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We prove necessary and sufficient conditions for the L p -convergence, p > 1, of the Biggins martingale with complex parameter in the supercritical branching random walk. The results and their proofs are much more involved (especially in the case p ∈ (1, 2)) than those for the Biggins martingale with real parameter. Our conditions are ultimate in the case p ≥ 2 only.

Introduction

We start by recalling the definition of the branching random walk. Consider an individual, the ancestor, located at the origin of the real line at time n = 0. At time n = 1 the ancestor produces a random number J of offspring which are placed at points of the real line according to a random point process M = J i=1 δ X i on R with intensity measure µ (particularly, J = M(R)). The random variable J is allowed to be infinite with positive probability. The first generation formed by the offspring of the ancestor produces the second generation whose displacements with respect to their mothers are distributed according to independent copies of the same point process M. The second generation produces the third one, and so on. All individuals act independently of each other.

More formally, let V = ∪ n∈N 0 N n be the set of all possible individuals. The ancestor is identified with the empty word ∅ and its position is S(∅) = 0. On some probability space (Ω, F, P) let (M(u)) u∈V be a family of independent identically distributed (i.i.d.) copies of the point process M. An individual u = u 1 . . . u n of the nth generation whose position on the real line is denoted by S(u) produces at time n + 1 a random number J(u) of offspring which are placed at random locations on R given by the positions of the point process

J(u) i=1 δ S(u)+X i (u)
where M(u) = J(u) i=1 δ X i (u) and J(u) is the number of points in M(u). The offspring of the individual u are enumerated by ui = u 1 . . . u n i, where i = 1, . . . , J(u) (if J(u) < ∞) or i = 1, 2, . . . (if J(u) = ∞), and the positions of the offspring are denoted by S(ui). Note that no assumptions are imposed on the dependence structure of the random variables J(u), X 1 (u), X 2 (u), . . . for fixed u ∈ V. The point process of the positions of the nth generation individuals will be denoted by M n so that M 0 = δ 0 and

M n+1 = |u|=n J(u) i=1 δ S(u)+X i (u) ,
where, by convention, |u| = n means that the sum is taken over all individuals of the nth generation rather than over all u ∈ N n . The sequence of point processes (M n ) n∈N 0 is then called a branching random walk (BRW).

Throughout the paper, we assume that the BRW is supercritical, that is EJ > 1. In this case, the event S that the population survives has positive probability. Note that, provided that J < ∞ almost surely (a.s.), the sequence (M n (R)) n∈N 0 of generation sizes in the BRW forms a Galton-Watson process.

The Laplace transform of the intensity measure µ m(λ

) := R e -λx µ(dx) = E |u|=1 e -λS(u) , λ = θ + iγ ∈ C
plays an important role in what follows. Throughout the paper we reserve the notation θ for the real part of λ and γ for the imaginary part of λ, and assume that

D := {λ ∈ C : m(λ) converges absolutely} = {θ ∈ R : m(θ) < ∞} + iR = .
Further, we define the sets

D 0 := D ∩{λ ∈ C : |m(λ)| = 0}, D =0 = D \ D 0 . For λ ∈ D =0 and n ∈ N 0 set Z n (λ) := 1 m(λ) n R e -λx M n (dx) = 1 m(λ) n |u|=n e -λS(u) .
Let F 0 be the trivial σ-field and F n the σ-field generated by the first n generations, that is,

F n := σ(M(u) : u ∈ ∪ n-1 k=0 N k ).
The sequence (Z n (λ), F n ) n∈N 0 forms a complex-valued martingale of mean one that we call the Biggins martingale with complex parameter. A nonexhaustive list of very recent articles investigating these objects includes [START_REF] Damek | Absolute continuity of complex martingales and of solutions to complex smoothing equations[END_REF][START_REF] Grübel | A functional central limit theorem for branching random walks, almost sure weak convergence and applications to random trees[END_REF][START_REF] Iksanov | Fluctuations of Biggins' martingales at complex parameters, submitted[END_REF][START_REF] Kolesko | Convergence of complex martingales in the branching random walk: the boundary[END_REF]. We would like to stress that the Biggins martingale with complex parameter has received much less attention than its counterpart with real parameter and similar martingale related to a branching Brownian motion. See [START_REF] Hartung | The phase diagram of the complex branching Brownian motion energy model[END_REF][START_REF] Maillard | 1-stable fluctuations in branching Brownian motion at critical temperature I: the derivative martingale[END_REF] for recent contributions in the latter case.

The purpose of this article is to provide necessary and sufficient conditions for the L pconvergence of the martingale (Z n (λ)) n∈N 0 for p > 1. Our main results, Theorems 3.1, 3.4 and 3.9, improve upon Theorem 1 in [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] and Theorem 5.1.1 in the unpublished thesis [START_REF] Liang | Propriétés asymptotiques des martingales de Mandelbrot et des marches aleatoires branchantes[END_REF] which give sufficient conditions for the aforementioned convergence in the cases p ∈ (1, 2] and p > 2, respectively. Necessary and sufficient conditions for the L 1 -convergence of (Z n (λ)) n∈N 0 are beyond our reach. Finding them seems to be a major open problem for the Biggins martingales with complex parameter. For the time being, our necessary and sufficient conditions for the L p -convergence for p close to 1 can be used as (non-optimal) sufficient conditions for the L 1convergence. By the martingale convergence theorem, the L p convergence (with p ≥ 1) implies the almost sure convergence; so the conditions given in this paper are also sufficient for the almost most convergence.

The rest of the paper is organized as follows. We give some preliminaries in Section 2. Our results are formulated in Section 3 and then proved in Section 4.

Preliminaries

Let λ = θ + iγ ∈ D be fixed. Keeping in mind the inequality |m(λ)| ≤ m(θ) we distinguish three cases:

(

I) |m(λ)| = m(θ); (II) 0 < |m(λ)| < m(θ); (III) |m(λ)| = 0.
Perhaps, it is not obvious that Case III can occur. To convince the reader we give an example of the BRW satisfying m(θ) < ∞ and m(λ) = 0 for some λ ∈ C. Let

µ(dx) = 2 π e θx (1 -cos x) x 2 1 R (x)dx.
Then m(θ) = 2 and

m(λ) = 4 π R e -iγx x -2 (1 -cos x)dx = 2(1 -|γ|) 1 (-1,1) (γ).
In particular, m(λ) = 0 whenever |γ| > 1.

We do not touch Case III in this paper, just because the sequence (Z

(0) n (λ), F n ) n∈N 0 defined for λ ∈ D 0 by Z (0) n (λ) := R e -λx M n (dx) = |u|=n e -λS(u)
does not form a martingale, for it is comprised of complex-valued martingale differences.

Case I: |m(λ)| = m(θ). Since m(λ) = e iϕ m(θ) for some ϕ ∈ [0, 2π) we infer

E |u|=1
e -θS(u) e -i(ϕ+γS(u)) -1 = 0

and thereupon e -iγS(u) = e i(ϕ+2πk) = e iϕ for integer k whenever |u| = 1. This gives Z n (λ) = Z n (θ) for n ∈ N a.s. Therefore, (Z n (λ), F n ) n∈N 0 is a nonnegative unit mean martingale. Proposition 2.1 reminds a criterion for the L p -convergence (p > 1) of the Biggins martingale with real parameter. The result is well-known and can be found in Theorem 2.1 of [START_REF] Liu | On generalized multiplicative cascades[END_REF], Corollary 5 of [START_REF] Iksanov | Elementary fixed points of the BRW smoothing transforms with infinite number of summands[END_REF], Theorem 3.1 of [START_REF] Alsmeyer | Double martingale structure and existence of φ-moments for weighted branching processes[END_REF], and perhaps some other articles. Proposition 2.1. Let p > 1 and m(θ) < ∞ for some θ ∈ R. Then the martingale (Z n (θ)) n∈N 0 converges in L p if, and only if,

E[Z 1 (θ)] p < ∞ and m(pθ) m(θ) p < 1.
Remark 2.2. When θ = 0 and m(0) < ∞, the condition m(0) < m(0) p holds automatically because m(0) > 1 by supercriticality. Hence, the martingale (Z n (0)) n∈N 0 converges in L p if, and only if, E[Z 1 (0)] p < ∞. This result goes back to Corollary on p. 714 in [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: the Galton-Watson process[END_REF].

Therefore, in Case I we conclude that the martingale (Z n (λ)) n∈N 0 converges in L p if, and only if, the conditions of Proposition 2.1 hold true.

Case II: 0 < |m(λ)| < m(θ). From the preceding discussion it is clear that only this case gives us a truly complex-valued martingale (Z n (λ)) n∈N 0 , the object we shall concentrate on in what follows. In our analysis distinguishing the cases p < 2 and p ≥ 2 seems inevitable. To explain this point somewhat informally we restrict our attention to the case θ = 0 and note that the L p -convergence of the martingale (Z n (λ)) n∈N 0 is regulated, among others, by the asymptotic behavior of E( n j=1 ξ 2 j ) p/2 as n → ∞ for ξ 1 , ξ 2 , . . . independent copies of the random variable |Z 1 (λ) -1| with finite pth moment. If p ≥ 2, then Eξ 2

1 < ∞ and one expects that

E n j=1 ξ 2 j p/2 ∼ (Eξ 2 1 ) p/2 n p/2 , n → ∞.
If p ∈ (1, 2) and Eξ 2 1 = ∞ the last asymptotic relation is no longer true, and one expects that in typical situations

0 < lim inf n→∞ n -p/α E n j=1 ξ 2 j p/2 ≤ lim sup n→∞ n -p/α E n j=1 ξ 2 j p/2 < ∞ (1) 
for some α ∈ (p, 2). It seems that the α cannot be expressed in terms of moments.

Before closing the section we recall that according to the Kesten-Stigum theorem (see, for instance, Theorem 2.1 on p. 23 in [START_REF] Asmussen | Branching processes[END_REF]) we have lim n→∞ Z n (0) = 0 a.s. whenever m(0) < ∞ and EZ 1 (0) log + Z 1 (0) = ∞. However, by the Seneta-Heyde theorem (see, for instance, Theorem 5.1 on p. 83 and Corollary 5.3 on p. 85 in [START_REF] Asmussen | Branching processes[END_REF]) there exists a positive slowly varying function with

lim t→∞ (t) = ∞ such that lim n→∞ Z n (0) (m(0) n ) = Z∞ (0)
for a random variable Z∞ (0) which is positive with positive probability.

Main results

We are ready to state a criterion for the L p -convergence, p ∈ (1, 2). The cases θ = 0 and θ = 0 are treated separately in Theorems 3.1 and 3.4, respectively.

Theorem 3.1. Let p ∈ (1, 2), γ ∈ R\{0}, λ = iγ and 0 < |m(λ)| < m(0) < ∞. Assume that E|Z 1 (λ)| 2 < ∞ (2) or 0 < lim inf x→∞ x α P{|Z 1 (λ)| > x} ≤ lim sup x→∞ x α P{|Z 1 (λ)| > x} < ∞ ( 3 
)
for some α ∈ (1, 2). If either EZ 1 (0) log + Z 1 (0) = ∞ and A := n≥0 1 (m(0) n ) p/α = ∞,
where is a slowly varying function appearing in the Seneta-Heyde theorem, and we take α = 2 when condition (2) holds, or EZ 1 (0

) log + Z 1 (0) < ∞, then the martingale (Z n (λ)) n∈N 0 converges in L p if, and only if, p < α (4) 
and

m(0) |m(λ)| α < 1.
(5)

If EZ 1 (0) log + Z 1 (0) = ∞ and A < ∞, then the martingale (Z n (λ)) n∈N 0 converges in L p if, and only if, condition (4) holds and m(0) |m(λ)| α ≤ 1. ( 6 
)
Remark 3.2. A perusal of the proof of Theorem 3.1 reveals that conditions (3) and ( 4) can be safely replaced by the (seemingly) less restrictive condition (1), thereby extending the range of applicability of the result.

Remark 3.3. Let us note that irrespective of the x log x condition Z n (0) (m(0) n ) converges a.s. to a random variable which is positive with positive probability. Here, the slowly varying function is identically one when EZ 1 (0 

) log + Z 1 (0) < ∞.
m(0) |m(iγ)| α n 1 (m(0) n ) p/α < ∞. Theorem 3.4. Let p ∈ (1, 2), θ, γ ∈ R\{0}, λ = θ + iγ and 0 < |m(λ)| < m(θ) < ∞.
Assume that conditions (2) and (3) hold with the present λ, and that the martingale (Z n (αθ)) n∈N 0 is uniformly integrable (we take α = 2 when condition (2) holds). Then the martingale (Z n (λ)) n∈N 0 converges in L p if, and only if, condition (4) holds and

m(αθ) |m(λ)| α < 1. (7) 
Remark 3.5. In answer to a question put to us by the referee, we now give an example in which conditions (3) and (7) (or ( 5)) hold true. Assume that θ ≥ 0, γ = 1 and that P{J > x} ∼ cx -α as x → ∞ for some α ∈ (1, 2) and c > 0. Let X 1 , X 2 , . . . be independent copies of a random variable X taking values in (0, π/3) which are independent of J. Replacing if needed J with mJ for some large m ∈ N we can assume that [START_REF] Biggins | Lindley-type equations in the branching random walk[END_REF], so that (5) holds. If θ > 0, then choosing θ sufficiently close to 0 we conclude that [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] holds by another appeal to [START_REF] Biggins | Lindley-type equations in the branching random walk[END_REF]. Finally, the inequalities

Ee -iX α (EJ) α-1 > 1. ( 8 
) If θ = 0, then m(0) = EJ < |m(λ)| α = Ee -iX α (EJ) α in view of
P{|Z 1 (λ)| > x} ≤ P{J > |m(λ)|x} and P{|Z 1 (λ)| > x} ≥ P{ J k=1 e -θX k cos X k > |m(λ)|x} ≥ P{J > 2e θπ/3 |m(λ)|x}
show that condition (3) also holds.

Remark 3.6. Necessary and sufficient conditions for the uniform integrability of the Biggins martingale with real parameter were obtained in increasing generality in [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF], [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk. Classical and modern branching processes[END_REF] and [START_REF] Alsmeyer | A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks[END_REF]. Simple sufficient conditions for the uniform integrability of the martingale (Z n (αθ)

) n∈N 0 are EZ 1 (αθ) log + Z 1 (αθ) < ∞ and -αθE |u|=1 e -αθS(u) S(u) ∈ [-∞, m(αθ) log m(αθ)).
Theorem 3.4 requires that the martingale (Z n (αθ)) n∈N 0 be uniformly integrable which is an unpleasant feature. The problem is that it seems that the other assumptions of Theorem 3.4 do not lead to any conclusions concerning the asymptotics of E[Z n (αθ)] p/α as n → ∞, when (Z n (αθ)) n∈N 0 is not uniformly integrable martingale. Although in the latter case there are several results (see [START_REF] Aidekon | The Seneta-Heyde scaling for the branching random walk[END_REF][START_REF] Biggins | Seneta-Heyde norming in the branching random walk[END_REF][START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF]) concerning distributional convergence of Z n (αθ)a n as n → ∞ for appropriate constants (a n ), the assumptions imposed in the cited works are too restrictive for our purposes. Fortunately, there is (at least) one exception arising in the case θ = 0 which allowed us to provide a more complete result in Theorem 3.1.

Necessary and sufficient conditions given in Theorems 3.1 and 3.4 like any other necessary and sufficient conditions are of mainly theoretical interest. For applications easily verifiable sufficient conditions are of greater use. Biggins in Theorem 1 of [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] shows that the conditions E[Z 1 (θ)] γ < ∞ for some γ ∈ (1, 2) and m(pθ)/|m(λ)| p < 1 for some p ∈ (1, γ] are sufficient for the L p -convergence of (Z n (λ) n∈N 0 . Albeit looking differently Proposition 3.7 given next is essentially equivalent to the Biggins conditions, the improvement being that we use a moment condition for Z 1 (λ) rather than for Z 1 (θ).

Proposition 3.7. Let p ∈ (1, 2), γ ∈ R\{0}, λ = θ + iγ and 0 < |m(λ)| < m(θ) < ∞. The conditions E|Z 1 (λ)| r < ∞ and m(rθ) |m(λ)| r < 1 ( 9 
)
for some r ∈ [p, 2] are sufficient for the L p -convergence of the martingale (Z n (λ)) n∈N 0 .

Remark 3.8. Other sufficient conditions for the L p -convergence of (Z n (λ)) n∈N 0 for p ∈ (1, 2) are given in Theorem 2.1 of [START_REF] Kolesko | Convergence of complex martingales in the branching random walk: the boundary[END_REF]. Assuming that

m(rθ) |m(λ)| r = 1 and E |u|=1 θS(u) e -rθS(u) |m(λ)| r ≥ -log |m(λ)|
for some r ∈ (1, 2) and that E|Z 1 (λ)| r log 2+ε + |Z 1 (λ)| < ∞ for some ε > 0 it is proved in the cited paper that the martingale converges a.s. and in L p for every p ∈ (0, r). Now we formulate a criterion for the L p -convergence, p ≥ 2. In the sequel we use the standard notation

x ∨ y = max(x, y) and x ∧ y = min(x, y).

Theorem 3.9. Let p ≥ 2, θ, γ ∈ R, γ = 0, λ = θ + iγ and 0 < |m(λ)| < m(θ) < ∞. If θ = 0, the martingale (Z n (λ)) n∈N 0 converges in L p if, and only if, E|Z 1 (λ)| p < ∞, (10) 
m(2θ) |m(λ)| 2 ∨ m(pθ) |m(λ)| p < 1 ( 11 
)
and, when p > 2,

E[Z 1 (2θ)] p/2 < ∞. ( 12 
)
If θ = 0, the martingale (Z n (λ)) n∈N 0 converges in L p if, and only if, conditions (10) and (12) hold, and

m(0) |m(λ)| 2 < 1.

Proofs

We first formulate a version of the Burkholder inequality for complex-valued martingales. Although we think the result is known, we have not been able to locate it in the literature. Lemma 4.1. Let p > 1 and (X n ) n∈N 0 be a complex-valued martingale with X 0 = 0. Then the martingale (X n ) n∈N 0 converges in L p if, and only if,

E( n≥0 |X n+1 -X n | 2 ) p/2 < ∞. If one of these holds, then c p E n≥0 |X n+1 -X n | 2 p/2 ≤ E|X| p ≤ C p E n≥0 |X n+1 -X n | 2 p/2 (13) 
for appropriate positive and finite constants c p and C p , where X is the L p -limit of (X n ) n∈N 0 .

Proof. We only need to prove [START_REF] Grübel | A functional central limit theorem for branching random walks, almost sure weak convergence and applications to random trees[END_REF]. According to Theorem 1 on p. 414 in [START_REF] Chow | Probability theory: independence, interchangeability, martingales[END_REF] inequality [START_REF] Grübel | A functional central limit theorem for branching random walks, almost sure weak convergence and applications to random trees[END_REF] holds for real-valued martingales with constants c * p and C * p in place of c p and C p . We shall deduce (13) for complex-valued martingales from the cited theorem and the fact that (Re X n ) n∈N 0 and (Im X n ) n∈N 0 are real-valued martingales. From the elementary inequalities

(2 r-1 ∧ 1)(a r + b r ) ≤ (a + b) r ≤ (2 r-1 ∨ 1)(a r + b r ), a, b ≥ 0, r > 0 we obtain (2 p/2-1 ∧ 1)(|Re X| p + |Im X| p ) ≤ |X| p ≤ (2 p/2-1 ∨ 1)(|Re X| p + |Im X| p ). Therefore, E|X| p ≤ (2 p/2-1 ∨ 1)(E|Re X| p + E|Im X| p ) ≤ (2 p/2-1 ∨ 1)C * p   E   n≥0 Re (X n+1 -X n ) 2 p/2   + E   n≥0 Im (X n+1 -X n ) 2 p/2     ≤ 2 p/2-1 ∨ 1 2 p/2-1 ∧ 1 C * p E n≥0 X n+1 -X n 2 p/2
and

E|X| p ≥ (2 p/2-1 ∧ 1)(E|Re X| p + E|Im X| p ) ≥ (2 p/2-1 ∧ 1)c * p   E   n≥0 Re (X n+1 -X n ) 2 p/2   + E   n≥0 Im (X n+1 -X n ) 2 p/2     ≥ 2 p/2-1 ∧ 1 2 p/2-1 ∨ 1 c * p E n≥0 X n+1 -X n 2 p/2 .
In Lemma 4.2 given next which is needed for the proof of Theorem 3.1 we use the notation introduced in the paragraph preceding Theorem 3.1.

Lemma 4.2. Let r ∈ (0, 1), m(0) ∈ (1, ∞) and EZ 1 (0) log + Z 1 (0) = ∞. Then E[ Z∞ (0)] r < ∞ and E[Z n (0)] r ∼ E[ Z∞ (0)] r (m(0) n ) r , n → ∞.
Proof. By Corollary 5.5 on p. 86 in [START_REF] Asmussen | Branching processes[END_REF], the function x →

x 0 P{ Z∞ (0) > y}dy slowly varies at ∞. This entails E[ Z∞ (0)] r < ∞.

From Theorem 5.1 on p. 83 in [START_REF] Asmussen | Branching processes[END_REF] (and its proof) and Corollary 5.3 on p. 85 in [START_REF] Asmussen | Branching processes[END_REF] we know that m(0) -n (m(0) n ) ∼ h n (s 0 ) as n → ∞, where h n (s) is the inverse function of x → -log Ee -xMn(R) for n ∈ N and s 0 is a small enough positive number, and that (exp(-h n (s 0 )M n (R))) n∈N is a martingale with respect to the natural filtration which converges a.s. and in mean as n → ∞ to exp(-Z∞ (0)). The first of these facts tells us that it suffices to prove that

lim n→∞ E[h n (s 0 )M n (R)] r = E[ Z∞ (0)] r . ( 14 
)
As a consequence of the second we infer that, for each s ∈ (0, 1), (exp(-sh n (s 0 )M n (R))) n∈N is a submartingale. In particular,

1 -Ee -shn(s 0 )Mn(R) ≤ 1 -Ee -s Z∞(0) , s ∈ (0, 1). ( 15 
)
To prove ( 14) we shall use the following formula which holds for any nonnegative random variable X and a ∈ (0, 1):

EX a = a Γ(1 -a) ∞ 0 s -a-1 (1 -Ee -sX )ds, (16) 
where Γ(•) is the gamma function. This equality follows from Ee -sX = P{R > sX} for s ≥ 0, where R is an exponentially distributed random variable of unit mean which is independent of X.

With the help of lim n→∞ Ee -shn(s 0 )Mn(R) = Ee -s Z∞(0) for all s ≥ 0, inequality [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] and the fact that 1 -Ee -shn(s 0 )Mn(R) ≤ 1 for s ≥ 1, we obtain

E[h n (s 0 )M n (R)] r = r Γ(1 -r) ∞ 0 s -r-1 (1 -Ee -shn(s 0 )Mn(R) )ds → r Γ(1 -r) ∞ 0 s -r-1 (1 -Ee -s Z∞(0) )ds = E[ Z∞ (0)] r
as n → ∞ by Lebesgue's dominated convergence theorem.

For any u ∈ V and λ ∈ D =0 , set

Z (u) 1 (λ) := 1 m(λ) |v|=1 e -λ(S(uv)-S(u) and Y u (λ) := e -λS(u) m(λ) |u| .
Thus, Z

1 (λ) is the analogue of Z 1 (λ), but based on the progeny of individual u rather than the progeny of the initial ancestor ∅. Observe that, for the individuals u with |u| = n for some n ∈ N, the Y u are F n -measurable, whereas the

Z (u) 1 (λ) are independent of F n . Lemma 4.3. Let p ∈ (1, 2), γ ∈ R\{0}, λ = θ + iγ and 0 < |m(λ)| < m(θ) < ∞.
Assume that (3) holds for α ∈ (p, 2) and, when θ = 0, that m(αθ) < ∞ and the martingale (Z n (αθ)) n∈N 0 is uniformly integrable. Then there exist positive constants c and C such that for each n ∈ N,

c m(0) |m(λ)| α np/α E[Z n (0)] p/α ≤ E |u|=n |Y u (λ)| 2 |Z (u) 1 (λ) -1| 2 p/2 ≤ C m(0) |m(λ)| α np/α E[Z n (0)] p/α (17) when θ = 0, and c m(αθ) |m(λ)| α np/α ≤ E |u|=n |Y u (λ)| 2 |Z (u) 1 (λ) -1| 2 p/2 ≤ C m(αθ) |m(λ)| α np/α ( 18 
)
when θ = 0.

Proof. Denote by ξ 1 , ξ 2 , . . . independent random variables which are distributed as |Z 1 (λ) -1| and independent of F n . Further, let η 1 , η 2 , . . . be i.i.d. positive random variables with

P{η 1 > x} ∼ bx -α , x → ∞
for some b > 0 and the same α as in [START_REF] Alsmeyer | Exponential rate of Lp-convergence of intrinsic martingales in supercritical branching random walks[END_REF]. It is clear that ϕ(s) := Ee -sη 21 satisfies

-log ϕ(s) ∼ bΓ(1 -α/2)s α/2 , s → 0 + . ( 19 
)
Let η α/2 be a positive (α/2)-stable random variable with the Laplace transform

Ψ(s) := E exp(-sη α/2 ) = exp(-bΓ(1 -α/2)s α/2 ), s ≥ 0. Case θ = 0. Set Ψ k (s) := E exp η 2 1 + . . . + η 2 k k 2/α = [ϕ(sk -2/α )] k , s ≥ 0, k ∈ N.
It is easily seen that lim

k→∞ Ψ k (s) = Ψ(s), s ≥ 0. ( 20 
)
We intend to show that

lim k→∞ E η 2 1 + . . . + η 2 k k 2/α p/2 = E[η α/2 ] p/2 < ∞. (21) 
According to formula ( 16) relation ( 21) is equivalent to

lim k→∞ ∞ 0 s -p/2-1 (1 -Ψ k (s))ds = ∞ 0 s -p/2-1 (1 -Ψ(s))ds. (22) 
With ( 20) at hand we shall prove [START_REF] Maillard | 1-stable fluctuations in branching Brownian motion at critical temperature I: the derivative martingale[END_REF] with the help of Lebesgue's dominated convergence theorem. In view of [START_REF] Liang | Propriétés asymptotiques des martingales de Mandelbrot et des marches aleatoires branchantes[END_REF], for s 0 > 0 small enough there exists r > 0 such that -log ϕ(s) ≤ rs α/2 whenever s ∈ [0, s 0 ]. Hence, for such s and

s 0 0 s -p/2-1+α/2 ds = 2 α-p s (α-p)/2 0 < ∞ because p < α. For s ≥ s 0 we use the crude estimate 1 -Ψ n (s) ≤ 1 which suffices in view of ∞ s 0 s -p/2-1 ds = (2/p)s -p/2 0 < ∞. The proof of (22) is complete.
As a consequence of ( 22) and ( 3) we obtain

c ≤ E ξ 2 1 + . . . + ξ 2 k k 2/α p/2 ≤ C
for all k ∈ N and appropriate c, C > 0, whence

E Mn(R) j=1 ξ 2 j p/2 = E[M n (R)] p/α E Mn(R) j=1 ξ 2 j M n (R) 2/α 1 {Mn(R)≥1} p/2 F n ≥ cE[M n (R)] p/α .
Arguing similarly for the the upper bound we arrive at

cE[M n (R)] p/α ≤ E Mn(R) j=1 ξ 2 j p/2 ≤ CE[M n (R)] p/α (23) 
which is equivalent to [START_REF] Iksanov | Fluctuations of Biggins' martingales at complex parameters, submitted[END_REF].

Case θ = 0. Like in the previous part of the proof, inequality (18) follows if we can show that

lim n→∞ E |u|=n e -2θS(u) |Z (u) 1 (λ) -1| 2 m(αθ) 2n/α p/2 = E[η α/2 Z ∞ (αθ) 2/α ] p/2 < ∞ (24) 
assuming that |Z 1 (λ) -1| has the same distribution as η 1 . Here, Z ∞ (αθ) is the a.s. and L 1limit of the uniformly integrable martingale (Z n (αθ)) n∈N 0 . Furthermore, Z ∞ (αθ) is assumed independent of η α/2 . By [START_REF] Iksanov | Elementary fixed points of the BRW smoothing transforms with infinite number of summands[END_REF], relation ( 24) is equivalent to

lim n→∞ ∞ 0 s -p/2-1 (1 -Φ n (s))ds = ∞ 0 s -p/2-1 (1 -Φ(s))ds, (25) 
where

Φ n (s) := E exp -s |u|=n e -2θS(u) |Z (u) 1 (λ) -1| 2 m(αθ) 2n/α , s ≥ 0, n ∈ N and Φ(s) := E exp(-sη α/2 Z ∞ (αθ) 2/α ) = E exp(-bΓ(1 -α/2)s α/2 Z ∞ (αθ)).
By Theorem 3 in [START_REF] Biggins | Lindley-type equations in the branching random walk[END_REF],

sup |u|=n e -2θS(u) m(αθ) 2n/α = sup |u|=n e -αθS(u) m(αθ) n 2/α → 0 a.s.
as n → ∞. This in combination with (19) yields, for s ≥ 0,

-log E exp -s |u|=n e -2θS(u) |Z (u) 1 (λ) -1| 2 m(αθ) 2n/α F n = |u|=n -log ϕ s e -2θS(u) m(αθ) 2n/α ∼ bΓ(1 -α/2)s α/2 Z n (αθ) → bΓ(1 -α/2)s α/2 Z ∞ (αθ) a.s.
as n → ∞, thereby proving that lim n→∞ Φ n (s) = Φ(s), s ≥ 0.

To justify (25) we shall use Lebesgue's dominated convergence theorem. As a consequence of [START_REF] Liang | Propriétés asymptotiques des martingales de Mandelbrot et des marches aleatoires branchantes[END_REF], given s 0 > 0 small enough there exist positive constants B 1 and B 2 such that

s α/2 1 -ϕ(s) ≤ B 1 and 1 -ϕ(sx) 1 -ϕ(s) ≤ B 2 x α/2
whenever s ∈ (0, s 0 ] and sx ∈ (0, s 0 ]. Therefore, for s ∈ (0, s 0 ] and S(u) with |u| = n,

1 -ϕ s e -2θS(u) m(αθ) 2n/α 1 -ϕ(s) = 1 -ϕ s e -2θS(u) m(αθ) 2n/α 1 -ϕ(s)
1

{ e -2θS(u) m(αθ) 2n/α ≤ s 0 s } + 1 -ϕ s e -2θS(u) m(αθ) 2n/α 1 -ϕ(s)
1

{ e -2θS(u) m(αθ) 2n/α > s 0 s } ≤ B 2 + B 1 s α/2 0 e -αθS(u) m(αθ) n a.s.
This yields, for each n ∈ N and s ∈ (0, s 0 ],

1 -Φ n (s) = E 1 - |u|=n ϕ s e -2θS(u) m(αθ) 2n/α ≤ (1 -ϕ(s))E |u|=n 1 -ϕ s e -2θS(u) m(αθ) 2n/α 1 -ϕ(s) ≤ B 2 + B 1 s α/2 0 (1 -ϕ(s))E |u|=n e -αθS(u) m(αθ) n = B 2 + B 1 s α/2 0 (1 -ϕ(s)).
The so obtained majorant is appropriate because

s 0 0 s -p/2-1 (1 -ϕ(s))ds < ∞ as a consequence of E[η 1 ] p < ∞ (recall that p < α). When s > s 0 the crude bound 1 -Φ n (s) ≤ 1 suffices, for ∞ s 0 s -p/2-1 ds < ∞. The proof of Lemma 4.3 is complete.
For the proof of Theorem 3.9 we shall need a version of Lemma 3.3 in [START_REF] Alsmeyer | Exponential rate of Lp-convergence of intrinsic martingales in supercritical branching random walks[END_REF].

Lemma 4.4. Assume that m(pθ) ≥ m(θ) p and E[Z 1 (θ)] p < ∞ for some p > 1 and θ ∈ R\{0}.

Then

E[Z n (θ)] p = O n c m(pθ) m(θ) p n , n → ∞
for a finite nonnegative constant c (explicitly known).

We are now ready to prove our main results.

Proof of Theorem 3.1. Necessity of (4) and (5) or [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF]. Set R := n≥0 |Z n+1 (λ) -Z n (λ)| 2 and assume that (Z n (λ)) n∈N 0 converges in L p , p ∈ (1, 2). Then ER p/2 < ∞ by Lemma 4.1. In particular, this entails E|Z 1 (λ)| p < ∞ thereby showing the necessity of (4).

Let (a n ) n≥0 be a sequence of positive numbers which satisfies a := n≥0 a n < ∞. Since the function x → x p/2 is concave on [0, ∞) we infer

R p/2 = a p/2 n≥0 (a n /a)(1/a n )|Z n+1 (λ) -Z n (λ)| 2 p/2 ≥ a p/2 n≥0 (a n /a)(1/a n ) p/2 |Z n+1 (λ) -Z n (λ)| p = a p/2-1 n≥0 a 1-p/2 n |Z n+1 (λ) -Z n (λ)| p .
Given F n , the random variable Z n+1 (λ) -Z n (λ), being a weighted sum of i.i.d. complex-valued zero-mean random variables, is the terminal value of a martingale. Hence, Lemma 4.1 applies and gives

C p E |u|=n |Y u (λ)| 2 |Z (u) 1 (λ) -1| 2 p/2 ≥ E|Z n+1 (λ) -Z n (λ)| p ≥ c p E |u|=n |Y u (λ)| 2 |Z (u) 1 (λ) -1| 2 p/2 =: c p A n (26) 
(the left-hand inequality is not needed here and will be used later). Assume that condition (2) holds. Then α = 2 by our convention. Using once again concavity of x → x p/2 on [0, ∞) we obtain

A n ≥ E|Z 1 (λ) -1| p E |u|=n |Y u (λ)| 2 p/2 = m(0) |m(λ)| 2 np/2 E|Z 1 (λ) -1| p E[Z n (0)] p/2
and thereupon

∞ > ER p/2 ≥ a p/2-1 c p E|Z 1 (λ) -1| p n≥0 a 1-p/2 n m(0) |m(λ)| α np/α E[Z n (0)] p/α . (27) 
Assume now that condition (3) holds. Then α ∈ (p, 2) (recall (4)). According to [START_REF] Iksanov | Fluctuations of Biggins' martingales at complex parameters, submitted[END_REF],

A n ≥ c m(0) |m(λ)| α np/α E[Z n (0)] p/α and thereupon ∞ > ER p/2 ≥ a p/2-1 cc p n≥0 a 1-p/2 n m(0) |m(λ)| α np/α E[Z n (0)] p/α .
Observe that the series on the right-hand side is the same as in (27). Further, we have to consider two cases. Case EZ 1 (0) log + Z 1 (0) < ∞. According to the Kesten-Stigum theorem, already mentioned in Section 3, Z n (0) converges a.s. and in mean as n → ∞ to a random variable Z ∞ (0). Therefore, lim n→∞ E[Z n (0)] p/α = E[Z ∞ (0)] p/α ∈ (0, ∞), and the necessity of (5) follows upon setting

a n = m(0) |m(λ)| α n , n ∈ N 0 . (28) 
Case EZ 1 (0) log + Z 1 (0) = ∞. By Lemma 4.2, we have

E[Z n (0)] p/α ∼ E[ Z∞ (0)] p/α (m(0) n ) p/α , n → ∞
for some positive slowly varying with lim t→∞ (t) = ∞. Assume that n≥0 (m(0) n ) -p/α is a divergent series. Then choosing a n as in (28) we see that condition (5) is necessary. If the series n≥0 (m(0) n ) -p/α converges then choosing any sequence (a n ) n∈N 0 with the property lim n→∞ e bn a n = ∞ for any b > 0, we conclude that condition (6) is necessary. Sufficiency of (4) and ( 5) or [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF]. By Lemma 4.1, it suffices to show that ER p/2 < ∞. Using subadditivity of x → x p/2 on [0, ∞) we obtain

ER p/2 ≤ n≥0 E|Z n+1 (λ) -Z n (λ)| p .
Further, in view of (26)

E|Z n+1 (λ) -Z n (λ)| p ≤ C p E |u|=n |Y u (λ)| 2 |Z (u) 1 (λ) -1| 2 p/2 .
Assume first that condition (2) holds, so that α = 2. Using conditional Jensen's inequality yields

E |u|=n |Y u (λ)| 2 |Z (u) 1 (λ) -1| 2 p/2 F n ≤ E |u|=n |Y u (λ)| 2 |Z (u) 1 (λ) -1| 2 F n p/2 = E|Z 1 (λ) -1| 2 p/2 m(0) |m(λ)| 2 np/2
Z n (0) p/2 a.s., whence

ER p/2 ≤ C p E|Z 1 (λ) -1| 2 p/2 n≥0 m(0) |m(λ)| α np/α E[Z n (0)] p/α .
Assume now that condition (3) holds which together with (4) ensures that α ∈ (p, 2). In view of ( 17)

A n ≤ C m(0) |m(λ)| α np/α E[Z n (0)] p/α which entails ER p/2 ≤ C p C n≥0 m(0) |m(λ)| α np/α E[Z n (0)] p/α .
Arguing as in the proof of necessity we conclude the following. If either EZ 1 (0) log + Z 1 (0) = ∞ and A = ∞, or EZ 1 (0) log + Z 1 (0) < ∞, then condition (5) is sufficient, whereas if EZ 1 (0) log + Z 1 (0) = ∞ and A < ∞, then condition (6) is sufficient. The proof of Theorem 3.1 is complete.

Proof of Theorem 3.4. The proof is a simpler counterpart of the proof of Theorem 3.1 which uses inequality (18) rather than [START_REF] Iksanov | Fluctuations of Biggins' martingales at complex parameters, submitted[END_REF]. We omit details. Proof of Theorem 3.9. Necessity of (10), ( 11) and [START_REF] Damek | Absolute continuity of complex martingales and of solutions to complex smoothing equations[END_REF]. Assume that (Z n (λ)) n∈N 0 converges in L p and recall the notation R = n≥0 |Z n+1 (λ) -Z n (λ)| 2 . Then ER p/2 < ∞ by Lemma 4.1.

Recalling that p ≥ 2 and using superadditivity of x → x p/2 on [0, ∞) we further infer

n≥0 E|Z n+1 (λ) -Z n (λ)| p ≤ ER p/2 < ∞. ( 29 
)
On the one hand, we obtain for A n defined in (26), Sufficiency of (10), [START_REF] Chow | Probability theory: independence, interchangeability, martingales[END_REF] and [START_REF] Damek | Absolute continuity of complex martingales and of solutions to complex smoothing equations[END_REF]. By Lemma 4. 

A n ≥ E |u|=n |Y u (λ)| p |Z

Proof of Proposition 3 . 7 . 2 ≤

 372 We have for r satisfying (9)ER p/2 ≤ C p E |u|=n |Y u (λ)| 2 |Z (u) 1 (λ) -1| 2 p/C p E |u|=n |Y u (λ)| r |Z (u) 1 (λ) -1| r p/r ≤ C p [E|Z 1 (λ) -1| r] result in view of Lemma 4.1. The first inequality was obtained in the proof of sufficiency in Theorem 3.1. The second and third are consequences of subadditivity of x → x r/2 and Jensen's inequality, respectively.

2 = 2 ≥ 2 n p/ 2 ,

 2222 ) -1| p = E|Z 1 (λ) -1| p m(pθ) |m(λ)| p n having utilized the aforementioned superadditivity. In view of (29) this proves the necessity of[START_REF] Bingham | Asymptotic properties of supercritical branching processes I: the Galton-Watson process[END_REF] for p ≥ 2 and m(pθ) < |m(λ)| p . On the other hand, we conclude thatA n ≥ E E |u|=n |Y u (λ)| 2 |Z (u) 1 (λ) -1| 2 F n p/E|Z 1 (λ) -1| 2 p/2 E |u|=n |Y u (λ)| 2 p/E|Z 1 (λ) -1| 2 m(2θ) |m(λ)|where the first and second inequalities are consequences of conditional and usual Jensen's inequality, respectively. This proves the necessity of m(2θ) < |m(λ)| 2 . Using the last chain of inequalities with n = 1 we observe thatE |u|=1 |Y u (λ)| 2 p/2 = 1 |m(λ)| p E |u|=1 e -2θS(u) p/2 < ∞which in combination with the already checked finiteness of m(2θ) proves the necessity of[START_REF] Damek | Absolute continuity of complex martingales and of solutions to complex smoothing equations[END_REF]. Finally, if θ = 0, then conditions m(0) > 1 and m(0) < |m(λ)| 2 imply that |m(λ)| > 1. Therefore, m(0) < |m(λ)| p is a consequence of m(0) < |m(λ)| 2 .

  In view of this we can reformulate Theorem 3.1 in a more succinct form: under assumptions (2) and (3) the martingale (Z n (iγ)) n∈N 0 converges in L p , p ∈ (1, 2) if, and only if, condition (4) holds and

	n≥0

  1, it suffices to check that ER p/2 < ∞. Using the triangle inequality in L p/2 yields ER p/2 ≤

n≥0 E|Z n+1 (λ) -Z n (λ)| p 2/p p/2

.

-Ψ k (s) ≤ -log Ψ k (s) ≤ rs α/2 ,
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To show that the right-hand side is finite, we write

We have used (26) for the first inequality and convexity of x → x p/2 on [0, ∞) for the second. Now we have to analyze the asymptotic behavior of E[Z n (2θ)] p/2 as n → ∞. While doing so, distinguishing two cases seems inevitable.

Case p = 2. The right-hand side of (30

Subcase m(pθ) < m(2θ) p/2 , θ ∈ R. In view of the present assumption on m and ( 12) we have sup n≥0 E[Z n (2θ)] p/2 < ∞ by Proposition 2.1. Hence, the right-hand side of (30) is

. This in combination with m(2θ) < |m(λ)| 2 proves ER p/2 < ∞. If θ = 0, this completes the proof of sufficiency because the complementary case considered below which reads m(0 The proof of Theorem 3.9 is complete.