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Abstract—When aiming at efficient and low-power process-
ing of event-based data, hardware implementations of spiking
neural networks that co-integrate analog silicon neurons with
memristive synaptic crossbar arrays are a promising framework.
Fully analog systems however commonly make it difficult to learn
patterns with real-world timescales, which are typically beyond
the millisecond, due to intrinsic constraints of the underlying
technologies. In this work, we propose to alleviate this issue by
supplementing each presynaptic unit with a single memory bit,
which allows to implement a hardware-friendly Spike Timing-
Dependent Plasticity. By simulation means on the N-MNIST
dataset, we illustrate the potential of this concept and show its
robustness to postsynaptic neuron variability. We also discuss
how to circumvent challenges raised by initial weight distribution.
These results could facilitate the emergence of embedded smart
systems directly fed by event-based sensors.

Index Terms—neuromorphic systems, spiking neural networks,
memristors, spike timing-dependent plasticity

I. INTRODUCTION

Brain-inspired neuromorphic systems have attracted signif-
icant attention in the recent years [1], [2], offering better
performance on cognitive memory-intensive tasks than con-
ventional architectures limited by the von Neumann bottleneck
[3]. In particular, leveraging Kirchhoff’s laws and Ohm’s
law, neuromorphic architectures that rely on memristor-based
synaptic arrays are candidates of choice to build highly inte-
grated and low-power hardware implementations of Spiking
Neural Networks (SNNs) with on-line learning capabilities.
Among the possible learning rules, Spike Timing-Dependent
Plasticity (STDP) naturally fits such hardware event-based
systems and allows unsupervised learning, a major challenge
for the processing of increasingly large volumes of data [4].

Implementing STDP in low-power analog or mixed-signal
hardware however raises several challenges. First, depending
on its complexity, the chosen STDP algorithm may not be
hardware-friendly, inducing a consequential circuit or power
overhead. Besides, the timescales that reasonably fit into
integrated analog hardware are typically orders of magnitude
shorter than the time constants of many real-time tasks.

Among the promising research works on hardware spiking
neural networks that investigate fully CMOS solutions, some
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have decided to focus on time-accelerated tasks [5], which
alleviates the need for implementing a slow paced learning
rule. Subthreshold CMOS architectures may offer solutions
to implement STDP-capable synapses that could handle rea-
sonably long timescales, as suggested by the Dynamic Neu-
romorphic Asynchronous Processors (DYNAPs) architecture
[6], at the expense of silicon area. Proof of concept of
an experimental small-scale hardware architecture with TiO2

memristive synapses and on-line STDP-learning capabilities
was recently reported by Prezioso et al. [7], with neurons that
are however still implemented with discrete electronics and
large capacitor values (∼ 100 nF). Highly integrated and low-
power memristor-based hardware implementations of spiking
neural networks with on-line learning capabilities still remain
a challenging goal.

The following work derives from studies made to design
a demonstrator of a smart vision sensor (European project
ULPEC [8]) that co-integrates an event-based retinomorphic
vision sensor [9] with a hardware spiking neural network
implemented with analog CMOS neurons and a synaptic
crossbar array of ferroelectric memristors. This paper makes
several contributions in that context. First, we illustrate the
need for a better match of the hardware time constants with
the input event dynamics on a common event-based dataset (N-
MNIST [10]) and we introduce an accordingly modified STDP
learning rule that requires little CMOS overhead (Section III).
We then show the resilience of the system to two common
variability issues of the postsynaptic circuits (Section IV).
Finally, we study challenges posed by the initial synaptic
weights on the learning and discuss two possible solutions
(Section V).

II. SYSTEM ARCHITECTURE AND METHODOLOGY

In this work, we study the architecture shown in Fig. 1(a)
using a Python in-house simulator that allows high-level
description of the behavior of each hardware building block.

Each output Leaky Integrate-and-Fire (LIF) neuron includes
a second generation current conveyor [11], which allows
to apply postsynaptic voltage pulses onto the memristive
synapses (Fig. 1(b-c)). To save power the current conveyor
only transmits current if iX > 0. The output current iZ scales
iX by a factor K (constant in our simulations) in order to
accommodate the limited value of the membrane capacitor
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Fig. 1. Design overview. (a) System architecture: spiking neural network with Ninputs= 784 and Noutputs= 100 analog CMOS pre- and postsynaptic neurons
(numbered circles) fully connected through a single layer of memristive synapses with no selection device (purple arrows). An event-based vision sensor feeds
the network while a digital control block supervises the analog neuron operation. (b) Circuit-level overview of one Leaky Integrate-and-Fire (LIF) postsynaptic
neuron, which includes a second generation current conveyor (CCII) block that only forwards positive currents (i.e., iX > 0). In this sketch, two input pixels
are active and drive their respective memristor (devices on the left) while the rest of the memristive crossbar can be modeled as a current source (icancel). For
simplicity sake, we assume constant Vsyn= −1V for active synapses. The control block on the right is actually part of the digital control block in (a). (c) The
pre- (left) and postsynaptic (right) voltage waveforms applied by the neurons. (d) Comparing input voltage waveform strategies for inference and illustrating
the challenges of overlapping presynaptic waveforms, depending on Vpre polarity and the polarity of the current forwarded by the current conveyor.

Cmem ' 1 pF, while allowing to overcome the discharge
(∼ 100 V·s−1) due to the constant leakage current idischarge =
100 pA over the timescale of the targeted patterns. An output
event is generated when the membrane voltage Vmem reaches a
threshold value (1 V in our simulations). Following a Winner-
Take-All strategy, an output neuron that fires resets all the
other output neurons. Besides, during training, a neuron that
fired is reset until Nrefrac other output neurons have fired (in
our simulations Nrefrac = 10), which prevents a single neuron
from overtaking all the activity.

To prevent the shadowing of input events due to overlapping
presynaptic pulses (Fig. 1(d)), we split the presynaptic pulse
waveform into two components (Fig. 1(c)) that are applied
independently. Inference pulses of duration TLTP = 10 µs
are triggered by events received from the input visual sen-
sor and can participate to synaptic long term potentiation.
Shorter (0.5 µs) programming pulses can overlap with the low-
amplitude part of a postsynaptic pulse for synaptic long term
depression. From a circuit design viewpoint, the longer the
time constants, the more chip area and energy is required.

If negative, the input voltage offset ε of the current conveyor
(Fig. 1(b)) continuously charges the membrane capacitor,
resulting in spurious output events. Thus, one must ensure a
positive offset value, e.g., by adding a dedicated low-resolution
digital-to-analog converter used to decrease the voltage offset
at the network setup.

Many memristive technologies can have their conductance
tuned by applying a voltage pulse beyond a threshold value
[12]. Among them, ferroelectric memristors offer extremely
low values of conductance [13]. For simplicity sake and
simulation speed, here we consider that the memristive devices
are programmed accordingly to

∆G =


+Apot × (Gmax −G0) for Vsyn ≤ −1.2 V

−Adep × (G0 −Gmin) for Vsyn ≥ +1.2 V

0 otherwise

, (1)

where G0, Gmin and Gmax are respectively the current, the
minimal and the maximal conductance values, Vsyn is the

voltage applied onto the memristor (Fig. 1(b)), and Apot and
Adep are (dimensionless) learning rates. Eq. (1) is reminis-
cent of a multiplicative Spike-Timing Dependent Plasticity
(STDP) learning rule implemented with rectangular program-
ming pulses of constant amplitude and duration. The precise
characteristics of the STDP should have only a limited impact
on the insights provided by our study as several works have
shown the high resilience of similar architectures to synaptic
variability or STDP curves [14], [15]. Based on recent work on
ferroelectric devices [16], we consider Gmin ranging from 1 nS
to 10 nS and Gmax from 0.1 µS to 1 µS. We use Apot = Adep

= 0.1, which allows single-epoch learning in our simulations.

III. WHEN ONE NEEDS A LONGER TERM INPUT MEMORY

In all our simulations, we replace the event-based visual
sensor with the N-MNIST dataset, a conversion of the MNIST
handwritten digit pictures to an event-based framework using
a neuromorphic vision sensor [10]. Each one of the 60,000
(10,000) training (test) samples was generated through 3
consistent 100 ms-saccades, resulting in 3 separate subclasses
per digit class. Due to the limited amount of neurons in the
hardware target, for each sample, we only use the data i) from
the 28×28 central pixels ii) in the first saccade and iii) with
ON polarity (i.e., increasing light events).

Fig. 2 illustrates a major issue of entirely implementing
STDP through analog voltage overlapping. When an output
neuron fires, because of the large mismatch between the analog
hardware timescale (∼ TLTP = 10 µs) and the input event rate
(∼ 7000 events per second on average), only a handful of
synapses are potentiated, and all the other ones are depressed.
In our simulations, this leads to a ∼ 0 % recognition rate.

To overcome this issue–unspecific to N-MNIST–we propose
an STDP variation by introducing a digital control block
(Fig. 1(a)) that allows tracking input activity and driving the
programming events. To keep the CMOS overhead as low as
possible, we use a 1-bit flag per presynaptic neuron that is
set to ON when the neuron receives an input event. When
a postsynaptic neuron fires, the synapses that are connected
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Fig. 2. For each digit class, statistics of the maximum amount of events
(Nevents) that fall into a same long-term potentiation time window (TLTP)
over the first saccade of the 60,000 samples of the N-MNIST dataset. Gray
large bars and black thin bars show the average value and the full range,
respectively.

to it are then potentiated if their activity flag is ON and
depressed otherwise. All presynaptic activity flags are then
reset to OFF and we present the next digit sample. This form
of STDP is thus entirely driven by postsynaptic events; each
synapse connected to an output neuron that spikes is either
potentiated or depressed, using separate pulses with constant
duration and amplitude (translated into Eq. (1) first two lines
in our simulations). This scheme is reminiscent of previous
works in the literature [17], [18]. However, the time window
that triggers long term potentiation is no more constant but
depends on the last previous postsynaptic event. This makes
the hardware implementation simpler: the timer needed for
each presynaptic neuron is replaced with logic blocks.

Similarly to other works in the field, we focus on the subset
of digits 5, 6 and 9 to reduce simulation time [19]. One epoch
thus corresponds to 17,288 (2859) training (test) samples.

After training (for one epoch) and before testing, we dis-
able output neurons that fired less than 10 times. For each
remaining output neuron, if at least 60 % of its last 10 events
correspond to the same input class, we label it accordingly
to the latter. Otherwise we disable the neuron. Empirically,
this simple labeling strategy provides good agreement with
labeling performed by a human, and the system achieves good
selectivity (Fig. 3).

Without any device variability, the mean recognition rate is
92.4 % (Fig. 4(a)), close to the 93.68 % rate from the literature
with a slightly different STDP and 400 output neurons [19].
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Fig. 3. Example of outcomes after one simulation run (Cmem = 1pF,
ε = 0mV, K = 1/125, initial weights uniformly distributed between
Gmin = 10nS and Gmax = 1 µS). (a) Some conductance maps used after
labeling. (b) Confusion matrix (on 2628 [218] correct [wrong] output events).

IV. IMPACT OF POSTSYNAPTIC NEURON VARIABILITY

In a hardware implementation, some dispersion will affect
the characteristics of the postsynaptic neurons, like the current
conveyor offset voltages or the membrane capacitor values.

The wider the range of offset voltages ε, the larger the
current icancel, which makes it harder for postsynaptic neurons
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Fig. 4. Impact of the current conveyor offset voltage (ε), without (black
solid lines) and with uniformly distributed (gray dashed lines) dispersion of
the postsynaptic neuron membrane capacitor values (Cmem). Random offset
voltages ε are uniformly drawn between 0mV and the upper bound reported
along the x-axis. Results without (with) membrane capacitor dispersion are
averaged over 25 (125) one-epoch runs, combining 5 random sets of initial
conductance values with 5 random sets of offset voltages (and with 5 random
sets of membrane capacitors). The random sets are kept consistent between
the simulations as much as possible. The other system parameters are the same
as in Fig. 3. Symbols show the average values and the error bars show the full
ranges. (a) The recognition rate, and (b) the fraction of output neurons (over
Noutputs = 100 neurons) that are not used for classification after labeling.

to spike. This results in significantly less active and selective
output neurons after training. Cadence® Virtuoso Monte Carlo
simulations of our current conveyor CMOS design suggest that
the offset voltages ε may mostly lie between 1 mV and 2 mV.
However, simulations of an even worse scenario (uniform
distribution of ε from 0 mV to 4 mV) show that the recognition
rate remains at 87.3 % on average (solid black line in Fig. 4).

Besides, adding a challenging uniform dispersion of the
membrane capacitor Cmem between ±20 % around 1 pF im-
pacts only slightly more the performance (dashed gray line
in Fig. 4). For example, the mean recognition rate drops to
86.9 % with the largest offset voltage dispersion.

The results in this section suggest that the mixed-signal
architecture we propose should remain operational even with
levels of postsynaptic circuit variability that are plausible
in a hardware implementation, provided that the redundancy
among output neurons is sufficient (Fig. 4(b)).

V. IMPACT OF INITIAL WEIGHT DISTRIBUTION

The mean conductance values of the patterns learned by the
system determine a (rough) suitable range for postsynaptic
parameters like the current conveyor factor K. Hence it is
to be expected that the final system performance depends
on the initial conductance distribution. This section illustrates
how <Rnetwork >, defined as the average resistance of the
Ninputs memristors connected to each output neuron, evolves
in various situations and which challenges arise.

We typically scale the current conveyor factor K respec-
tively to the average of the expected final conductance maps
<Gfinal>target, in order to allow a reasonable triggering of
the output neurons after a successful learning. Then, starting
from a smaller <Rnetwork> (i.e., <Ginit>≥<Gfinal>target)
allows output neurons to fire and to learn (thick blue line
in Fig. 5(b), with a 92.3 % mean recognition rate after one



epoch). Besides in such a situation Fig. 5(a) shows that a
system with 10 times more resistive synapses (solid black line)
behaves similarly to a less resistive learning-capable system
(thick pink line), provided that K is made 10 times stronger;
in both cases, the mean recognition rate is 92.3 %. If on the
contrary <Rnetwork> is initially too large (i.e., <Ginit><<
<Gfinal>target), the output neurons have difficulties to spike,
which results in unsuccessful one-epoch learning (dashed red
line in Fig. 5(b)).
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Fig. 5. Evolution of <Rnetwork > the average resistance value seen by
each output neuron. All results are averaged over five one-epoch simulation
runs (ε = 0mV and Cmem = 1pF). (a) <Rnetwork> normalized by the
current conveyor factor K, when the synaptic crossbar is on average more
resistive after the learning than initially. The thick pink line shows results with
initial conductance values G uniformly distributed between 10nS and 1 µS
and K = 1/125 (average recognition rate [avgRR]: 92.3%), while the thin
black line corresponds to a case with ten times more resistive synapses and a
factor K scaled accordingly (K = 1/12.5, avgRR: 92.3%). (b) Illustration of
challenges that arise when the synapses are initially more resistive on average
than the patterns that would be learned after successful training. Conductance
values can evolve between Gmin=1nS and Gmax=1 µS. If not mentioned,
K=1/125. Solid thick blue line: a situation similar to (a), for reference
purposes (avgRR: 92.3%). All three other cases use initial conductance values
that are uniformly distributed between Gmin and Gmax/10. Dashed red line:
unchanged learning strategy (avgRR: 0%). Solid orange line: applying some
homeostasis onto K during the learning (starting from K = 1/12.5, avgRR:
92.4%). Solid black line: half of the synapses are forcefully initialized to
Gmax before the learning (avgRR: 92.1%).

A first approach to this challenge is to introduce an home-
ostasis process for each postsynaptic neuron, e.g., on K.
For example, starting with conductance values similar to the
previous failed attempt but with K=1/12.5 and decreasing it
by 0.001 (down to 1/125) each time the neuron spikes allows
to reach a 92.4 % mean recognition rate (solid orange line
in Fig. 5(b)). Another solution is to explicitly initialize the
synapses to decrease <Rnetwork>. As an example, for each
output neuron, when initially arbitrarily programming half of
the synapses to their maximum conductance value Gmax, the
system achieves 92.1 % mean recognition rate (solid black line
in Fig. 5(b)). Implementing the latter approach is likely to
have a significantly smaller circuit-level overhead. Even the
aforementioned crude memristor initialization allows to reach
a good performance level; one could then simply leverage
the programming blocks used for training to feed the digital
control block with dedicated input events.

VI. CONCLUSION

To mitigate the short learning timescale of analog CMOS,
we proposed adding a binary memory to each presynaptic

neuron. By simulation means, we illustrated the performance
of our concept on the N-MNIST dataset and its resilience to
neuron variability. We also studied how the initial synaptic
weights impact the system operation, and how crude initial-
ization or neuron homeostasis both mitigate this issue.

These results provide insights to build hardware spiking
neural networks able to learn tasks with real-world timescales.
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