. Since t (s) is non-increasing, it follows that T (s) -Y 1 ≤ 0, so that K 1 ≤ 0.
As EZ 1+β-< ∞, we have |t (s) -t (0)| ≤ Cs β-for s ≥ 0 (by (3.9) of Lemma 3.1), so that

|T (s) -Y 1 | ≤ Cs β- N i=1 A 1+β- i ≤ Cs β-A β-Y 1 . (4.13) 
Noting that 1 -e -x ≤ x 2 for 2 ≤ 1 and x > 0 and that T (s) ≤ sY 1 , we obtain

|K 1 | ≤ Cs β-A β-Y 1 (T (s)) 2 ≤ Cs β-A β-Y 1 (sY 1 ) 2 = Cs β+ A β-Y 1+2 1 .
As EA β-Y 1+2 1 < ∞ (by (4.8)) for > 0 small enough, this implies (4.12). So the proof of (4.10) is finished.

Proof of Theorem 2.1: case where α ∈ [1, ∞)\{2, 3, . . .}. For α > 1 not an integer, write α = n + β, where n ∈ N * and β ∈ (0, 1). For α = 1, define β = 0. We distinguish two cases according to α ∈ [1, 2) or α > 2.

In the following, always stands for a number in (0, 1 -β) small enough.

(a) Case α ∈ [1, 2). When α = 1 (so β = 0), we suppose that ρ(1 + δ 0 ) < ∞ for some δ 0 > 0, and we need to prove (2.13), that is,

ψ 1 (s) -Eψ 1 (sM ) = E{T (s)(1 -e -T (s) )} + O(s ), where ψ 1 (s) = φ (s) + 1; (4.14) 
when α ∈ (1, 2) (so β ∈ (0, 1)), we assume that ρ(α) < 1, ρ(α + δ 0 ) < ∞ for some δ 0 > 0, and that EY γ 1 < ∞ and EZ γ < ∞ for all γ ∈ [1, α), and we need to prove (2.12) with n = 1, that is

ψ 1 (s) -E{ψ 1 (sM )} = g 1 (s) + O(s β+ ). (4.15)
To prove (4.14) and (4.15), we only need to prove that

φ (s) -Eφ (sM ) = ET (s)(1 -e -T (s) ) + O(s β+ ), s ≥ 0. ( 4.16) 
In fact, since ψ 1 (s) = φ (s) + 1, in (4.16) we can replace φ by ψ 1 to obtain 

ψ 1 (s) -Eψ 1 (sM ) = ET (s)(1 -e -T (s) ) + O(s β+ ). ( 4 
ET (s) + Eφ (sM ) = E N i=1 A i t (sA i ) + N i=1 A i φ (sA i ) = E N i=1 A i (e t(sAi) -1)(-φ (sA i )) = E N i=1 A i (1 -φ(sA i )) • -φ (sA i ) φ(sA i ) . (4.19) Since 1-φ(x)
x → 1 (x → 0) and 0 < β + ≤ 1, we have

1 -φ(x) ≤ Cx β+ , x > 0 (the inequality is evident for x > 1; if x ≤ 1, then 1 -φ(x) ≤ Cx ≤ Cx β+ ). So with the fact that sup s≥0 -φ (s) φ(s)
< ∞ (by Lemma 3.1(i)) and EZ < ∞, we have

|ET (s) + Eφ (sM )| ≤ Cs β+ E N i=1 A 1+β+ i = Cs β+ ρ(α + ).
This gives (4.18) and therefore (4.16).

(b) Case α > 2 not an integer. So α = n + β with n ∈ {2, 3, . . .} and β ∈ (0, 1). We assume the conditions of Theorem 2.1 with the given α, and we need to prove (2.12). Notice that

ψ n (s) = (-1) n+1 [φ (n) (s) -φ (n) (0)] and g n (s) = -E[Y n 1 (e -sY1 -1)]. So (2.12) is equivalent to [φ (n) (s) -φ (n) (0)] -EM n-1 [φ (n) (sM ) -φ (n) (0)] = E[(-Y 1 ) n (e -sY1 -1)] + O(s β+ ). (4.20)
To prove (4.20), we only need to show that for all s ≥ 0,

φ (n) (s) -EM n-1 φ (n) (sM ) = Ee -sY1 (-Y 1 ) n + Ee -T (0) P n,T (0) -DEM n-1 + O(s β+ ), (4.21) 
where D is a constant. In fact, putting s = 0 in the above equality and subtracting, we obtain (4.20). It remains to prove (4.21). By (4.1), we can decompose the left hand side of (4.21) into three parts:

φ (n) (s) -EM n-1 φ (n) (sM ) = Ee -T (s) P n,T (s) + Ee -T (s) (-T (s)) n -[Ee -T (s) T (n) (s) + EM n-1 φ (n) (sM )]. ( 4 

.22)

In the following, we will show that the three terms on the right hand side of (4.22) are equal to Ee -T (0) P n,T (0) + O(s β+ ), Ee -sY1 (-Y 1 ) n + O(s β+ ) and DEM n-1 + O(s β+ ), respectively. This together with (4.22) implies (4.21), which ends the proof of (4.20). The proof for the above three terms will be done in three steps respectively.

Step 1. We first show that E e -T (s) P n,T (s) -e -T (0) P n,T (0) = O(s β+ ), s ≥ 0.

(4.23)

Recall that P n,T (s) is of the form

P n,T (s) = a1,...,an-1 c(a 1 , . . . , a n-1 )(T (s)) a1 • • • (T (n-1) (s)) an-1 ,
where a k ∈ N satisfy (3.4). So we first estimate

e -T (s) n-1 k=1 (T (k) (s)) a k -e -T (0) n-1 k=1 (T (k) (0)) a k = I 1 + I 2 , (4.24) 
where

I 1 = e -T (s) n-1 k=1 (T (k) (s)) a k - n-1 k=1 (T (k) (0)) a k , I 2 = e -T (s) -e -T (0) n-1 k=1 (T (k) (0)) a k . Let us show that |EI 1 | ≤ Cs β+ . As n-1 k=1 a k - n-1 k=1 b k = n-1 l=1 (a l -b l ) l-1 k=1 b k n-1 k=l+1 a k
(with the convention that the empty product is taken to be 1), we have

n-1 k=1 (T (k) (s)) a k - n-1 k=1 (T (k) (0)) a k = n-1 l=1 (T (l) (s)) a l -(T (l) (0)) a l l-1 k=1 (T (k) (0)) a k • n-1 k=l+1 (T (k) (s)) a k . (4.25)
Notice that for any integer l ≥ 1, a l -b l = (a -b) x+y=l-1 a x b y (with an evident interpretation when l = 1), where x and y are strictly positive integers. So we get

(T (l) (s)) a l -(T (l) (0)) a l = T (l) (s) -T (l) (0) x+y=a l -1 (T (l) (s)) x (T (l) (0)) y . (4.26) Since T (k) (s) = N i=1 A k i t (k) (sA i ) and sup s≥0 |t (k) (s)| < ∞ for k = 1, .
. . , n -1 (by Lemma 3.1(i)), we have

|T (k) (s)| ≤ N i=1 A k i |t (k) (sA i )| ≤ C N i=1 A k i ≤ CY k 1 , 1 ≤ k ≤ n -1. (4.27)
As |t (l) (s) -t (l) (0)| ≤ Cs β+ for 1 ≤ l ≤ n -1 and s ≥ 0 (it follows from (3.8) for s ∈ [0, 1], and from (3.7) for s ≥ 1), we see that

|T (l) (s) -T (l) (0)| ≤ N i=1 A l i t (l) (sA i ) -t (l) (0) ≤ Cs β+ N i=1 A l+β+ i , s ≥ 0, 1 ≤ l ≤ n -1. (4.28)
From (4.25)-(4.28), we obtain

n-1 k=1 (T (k) (s)) a k - n-1 k=1 (T (k) (0)) a k = n-1 l=1 O(s β+ ) N i=1 A l+β+ i • (Y 1 ) (a l -1)l • Y n-a l l 1 = O(s β+ )A β+ • Y n 1 ,
and

|I 1 | ≤ Ce -T (s) s β+ A β+ Y n 1 ≤ Cs β+ A β+ Y n 1 , s ≥ 0. (4.29)
Notice that by Hölder's inequality,

EA β+ Y n 1 ≤ EA (β+ )p 1 p • EY np * 1 1 p * < ∞ , (4.30) 
where We now consider I 2 . As a 1 = n, there exists l ≥ 2 with a l ≥ 1, so that

p = n+β- β-, p * = n+β- n and > 0 is small such that (β + )p = (β + )(n + β -)/(β -) < n + β + δ 0 (recall that EY n+β- 1 < ∞ and EA n+β+δ0 < ∞).
|T (l) (0)| ≤ N i=1 A l i |t (l) (0)| ≤ C N i=1 A l-1 i A ≤ CAY l-1 1 . Noting that |T (k) (s)| = CY k 1 for 1 ≤ k ≤ n -1 (cf. (4.27)), we have n-1 k=1 |T (k) (0)| a k = |T (l) (0)| a l • n-1 k=1 k =l |T (k) (0)| a k ≤ CA a l Y (l-1)a l 1 Y n-la l 1 = CA a l Y n-a l 1 .
On the other hand, for β + ∈ (0, 1], as 1 -e -x ≤ x β+ (∀x > 0) and T (s) ≤ sY 1 , we have 

1 -e -T (s) ≤ (sY 1 ) β+ , s ≥ 0. So |I 2 | ≤ C(sY 1 ) β+ A a l Y n-a l 1 ≤ Cs β+ A β+ Y n 1 . ( 4 
E e -T (s) n-1 k=1 (T (k) (s)) a k -e -T (0) n-1 k=1 (T (k) (0)) a k = O(s β+ ), s ≥ 0. (4.34)
This gives (4.23).

Step 2. We next show that

Ee -T (s) (-T (s)) n = Ee -sY1 (-Y 1 ) n + O(s β+ ), s ≥ 0. (4.35) 
To this end, we use the decomposition

Ee -T (s) (-T (s)) n -Ee -sY1 (-Y 1 ) n = E e -T (s) [(-T (s)) n -(-Y 1 ) n ] + E (e -T (s) -e -sY1 )(-Y 1 ) n . (4.36)
We shall prove that each of the right terms is of order O(s β+ ). As EZ 2 < ∞ and β + ≤ 1, we have |t (s) -t (0)| ≤ Cs β+ (by (3.9) of Lemma 3.1), so that

|T (s) -Y 1 | ≤ N i=1 A i |t (sA i ) -t (0)| ≤ Cs β+ N i=1 A 1+β+ i ≤ Cs β+ A β+ Y 1 . (4.37) Since |T (s)| = N i=1 A i t (sA i ) ≤ Y 1 sup s≥0 |t (s)|, this implies that e -T (s) |(-T (s)) n -(-Y 1 ) n | ≤ |T (s) -Y 1 | n-1 k=1 |T (s)| k Y n-1-k 1 ≤ C sup s≥0 |t (s)| + 1 n • s β+ A β+ Y n 1 . (4.38)
Recalling that EA β+ Y n 1 < ∞, we thus obtain that Step 3. We then show that for some constant D,

Ee -T (s) |(-T (s)) n -(-Y 1 ) n | ≤ Cs β+ , s ≥ 0. ( 4 
Ee -T (s) T (n) (s) = -EM n-1 φ (n) (sM ) + DEM n-1 + O(s β+ ), s ≥ 0. (4.41)
In fact, as 0 ≤ 1 -e -T (s) ≤ (T (s)) β+ ≤ s β+ Y β+ 1 (∀s > 0 and β + ≤ 1) and sup s≥0 |t (n) (s)| < ∞, we see that 

e -T (s) T (n) (s) = (1 + O(s β+ )Y β+ 1 ) N i=1 A n i t (n) (sA i ) = N i=1 A n i t (n) (sA i ) + O(s β+ )A β+ Y n 1 . (4.42) Since EZ n < ∞ and t (k) (s) = t (k) (0) + O(s) for 1 ≤ k ≤ n -1 (
φ (n) (s) = -t (n) (s) + D + O(s), s > 0,
for some constant D (independent of s). Since φ (n) (s) and t (n) (s) are bounded, it follows that

φ (n) (s) = -t (n) (s) + D + O(s β+ )
for β + ∈ (0, 1] and s ≥ 0. Therefore,

e -T (s) T (n) (s) = N i=1 A n i -φ (n) (sA i ) + D + O(s β+ )A β+ Y n 1 , s ≥ 0. (4.43) As EA β+ Y n 1 < ∞ (cf. (4. 30 
)), by the dominated convergence theorem and (4.43), together with the definition of M (cf. (2.10)), we obtain that

Ee -T (s) T (n) (s) = E N i=1 A n i -φ (n) (sA i ) + D + O(s β+ )EA β+ Y n 1 = -EM n-1 φ (n) (sM ) + DEM n-1 + O(s β+ )EA β+ Y n 1 = -EM n-1 φ (n) (sM ) + DEM n-1 + O(s β+ ), s ≥ 0. (4.44)
This ends the proof of (4.41).

From (4.23), (4.35) and (4.41), together with (4.22), we obtain (4.21). This ends the proof of (4.20), which is equivalent to (2.12) according the the analysis at the beginning of Part (b).

The proof of Theorem 2.1 for α ∈ [1, ∞)\{2, 3, . . .} is thus finished.

5 Proof of Theorem 2.1: case where α ∈ {2, 3, . . .}

The proof of Theorem 2.1 in the case where α ∈ {2, 3, . . .} is similar to that in the case where α is not an integer, but is more delicate.

Proof of Theorem 2.1: case where α = n + 1 ∈ {2, 3, . . .}. We also distinguish two cases according to n = 1 or n > 1.

(a) Case n = 1. As in the case where α ∈ (1, 2), it is sufficient to prove that

ET (s) + Eφ (sM ) -ρ(2)s = O(s 1+ ), s ≥ 0. (5.1)
Using (2.10) with f (x) = -φ (sx), we have

ET (s) + Eφ (sM ) -ρ(2)s = E N i=1 A i (e t(sAi) -1)(-φ (sA i )) - N i=1 sA 2 i = sE N i=1 A 2 i 1 -φ(sA i ) sA i - φ (sA i ) φ(sA i ) -1 = K 3 + K 4 ,
where

K 3 = sE N i=1 A 2 i 1 -φ(sA i ) -sA i sA i - φ (sA i ) φ(sA i ) , K 4 = sE N i=1 A 2 i - φ (sA i ) φ(sA i ) -1 = sE N i=1 A 2 i (t (sA i ) -1) .
As |1 -e -x -x| ≤ Cx 1+ (x ≥ 0) and EZ 1+ < ∞, we see that |1 -φ(s) -s| ≤ CEZ 1+ s 1+ , and

|1 -φ(sA i ) -sA i | ≤ CEZ 1+ s 1+ A 1+ i .
Combining this with the fact that sup s≥0 -φ (s) φ(s) < ∞ (by Lemma 3.1(i)), we have

|K 3 | ≤ Cs 1+ E N i=1 A 2+ i = Cs 1+ ρ(2 + ), s ≥ 0. (5.2)
We now consider K 4 . Recalling that |t (s) -t (0)| ≤ Cs , we have

|t (sA i ) -1| ≤ Cs A i ,
and

|K 4 | ≤ Cs 1+ E N i=1 A 2+ i = Cs 1+ ρ(2 + ), s ≥ 0. (5.
3)

It follows from (5.2) and ( 5.3) that (5.1) holds.

(b) Case n > 1. As in the case where α > 2 is not an integer, it is sufficient to prove that

φ (n) (s) -EM n-1 φ (n) (sM ) = (-1) n Ee -sY1 Y n 1 + c 0 + c n s + O(s 1+ ), s ≥ 0, (5.4) 
where c 0 and c n are non-negative constants. In fact, putting s = 0 in the above equality and subtracting, and noticing that ψ n (s) = (-1) n+1 [φ (n) (s) -φ (n) (0)] and g n (s) = -E[Y n 1 (e -sY1 -1)], we obtain (2.12). In the following, we will show that the three terms on the right hand side of (4.22) are respectively Ee -T (0) P n,T (0

) + D 1 s + O(s 1+ ), Ee -sY1 (-Y 1 ) n + (-1) n D 2 s + O(s 1+ ) and D 3 + D 4 s + O(s 1+ ),
where D i (i = 1, 2, 3, 4) are non-negative constants. This together with (4.22) imply (5.4). The proof for the above three terms will be done in three steps respectively.

Step 1. We first show that for some constant D 1 , E e -T (s) P n,T (s) -e -T (0) P n,T (0) = D 1 s + O(s 1+ ), s ≥ 0.

(5.5)

We begin with the estimation of

e -T (s) n-1 k=1 (T (k) (s)) a k -e -T (0) n-1 k=1 (T (k) (0)) a k = J 1 + J 2 , (5.6) 
where

J 1 = e -T (s) n-1 k=1 (T (k) (s)) a k - n-1 k=1 (T (k) (0)) a k , J 2 = e -T (s) -e -T (0) n-1 k=1 (T (k) (0)) a k .
We first consider J 1 . As t (l) (s) = t (l) (0) + t (l+1) (0)s + O(s 1+ ) for 1 ≤ l ≤ n -1 (by (3.8) of Lemma 3.1), we see that

T (l) (s) -T (l) (0) = N i=1 A l i t (l) (sA i ) -t (l) (0) = N i=1 A l i t (l+1) (0)sA i + O(s 1+ )A 1+ i = t (l+1) (0)s N i=1 A l+1 i + O(s 1+ ) N i=1 A l+1+ i . Since t (k) (s) = t (k) (0) + O(s ) for k = 1, 2, . . . , n -1, we have T (k) (s) = N i=1 A k i t (k) (sA i ) = t (k) (0) N i=1 A k i + O(s ) N i=1 A k+ i .
Therefore, by (4.25), we obtain

n-1 k=1 (T (k) (s)) a k - n-1 k=1 (T (k) (0)) a k = J 3 s + O(s 1+ )A 1+ Y n 1 ,
where

J 3 = n-1 l=1 t (l+1) (0) N i=1 A l+1 i t (l) (0) N i=1 A l i a l -1 n-1 k=1 k =l t (k) (0) N i=1 A k i a k
. By Hölder's inequality,

EA 1+ Y n+ 1 ≤ EA (1+ )p 1/p EY np * 1 1/p * < ∞ , (5.7) 
where p = α- 1-2 , p * = α- n+ and > 0 small enough such that (1

+ )p = (1 + )(α -)/(1 -2 ) ≤ α + δ 0 . As J 3 is dominated by O(1)AY n 1 with E[AY n 1 ] < ∞ (by (5.7)) and e -T (s) = 1 + O(s )Y 1 , J 1 = J 3 s + O(s 1+ )(AY n+ 1 + A 1+ Y n+ 1
), we see that

EJ 1 = sEJ 3 + O(s 1+ ), s ≥ 0. (5.8) Since 1 -e -x -x = O(x 1+ ) (0 < ≤ 1, x ≥ 0) and T (s) = sY 1 + O(s 1+ )Y 1+ 1 , we have e -T (s) -1 = -sY 1 + O(s 1+ )Y 1+ 1 .
Using this together with

T (k) (0) = t (k) (0) N i=1 A k i , we get J 2 = -sY 1 + O(s 1+ )Y 1+ 1 n-1 k=1 t (k) (0) N i=1 A k i a k = -sJ 4 + O(s 1+ )Y n 1 A 1+ ,
where

J 4 = Y 1 n-1 k=0 t (k) (0) N i=1 A k i a k is dominated by O(1)AY n 1 with EAY n 1 < ∞ (by (5. 7 
)). So by (5.7),

EJ 2 = -sEJ 4 + O(s 1+ ), s ≥ 0. ( 5.9) 
It follows from (5.8) and (5.9) that (5.5) holds with D 1 = EJ 3 -EJ 4 .

Step 2. We next show that, for some constant D 2 and s ≥ 0,

Ee -T (s) (T (s)) n -Ee -sY1 Y n 1 -D 2 s = O(s 1+ ). (5.10) 
Notice that (5.10) holds evidently for s ∈ (1, ∞) (as |T (s)| ≤ CY 1 and EY n 1 < ∞), so we only need to prove it for s ∈ [0, 1]. To prove this, it is sufficient to show the following two estimations:

Ee -T (s) [(T (s)) n -Y n 1 ] = D 2 s + O(s 1+ ), s ∈ [0, 1], (5.11 
)

E e -T (s) -e -sY1 Y n 1 = O(s 1+ ), s ∈ [0, 1]. (5.12) 
We first show (5.11). Notice that

(T (s)) n -Y n 1 = (T (s) -Y 1 ) n-1 k=0 (T (s)) k Y n-1-k 1 . (5.13) Since T (s) = Y 1 + O(s )A Y 1 (cf. (4.37)), writing Ā = max(A, 1), we have for s ∈ [0, 1], n-1 k=0 (T (s)) k Y n-1-k 1 = n-1 k=0 [1 + O(s )A ] k Y n-1 1 = n-1 k=0 1 + O(s ) Āk Y n-1 1 = n + O(s ) Ā(n-1) Y n-1 1 , (5.14) 
where the second equality holds since for 0

≤ k ≤ n -1, [1 + O(s ) Ā ] k -1 = k j=1 k j O(s j ) Āj = O(s ) Āk ,
using the fact that s ∈ [0, 1] and Ā ≥ 1 imply s j ≤ s and Āj ≤ Āk for each 1 ≤ j ≤ k. As t (s) = 1 + t (0)s + O(s 1+ ) (s ≥ 0), we see that

T (s) -Y 1 = N i=1 A i (t (sA i ) -1) = t (0)s N i=1 A 2 i + O(s 1+ ) N i=1 A 2+ i . (5.15) 
From (5.13), (5.14) and (5.15), we obtain that for s ∈ [0, 1],

(T (s)) n -Y n 1 = t (0)s N i=1 A 2 i + O(s 1+ ) N i=1 A 2+ i n + O(s ) Ā(n-1) Y n-1 1 = nt (0)s N i=1 A 2 i Y n-1 1 + O(s 1+ ) N i=1 A 2+ i Y n-1 1 +O(s 1+ ) N i=1 A 2 i Ā(n-1) Y n-1 1 + O(s 1+2 ) N i=1 A 2+ i Ā(n-1) Y n-1 1 . (5.16) 
Recalling that Y 1 = N i=1 A i and Ā ≥ 1, we have

N i=1 A 2+ i Y n-1 1 ≤ A 1+ Y n 1 ≤ Ā1+n Y n 1 , N i=1 A 2 i Ā(n-1) Y n-1 1 ≤ Ā1+n Y n 1 , N i=1 A 2+ i Ā(n-1) Y n-1 1 ≤ Ā1+n Y n 1 .
Hence from (5.16), we get

(T (s)) n -Y n 1 = nt (0)s N i=1 A 2 i Y n-1 1 + O(s 1+ ) Ā1+n Y n 1 .
(5.17)

Since e -x = 1 + O(x ) (0 < ≤ 1, x ≥ 0) and 0 ≤ T (s) ≤ sY 1 (cf. (2.8)), together with (5.17), we see that for s ∈ [0, 1],

e -T (s) [(T (s)) n -Y n 1 ] = [1 + O(s )Y 1 ] nt (0)s N i=1 A 2 i Y n-1 1 + O(s 1+ ) Ā1+n Y n 1 = nt (0)s N i=1 A 2 i Y n-1 1 + O(s 1+ ) ĀY n+ 1 + Ā1+n Y n 1 + Ā1+n Y n+ 1 = nt (0)s N i=1 A 2 i Y n-1 1 + O(s 1+ ) Ā1+n Y n 1 + Y n+ 1 . (5.18) 
Notice that

E n i=1 A 2 i Y n-1 1 ≤ EAY n 1 ≤ (EA p ) 1/p EY np * 1 1/p * < ∞ ,
where p = α + δ 0 , p * = α+δ0 α+δ0-1 , so that np * < α and that

E Ā1+n Y n 1 ≤ C EA 1+n Y n 1 + EY n 1 ≤ C EA [1+n ]q 1/q EY nq * 1 1/q * + EY n 1 < ∞ , E Ā1+n Y n+ 1 ≤ C EA 1+n Y n+ 1 + EY n+ 1 ≤ C EA [1+n ]q 1/q EY (n+ )q * 1 1/q * + EY n+ 1 < ∞ ,
where q = α+δ0 1+n , q * = α+δ0 (α+δ0)-[1+n ] , δ 0 and are small enough. By the dominated convergence theorem, it follows from (5.18) that (5.11) holds with

D 2 = nt (0)E N i=1 A 2 i Y n-1 1 
. We now prove (5.12). By the same argument as in the proof of (4.7) (choosing β = 1), we see that if

Cs 1-A 1-≤ 1/2, then T (s) ≥ sY 1 /2, so that e -T (s) -e -sY1 ≤ Ce -sY1/2 s 2-A 1-Y 1 .
Therefore,

e -T (s) -e -sY1 Y n 1 1 {Cs 1-A 1-≤1/2} ≤ Ce -sY1/2 (sY 1 ) 1-2 s 1+ A 1-Y n+2 1 ≤ Cs 1+ A 1-Y n+2 1 .
On the other hand,

e -T (s) -e -sY1 Y n 1 1 {Cs 1-A 1->1/2} ≤ CY n 1 s 1-A 1-(1+ )/(1-) ≤ Cs 1+ A 1-Y n+2 1 .
Hence, we have shown that

e -T (s) -e -sY1 Y n 1 ≤ Cs 1+ A 1-Y n+2 1 .
As EA 1-Y n+ 1 < ∞ (cf. (5.7)), this gives (5.12) which ends the proof of (5.10).

Step 3. We then show that, for some constants D 3 and D 4 ,

Ee -T (s) T (n) (s) + EM n-1 φ (n) (sM ) = D 3 + D 4 s + O(s 1+ ), s ≥ 0. (5.19) 
Notice that 0 < x -1 + e -x ≤ Cx 1+ (∀x > 0) and T (s) ≤ sY 1 , we have

e -T (s) = 1 -T (s) + O(s 1+ )Y 1+ 1 . As EZ n < ∞, we have sup s≥0 |t (k) (s)| < ∞ for 0 ≤ k ≤ n, and t (k) (s) = t (k) (0) + t (k+1) (0)s + O(s 1+ ) for 0 ≤ k ≤ n -1 (by Lemma 3.1(i))
. So from the representation form (3.2) and sup s>0 |φ (n) | ≤ EZ n < ∞, we see that for s ≥ 0,

t(s) = s + O(s 1+ ) and t (n) (s) = -φ (n) (s) + D + D s + O(s 1+ ).
Hence from the definition of T (n) (s), we obtain that

e -T (s) T (n) (s) = N i=1 A n i t (n) (sA i ) - N i=1 t(sA i ) • N i=1 A n i t (n) (sA i ) + O(s 1+ )Y 1+ 1 N i=1 A n i t (n) (sA i ) = - N i=1 A n i φ (n) (sA i ) + D N i=1 A n i + s D i=1 A n+1 i -Y 1 N i=1 A n i t (n) (sA i ) +O(s 1+ ) N i=1 A n+1+ i + N i=1 A 1+ i + Y 1+ 1 N i=1 A n i t (n) (sA i ) .
Since EA 1+ Y n 1 < ∞ (by (5.7)) and sup s>0 |t (n) (s)| < ∞ (by (3.7)), we see that

E N i=1 A n+1 i + Y 1 N i=1 A n i |t (n) (sA i )| ≤ 1 + sup s>0 |t (n) (s)| EA 1+ Y n- 1 < ∞ and E N i=1 A n+1+ i + N i=1 A 1+ i + Y 1+ 1 N i=1 A n i |t (n) (sA i )| ≤ 1 + 2 sup s>0 |t (n) (s)| EA 1+ Y n 1 < ∞.
Therefore,

Ee -T (s) T (n) (s) = -E N i=1 A n i φ (n) (sA i ) + D 3 + D 4 s + O(s 1+ ) = -EM n-1 φ (n) (sM ) + D 3 + D 4 s + O(s 1+ ),
where

D 3 = Dρ(n) and D 4 = E D N i=1 A n+1 i -Y 1 N i=1 A n i t (n) (sA i ) .
This ends the proof of (5.19).

From (5.5), (5.10) and (5.19), together with (4.22), we obtain (5.4). This ends the proof of (2.12) according to the the analysis at the beginning of Part (b).

The proof of Theorem 2.1 for α ∈ {2, 3, . . .} is thus finished.

6 Proof of Theorem 1.1

Recall that without loss of generality, we can take as the form (1.10). Therefore, by Potter's theorem (cf. [START_REF] Bingham | Regular Variation[END_REF], p.25), for every > 0, there is

C = C( ) > 0 such that (y) (x) ≤ C max y x , x y ,
x, y > 0. (6.1)

Proof of Theorem 1.1. We distinguish two cases according to α ∈ (1, ∞)\N or α ∈ {2, 3, . . .}.

(i) Case α ∈ (1, ∞)\N. By Proposition 2.1, it suffices to show that the following two assertions are equivalent:

h n (s) ∼ s α (1/s) (s → 0), (6.2) 
φ n (s) ∼ s α (1/s) 1 -ρ(α) (s → 0). (6.3)
Step 1. We first show that (6.3) implies (6.2). By Theorem 2.2, we have

φ n (s) -EM -1 φ n (sM ) = h n (s) + O(s α+ ), s ≥ 0. (6.4)
Notice that φn(s) s n is bounded and (1/s) = 1 for s > 1. Therefore (6.3) implies

|φ n (s)| ≤ Cs α (1/s), s > 0, (6.5) 
and

M -1 φ n (sM ) ∼ M -1 (sM ) α 1 sM • 1 1 -ρ(α) ∼ M α-1 s α 1 s • 1 1 -ρ(α) . (6.6) 
By (6.5) and Potter's theorem, we see that

M -1 φ n (sM ) s α (1/s) ≤ C M -1 (sM ) α 1 s α (1/s) = C M α-1 1 sM (1/s) ≤ C max M α-1+ , M α-1-
(recall that C > 0 may differ from line to line). Therefore by the dominated convergence theorem, we have

lim s→0 EM -1 φ n (sM ) s α (1/s) = EM α-1 1 -ρ(α) = ρ(α) 1 -ρ(α) . (6.7) 
As O(s ) (1/s) = o(1) (s → 0), it follows from (6.4) that lim s→0 hn(s) s α (1/s) = 1. So (6.2) holds.

Step 2. We next show that (6.2) implies (6.3). Recall that by Theorem 2. 

where B ≥ 0 is a random variable whose distribution is determined by

Ef (B) = 1 ρ(α) EM α-1 f (M ), (6.10) 
for all measurable functions f ≥ 0. Let B i be independent copies of B. Then by (6.9), ∀i ≥ 1,

ρ i-1 (α) φ(sB 1 • • • B i-1 ) = ρ i-1 (α) φn (sB 1 • • • B i-1 ) -ρ i (α)E i φn (sB 1 • • • B i-1 B i ), (6.11) 
where E i denotes the expectation with respect to B i , and

B 1 • • • B i-1 = 1 if i = 1.
Taking expectation and then summing for i from 0 to k -1, we obtain

k-1 i=0 ρ i (α)E φ(sB 1 • • • B i ) = φn (s) -ρ k (α)E φn (sB 1 • • • B k ). (6.12) 
Let us now prove that lim

k→∞ ρ k (α)E φn (sB 1 • • • B k ) = 0. (6.13)
As EZ α-< ∞, by (3.10),

| φn (s)| ≤ Cs -, (6.14) 
so

Eρ k (α)| φn (sB 1 • • • B k )| ≤ CEρ k (α) s -B - 1 • • • B - k = Cs -ρ k (α)(EB -) k = Cs -ρ k (α) EM α-1- ρ(α) k = Cs -ρ k (α -). (6.15)
As ρ(α -) < 1, this prove (6.13). So by (6.12), we obtain

∞ i=0 ρ i (α)E φ(sB 1 • • • B i ) = φn (s). (6.16)
Notice that by the condition (6.2) and the equation (6.8), we have as s → 0, φ(s) ∼ (1/s) and φ(sB

1 • • • B i ) ∼ 1 sB 1 • • • B i ∼ (1/s).
By Potter's bound (cf. (6.1)) and the dominated convergence theorem, this yields

lim s→0 E φ(sB 1 • • • B i ) (1/s) = 1. (6.17) 
From (6.16),(6.17) and the dominated convergence theorem, we obtain lim s→0 φn (s)

(1/s) = ∞ i=0 ρ i (α) = 1 1 -ρ(α) , (6.18) 
which is just the desired result (6.3). Here the use of the dominated convergence theorem is justified by the fact that there is a sequence of non-negative numbers (a i ) with ∞ i=1 a i < ∞ such that for all i ≥ 1 and all s ∈ [0, 1],

ρ i (α)E φ(sB 1 • • • B i ) (1/s) ≤ a i . (6.19) 
In fact, when sB 1 • • • B i ≤ 1, as φ(s) (1/s) ≤ C for all s ∈ [0, 1], we have by Potter's bound (cf. (6.1)) that

ρ i (α)E| φ(sB 1 • • • B i )| (1/s) = ρ i (α)E | φ(sB 1 • • • B i )| ((sB 1 • • • B i ) -1 ) • ((sB 1 • • • B i ) -1 ) (s -1 ) ≤ Cρ i (α)E (B 1 • • • B i ) + (B 1 • • • B i ) - = Cρ i (α) (EB ) i + (EB -) i ,
where C > 0 differs from line to line. When (6.14) and the definition of φ(•)), we have that

sB 1 • • • B i > 1, as (1) 
((sB1•••Bi) -1 ) ≤ C(sB 1 • • • B i ) (by (6.1)), and | φ(sB 1 • B i )| ≤ C[1 + ρ(α -)](sB 1 • • • B i ) -(which is derived from
ρ i (α)E| φ(sB 1 • • • B i )| (1/s) = ρ i (α)E | φ(sB 1 • • • B i )| (1) • (1) ((sB 1 • • • B i ) -1 ) • ((sB 1 • • • B i ) -1 ) (s -1 ) ≤ Cρ i (α)E (sB 1 • • • B i ) -• (sB 1 • • • B i ) • (B 1 • • • B i ) + (B 1 • • • B i ) - = Cρ i (α) E(B 1 • • • B i ) -+ E(B 1 • • • B i ) = Cρ i (α) (EB -) i + (EB ) i ,
where C > 0 differs from line to line. It should be pointed out that the O(1)s above are not depending on i. From the distribution of B (cf. (6.11)), we have

ρ i (α) (EB -) i + (EB ) i = (EM α-1-) i + (EM α-1+ ) i = ρ i (α -) + ρ i (α + ),
which is summable due to the facts that ρ(α -) < 1 and ρ(α + ) < 1. Hence we have shown (6.19). This ends the proof of Step 2. Thus the proof for the case α ∈ (1, ∞)\N is finished.

(ii) Case α ∈ {2, 3, . . .}. In this case we write

ĥn-1 (s) = h n-1 (s) s n , φn-1 (s) = φ n-1 (s) s n , n = 2, 3, . . . (6.20) 
(this time we have α = (n -1) + 1, which corresponds to the preceding case with n replaced by n -1 and β = 1). By Proposition 2.2, we only need to prove the equivalence between the following two statements: for any fixed λ > 1,

Ĥn-1 (s) := ĥn-1 (s) -ĥn-1 (λs) ∼ ln λ (n -1)! (1/s) (s → 0), (6.21) 
Φn-1 (s

) := φn-1 (s) -φn-1 (λs) ∼ ln λ (n -1)! (1 -ρ(n)) -1 (1/s) (s → 0). (6.22)
Recall that by Theorem 2.2,

φ n-1 (s) -EM -1 φ n-1 (sM ) = h n-1 (s) + c n-1 n! s n + O(s n+ ), s ≥ 0, (6.23) so that φn-1 (s) -EM n-1 φn-1 (sM ) = ĥn-1 (s) + c n-1 n! + O(s ), s ≥ 0. ( 6.24) 
Evaluating the equality at λs and subtracting, we obtain

Φn-1 (s) -EM n-1 Φn-1 (sM ) = Ĥn-1 (s) + O(s ), s ≥ 0. (6.25) 
Using (6.25) instead of (6.8), the same argument as in Case (i) shows that (6.21) and (6.22) are equivalent. This ends the proof of Theorem 1.1.

7 Proof of Theorem 1.2

Before giving the proof of Theorem 1.2, we first show two lemmas. The first lemma states that the main term E e -T (s) -1 + T (s) of the right-hand-side of (2.15) behaves like h 1 .

Lemma 7.1 If ρ(1 + δ 0 ) < ∞ for some δ 0 > 0, then we have for ∈ (0, 1) and s ≥ 0,

h 1 (s) ≥ E e -T (s) -1 + T (s) = h 1 ((1 -)s) + O(s 1+δ0 ). (7.1) Proof. Let H(x) = e -x -1 + x (x ≥ 0). Then we have EH(sY 1 ) = E e -sY1 -1 + sY 1 = h 1 (s), EH(T (s)) = E e -T (s) -1 + T (s) .
For ∈ (0, 1), there exists s 0 = s 0 ( ) > 0 such that t(s) ≥ (1 -)s for all s ∈ [0, s 0 ]. Hence for s ∈ [0, s 0 ], we have

T (s) ≥ N i=1 (1 -)A i s1 {Ais≤s0} = (1 -)s N i=1 A i 1 {Ais≤s0} . (7.2)
As H(x) is increasing on (0, ∞), from (2.8) and (7.2) we see that

EH(T (s)) ≤ EH(sY 1 ) = h 1 (s), (7.3 
)

EH(T (s)) ≥ EH (1 -)s n i=1 A i 1 {Ais≤s0} . (7.4) 
Notice that by the mean value theorem, 0 ≤ H

(b) -H(a) ≤ b -a if 0 ≤ a ≤ b. Hence 0 ≤ H((1 -)sY 1 ) -H (1 -)s N i=1 A i 1 {Ais≤s0} ≤ (1 -)s N i=1 A i 1 {Ais>s0} ≤ (1 -)s 1+δ0 N i=1 A 1+δ0 i /s δ0 0 .
Taking expectation, we see that

0 ≤ E H((1 -)sY 1 ) -H (1 -)s N i=1 A i 1 {Ais≤s0} ≤ (1 -)s -δ0 0 ρ(1 + δ 0 )s 1+δ0 . (7.5) 
As EH((1 -)sY 1 ) = h 1 ((1 -)s), it follows from (7.3), (7.4) and (7.5) that (7.1) holds.

The second lemma is a relation between ˜ and . It shows that we can present ˜ as a sum of composed with a random walk. Lemma 7.2 Let (X i ) i≥0 be independent and identically distributed with µ = EX 1 ∈ (0, ∞) and Ee -δ0X1 < ∞ for some δ

0 > 0. Write S n = X 1 + • • • + X n . Let ∈ R 0 be non-increasing with ∞ 1 (t)dt/t < ∞. Then as x → ∞ 1 ˜ (x) ∞ n=0 (xe Sn ) → 1 µ a.s. and in L 1 , (7.6) 
where ˜ is defined in (1.17).

Proof. Without loss of generality, we assume that is given by (1.10). We first estimate the inferior limit of

∞ n=0 E (xe Sn ) ˜ (x)
. As EX 1 = µ ∈ (0, ∞), by the law of large numbers we have S n /n → µ a.s. For > 0, there exists almost surely a finite N such that S n lies between n(µ ± ) for n ≥ N . Since is non-increasing and

∞ 1 (x)
x dx < ∞, we have lim x→∞ (x) = 0. Using this together with (x) = (x) (x)/x (cf. (1.10)), we obtain that

(x) = - ∞ x (t)dt = ∞ x (t)(-(t))dt/t. Therefore (x) ˜ (x) = ∞ x (t)(-(t))dt/t ∞ x (t)dt/t ≤ sup t∈[x,∞) (-(t)) → 0 (x → ∞), so that (x) = o( ˜ (x)) (x → ∞). (7.7) 
As (xe Sn ) ∼ (x), it follows that a.s.

N -1 n=0 (xe Sn ) = o( ˜ (x)) (x → ∞). (7.8) 
On the other hand, for n ≥ N , as is non-increasing, we have a.s.

∞ n=N (xe n(µ+ ) ) ≤ ∞ n=N (xe Sn ) ≤ ∞ n=N (xe n(µ-) ). ( 7.9) 
Notice that for any c > 0,

∞ n=N +1 (xe nc ) ≤ ∞ N (xe ct )dt ≤ ∞ n=N (xe nc ),
and that the integral above (the middle term) is . We divide S n into two parts according to

1 c ∞ xe cN (u)du/u = 1 c ˜ (xe cN ) ∼ 1 c ˜ (x) (x → ∞). Therefore ∞ n=N (xe nc ) ∼ 1 c ˜ (x) (x → ∞). ( 7 
{S n ≤ n(µ -)} or {S n > n(µ -)}, so that ∞ n=0 E (xe Sn ) = ∞ n=0 E (xe Sn )1 {Sn≤n(µ-)} + ∞ n=0 E (xe Sn )1 {Sn>n(µ-)} . (7.13)
As is non-increasing, the second term is bounded by

∞ n=0 (xe n(µ-) ) ∼ 1 µ - ˜ (x) (x → ∞) (7.14) 
(cf. (7.10) with c = µ -). We now deal with the first term in the right hand side of (7.13). Write Xi = X i -µ and Sn = X1 + • • • + Xn = S n -nµ. By Potter's theorem, for any δ > 0, we have

E (xe Sn )1 {Sn≤n(µ-)} ≤ A δ (x)E e δSn + e -δSn 1 {Sn≤n(µ-)} ≤ A δ (x)E e nµδ + e -δSn 1 { Sn≤-n } , (7.15) 
where A δ > 0 is a constant depending on δ.

We shall prove that thanks to the condition Ee -δ0X1 < ∞, we have for > 0, P( Sn ≤ -n ) ≤ e -cn (7.16) for some c = c( ) > 0 and all n ≥ 1. In fact, as (X i ) are independent and identically distributed, we have for all δ > 0 P( Sn ≤ -n ) = P(e -δ Sn ≥ e nδ ) ≤ e -nδ Ee -δ Sn So from (7.17 where ˜ is defined in (1.17). Notice that if 1 (x) ∼ 2 (x) (x → ∞), then

∞ x 1(t) t dt ∼ ∞ x 2(t)
t dt (x → ∞) by l'Hôpital's rule. Therefore we can suppose that (1/s) = h 1 (s)/s, s > 0, which is non-decreasing, so that (x) is non-increasing.

Recall the definitions of φ1 (s) and φ(s) in the proof of Theorem 1.1(i) (with α = 1): φ1 (s) = φ 1 (s)/s and φ(s) = φ1 (s) -E φ1 (sM ).

Corresponding to (6.12), we get

k-1 i=0 E φ(sM 1 • • • M i ) = φ1 (s) -E φ1 (sM 1 • • • M k ), (7.27) 
where {M i } are independent copies of M . Notice that 0 < 1 -e -x < x (∀x > 0), we see that 0 ≤ φ 1 (s) = E(e -sZ -1 + sZ) ≤ 2sEZ = 2s, and hence for all δ ∈ (0, 1). From (7.28) and (7.29), we have for all > 0, φ1 (s)

≤ ∞ n=0 E h 1 (sM 1 • • • M n ) sM 1 • • • M n + O(E(sM 1 • • • M n ) ) = ∞ n=0 E 1 sM 1 • • • M n + O(s )E(M 1 • • • M n ) . (7.31) 
Since (1.14) holds for α = 1 and some δ 0 > 0, we have ρ(1 + δ) < ∞ for some δ > 0 small enough (cf. On the other hand, from (7.28) and (7.30), we have for δ ∈ (0, 1),

φ1 (s) ≥ ∞ n=0 E h 1 ((1 -δ)sM 1 • • • M n ) sM 1 • • • M n + O(s )E(M 1 • • • M n ) = ∞ n=0 (1 -δ)E 1 (1 -δ)sM 1 • • • M n + O(s )E(M 1 • • • M n ) = ∞ n=0
(1 -δ)E e Sn /[(1 -δ)s] + O(s )E(M which is equivalent to (7.26). This ends the proof of Theorem 1.2.

Remark 7.1 In Theorem 1.2, we fail to show the equivalence between (1.18) and (1.19), which can be interpreted to the equivalence between (7.25) and (7.26). In our approach, to show the implication (7.25) ⇒ (7.26), we use (7.28) (together with Lemma 7.2) to transfer information on h 1 (corresponding to φ) to that on φ 1 (corresponding to φ1 ). The difficult for establishing the inverse implication (7.26) ⇒ (7.25) is that from (7.28), we cannot transfer the information from φ1 to φ (that is, from φ 1 to h 1 ).

  & Jin (2014), and Liang & Liu (2015) for Mandelbrot's cascades; Durrett & Liggett (1983) for some infinite particles systems; Biggins & Kyprianou (1997,2005), Iksanov & Polotskiy (2006) and Alsmeyer & Kuhlbusch (2010) for branching random walks; Volkovich & Litvak (2010) for the Pagerank algorithm (which is in the heart of the Google engine); Liu (1997, 1998), Aldous & Bandyopadhyay (2005), Buraczewski(2009), Buraczewski & Kolesko (2014) and

. 10 )

 10 We mention that what is important in (3.8)-(3.10) is the validity for s ∈ [0, 1] (or s → 0).Proof of Lemma 3.1. (i) Without loss of generality, we assume that EZ = 1. So the law µ of Z satisfies µ([0, 1]) > 0. In order to prove (3.7), from the representation form (3.5), it is sufficient to show that φ (k) (s) φ(s)

1 ≤

 1 .39) By Lemma 4.1, E e -T (s) -e -sY1 Y n Cs β+ , s ≥ 0. (4.40) Combining (4.39) and (4.40), we get (4.35).

2 ,

 2 φ n (s) -EM -1 φ n (sM ) = h n (s) + O(s α+ ), s ≥ 0. Therefore φn (s) := φ n (s)/s α and ĥn (s) := h n (s)/s α satisfy φn (s) -EM α-1 φn (sM ) = ĥn (s) + O(s ), s ≥ 0. (6.8) Let φ(s) = φn (s) -EM α-1 φn (sM ). Then φ(s) = φn (s) -ρ(α)E φn (sB),

  δ) = ln Ee -δ X1 . By the dominated convergence theorem, it can be easily seen that d dδ Ee -δ X1 = E -X1 e -δ X1 , so thatΛ (δ) = E -X1 e -δ X1 Ee -δ X1 → -E[ X1 ] = 0 (δ → 0). Hence lim δ→0 Λ(δ) δ = lim δ→0 Λ (δ) = 0.(7.18)Therefore, for δ > 0 small enough, we have Λ(δ) < δ , which is equivalent to Ee -δ X1 < e δ .(7.19) 

2 ≤E

 2 ), we obtain(7.16) with c = -ln Ee -δ X1 e δ > 0.By the Cauchy-Schwartz inequality, it follows from (7.15) and(7.16) thatE (xe Sn )1 {Sn≤n(µ-)} ≤ A δ (x) e nµδ P( Sn ≤ -n ) + Ee -2δSn 1/2 P( Sn ≤ -n ) 1/A δ (x) e µδ • e -c n + Ee -2δX1 • e -c n/2 . (7.20) As Ee -2δX1 < ∞ for δ ∈ [0, δ 0 /2],we can choose δ > 0 small enough such thate µδ • e -c < 1 and Ee -2δX1 • e -c < 1. (7.21)Hence from (7.20) and (7.7), we see that∞ n=1 E (xe Sn )1 {Sn≤n(µ-)} ≤ A δ (x) ∞ n=1 e µδ • e -c n + Ee -2δX1 • e -c n/2 ≤ C (x) = o ˜ (x) . (7.22) It follows from (7.13), (7.14) and (7.22) that ∞ n=0 (xe Sn ) ≤ o ˜ (xs theorem, (7.11) and (7.24) give (7.6). Proof of Theorem 1.2. By Proposition 2.1 (with n = 1 and β = 0), we just need to show that h 1 (s) ∼ s (1/s) (s → 0) (7.25) implies φ 1 (s) ∼ µ -1 s ˜ (1/s) (s → 0), (7.26)

sup s>0 |

 s>0 φ1 (s)| < ∞.Therefore, by the dominated convergence theorem and the fact that M 1 • • • M k → 0 (which follows from the law of large numbers), we conclude thatlim k→∞ E φ1 (sM 1 • • • M k ) = 0. So letting k → ∞ in (7.27), we obtain ∞ n=0 E φ(sM

( 1 .

 1 [START_REF] De Haan | An Abel-Tauber theorem for Laplace transforms[END_REF]). Hence ρ(x) is convex on (1, 1 + δ) with ρ (1) < 0, and we can find some > 0 small enough such that ρ(1 + ) < 1. By the definition of M (cf. (2.10)), we obtain thatE(M 1 • • • M n ) = E M n = e -Xn and S n = X 1 + • • • + X n . So {X n } are independent and identically distributed, with EX 1 = -E ln M 1 = -ρ (1) = µ ∈ (0, ∞) and Ee -δ0X1 = EM δ0 1 = ρ(1 + δ 0 ) < ∞. By Lemma 7.2, we have ∞ n=0 E 1 sM 1 • • • M n = ∞ n=0 E (e Sn /s) ∼ µ -1 ˜ (1/s) (s → 0). (7.33)Notice that ˜ is a function slowly varying at ∞, it follows from (7.31), (7.32) and (7

  Both proofs are based on Theorem 2.2 about the comparison between h n and φ n , which is a direct consequence of Theorems 2.1 whose proof is given in Sections 4 and 5.

	2 (ii). Unfortunately, we fail to
	prove the equivalence between (2.19) and (2.20), which would lead to the equivalence between (1.18) and

(1.19)

. See Remark 7.1 on this point. The details of the proofs of Theorems 1.1 and 1.2 are given respectively in Sections 6 and 7.

  [START_REF] Aldous | A survey of max-type recursive distributional equations[END_REF] 

  • • • M n ) = φ1 (s).

						(7.28)
	By Lemma 7.1 and Theorem 2.2, we see that			
	φ(s) ≤	h 1 (s) s	+ O(s ),	s ≥ 0,	(7.29)
	φ(s) ≥	h 1 ((1 -δ)s) s	+ O(s ),	s ≥ 0,	(7.30)

  [START_REF] Aldous | A survey of max-type recursive distributional equations[END_REF] 

  Sn /[(1 -δ)s] ∼ µ -1 ˜ (1/[(1 -δ)s]) ∼ µ -1 ˜ (1/s) (s → 0),(7.36)where the last step holds since the slow variation of implies that of ˜ . It follows from (7.32),(7.35) and (7.36) that

	Using again Lemma 7.2, we have					
	lim inf s→0		φ1 (s) ˜ (1/s)		≥	1 -δ µ	.	(7.37)
	Letting δ → 0, we see that					
	lim inf s→0	φ1 (s) ˜ (1/s)	≥ µ -1 .	(7.38)
	From (7.34) and (7.38), we obtain					
	lim s→0	φ1 (s) ˜ (1/s)	= µ -1 ,	(7.39)
							(7.35)

• • • M n ) . ∞ n=0 E e
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Appendix

Proof of Proposition 2.2. Write F for the distribution function of X. Define F 1 , • • • , F n+1 by letting

By induction, it can be easily shown that when µ n = EX n < ∞, we have for k = 0, . . . , n,

In other words, for k = 1, • • • , n, F k+1 (x)-F k+1 (0) is the distribution function of the measure concentrated on (0, ∞) of density 1 -F k (t) with respect to the Lebesgue measure, with mass 1 -

is the distribution function of the measure concentrated on (0, ∞) of density 1 -F n+1 (t) with respect to the Lebesgue measure. By induction, it can be easily checked that for k = 0,

We first show that (2.3) implies (2.4). As 1 -F (x) ∼ x -(n+1) (x) (x → ∞), by induction we have

with the convention that n • • • (n -k + 1) = 1 when k = 0. Therefore, for any λ > 0, we have

where the last equivalence is due to the Uniform Convergence Theorem (see [START_REF] Bingham | Regular Variation[END_REF]Theorem 1.2.1]). Hence we obtain

As fn is the Laplace -Stieltjes transform of F n+2 , it follows from (A.2) and de Haan's theorem (see [START_REF] De Haan | An Abel-Tauber theorem for Laplace transforms[END_REF] or [11, Theorem 3.9.1]) that

We now show that (2.4) implies (2.3). Since fn (•) is the Laplace-Stieltjes transform of F n+2 (•), again by de Haan's theorem, we see that (A.3) holds true, which implies that

So by the lemma of [START_REF] De Haan | An Abel-Tauber theorem for Laplace transforms[END_REF], we see that 1 -F n+1 (x), which is the derivative of F n+2 (x), is a regularly varying function of index -1. Differentiating n times the function 1 -F n+1 (x), we know that 1 -F 1 (x) varies regularly with index -(n + 1), that is,

where 1 (•) is a function slowly varying at ∞. Using this and the implication "(2.3)⇒(2.4)", we see that (2.4) holds also with replaced by 1 . Thus 1 (x) ∼ (x)(x → ∞), so that (A.5) implies (2.3). This ends the proof of the implication "(2.4)⇒(2.3)".