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Let (Xi, Fi) i≥1 be a sequence of martingale differences. Set Sn = n i=1 Xi and

Introduction

Let (X i ) i≥1 be a sequence of independent random variables with zero means and finite variances: EX i = 0 and 0 < EX 2 i < ∞ for all i ≥ 1. Set

S n = n i=1 X i , B 2 n = n i=1 EX 2 i , V 2 n = n i=1 X 2 i .
It is well-known that under the Lindeberg condition the central limit theorem (CLT) holds sup

x∈R P(S n /B n ≤ x) -Φ(x) → 0 as n → ∞,
where Φ(x) denotes the standard normal distribution function. Cramér's moderate deviation expansion stated below gives an estimation of the relative error of P(S n /B n ≥ x) to 1 -Φ(x). If (X i ) i≥1 are identically distributed with Ee t0 √ |X1| < ∞ for some t 0 > 0 (cf. [START_REF] Linnik | On the probability of large deviations for the sums of independent variables[END_REF]), then for 0 ≤ x = o(n 1/6 ) as n → ∞,

P(S n /B n ≥ x)
1 -Φ (x) = 1 + o(1) and P(S n /B n ≤ -x) Φ (-x) = 1 + o(1).

(1.1) However, the limit theorems for self-normalized partial sums of independent random variables have put a new countenance on the classical limit theorems. The study of selfnormalized partial sums S n /V n originates from Student's t-statistic. Student's t-statistic T n is defined by

T n = √ n X n / σ,
where

X n = S n n and σ 2 = n i=1 (X i -X n ) 2 n -1 .
It is known that for all x ≥ 0,

P T n ≥ x = P S n /V n ≥ x n n + x 2 -1 1/2
, see [START_REF] Chung | The approximate distribution of Student's statistic[END_REF]. So, if we get an asymptotic bound on the tail probabilities for selfnormalized partial sums, then we have an asymptotic bound on the tail probabilities for T n . [START_REF] Giné | When is the Student t-statistic asymptotically standard normal?[END_REF] gave a necessary and sufficient condition for the asymptotic normality. [START_REF] Slavova | On the Berry-Esseen bound for Student's statistic[END_REF] and [START_REF] Bentkus | A Berry-Esséen bound for Student's statistic in the non-i.i.d. case[END_REF] (see also [Bentkus and Götze, 1996]) obtained the Berry-Esseen bounds for self-normalized partial sums. See also [START_REF] Novak | Extreme value methods with applications to finance[END_REF] and [START_REF] Shao | Self-normalized limit theorems: A survey[END_REF] for Berry-Esseen type inequalities with explicit constants. [START_REF] Shao | Self-normalized large deviations[END_REF] established a self-normalized Cramér-Chernoff large deviation without any moment assumptions and [START_REF] Shao | A Cramér type large deviation result for Student's t-statistic[END_REF] proved a self-normalized Cramér moderate deviation theorem under (2 + ρ)th moments: if (X i ) i≥1 are independent and identically distributed with E|X 1 | 2+ρ < ∞, ρ ∈ (0, 1], then for 0 ≤ x = o(n ρ/(4+2ρ) ) as n → ∞, P(S n /V n ≥ x)

1 -Φ (x) = 1 + o(1).

(1.

2)

The expansion (1.2) was further extended to independent but not necessarily identically distributed random variables by [START_REF] Jing | Self-normalized Cramér-type large deviations for independent random variables[END_REF] under finite (2 + ρ)th moments, ρ ∈ (0, 1], showing that

P(S n /V n ≥ x) 1 -Φ (x) = exp O 1 (1 + x) 2+ρ ι ρ n (1.3) uniformly for 0 ≤ x = o(min{ι -1 n , ς -1 n }),
where O(1) is bounded by an absolute constant and

ι ρ n = n i=1 E|X i | 2+ρ /B 2+ρ n and ς 2 n = max 1≤i≤n EX 2 i /B 2 n .
(1.4)

For further self-normalized Cramér type moderate deviation results for independent random variables we refer, for example, to [START_REF] Hu | Cramér type moderate deviations for the maximum of self-normalized sums[END_REF], [START_REF] Liu | Self-normalized Cramér type moderate deviations imsart-bj ver[END_REF], and [START_REF] Shao | Cramér type moderate deviation theorems for selfnormalized processes[END_REF]. We also refer to [de la [START_REF] De La Peña | Self-normalized Processes: Theory and Statistical Applications[END_REF] and [START_REF] Shao | Self-normalized limit theorems: A survey[END_REF] for recent developments in this area.
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The theory for self-normalized sums of independent random variables has been studied in depth. However, we are not aware of any such results for martingales. For some closely related topic, that is, exponential inequalities for self-normalized martingales, we refer to [de la [START_REF] De La Peña | A general class of exponential inequalities for martingales and ratios[END_REF], [START_REF] Bercu | Exponential inequalities for self-normalized martingales with applications[END_REF], [START_REF] Chen | Exponential inequalities for self-normalized martingales[END_REF] and [START_REF] Bercu | Concentration inequalities for sums and martingales[END_REF]. The main purpose of this paper is to establish selfnormalized Cramér type moderate deviation results for martingales. Let (δ n ) n≥1 , (ε n ) n≥1 and (κ n ) n≥1 be three sequences of nonnegative numbers, such that δ n → 0, ε n → 0 and κ n → 0 as n → ∞. Let (X i , F i ) i≥1 be a sequence of martingale differences satisfying

n i=1 E[X 2 i |F i-1 ] -B 2 n ≤ δ 2 n B 2 n , n i=1 E[|X i | 2+ρ |F i-1 ] ≤ ε ρ n B 2+ρ n ,
and max

1≤i≤n E[X 2 i |F i-1 ] ≤ κ 2 n B 2 n ,
where ρ ∈ (0, 3 2 ]. Here and hereafter, the inequalities between random variables are understood in the P-almost sure sense. From Corollary 2.1 we have

P(S n /V n ≥ x) = (1 -Φ(x))(1 + o(1)) (1.5) uniformly for 0 ≤ x = o( min{ε -ρ/(3+ρ) n , δ -1 n , κ -1 n }) as n → ∞.
A more general Cramér type expansion is obtained in a larger range in our Theorem 2.1, from which we derive a moderate deviation principle for self-normalized martingales. Moreover, when the condition

n i=1 E[|X i | 2+ρ |F i-1 ] ≤ ε ρ n B 2+ρ
n is replaced by a slightly stronger condition

E[|X i | 2+ρ |F i-1 ] ≤ (ε n B n ) ρ E[X 2 i |F i-1 ],
equality (1.5) holds for a larger range of 0 ≤ x = o( min{ε -ρ/(4+2ρ) n

, δ -1 n }) for ρ ∈ (0, 1], see Corollary 2.4. Clearly, our results recover (1.2) for i.i.d. random variables.

The rest of the paper is organized as follows. Our main results are stated and discussed in Section 2. Section 3 provides the preliminary lemmas that are used in the proofs of the main results. In Section 4, we prove the main results.

Throughout the paper the symbols c and c α , probably supplied with some indices, denote respectively a generic positive absolute constant and a generic positive constant depending only on α. Moreover, θ stands for values satisfying |θ| ≤ 1.

Main results

Let (X i , F i ) i=0,...,n be a sequence of martingale differences defined on a probability space (Ω, F, P), where X 0 = 0 and {∅, Ω} = F 0 ⊆ ... ⊆ F n ⊆ F are increasing σ-fields. Set

S 0 = 0, S k = k i=1 X i , k = 1, ..., n.
(2.1) 

Then S = (S k , F k ) k=0,...,n is a martingale. Denote B 2 n = n i=1 EX 2 i . Let [S]
and S be, respectively, the square bracket and the conditional variance of the martingale S, that is

[S] 0 = 0, [S] k = k i=1 X 2 i , k = 1, ..., n,
and

S 0 = 0, S k = k i=1 E[X 2 i |F i-1 ], k = 1, ..., n. (2.2)
In the sequel, we use the following conditions:

(A1) There exists δ n ∈ [0, 1 4 ] such that n i=1 E[X 2 i |F i-1 ] -B 2 n ≤ δ 2 n B 2 n ;
(A2) There exist ρ > 0 and

ε n ∈ (0, 1 4 ] such that n i=1 E[|X i | 2+ρ |F i-1 ] ≤ ε ρ n B 2+ρ n ; (A3) There exists κ n ∈ (0, 1 4 ] such that E[X 2 i |F i-1 ] ≤ κ 2 n B 2 n , 1 ≤ i ≤ n;
(A4) There exist ρ ∈ (0, 1] and γ n ∈ (0, 1 4 ] such that

E[|X i | 2+ρ |F i-1 ] ≤ (γ n B n ) ρ E[X 2 i |F i-1 ], 1 ≤ i ≤ n.
When ρ ∈ (0, 1] and γ n ≤ (16/17) 1/ρ /4, conditions (A1) and (A4) imply condition (A2) with ε n = (17/16) 1/ρ γ n . Thus, we may assume that ε n = O(γ n ) as n → ∞. It is also easy to see that condition (A4) implies condition (A3) with κ n = γ n , see Lemma 3.5.

In practice, we usually have max{δ n , ε n , γ n , κ n } → 0 as n → ∞. In the case of sums of i.i.d. random variables, conditions (A1), (A2), (A3), and (A4) are satisfied with

δ n = 0, ε n , γ n , κ n = O( 1 √ n ).
Our first main result is the following Cramér type moderate deviation for the selfnormalized martingale

W n = S n / [S] n ,
under conditions (A1), (A2), and (A3).

Theorem 2.1. Assume that conditions (A1), (A2), and (A3) are satisfied. Set Then for 0

ρ 1 = min{ρ, 1}.
≤ x = o(min{ε -1 n , κ -1 n }), P(W n ≥ x) 1 -Φ (x) = exp θc ρ x 2+ρ1 ε ρ1 n + x 2 δ 2 n + (1 + x) ε ρ/(3+ρ) n + δ n . (2.3)
Under condition (A2) the best Berry-Esseen bound for standardized martingales is provided by [START_REF] Haeusler | On the rate of convergence in the central limit theorem for martingales with discrete and continuous time[END_REF]: assuming S n = B 2 n a.s., Haeusler proved that

sup x P(S n /B n ≤ x) -Φ (x) ≤ c ρ n i=1 E|X i /B n | 2+ρ 1/(3+ρ) .
Moreover, it was showed that this bound cannot be improved for martingales with finite (2 + ρ)th moments. In fact, there exist a positive constant c 0,ρ and a sequence of mar- 3+ρ) for all large enough n. In particular, under conditions (A2) and S n = B 2 n a.s., Haeusler's result implies that

tingale differences satisfying P(S n ≤ 0) -Φ (0) ≥ c 0,ρ n i=1 E|X i /B n | 2+ρ 1/(
sup x P(S n /B n ≤ x) -Φ (x) ≤ c ρ ε ρ/(3+ρ) n .
(2.4)

Notice that Theorem 2.1 implies that, for each absolute constant c > 0 there is a positive constant c ρ depending on ρ such that for n large enough,

sup |x|≤c P(W n ≤ x) -Φ (x) ≤ c ρ ε ρ/(3+ρ) n + δ n .
(2.5)

Under conditions (A2) and S n = B 2 n a.s., the bound in (2.5) for self-normalized martingales is of the same order as the bound in (2.4) for standardized martingales.

From Theorem 2.1, we obtain the following result about the equivalence to the normal tail.

Corollary 2.1. Assume that conditions (A1), (A2), and (A3) are satisfied with ρ ∈ (0, 3 2 ]. Then

P(W n ≥ x) 1 -Φ (x) = 1 + o(1) uniformly for 0 ≤ x = o( min{ε -ρ/(3+ρ) n , κ -1 n , δ -1 n }) as n → ∞.
Theorem 2.1 also implies the following moderate deviation principles (MDP) for selfnormalized martingales.

Corollary 2.2. Assume conditions (A1), (A2), and (A3) with max{δ n , ε n , κ n } → 0 as n → ∞. Let a n be any sequence of real numbers satisfying a n → ∞ and a n ε n → 0 as n → ∞. Then for each Borel set B,

-inf x∈B o x 2 2 ≤ lim inf n→∞ 1 a 2 n ln P W n a n ∈ B ≤ lim sup n→∞ 1 a 2 n ln P W n a n ∈ B ≤ -inf x∈B x 2 2 , (2.6)
where B o and B denote the interior and the closure of B, respectively.

The last corollary shows that the convergence speed of MDP depends only on ε n and it has nothing to do with the convergence speeds of κ n and δ n .

For i.i.d. random variables, the self-normalized MDP was established by [START_REF] Shao | Self-normalized large deviations[END_REF]. See also [START_REF] Jing | Self-normalized moderate deviations for independnet random variables[END_REF] for non-identically distributed random variables.

The other main results concern some improvements of Theorem 2.1 when condition (A3) is replaced by the stronger condition (A4). Theorems 2.2 and 2.3 below give respectively lower and upper bounds, while Theorem 2.4 gives a Cramér type moderate deviation expansion sharper than that in Theorem 2.1.

Theorem 2.2. Assume that conditions (A1), (A2), and (A4) are satisfied.

[i] If ρ ∈ (0, 1), then for 0 ≤ x = o(γ -1 n ), P(W n ≥ x) 1 -Φ (x) ≥ exp -c ρ x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) (x ρ γ ρ n + γ ρ n + δ n ) .
(2.7)

[ii] If ρ = 1, then for 0 ≤ x = o(γ -1 n ), P(W n ≥ x) 1 -Φ (x) ≥ exp -c x 3 ε n + x 2 δ 2 n + (1 + x) (xγ n + γ n | ln γ n | + δ n ) . (2.8)
The term γ n | ln γ n | in (2.8) cannot be replaced by γ n under the stated conditions. Indeed, [START_REF] Bolthausen | Exact convergence rates in some martingale central limit theorems[END_REF] (see Example 2 therein) showed that there exists a sequence of martingale differences satisfying |X i | ≤ 2 and S n = n a.s., such that for all n large enough,

P(S n ≥ 0) -Φ (0) ≥ c log n √ n , (2.9) 
where c does not depend on n. Inequality (2.9) shows that the term γ n | ln γ n | in (2.8) cannot be replaced by γ n even for bounded martingale differences.

For any sequence of positive numbers (α n ) n≥1 denote

α n (x, ρ) = α ρ(2-ρ)/4 n 1 + x ρ(2+ρ)/4 .
(2.10) Accordingly, we shall use below the notations ε n (x, ρ) and γ n (x, ρ), which mean sequences defined by (2.10) with α n replaced by ε n and γ n .

Theorem 2.3. Assume that conditions (A1), (A2), and (A4) are satisfied.

[i] If ρ ∈ (0, 1), then for 0

≤ x = o(γ -1 n ), P(W n ≥ x) 1 -Φ (x) ≤ exp c ρ x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) x ρ γ ρ n + γ ρ n + δ n + ε n (x, ρ) . [ii] If ρ = 1, then for 0 ≤ x = o(γ -1 n ), P(W n ≥ x) 1 -Φ (x) ≤ exp c x 3 ε n + x 2 δ 2 n + (1 + x) xγ n + γ n | ln γ n | + δ n + ε n (x, 1
) .

Combining Theorems 2.2 and 2.3, we obtain the following Cramér type moderate deviation expansion for self-normalized martingales under conditions (A1), (A2), and (A4), which is stronger than the expansion in Theorem 2.1 since the term ε ρ/(3+ρ) n therein is improved to a smaller one.

Theorem 2.4. Assume that conditions (A1), (A2), and (A4) are satisfied.

[i] If ρ ∈ (0, 1), then for 0 ≤ x = o(γ -1 n ), P(W n ≥ x) 1 -Φ (x) = exp θc ρ x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) x ρ γ ρ n + γ ρ n + δ n + ε n (x, ρ) . [ii] If ρ = 1, then for 0 ≤ x = o(γ -1 n ), P(W n ≥ x) 1 -Φ (x) = exp θc x 3 ε n + x 2 δ 2 n + (1 + x) xγ n + γ n | ln γ n | + δ n + ε n (x, 1
) .

Notice that condition (A4) implies condition (A2) with ε n = γ n . Therefore, it follows from Theorem 2.4 that:

Corollary 2.3. Assume that conditions (A1) and (A4) are satisfied.

[i] If ρ ∈ (0, 1), then for 0 ≤ x = o(γ -1 n ), P(W n ≥ x) 1 -Φ (x) = exp θc ρ x 2+ρ γ ρ n + x 2 δ 2 n + (1 + x) δ n + γ n (x, ρ) . [ii] If ρ = 1, then for 0 ≤ x = o(γ -1 n ), P(W n ≥ x) 1 -Φ (x) = exp θc x 3 γ n + x 2 δ 2 n + (1 + x) δ n + γ n | ln γ n | + γ n (x, 1
) .

From Theorem 2.4, we also obtain the following result about the equivalence to the normal tail.
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Corollary 2.4. Assume conditions (A1), (A2), and (A4) with ρ ∈ (0, 1]. Then

P(W n ≥ x) 1 -Φ (x) = 1 + o(1) (2.11) uniformly for 0 ≤ x = o( min{ε -ρ/(2+ρ) n , γ -ρ/(1+ρ) n , δ -1 n }) as n → ∞.
In the case of i.i.d. random variables, conditions (A1), (A2), and (A4) are satisfied with

ε n , γ n = O(1/ √ n ) and δ n = 0. Thus, the range 0 ≤ x = o( min{ε -ρ/(2+ρ) n , δ -1 n , γ -ρ/(1+ρ) n }) reduces to 0 ≤ x = o(n -ρ/(4+2ρ) ), n → ∞,
which is the best possible result such that (2.11) holds (see [START_REF] Shao | A Cramér type large deviation result for Student's t-statistic[END_REF]). Moreover, from Theorem 2.4, we can get the estimation of the rate of convergence in (2.11); for example, when ρ = 1 we have:

Corollary 2.5. Assume conditions (A1), (A2), and (A4)

with ρ = 1, ε n , γ n , δ n = O(1/ √ n ). Then with c 0 > 0 for c 0 n 3/22 ≤ x = o(n 1/2 ) as n → ∞, P(W n ≥ x) 1 -Φ (x) = exp θc x 3 n 1/2 .
(2.12)

In particular, with c 0 , c 1 > 0 for c 0 n 3/22 ≤ x ≤ c 1 n 1/6 , P(W n ≥ x) 1 -Φ (x) -1 ≤ c x 3 n 1/2 . (2.13)
Notice that the rate of convergence in (2.12) coincides with that in (1.3) for i.i.d. random variables.

Remark 2.1. Notice that if (S k , F k ) k=0,...,n satisfies conditions (A1), (A2), (A3), and (A4), then (-S k , F k ) k=0,...,n also satisfies the same conditions. Thus the assertions in Theorems 2.1-2.4 and Corollaries 2.1-2.5 remain valid when P(Wn≥x)

1-Φ(x)
is replaced by

P(Wn≤-x) Φ(-x)
.

Preliminary lemmas

The proofs of Theorems 2.1-2.4 are based on a conjugate multiplicative martingale technique for changing the probability measure which is similar to that of the transformation of [START_REF] Esscher | On a method of determining correlation from the ranks of the variates[END_REF]. Our approach is inspired by the earlier work of [START_REF] Grama | Large deviations for martingales via Cramér's method[END_REF] on Cramér moderate deviations for standardized martingales, and by that of [START_REF] Shao | A Cramér type large deviation result for Student's t-statistic[END_REF], [START_REF] Jing | Self-normalized Cramér-type large deviations for independent random variables[END_REF], who developed techniques for moderate deviations of self-normalized sums of independent random variables. We extend these work by introducing a new choice of the density for the change of measure and refining the approaches in [START_REF] Shao | A Cramér type large deviation result for Student's t-statistic[END_REF] and [START_REF] Jing | Self-normalized Cramér-type large deviations for independent random variables[END_REF] to handle self-normalized martingales.

A key point of the proof is a new Berry-Esseen bound for martingales under the changed measure, see Proposition 3.1 below. Let

ξ i = X i B n , i = 1, ..., n.
Then (ξ i , F i ) i=0,...,n is also a sequence of martingale differences. Moreover, for simplicity of notations, set

M k = k i=1 ξ i , [M ] k = k i=1 ξ 2 i and M k = k i=1 E[ξ 2 i |F i-1 ], k = 1, ..., n. Thus W n = S n [S] n = M n [M ] n . (3.1)
For any real number λ, consider the exponential multiplicative martingale

Z(λ) = (Z k (λ), F k ) k=0,...,n , where Z 0 (λ) = 1, Z k (λ) = k i=1 e ζi(λ) E[e ζi(λ) |F i-1 ] , k = 1, ..., n with ζ i (λ) = λξ i -λ 2 ξ 2 i /2
. Thus, for each real number λ and each k = 1, ..., n, the random variable Z k (λ) is nonnegative and EZ k (λ) = 1. The last observation allows us to introduce the conjugate probability measure P λ := P λ,n on (Ω, F) defined by

dP λ = Z n (λ)dP. (3.2) Although (M k , F k ) k=0,.
..,n is a martingale under the measure P, it is no longer a martingale under the conjugate probability measure P λ . To obtain a martingale under P λ we have to center the random variables ζ i (λ). Denote by E λ the expectation with respect to P λ . Because Z(λ) is a uniformly integrable martingale under P, we have 

E λ [ζ] = E[ζZ n (λ)] (3.3) and E λ [ζ|F i-1 ] = E[ζe ζi(λ) |F i-1 ] E[e ζi(λ) |F i-1 ] (3.4) for any F i -measurable random variable ζ that is integrable with respect to F i . Set b i (λ) = E λ [ζ i (λ)|F i-1 ], i = 1, . . . ,
η i (λ) = ζ i (λ) -b i (λ), i = 1, . . . , n,
and

Y k (λ) = k i=1 η i (λ), k = 1, ..., n. (3.5) Then Y (λ) = (Y k (λ), F k ) k=0,.
..,n is the conjugate martingale. The following semimartingale decomposition is well-known:

k i=1 ζ i (λ) = B k (λ) + Y k (λ), k = 1, ..., n, (3.6) 
where

B(λ) = (B k (λ), F k ) k=0,.
..,n is the drift process defined as

B k (λ) = k i=1 b i (λ), k = 1, ..., n.
By the relation between E and E λ on F i , we have

b i (λ) = E[ζ i (λ)e ζi(λ) |F i-1 ] E[e ζi(λ) |F i-1 ] , i = 1, ..., n. (3.7)
It is easy to compute the conditional variance of the conjugate martingale Y (λ) under the measure P λ , for k = 0, ..., n,

Y (λ) k = k i=1 E λ [η i (λ) 2 |F i-1 ] = k i=1 E λ [(ζ i (λ) -b i (λ)) 2 |F i-1 ] = k i=1 E[ζ 2 i (λ)e ζi(λ) |F i-1 ] E[e ζi(λ) |F i-1 ] - E[ζ i (λ)e ζi(λ) |F i-1 ] 2 E[e ζi(λ) |F i-1 ] 2 . (3.8)
In the sequel, we give the upper and lower bounds for B n (λ). To this end, we need the following three useful lemmas. Their proofs are not given here but they are similar to those of the corresponding assertions in [START_REF] Shao | A Cramér type large deviation result for Student's t-statistic[END_REF] and [START_REF] Jing | Self-normalized Cramér-type large deviations for independent random variables[END_REF] established for independent random variables. Set

ε i,λ = λ 2 E[ξ 2 i 1 {|λξi|>1} |F i-1 ] + λ 3 E[|ξ i | 3 1 {|λξi|≤1} |F i-1 ], λ ≥ 0. If E[|ξ i | 2+ρ ] < ∞ for ρ ∈ [0, 1], then it is obvious that ε i,λ ≤ λ 2+ρ E[|ξ i | 2+ρ |F i-1 ], λ ≥ 0.
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Lemma 3.1. For all λ > 0 and τ ∈ [ 1 8 , 2], we have

E[e λξi-τ λ 2 ξ 2 i |F i-1 ] -1 -( 1 2 -τ )λ 2 E[ξ 2 i |F i-1 ] ≤ c ε i,λ .
Lemma 3.2. For all λ > 0, we have

E[e ζi(λ) |F i-1 ] -1 ≤ c ε i,λ , E[ζ i (λ)e ζi(λ) |F i-1 ] - 1 2 λ 2 E[ξ 2 i |F i-1 ] ≤ c ε i,λ , E[ζ 2 i (λ)e ζi(λ) |F i-1 ] -λ 2 E[ξ 2 i |F i-1 ] ≤ c ε i,λ , E[|ζ i (λ)| 3 e ζi(λ) |F i-1 ] ≤ c ε i,λ , E[ζ i (λ)e ζi(λ) |F i-1 ] 2 ≤ c ε i,λ . Lemma 3.3. Let H i = ξ 2 i -E[ξ 2 i |F i-1 ]. Then for all λ > 0, E[H i e ζi(λ) |F i-1 ] ≤ c 1 λ 2 ε i,λ .
Using Lemma 3.2, we obtain the following upper and lower bounds for B n (λ).

Lemma 3.4. Assume conditions (A2) and (A3) with ρ ∈ (0, 1]. Then for

0 ≤ λ = o(max{ε -1 n , κ -1 n }), B n (λ) - 1 2 λ 2 M n ≤ c λ 2+ρ ε ρ n .
(3.9)

Proof. According to the definition of b i (λ), we have

b i (λ) = E[ζ i (λ)e ζi(λ) |F i-1 ] E[e ζi(λ) |F i-1 ] .
By Lemma 3.2, it follows that

E[ζ i (λ)e ζi(λ) |F i-1 ] - 1 2 λ 2 E[ξ 2 i |F i-1 ] ≤ c ε i,λ
and

E[e ζi(λ) |F i-1 ] -1 ≤ c ε i,λ . (3.10)
Therefore, conditions (A2) and (A3) imply that for 0

≤ λ = o(max{ε -1 n , κ -1 n }), b i (λ) - 1 2 λ 2 E[ξ 2 i |F i-1 ] ≤ c ε i,λ and B n (λ) - 1 2 λ 2 M n ≤ c λ 2+ρ ε ρ n as desired.
imsart-bj ver. 2014/10/16 file: Cramer_type_large_deviations_for_martingales-180621.tex date: July 26, 2019

X. Fan et al.

The following lemma shows that condition (A4) implies condition (A3) with κ n = γ n .

Lemma 3.5. Assume condition (A4). Then

E[ξ 2 i |F i-1 ] ≤ γ 2 n .
Proof. By Jensen's inequality and condition (A4), it holds that

E[ξ 2 i |F i-1 ] (2+ρ)/2 ≤ E[|ξ i | 2+ρ |F i-1 ] ≤ γ ρ n E[ξ 2 i |F i-1 ], from which we get E[ξ 2 i |F i-1 ] ≤ γ 2 n .
Lemma 3.6. Assume condition (A4). Then for any t ∈ [0, ρ),

E[|ξ i | 2+t |F i-1 ] ≤ γ t n E[ξ 2 i |F i-1 ]. (3.11)
Proof. Let l, p, q be defined by the following equations lp = 2, (2 + t -l)q = 2 + ρ, p -1 + q -1 = 1, l > 0, and p, q ≥ 1.

Solving the last equations, we get

l = 2(ρ -t) ρ , p = ρ ρ -t , q = ρ t .
By Hölder's inequality and condition (A4), it is easy to see that

E[|ξ i | 2+t |F i-1 ] = E[|ξ i | l |ξ i | 2+t-l |F i-1 ] ≤ (E[|ξ i | lp |F i-1 ]) 1/p (E[|ξ i | (2+t-l)q |F i-1 ]) 1/q ≤ (E[ξ 2 i |F i-1 ]) 1/p (E[|ξ i | 2+ρ |F i-1 ]) 1/q ≤ (E[ξ 2 i |F i-1 ]) 1/p (γ ρ n E[ξ 2 i |F i-1 ]) 1/q ≤ γ ρ/q n E[ξ 2 i |F i-1 ] = γ t n E[ξ 2 i |F i-1 ].
This completes the proof of the lemma.

Lemma 3.7. Assume conditions (A1) and (A2). Then for any t ∈ [0, ρ),

n i=1 E[|ξ i | 2+t |F i-1 ] ≤ 2 ε t n .
(3.12)

Proof. Recall the notations in the proof of Lemma 3.6. It is easy to see that

n i=1 E[|ξ i | 2+t |F i-1 ] ≤ n i=1 (E[ξ 2 i |F i-1 ]) 1/p (E[|ξ i | 2+ρ |F i-1 ]) 1/q .
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Using Hölder's inequality and conditions (A1) and (A2), we have

n i=1 E[|ξ i | 2+t |F i-1 ] ≤ n i=1 E[ξ 2 i |F i-1 ] 1/p n i=1 E[|ξ i | 2+ρ |F i-1 ] 1/q ≤ 2 ε t n ,
which gives the desired inequality.

We will also need the following two lemmas.

Lemma 3.8. Assume condition (A1). Then for all x > 0,

P M n ≥ x [M ] n , [M ] n ≥ 16 ≤ 2 3 x -2/3 exp - 3 4 x 2 .
Proof. By inequality (11) of [START_REF] Delyon | Exponential inequalities for sums of weakly dependent variables[END_REF], we have for all λ ∈ R,

E exp λM n - λ 2 2 ( 1 3 [M ] n + 2 3 M n ) ≤ 1.
Applying the last inequality to the exponential inequality of [de la Peña and Pang, 2009] with p = q = 2, we deduce that for all x > 0,

P |M n | 3 2 ( 1 3 [M ] n + 2 3 M n + EM 2 n ) ≥ x ≤ 2 3 2/3 x -2/3 exp - 1 2 x 2 . (3.13)
By condition (A1) and the fact that

E M n = EM 2 n = 1, it is easy to see that 3 2 M n + 9 4 EM 2 n ≤ 3 2 (1 + δ 2 n ) + 9 4 ≤ 3 2 1 + 1 16 + 9 4 < 4.
Therefore, for all x > 0,

P M n ≥ x [M ] n , [M ] n ≥ 16 ≤ P M n ≥ x 3 4 [M ] n + 4, [M ] n ≥ 16 ≤ P M n ≥ x 3 4 [M ] n + 3 2 M n + 9 4 EM 2 n , [M ] n ≥ 16 ≤ P M n ≥ x 3 4 [M ] n + 3 2 M n + 9 4 EM 2 n = P M n ≥ 3 2 x 1 2 [M ] n + M n + 3 2 EM 2 n ≤ 2 3 x -2/3 exp - 3 4 x 2
as desired.
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Lemma 3.9. Assume conditions (A1) and (A2). Then for all ρ > 0,

P |[M ] n -M n | ≥ 1 ≤ c ρ ε (2+ρ)/2 n + ε ρ n . Proof. Notice that [M ] n -M n = n i=1 (ξ 2 i -E[ξ 2 i |F i-1 ]
) is a martingale. For ρ, we distinguish two cases as follows.

When ρ ∈ (0, 2], by the inequality of [START_REF] Von Bahr | Inequalities for the rth absolute moment of a sum of random variables, 1 ≤ r ≤ 2[END_REF], it follows that

E[|[M ] n -M n | (2+ρ)/2 ] ≤ n i=1 E[|ξ 2 i -E[ξ 2 i |F i-1 ]| (2+ρ)/2 ] ≤ c 1 n i=1 E[|ξ i | 2+ρ ] ≤ c 2 ε ρ n ,
where the last line follows by conditions (A1) and (A2). Hence, by Markov's inequality,

P |[M ] n -M n | ≥ 1 ≤ E[|[M ] n -M n | (2+ρ)/2 ] ≤ c 2 ε ρ n ,
When ρ > 2, by Rosenthal's inequality (cf., Theorem 2.12 of [START_REF] Hall | Martingale Limit Theory and its Applications[END_REF]), Lemma and condition (A2), it follows that

E[|[M ] n -M n | (2+ρ)/2 ] ≤ c ρ,1 E n i=1 E[(ξ 2 i -E[ξ 2 i |F i-1 ]) 2 |F i-1 ] (2+ρ)/4 + n i=1 E|ξ 2 i -E[ξ 2 i |F i-1 ]| (2+ρ)/2 ≤ c ρ,2 E n i=1 E[ξ 4 i |F i-1 ] (2+ρ)/4 + n i=1 E|ξ i | 2+ρ ≤ c ρ,3 ε (2+ρ)/2 n + ε ρ n . (3.14)
This completes the proof of the lemma.

Consider the predictable process Ψ(λ) = (Ψ k (λ), F k ) k=0,...,n , which is related to the martingale M as follows:

Ψ k (λ) = k i=1 ln E[e ζi(λ) |F i-1 ].
(3.15)

By equality (3.10), we easily obtain the following elementary bound for the process Ψ(λ).

Lemma 3.10. Assume conditions (A2) and (A3) with ρ ∈ (0, 1]. Then for 0

≤ λ = o(min{ε -1 n , κ -1 n }), Ψ n (λ) ≤ c λ 2+ρ ε ρ n .
In the proofs of Theorems 2.2 and 2.3, we make use of the following assertion, which gives us a rate of convergence in the CLT for the conjugate martingale Y (λ) under the probability measure P λ .

Proposition 3.1. Assume conditions (A1) and (A4). With the convention that Y n (0)/0 = M n , we have:

[i] If ρ ∈ (0, 1), then for 0 ≤ λ = o(γ -1 n ), sup x P λ (Y n (λ)/λ ≤ x) -Φ(x) ≤ c ρ λ ρ γ ρ n + γ ρ n + δ n . [ii] If ρ = 1, then for 0 ≤ λ = o(γ -1 n ), sup x P λ (Y n (λ)/λ ≤ x) -Φ(x) ≤ c λγ n + γ n | ln γ n | + δ n .
Similarly, we have the following Berry-Esseen bound.

Proposition 3.2. Assume conditions (A1), (A2) and (A3). Then for

0 ≤ λ = o(max{ε -1 n , κ -1 n }), sup x P λ (Y n (λ)/λ ≤ x) -Φ(x) ≤ c ρ λ ρ/2 γ ρ/2 n + ε ρ/(3+ρ) n + δ n ,
with the convention that Y n (0)/0 = M n .

The proofs of Propositions 3.1 and 3.2 are much more complicated and we give details in the supplemental article [START_REF] Fan | Supplement to "Self-normalized Cramér type moderate deviations for martingales[END_REF].

Proof of the main results

We start with the proofs of Theorems 2.2 and 2.3, and conclude with the proof of Theorem 2.1. Theorem 2.4 is an easy consequence of Theorems 2.2 and 2.3

4.1. Proof of Theorem 2.2 Recall that ζ i (λ) = λξ i - 1 2 λ 2 ξ 2 i .
By (3.1), it is easy to see that

S n ≥ x [S] n = M n ≥ x [M ] n ⊇ M n ≥ x 2 + λ 2 [M ] n 2λ = n i=1 ζ i (λ) ≥ x 2 2 .
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For 0 ≤ λ = o(γ -1 n ), according to (3.2), (3.6) and (3.15), we have the following representation:

P W n ≥ x = E λ Z n (λ) -1 1 {Sn≥x √ [S]n} = E λ exp - n i=1 ζ i (λ) + Ψ n (λ) 1 {Mn≥x √ [M ]n} ≥ E λ exp -Y n (λ) -B n (λ) + Ψ n (λ) 1 { n i=1 ζi(λ)≥ x 2 2 } = E λ exp -Y n (λ) -B n (λ) + Ψ n (λ) 1 {Yn(λ)≥ x 2
2 -Bn(λ)} . Using Lemmas 3.5, 3.4 and 3.10, we get

P W n ≥ x ≥ E λ exp -Y n (λ) - 1 2 λ 2 M n + c 1 λ 2+ρ ε ρ n ×1 {Yn(λ)≥ x 2 2 -( 1 2 λ 2 M n -c1λ 2+ρ ε ρ n )} . Condition (A1) implies that | M n -1| ≤ δ 2
n , and thus

P W n ≥ x ≥ E λ exp -Y n (λ) - 1 2 λ 2 + c 1 λ 2+ρ ε ρ n (1 + δ 2 n ) ×1 {Yn(λ)≥ x 2 2 -( 1 2 λ 2 (1-δ 2 n )-c1λ 2+ρ ε ρ n )} . (4.1)
Let λ = λ(x) be the largest solution of the following equation

1 2 λ 2 (1 -δ 2 n ) -c 1 λ 2+ρ ε ρ n = x 2 2 .
The definition of λ implies that for 0

≤ x = o(γ -1 n ), x ≤ λ ≤ c 2 x 1 -δ 2 n (4.2) and λ = x + c 3 θ 0 (x 1+ρ ε ρ n + xδ 2 n ), (4.3)
where 0 ≤ θ 0 ≤ 1. From (4.1), we obtain By integration by parts, we have the following bound:

P W n ≥ x ≥ exp - 1 2 λ 2 + c 1 λ 2+ρ ε ρ n (1 + δ 2 n ) E λ e -Yn(λ) 1 {Yn(λ)≥0} . (4.4) Setting F n (y) = P λ (Y n (λ) ≤ y), we get P W n ≥ x ≥ exp -c 4 λ 2 δ 2 n + λ 2+ρ ε ρ n - λ 2 2 ∞ 0 e -
∞ 0 e -y dF n (y) ≥ ∞ 0 e -y dΦ(y/λ) -2 sup y F n (y) -Φ(y/λ) . (4.6)
We distinguish two cases according to the values of ρ.

Case 1 : ρ ∈ (0, 1). Combining (4.5) and (4.6), by Proposition 3.1, we have for 0

≤ x = o(γ -1 n ), P W n ≥ x ≥ exp -c 4 λ 2 δ 2 n + λ 2+ρ ε ρ n - λ 2 2 × ∞ 0 e -λy dΦ(y) -c 1,ρ λ ρ γ ρ n + γ ρ n + δ n . (4.7) Because e -λ 2 /2 ∞ 0 e -λy dΦ(y) = 1 -Φ (λ) (4.8) and 1 1 + λ e -λ 2 /2 ≤ √ 2π 1 -Φ (λ) , λ ≥ 0, (4.9)
we obtain the following lower bound

P W n ≥ x 1 -Φ λ ≥ exp -c 4 (λ 2 δ 2 n + λ 2+ρ ε ρ n ) 1 -c 2,ρ (1 + λ)(λ ρ γ ρ n + γ ρ n + δ n ) ≥ exp -c 3,ρ λ 2 δ 2 n + λ 2+ρ ε ρ n + (1 + λ)(λ ρ γ ρ n + γ ρ n + δ n ) , (4.10) for 0 ≤ λ ≤ 1 2c2,ρ min{γ -ρ/(1+ρ) n , δ -1 n }. Next, we consider the case of 1 2c2,ρ min{γ -ρ/(1+ρ) n , δ -1 n } ≤ λ = o(γ -1 n ).
Let K ≥ 1 be an absolute constant, whose exact value is chosen later. It is easy to see that (4.11) where τ = λ ρ γ ρ n + δ n . By Proposition 3.1, we have

E λ e -Yn(λ) 1 {Yn(λ)≥0} ≥ E λ e -Yn(λ) 1 {0≤Yn(λ)≤λKτ } ≥ e -λKτ P λ 0 ≤ Y n (λ) ≤ λKτ ,
P λ 0 ≤ Y n (λ) ≤ λKτ ≥ P 0 ≤ N (0, 1) ≤ Kτ -c 4,ρ τ ≥ 1 √ 2π Kτ e -K 2 τ 2 /2 -c 4,ρ τ ≥ 1 3 K -c 4,ρ τ.
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Letting K ≥ 12c 4,ρ , it follows that

P λ 0 ≤ Y n (λ) ≤ λKτ ≥ 1 4 Kτ = 1 4 K λ 1+ρ γ ρ n + λδ n λ . Choosing K = max 12c 4,ρ , 4 √ π (2c 2,ρ ) 1+ρ
and taking into account that 1 2c2,ρ min{γ

-ρ/(1+ρ) n , δ -1 } ≤ λ = o(γ -1 n ), we conclude that P λ 0 ≤ Y n (λ) ≤ λKτ ≥ 1 √ πλ .
Because the inequality 1

√ πλ e -λ 2 /2 ≥ 1 -Φ (λ) is valid for all λ ≥ 1, it follows that for 1 2c2,ρ min{γ -ρ/(1+ρ) n , δ -1 } ≤ λ = o(γ -1 n ), P λ 0 ≤ Y n (λ) ≤ Kτ ≥ 1 -Φ λ e λ 2 /2 . (4.12)
Combining (4.4), (4.11), and (4.12), we obtain

P W n ≥ x 1 -Φ λ ≥ exp -c 5,ρ λ 2 δ 2 n + λ 2+ρ ε ρ n + (1 + λ)(λ ρ γ ρ n + γ ρ n + δ n ) , (4.13) which is valid for 1 2c2,ρ min{γ -ρ/(1+ρ) n , δ -1 } ≤ λ = o(γ -1 n ).
From (4.10) and (4.13), we get for 0 ≤ λ = o(γ -1 n ),

P W n ≥ x 1 -Φ λ ≥ exp -c 6,ρ λ 2 δ 2 n + λ 2+ρ ε ρ n + (1 + λ)(λ ρ γ ρ n + γ ρ n + δ n ) . (4.14)
Next, we substitute x for λ in the tail of the normal law 1 -Φ(λ). By (4.2), (4.3), and (4.9), we get

1 ≤ ∞ λ exp{-t 2 /2}dt ∞ x exp{-t 2 /2}dt ≤ 1 + x λ exp{-t 2 /2}dt ∞ x exp{-t 2 /2}dt ≤ 1 + c 1 x(x -λ) exp (x 2 -λ 2 )/2 ≤ exp c 2 (x 2 δ 2 n + x 2+ρ ε ρ n ) (4.15)
and hence

1 -Φ λ = (1 -Φ(x)) exp θ 1 c (x 2+ρ ε ρ n + x 2 δ 2 n ) . (4.16)
Implementing (4.16) in (4.14) and using (4.2), we obtain for 0

≤ x = o(γ -1 n ), P W n ≥ x 1 -Φ (x) ≥ exp -c 7,ρ x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x)(x ρ γ ρ n + γ ρ n + δ n ) ,
which gives the desired lower bound (2.7).

Case 2 : ρ = 1. Using Proposition 3.1 with ρ = 1, we have for 0

≤ x = o(γ -1 n ), P W n ≥ x ≥ exp -c 1 λ 2 δ 2 n + λ 3 ε n - λ 2 2 × ∞ 0 e -λy dΦ(y) -c 2 λγ n + γ n | ln γ n | + δ n ,
that is, the term γ ρ n in inequality (4.7) has been replaced by γ n | ln γ n |. By an argument similar to that of Case 1, we obtain the desired lower bound (2.8).

Proof of Theorem 2.3

We first prove Theorem 2.3 for 1 ≤ x = o(γ -1 n ). Observe that

P W n ≥ x = P W n ≥ x, |[M ] n -M n | ≤ δ n + 1/(2x) + P W n ≥ x, |[M ] n -M n | > δ n + 1/(2x) . (4.17) 
For the the first term on the right hand side of (4.17), by (3.2) and (3.5) with λ = x, we have the following representation:

P W n ≥ x, |[M ] n -M n | ≤ δ n + 1/(2x) = E x Z n (x) -1 1 {Mn≥x √ [M ]n, |[M ]n-M n |≤δn+1/(2x)} = E x e -Yn(x)-Bn(x)+Ψn(x) 1 xMn≥x 2 √ 1+[M ]n-1, |[M ]n-M n|≤δn +1/(2x)
.

By the inequality 1 + y ≥ 1 + y/2 -y 2 /2, y ≥ -1, condition (A1) and Lemma 3.4, we have for 1

≤ x = o(γ -1 n ), P W n ≥ x , |[M ] n -M n | ≤ δ n + 1/(2x) ≤ E x exp -Y n (x) -B n (x) + Ψ n (x) ×1 xMn-1 2 x 2 [M ]n+ 1 2 x 2 ([M ]n-1) 2 ≥ 1 2 x 2 , |[M ]n-M n |≤δn+1/(2x) ≤ E x exp -Y n (x) -B n (x) + Ψ n (x) ×1 xMn-1 2 x 2 [M ]n+x 2 ([M ]n-M n ) 2 +x 2 (1-M n) 2 ≥ 1 2 x 2 , |[M ]n-M n |≤δn+1/(2x) ≤ E x exp -Y n (x) -B n (x) + Ψ n (x) ×1 Yn(x)≥-x 2 ([M ]n-M n ) 2 -x 2 δ 4 n + 1 2 x 2 -Bn(x), |[M ]n-M n |≤δn+1/(2x)
.
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Thus, for 1 ≤ x = o(γ -1 n ), P W n ≥ x , |[M ] n -M n | ≤ δ n + 1/(2x) ≤ E x exp -Y n (x) -B n (x) + Ψ n (x) ×1 Yn(x)≥-x 2+ρ ε ρ n -x 2 δ 4 n + 1 2 x 2 -Bn(x), |[M ]n-M n|≤(xεn ) ρ/2 + E x exp -Y n (x) -B n (x) + Ψ n (x) ×1 0>Yn(x)≥-x 2 ([M ]n-M n ) 2 -x 2 δ 4 n + 1 2 x 2 -Bn(x), (xεn) ρ/2 <|[M ]n-M n|≤δn +1/(2x)
.

≤ I 1 (x) + I 2 (x), (4.18) 
where

I 1 (x) = E x exp -Y n (x) -B n (x) + Ψ n (x) 1 Yn(x)≥-c1(x 2+ρ ε ρ n +x 2 δ 2 n )
and

I 2 (x) = E x exp -Y n (x) -B n (x) + Ψ n (x) ×1 0>Yn(x)≥-1-c2(x 2+ρ ε ρ n +x 2 δ 2 n ), (xεn) ρ/2 <|[M ]n-M n |≤δn+1/(2x)
.

For I 1 (x), by an argument similar to the proof of Theorem 2.2, we get for 1 ≤ x = o(γ -1 n ),

I 1 (x) 1 -Φ (x) ≤            exp c ρ x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) (x ρ γ ρ n + γ ρ n + δ n ) if ρ ∈ (0, 1), exp c x 3 ε n + x 2 δ 2 n + (1 + x) (xγ n + γ n | ln γ n | + δ n ) if ρ = 1. (4.19)
Next, consider the item I 2 (x). By condition (A1), Lemmas 3.4 and 3.10, it is obvious that for 1 Denote by

≤ x = o(γ -1 n ), I 2 (x) ≤ exp - 1 2 x 2 + c 1 x 2+ρ ε ρ n + x 2 δ 2 n ×E x e -Yn(x) 1 0>Yn(x)≥-1-c2(x 2+ρ ε ρ n +x 2 δ 2 n ), (xεn) ρ/2 <|[M ]n-M n | ≤ exp - 1 2 x 2 + c 1 x 2+ρ ε ρ n + x 2 δ 2 n ×E x e 1+c2(x 2+ρ ε ρ n +x 2 δ 2 n ) 1 (xεn) ρ/2 <|[M ]n-M n | ≤ exp 1 - 1 2 x 2 + c 3 x 2+ρ ε ρ n + x 2 δ 2 n E x 1 (xεn) ρ/2 <|[M ]n-M n | . (4.
M (x) n = n i=1 E x [ξ 2 i |F i-1 ]. Notice that ε n = O(γ n ).
From (3.4), using (3.10), Lemmas 3.3, 3.5 and condition (A2), we obtain for 1

≤ x = o(γ -1 n ), M (x) n -M n ≤ n i=1 E[ξ 2 i e xξi-x 2 ξ 2 i /2 |F i-1 ] E[e xξi-x 2 ξ 2 i /2 |F i-1 ] -E[ξ 2 i |F i-1 ] + n i=1 E[ξ i e xξi-x 2 ξ 2 i /2 |F i-1 ] 2 E[e xξi-x 2 ξ 2 i /2 |F i-1 ] 2 ≤ c 4 n i=1 E[x ρ |ξ i | 2+ρ |F i-1 ] + (E[xξ 2 i |F i-1 ]) 2 ≤ c 4 n i=1 E[x ρ |ξ i | 2+ρ |F i-1 ] + x 2 E[|ξ i | 2+ρ |F i-1 ](E[ξ 2 i |F i-1 ]) (2-ρ)/2 ≤ c 5 x ρ ε ρ n . (4.21) Thus, for 1 ≤ x = o(γ -1 n ), I 2 (x) ≤ exp 1 - 1 2 x 2 + c 3 x 2+ρ ε ρ n + x 2 δ 2 n E x 1 1 2 (xεn) ρ/2 <|[M ]n-M (x) n| ≤ 4e (xε n ) ρ(2+ρ)/4 exp - 1 2 x 2 + c 3 x 2+ρ ε ρ n + x 2 δ 2 n E x |[M ] n -M (x) n | (2+ρ)/2 .
It is obvious that

[M ] n -M (x) n = n i=1 (ξ 2 i -E x [ξ 2 i |F i-1 ]). Thus, ([M ] i -M (x) i , F i ) i=0,.
..,n is a martingale with respect to the probability measure P x . By the inequality of [START_REF] Von Bahr | Inequalities for the rth absolute moment of a sum of random variables, 1 ≤ r ≤ 2[END_REF], it follows that for 1 

≤ x = o(γ -1 n ), E x [|[M ] n -M (x) n | (2+ρ)/2 ] ≤ c 6 n i=1 E x [|ξ 2 i -E x [ξ 2 i |F i-1 ]| (2+ρ)/2 ] ≤ c 7 n i=1 E x [|ξ i | 2+ρ ] = c 7 n i=1 E[|ξ i | 2+ρ e ζi(x) |F i-1 ] E[e ζi(x) |F i-1 ] ≤ c 8 ε ρ n . (4.22) Hence, for 1 ≤ x = o(γ -1 n ), I 2 (x) ≤ c ε ρ(2-ρ)/4 n x ρ(2+ρ)/4 exp - 1 2 x 2 + c 3 x 2+ρ ε ρ n + x 2 δ 2 n . ( 4 
W n ≥ x, |[M ] n -M n | > δ n + 1/(2x) . Since |1 -M n | ≤ δ 2 n ≤ δ n /2, it is obvious that P W n ≥ x, |[M ] n -M n | > δ n + 1/(2x) ≤ P W n ≥ x, |[M ] n -1| + |1 -M n | > δ n + 1/(2x) ≤ P W n ≥ x, |[M ] n -1| > δ n /2 + 1/(2x) .
To estimate the tail probability in the last line, we follow the argument of [START_REF] Shao | Cramér type moderate deviation theorems for selfnormalized processes[END_REF]. We have the following decomposition:

P W n ≥ x, |[M ] n -1| > δ n /2 + 1/(2x) ≤ P M n / [M ] n ≥ x, 1 + δ n /2 + 1/(2x) < [M ] n ≤ 16 + P M n / [M ] n ≥ x, [M ] n < 1 -δ n /2 -1/(2x) + P M n / [M ] n ≥ x, [M ] n > 16 := 3 v=1 P (M n , [M ] n ) ∈ E v , (4.24) 
where E v ⊂ R × R + , 1 ≤ v ≤ 3, are given by

E 1 = (u, v) ∈ R × R + : u/v ≥ x, 1 + δ n /2 + 1/(2x) < v ≤ 4 , E 2 = (u, v) ∈ R × R + : u/v ≥ x, v < 1 -δ n /2 -1/(2x) , E 3 = (u, v) ∈ R × R + : u/v ≥ x, v > 4 .
To estimate the probability P((M n , [M ] n ) ∈ E 1 ), we introduce the following new conjugate probability measure P x defined by

d P x = Z n (x)dP,
where

Z n (x) = k i=1 e ζi(x) E[e ζi(x) |F i-1 ] and ζ i (x) = xξ i -x 2 ξ 2 i /8.
Denote by E x the expectation with respect to P x and M (x

) n = n i=1 E x [ξ 2 i |F i-1 ]
. By an argument similar to (4.21), it follows that for 1

≤ x = o(γ -1 n ), M (x) n -M n ≤ c x ρ ε ρ n .
By Markov's inequality, we deduce that

P (M n , [M ] n ) ∈ E 1 ≤ (δ n /2 + 1/(2x)) -2 e -inf (u,v)∈E 1 (xu-(vx) 2 /8) E[([M ] n -1) 2 e xMn-[M ]nx 2 /8 ] ≤ 16x 2 e -inf (u,v)∈E 1 (xu-(vx) 2 /8) E[([M ] n -M (x) n ) 2 e xMn-[M ]nx 2 /8 ] + 16x 2 e -inf (u,v)∈E 1 (xu-(vx) 2 /8) E[( M (x) n -M n ) 2 e xMn-[M ]nx 2 /8 ] + 16δ -2 n e -inf (u,v)∈E 1 (xu-(vx) 2 /8) E[( M n -1) 2 e xMn-[M ]nx 2 /8 ] ≤ 16x 2 e -inf (u,v)∈E 1 (xu-(vx) 2 /8) E[([M ] n -M (x) n ) 2 e xMn-[M ]nx 2 /8 ] + c x 2+2ρ ε 2ρ n e -inf (u,v)∈E 1 (xu-(vx) 2 /8) E[e xMn-[M ]nx 2 /8 ] + 16δ 2 n e -inf (u,v)∈E 1 (xu-(vx) 2 /8) E[e xMn-[M ]nx 2 /8 ], (4.25)
where it is easy to verify that inf

(u,v)∈E1 xu - 1 8 (vx) 2 ≥ 7 8 x 2 + 1 4 x -c x 2 δ 2 n . (4.26)
By Lemma 3.1, conditions (A1) and (A2), it follows that where the last line follows because ([M ] i -M (x) i , F i ) i=0,...,n is a martingale with respect to the probability measure P x . Therefore, by Lemma 3.1, conditions (A1) and (A2) again, we have for 1

n i=1 E[e ζi(x) |F i-1 ] ≤ n i=1 1 + 3 8 x 2 E[ξ 2 i |F i-1 ] + c x 2+ρ E[|ξ i | 2+ρ |F i-1 ] ≤ n i=1 exp 3 8 x 2 E[ξ 2 i |F i-1 ] + c x 2+ρ E[|ξ i | 2+ρ |F i-1 ] = exp 3 8 x 2 M n + c x 2+ρ n i=1 E[|ξ i | 2+ρ |F i-1 ] ≤ exp 3 8 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) . Therefore, for 1 ≤ x = o(γ -1 n ), E ([M ] n -M (x) n ) 2 e xMn-[M ]nx 2 /8 = E Π n i=1 E[e ζi(x) |F i-1 ] [M ] n -M (x) n 2 Z n (x) ≤ E [M ] n -M (x) n 2 Z n (x) exp 3 8 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) = E x [M ] n -M (x) n 2 exp 3 8 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) = n i=1 E x (ξ 2 i -E x [ξ 2 i |F i-1 ]) 2 exp 3 8 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) , imsart-
≤ x = o(γ -1 n ), E ([M ] n -M (x) n ) 2 e xMn-[M ]nx 2 /8 ≤ n i=1 E x E x ξ 4 i |F i-1 ] exp 3 8 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) = n i=1 E x E[ξ 4 i e ζi(x) |F i-1 ] E[e ζi(x) |F i-1 ] exp 3 8 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) ≤ c 0 n i=1 E x 1 x 2-ρ n i=1 E[|ξ i | 2+ρ |F i-1 ] exp 3 8 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) ≤ c 1 ε ρ n exp 3 8 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) . Lemma 3.1 implies that for 1 ≤ x = o(γ -1 n ), E exp xM n - 1 8 x 2 [M ] n - 3 8 x 2 M n -c x 2+ρ n i=1 E[|ξ i | 2+ρ |F i-1 ] ≤ E exp xM n-1 - 1 8 x 2 [M ] n-1 - 3 8 x 2 M n-1 -c x 2+ρ n-1 i=1 E[|ξ i | 2+ρ |F i-1 ] ≤ 1.
By conditions (A1), (A2) and the last inequality, we obtain for 1

≤ x = o(γ -1 n ), E[e xMn-[M ]nx 2 /8 ] ≤ exp 3 8 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) .
Thus, from (4.25), we deduce that for 1 ≤

x = o(γ -1 n ), P (M n , [M ] n ) ∈ E 1 ≤ c 2 (ε ρ n + x 2+2ρ ε 2ρ n + δ 2 n ) exp - 1 2 x 2 - 1 4 x + c (x 2+ρ ε ρ n + x 2 δ 2 n ) ≤ c 3 (ε ρ n + δ 2 n ) exp - 1 2 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) . (4.27)
Similarly, we have For the last term P((M n , [M ] n ) ∈ E 3 ), we obtain the following estimation

P (M n , [M ] n ) ∈ E 2 ≤ (δ n /2 + 1/(2x)) -2 e -inf (u,v)∈E 2 (xu-2(vx) 2 ) E[([M ] n -1) 2 e xMn-2[M ]nx 2 ] ≤ c 4 (ε ρ n + δ 2 n ) exp - 1 2 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) . ( 4 
P (M n , [M ] n ) ∈ E 3 = P M n ≥ x [M ] n , [M ] n > 16 ≤ 2 3 x -2/3 exp - 3 4 x 2 , (4.29)
where the last line follows by Lemma 3.8. Moreover, by Lemma 3.9, it holds that for ρ ∈ (0, 1],

P (M n , [M ] n ) ∈ E 3 ≤ P |[M ] n -M n | ≥ 1 ≤ c ε ρ n .
By the last inequality and (4.29), we get for 1 ≤

x = o(γ -1 n ), P (M n , [M ] n ) ∈ E 3 ≤ min c ε ρ n , 2 3 x -2/3 e -3x 2 /4 ≤ c ε ρ(2-ρ)/4 n x ρ(2+ρ)/4 exp - 1 2 x 2 . (4.30)
Thus, combining the inequalities (4.24), (4.27), (4.28) and (4.30) together, we deduce that for 1 

≤ x = o(γ -1 n ), P W n ≥ x, |[M ] n -M n | > δ n + 1/(2x) ≤ c ε ρ(2-ρ)/4 n x ρ(2+ρ)/4 + δ 2 n exp - 1 2 x 2 + c (x 2+ρ ε ρ n + x 2 δ 2 n ) . ( 4 
≤ x = o(γ -1 n ), P(W n ≥ x) 1 -Φ (x) ≤ 1 + c 1 (1 + x) ε ρ(2-ρ)/4 n x ρ(2+ρ)/4 + δ 2 n ×            exp c 1,ρ x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x)(x ρ γ ρ n + γ ρ n + δ n ) if ρ ∈ (0, 1) exp c 2 x 3 ε n + x 2 δ 2 n + (1 + x) (xγ n + γ n | ln γ n | + δ n ) if ρ = 1 ≤            exp c ρ x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) x ρ γ ρ n + γ ρ n + δ n + ε ρ(2-ρ)/4 n x ρ(2+ρ)/4 if ρ ∈ (0, 1) exp c x 3 ε n + x 2 δ 2 n + (1 + x) xγ n + γ n | ln γ n | + δ n + ε ρ(2-ρ)/4 n x ρ(2+ρ)/4 if ρ = 1,
which gives the desired inequalities.

For the case 0 ≤ x < 1, the assertion of Theorem 2.3 follows by a similar argument, but with 1/(2x) replaced by 1/2 in (4.17) and (xε n ) ρ/2 replaced by ε ρ/2 n in (4.18), and accordingly in the subsequent statements. This completes the proof of Theorem 2.3. 

Proof of Theorem 2.1

Using Proposition 3.2, by an argument similar to the proofs of Theorems 2.2 and 2.3, we obtain the following result. If ρ ∈ (0, 1), then for 0

≤ x = o(min{ε -1 n , κ -1 n }), P(W n ≥ x) 1 -Φ (x) = exp θc ρ x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) x ρ/2 ε ρ/2 n + ε ρ/(3+ρ) n + δ n + ε ρ(2-ρ)/4 n 1 + x ρ(2+ρ)/4 .
Notice that the following three inequalities hold:

x 1+ρ/2 ε ρ/2 n ≤ x 2+ρ ε ρ n , x ≥ ε -ρ/(2+ρ) n , x ρ/2 ε ρ/2 n ≤ ε ρ/(3+ρ) n , 0 ≤ x ≤ ε -ρ/(2+ρ) n , ε ρ(2-ρ)/4 n ≤ ε ρ/(3+ρ) n , ρ ∈ (0, 1].
Therefore, for ρ ∈ (0, 1) and 0 ≤ x = o(min{ε -1 n , κ -1 n }),

P(W n ≥ x) 1 -Φ (x) = exp θc ρ x 2+ρ ε ρ n + x 2 δ 2 n + (1 + x) ε ρ/(3+ρ) n + δ n ,
which gives the desired equality for ρ ∈ (0, 1). Assume that condition (A2) holds for ρ ≥ 1. When ρ ∈ [1, 2], by Markov's inequality and (4.22), we have for x ≥ 1,

E x 1 (xεn) 1/2 <|[M ]n-M n| ≤ 1 (xε n ) (2+ρ)/4 E x |[M ] n -M (x) n | (2+ρ)/2
≤ 1 x (2+ρ)/4 ε (3ρ-2)/4 n ≤ ε (3ρ-2)/4 n .

(4.32)

When ρ > 2, Lemma 3.7 implies that condition (A2) also holds for ρ = 2, with the term ε n in condition (A2) replaced by 2ε n . Then (4.32) with ρ = 2 shows that

E x 1 (xεn) 1/2 <|[M ]n-M n | ≤ 2ε n .
Thus, for ρ ≥ 1, it holds that

E x 1 (xεn) 1/2 <|[M ]n-M n | ≤ max ε (3ρ-2)/4 n , 2ε n ≤ 2ε ρ/(3+ρ) n .
Notice that Lemma 3.7 also implies that condition (A2) holds for ρ = 1. Therefore, by (4.20), (4.23) can be improved to

I 2 (x) ≤ exp 1 - 1 2 x 2 + c 3 x 2+ρ ε ρ n + x 2 δ 2 n E x 1 (xεn) 1/2 <|[M ]n-M n | ≤ c ε ρ/(3+ρ) n exp - 1 2 x 2 + c 3 x 3 ε n + x 2 δ 2 n .
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Notice also that for ρ ≥ 1,

P (M n , [M ] n ) ∈ E 3 ≤ min c 1 ε ρ n , 2 3 x -2/3 e -3x 2 /4 ≤ c 2 ε ρ/(3+ρ) n exp - 1 2 x 2 .
By an argument similar to the proof for case ρ ∈ (0, 1) but with the term (xε n ) ρ/2 in (4.18) replaced by (xε n ) 1/2 , we have for 0 ≤ x = o(min{ε -1 n , κ -1 n }),

P(W n ≥ x) 1 -Φ (x) = exp θc 3 x 3 ε n + x 2 δ 2 n + (1 + x) x ρ/2 ε ρ/2 n + ε ρ/(3+ρ) n + δ n = exp θc 4 x 3 ε n + x 2 δ 2 n + (1 + x) ε ρ/(3+ρ) n + δ n ,
which gives the desired equality for ρ ≥ 1.

Proof of Corollary 2.2

To prove Corollary 2.2, we need the following two sides bound on the tail probabilities of the standard normal random variable:

1 √ 2π(1 + x) e -x 2 /2 ≤ 1 -Φ(x) ≤ 1 √ π(1 + x)
e -x 2 /2 , x ≥ 0. (4.1) See p. 17 in [START_REF] Itô | Difussion Processes and Their Sample Paths[END_REF] or [START_REF] Talagrand | The missing factor in Hoeffding's inequalities[END_REF] x 2 2 -ε 1 .

Because ε 1 can be arbitrarily small, we obtain (4.3). This completes the proof of Corollary 2.2.
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  For any given Borel set B ⊂ R, let x 0 = inf x∈B |x|. Then, it is obvious that x 0 ≥ inf x∈B |x|. Therefore, by Theorem 2.1 and Remark 2.1,W n ≥ a n x 0 ≤ 2 1 -Φ (a n x 0 ) × exp c ρ (a n x 0 ) 2+ρ ε ρ n + (a n x 0 ) 2 δ 2 n + (a n x 0 ) (ε ρ/(3+ρ)We may assume that B o = ∅. For any ε 1 > 0, there exists anx 0 ∈ B o , such that For x 0 ∈ B o , there exists small ε 2 ∈ (0, x 0 ), such that (x 0 -ε 2 , x 0 + ε 2 ] ⊂ B.Then it is obvious that x 0 ≥ inf x∈B x. Without loss of generality, we may assume that x 0 > 0. By Theorem 2.1, we deduce thatW n ∈ (a n (x 0 -ε 2 ), a n (x 0 + ε 2 )] ≥ P W n > a n (x 0 -ε 2 ) -P W n > a n (x 0 + ε 2 ) . -ε 2 ) 2 .

	Next, we prove that							
		lim inf n→∞	1 a 2 n	ln P	W n a n	∈ B ≥ -inf x∈B o	x 2 2	.	(4.3)
						0 <	x 2 0 2	≤ inf x∈B o	x 2 2	+ ε 1 .	(4.4)
	P ≥ P Using Theorem 2.1 and (4.1), it follows that W n a n ∈ B
	lim inf n→∞ (x 0 Letting ε 2 → 0, we get 1 a 2 n ln P W n a n ∈ B ≥ -1 2
	lim inf n→∞	1 a 2 n	ln P		W n a n	∈ B ≥ -	x 2 0 2	. First, we prove that ≥ -inf x∈B o
		lim sup n→∞	1 a 2 n	ln P	W n a n	∈ B ≤ -inf x∈B	x 2 2	.	(4.2)
	P ≤ P Using (4.1), we deduce that W n a n ∈ B					
	lim sup n→∞	1 a 2 n	ln P		W n a n	∈ B ≤ -	x 2 0 2	≤ -inf x∈B	x 2 2	,
	which gives (4.2).								

n + δ n ) .
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Supplementary Material

Supplement to "Self-normalized Cramér type moderate deviations for martingales" (doi: COMPLETED BY THE TYPESETTER; .pdf). The supplement gives the detailed proofs of Propositions 3.1 and 3.2.
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