
HAL Id: hal-02487667
https://hal.science/hal-02487667v2

Preprint submitted on 26 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lower bounds for algebraic machines, semantically
Luc Pellissier, Thomas Seiller

To cite this version:
Luc Pellissier, Thomas Seiller. Lower bounds for algebraic machines, semantically. 2021. �hal-
02487667v2�

https://hal.science/hal-02487667v2
https://hal.archives-ouvertes.fr

Lower bounds for algebraic machines, semantically

Luc Pellissier

LACL, Faculté des Sciences et Technologie

61 avenue du Général de Gaulle

94010 Créteil, FRANCE

Email: luc.pellissier@lacl.fr

Thomas Seiller

CNRS, LIPN – UMR 7030

Université Sorbonne Paris Nord

99, Avenue Jean-Baptiste Clément

93430, Villetaneuse, FRANCE

Email: seiller@lipn.fr

Abstract—This paper presents a new semantic method for prov-
ing lower bounds in computational complexity. We use it to prove
that maxflow, a PTIME complete problem, is not computable
in polylogarithmic time on parallel random access machines
(PRAMs) working with integers, showing that NCZ 6= PTIME,
where NCZ is the complexity class defined by such machines,
and PTIME is the standard class of polynomial time computable
problems (on, say, a Turing machine). On top of showing this
new separation result, we show our method captures previous
lower bounds results from the literature: Steele and Yao’s lower
bounds for algebraic decision trees [1], Ben-Or’s lower bounds
for algebraic computation trees [2], Cucker’s proof that NCR

is not equal to PTIMER [3], and Mulmuley’s lower bounds for
“PRAMs without bit operations” [4].

I. INTRODUCTION

Complexity theory has traditionally been concerned with

proving separation results between complexity classes. Many

problems remain open, such as the much advertised PTIME

vs NPTIME question which concerns the difference between

feasible sequential computability in deterministic and non-

deterministic models, or equivalently the difference between

feasible computation and feasible verification. This paper

investigates questions related to the NC vs PTIME question,

which concerns the difference between efficient sequential

computation and (more than) efficient parallel computation.

Proving that two classes B ⊂ A are not equal can be

reduced to finding lower bounds for problems in A: by proving

that certain problems cannot be solved with less than certain

resources on a specific model of computation, one can show

that two classes are not equal. Conversely, proving a separation

result B (A provides a lower bound for the problems that are

A-complete [5] – i.e. problems that are in some way universal

for the class A.

The proven lower bound results are however very rough,

and many separation problems remain as generally accepted

conjectures. For instance, a proof that the class of non-

deterministic exponential problems is not included in what is

thought of as a very small class of circuits was not achieved

until very recently [6].

The failure of most techniques of proof has been studied

in itself, which lead to the proof of the existence of negative

results that are commonly called barriers. Altogether, these

results show that all proof methods we know are ineffective

with respect to proving interesting lower bounds. Indeed, there

are three barriers: relativisation [7], natural proofs [8] and

algebrization [9], and almost every known proof method hits

at least one of them: this shows the need for new methods1.

However, to this day, only one research program aimed at

proving new separation results is commonly believed to have

the ability to bypass all barriers: Mulmuley and Sohoni’s Geo-

metric Complexity Theory (GCT) program [10]. This research

program was inspired from an earlier lower bounds result by

Mulmuley [4] which we strengthen in this paper.

A. Mulmuley’s result

The NC vs PTIME question is one of the foremost open

questions in computational complexity. In laymen’s terms, it

asks whether a problem efficiently computable on a sequential

machine can be computed substantially more efficiently on a

parallel machine. It is well known that any problem in NC,

i.e. that is computable in polylogarithmic time on a parallel

machine (with a polynomial number of processors), belongs to

PTIME , i.e. is computable in polynomial time on a sequential

machine. The converse, however, is expected to be false.

Indeed, although many problems in PTIME can be shown to

be in NC, some of them seem to resist efficient parallelisation.

In particular it is not known whether the maxflow problem,

known to be PTIME-complete [11], belongs to NC.

As part of the investigations on the NC vs PTIME question,

a big step forward is due to K. Mulmuley. In 1999 [4], he

showed that a notion of machine introduced under the name

“PRAMs without bit operations” does not compute maxflow in

polylogarithmic time. This notion of machine, quite exotic at

first sight, corresponds to an algebraic variant of PRAMs, where

registers contain integers and individual processors are allowed

to perform sums, subtractions and products of integers. It is

argued by Mulmuley that this notion of machine provides an

expressive model of computation, able to compute some non

trivial problems in NC such as Neff’s algorithm for computing

approximate roots of polynomials [12]. Although Mulmuley’s

result has represented a big step forward in the quest for a

proof that PTIME and NC are not equal, the result was not

strenghtened or reused in the last 20 years, and remained the

strongest known lower bound result.

1In the words of S. Aaronson and A. Wigderson [9], “We speculate
that going beyond this limit [algebrization] will require fundamentally new
methods.”

B. Contributions.

The main contribution of this work is a strengthening of

Mulmuley’s lower bounds result. While the latter proves that

maxflow is not computable in polylogarithmic time in the

model of “PRAMs without bit operations”, we show here that

maxflow is not computable in polylogarithmic time in the

more expressive model of PRAMs over integers, making an

additional step in the direction of a potential proof that NC is

different from PTIME . Indeed, our result can be stated as

Theorem 1.

NCZ 6= PTIME,

where NCZ is the set of problems decidable in polylogarithmic

time by a (not necessarily uniform) family of PRAMs over Z.

The second contribution of the paper is the proof method

itself, which is based on dynamic semantics for programs by

means of graphings, a notion introduced in ergodic theory

and recently used to define models of linear logic by Seiller

[13], [14], [15], [16]. The dual nature of graphings, both

continuous and discrete, is essential in the present work, as it

enables invariants from continuous mathematics, in particular

the notion of topological entropy for dynamical systems, while

the finite representability of graphings is used in the key

lemma (as the number of edges appears in the upper bounds

of Lemma 5).

In particular, we show how this proof method captures

known lower bounds and separation results in algebraic models

of computation, namely Steele and Yao’s lower bounds for al-

gebraic decision trees [1], Ben-Or’s lower bounds on algebraic

computation trees [2], Cucker’s proof that NCR is not equal

to PTIMER (i.e. answering the NC vs PTIME problem for

computation over the real numbers).

C. A more detailed view of the proof method

One of the key ingredients in the proof is the representation

of programs as graphings, and quantitative soundness results.

We refer to the next section for a formal statement, and

we only provide an intuitive explanation for the moment.

Since a program P is represented as a graphing |[P]|, which

is in some way a dynamical system, the computation P (a)
on a given input a is represented as a sequence of values

|[a]|), |[P]|(|[a]|), |[P]|2(|[a]|), Quantitative soundness states

that not only |[P]| computes exactly as P , but it does so in

the same number of steps, i.e. if P (a) terminates on a value

b in time k, then |[P]|k(|[a]|) = |[b]|.
The second ingredient is the dual nature of graphings, both

continuous and discrete objects. Indeed, a graphing represen-

tative is a graph-like structure whose edges are represented

as continuous maps, i.e. a finite representation of a (partial)

continuous dynamical system. Given a graphing, we define its

kth cell decomposition, which separates the input space into

cells such that two inputs in the same cell are indistinguishable

in k steps, i.e. the graphing’s computational traces on both

inputs are equal. We can then use both the finiteness of the

graphing representatives and the topological entropy of the

associated dynamical system to provide upper bounds on the

size of a further refinement of this geometric object, namely

the k-th entropic co-tree of a graphing – a kind of final

approximation of the graphing by a computational tree2

As we deal with algebraic models of computation, this

implies a bound on the representation of the kth cell de-

composition as a semi-algebraic variety. In other words, the

kth cell decomposition is defined by polynomial in·equalities
and we provide bounds on the number and degree of the
involved polynomials. The corresponding statement is the
main technical result of this paper (Lemma 5).

This lemma can then be used to obtain lower bounds
results. Using the Milnor-Thom theorem to bound the
number of connected components of the kth cell decom-
position, we then recover the lower bounds of Steele and
Yao on algebraic decision trees, and the refined result of
Ben-Or providing lower bounds for algebraic computation
trees. A different argument based on invariant polynomials
provides a proof of Cucker’s result that NCR 6= PtimeR

by showing that a given polynomial that belongs to
PtimeR cannot be computed within NCR. Lastly, follow-
ing Mulmuley’s geometric representation of the maxflow

problem, we are able to strenghten his celebrated result to
obtain lower bounds on the size (depth) of a PRAM over the
integers computing this problem. This proves the following
theorem, which has Theorem 1 as a corollary.

Theorem 2. Let c be a positive integer, M a PRAM over Z

with 2O((logN)c) processors, with N the length of the inputs.

Then M does not decide maxflow in O((logN)c) steps.

II. PROGRAMS AS DYNAMICAL SYSTEMS

A. Abstract models of computation and graphings

We consider computations as dynamical processes,
hence model them as a dynamical system with two main
components: a space X that abstracts the notion of con-
figuration space and a monoid acting on this space that
represents the different operations allowed in the model of
computation. Although the notion of space considered can
vary (one could consider e.g. topological spaces, measure
spaces, topological vector spaces), we restrict ourselves to
topological spaces in this work.

Definition 1. An abstract model of computation (AMC) is a

monoid action α : M y X, i.e. a monoid morphism from M
to the group of endomorphisms of X. The monoid M is often

given by a set G of generators and a set of relations R. We

denote such an AMC as α : 〈G,R〉 y X.

Programs in an amc α : 〈G,R〉 y X is then defined
as graphings, i.e. graphs whose vertices are subspaces of
the space X (representing sets of configurations on which
the program act in the same way) and edges are labelled
by elements of M〈G,R〉, together with a global control

2Intuitively, the k-th entropic co-tree mimicks the behaviour of the graphing
for k steps of computation.

state. More precisely, we use here the notion of topological
graphings3 [14].

Definition 2. An α-graphing representative G w.r.t. a monoid

action α : M y X is defined as a set of edges EG together

with a map that assigns to each element e ∈ EG a pair

(SG
e ,mG

e) of a subspace SG
e of X – the source of e – and

an element mG
e ∈ M – the realiser of e.

While graphing representatives are convenient to ma-
nipulate, they do provide too much information about the
programs. Indeed, if one is to study programs as dynamical
systems, the focus should be on the dynamics, i.e. on how
the object acts on the underlying space. The following
notion of refinement captures this idea that the same
dynamics may have different graph-like representations.

Definition 3 (Refinement). An α-graphing representative F is

a refinement of an α-graphing representative G, noted F 6 G,

if there exists a partition (EF
e)e∈EG of EF such that ∀e ∈ EG:

(

∪f∈EF
e
SF
f

)

△ SG
e = ∅; ∀f 6= f ′ ∈ EF

e , SF
f △ SF

f ′ = ∅;
∀f ∈ EF

e , mF
f = mG

e .

This induces an equivalence relation defined as

F ∼ref G ⇔ ∃H, H 6 F ∧H 6 G.

The notion of graphing is therefore obtained by consider-
ing the quotient of the set of graphing representatives w.r.t.
∼ref . Intuitively, this corresponds to identifying graphings
whose actions on the underlying space are equal.

Definition 4. An α-graphing is an equivalence class of α-

graphing representatives w.r.t. the equivalence relation ∼ref .

We can now define the notion of abstract program.
These are defined as graphings

Definition 5. Given an AMC α : M y X, an α-program A
is a ᾱ-graphing GA w.r.t. the monoid action ᾱ = α ×Sk y

X×S
A, where SA is a finite set of control states of cardinality

k and Sk is the group of permutations of k elements.

Now, as a sanity check, we will show how the notion of
graphing do capture the expected dynamics. For this, we
restrict to deterministic graphings, and show the notion
relates to the usual notion of dynamical system.

Definition 6. An α-graphing representative G is deterministic

if for all x ∈ X there is at most one e ∈ EG such that

x ∈ SG
e . An α-graphing is deterministic if its representatives

are deterministic. An abstract program is deterministic if its

underlying graphing is deterministic.

Lemma 1. There is a one-to-one correspondence between the

set of deterministic graphings w.r.t. the action M y X and the

3While “measured” graphings were already considered [14], the definition
adapts in a straightforward manner to allow for other notions such as graphings
over topological vector spaces – which would be objects akin to the notion
of quiver used in representation theory.

set of partial dynamical systems f : X →֒ X whose graph is

contained in the preorder4 {(x, y) | ∃m ∈ M,α(m)(x) = y}.

Lastly, we define some restrictions of α-programs that
will be important later. First, we will restrict the pos-
sible subspaces considered as sources of the edges, as
unrestricted α-programs could compute even undecidable
problems by, e.g. encoding it into a subspace used as the
source of an edge. Given an integer k ∈ ω, we define the
following subspaces of Rω, for ⋆ ∈ {>,>,=, 6=,6, <}:

R
ω
k⋆0 = {(x1, . . . , xk, . . .) ∈ R

ω | xk ⋆ 0}.

Definition 7 (Computational graphings). Let α : 〈G,R〉 y X

be an AMC. A computational α-graphing is an α-graphing

T with distinguished states ⊤,⊥ ∈ S
A which admits a finite

representative such that each edge e has its source equal to one

among R
ω, Rω

k>0, Rω
k60, Rω

k>0, Rω
k<0, Rω

k=0, and R
ω
k 6=0.

Definition 8 (treeings). Let α : 〈G,R〉 y X be an AMC. An α-

treeing is an acyclic and finite α-graphing, i.e. an α-graphing

F for which there exists a finite α-graphing representative T
whose set of control states S

T = {0, . . . , s} can be endowed

with an order < such that every edge of T is state-increasing,

i.e. for each edge e of source Se, for all x ∈ Se,

πST(α(me)(x)) > πST(x),

where πST denotes the projection onto the control states space.

A computational α-treeing is an α-treeing T which is a

computational α-graphing with the distinguished states ⊤, ⊥
being incomparable maximal elements of the state space.

B. Quantitative Soundness

As mentioned in the introduction, we will use the prop-
erty of quantitative soundness of the dynamic semantics
just introduced. This result is essential, as it connects
the time complexity of programs in the model considered
(e.g. PRAMs, algebraic computation trees) with the length
of the orbits of the considered dynamical system. We
here only state quantitative soundness for computational
graphings, i.e. graphings that have distinguished states ⊤
and ⊥ representing acceptance and rejection respectively.
In other words, we consider graphings which compute
decision problems.

Quantitative soundness is expressed with respect to
a translation of machines as graphings, together with a
translation of inputs as points of the configuration space.
In the following section, these operations are defined for
each model of computation considered in this paper. In all
these cases, the representation of inputs is straightforward.

Definition 9. Let α be an abstract model of computation, and

M a model of computation. A translation of M w.r.t. α is

a pair of maps |[·]| which associate to each machine M in

4When α is a group action acting by measure-preserving transformations,
this is a Borel equivalence relation R, and the condition stated here boils
down to requiring that f belongs to the full group of α.

M computing a decision problem a computational α-graphing

|[M]| and to each input ι a point |[ι]| in X× S.

Definition 10. Let α be an abstract model of computation, M

a model of computation. The AMC α is quantitatively sound

for M w.r.t. a translation |[·]| if for all machine M computing a

decision problem and input ι, M accepts ι (resp. rejects ι) in

k steps if and only if |[M]|k(|[ι]|) = ⊤ (resp. |[M]|k(|[ι]|) = ⊥).

C. The algebraic AMCs

We now define the actions αfull and αRfull. Those will
capture all algebraic models of computation considered in
this paper, and the main theorem will be stated for this
monoid action.

As we intend to consider PRAMs at some point, we
consider from the beginning the memory of our machines
to be separated in two infinite blocks Z

ω, intended to
represent both shared and a private memory cells5.

Definition 11. The underlying space of αfull is X = Z
Z ∼=

Z
ω × Z

ω . The set of generators is defined by their action on

the underlying space, writing k//n the floor ⌊k/n⌋ of k/n
with the convention that k//n = 0 when n = 0:

• consti(c) initialises the register i with the constant c ∈
Z: αfull(consti(c))(~x) = (~x{xi := c});

• ⋆i(j, k) (⋆ ∈ {+,−,×, //}) performs the algebraic oper-

ation ⋆ on the values in registers j and k and store the re-

sult in register i: αfull(⋆i(j, k))(~x) = (~x{xi := xj ⋆xk});
• ⋆ci(j) (⋆ ∈ {+,−,×, //}) performs the algebraic op-

eration ⋆ on the value in register j and the constant

c ∈ Z and store the result in register i: αfull(⋆
c
i (j))(~x) =

(~x{xi := c ⋆ xj});
• copy(i, j) copies the value stored in register j in register

i: αfull(copy(i, j))(~x) = (~x{xi := xj});
• copy(♯i, j) copies the value stored in register j in the

register whose index is the value stored in register i:
αfull(copy(♯i, j))(~x) = (~x{xxi

:= xj});
• copy(i, ♯j) copies the value stored in the register whose

index is the value stored in register j in register i:
αfull(copy(i, ♯j))(~x) = (~x{xi := xxj

});
•

n
√
i(j) computes the floor of the n-th root of the value

stored in register j and store the result in register i:
αfull(

n
√
i(j))(~x) = (~x{xi := n

√
xj}).

We also define the real-valued equivalent, which will be
essential for the proof of lower bounds. The corresponding
amc αRfull is defined in the same way than the integer-
valued one, but with underlying space X = R

Z and with
instructions adapted accordingly:

• the division and n-th root operations are the usual
operations on the reals;

• the three copy operators are only effective on integers.

Definition 12. The underlying space of αRfull is X = R
Z ∼=

R
ω ×R

ω. The set of generators is defined by their action on

5Obviously, this could be done without any explicit separation of the
underlying space, but this will ease the constructions of the next section.

the underlying space, with the convention that k/n = 0 when

n = 0:

• consti(c) initialises the register i with the constant c ∈
R: αRfull(consti(c))(~x) = (~x{xi := c});

• ⋆i(j, k) (⋆ ∈ {+,−,×, /}) performs the algebraic op-

eration ⋆ on the values in registers j and k and store

the result in register i: αRfull(⋆i(j, k))(~x) = (~x{xi :=
xj ⋆ xk});

• ⋆ci(j) (⋆ ∈ {+,−,×, /}) performs the algebraic operation

⋆ on the value in register j and the constant c ∈ R and

store the result in register i: αRfull(⋆
c
i(j))(~x) = (~x{xi :=

c ⋆ xj});
• copy(i, j) copies the value stored in register j in register

i: αRfull(copy(i, j))(~x) = (~x{xi := xj});
• copy(♯i, j) copies the value stored in register j in the

register whose index is the floor of the value stored in

register i: αRfull(copy(♯i, j))(~x) = (~x{x⌊xi⌋ := xj});
• copy(i, ♯j) copies the value stored in the register whose

index is the floor of the value stored in register j in

register i: αRfull(copy(i, ♯j))(~x) = (~x{xi := x⌊xj⌋});
•

n
√
i(j) computes the n-th real root of the value

stored in register j and store the result in register i:
αRfull(

n
√
i(j))(~x) = (~x{xi := n

√
xj}).

III. ALGEBRAIC MODELS OF COMPUTATIONS AS AMCS

A. Algebraic computation trees

The first model considered here will be that of algebraic
computation tree as defined by Ben-Or [2]. Let us note
this model refines the algebraic decision trees model of
Steele and Yao [1], a model of computation consisting
in binary trees for which each branching performs a test
w.r.t. a polynomial and each leaf is labelled YES or NO.
Algebraic computation trees only allow tests w.r.t. 0, while
additional vertices corresponding to algebraic operations
can be used to construct polynomials.

Definition 13 (algebraic computation trees, [2]). An algebraic

computation tree on R
n is a binary tree T with a function

assigning:

• to any vertex v with only one child (simple vertex) an

operational instruction of the form fv = fvi ⋆ fvj , fv =

c ⋆ fvi , or fv =
√

fvi , where ⋆ ∈ {+,−,×, /}, vi, vj are

ancestors of v and c ∈ R is a constant;

• to any vertex v with two children a test instruction of the

form fvi ⋆ 0, where ⋆ ∈ {>,=,>}, and vi is an ancestor

of v or fvi ∈ {x1, . . . , xn};

• to any leaf an output YES or NO.

Let W ⊆ R
n be any set and T be an algebraic com-

putation tree. We say that T computes the membership
problem for W if for all x ∈ R

n, the traversal of T following
x ends on a leaf labelled YES if and only if x ∈ W .

As algebraic computation trees are trees, they will be
represented by treeings, i.e. αRfull-programs whose set
of control states can be ordered so that any edge in
the graphing is strictly increasing on its control states
component.

Definition 14. Let T be a computational αRfull-treeing. The

set of inputs In(T) (resp. outputs Out(T)) is the set of integers

k (resp. i) such that there exists an edge e in T satisfying that:

• either e is realised by one of +i(j, k), +i(k, j), −i(j, k),
−i(k, j), ×i(j, k), ×i(k, j), /i(j, k), /i(k, j) +c

i(k),
−c

i(k), ×c
i (k), /

c
i (k),

n
√
i(k);

• or the source of e is one among R
ω
k>0, R

ω
k60, R

ω
k>0,

R
ω
k<0, Rω

k=0, and R
ω
k 6=0.

The effective input space In
E(T) of an αact-treeing T is

defined as the set of indices k ∈ ω belonging to In(T) but not

to Out(T). The implicit input space In
I(T) of an αact-treeing

T is defined as the set of indices k ∈ ω such that k 6∈ Out(T).

Definition 15. Let T be an αRfull-treeing, and assume that

1, 2, . . . , n ∈ In
I(T). We say that T computes the membership

problem for W ⊆ R
n in k steps if k successive iterations of

T restricted to {(xi)i∈ω ∈ R
ω | ∀1 6 i 6 n, xi = yi} × {0}

reach state ⊤ if and only if (y1, y2, . . . , yn) ∈ W .

Remark 1. Let ~x = (x1, x2, . . . , xn) be an element

of R
n and consider two elements a, b in the subspace

{(y1, . . . , yn, . . .) ∈ R
ω | ∀1 > i > n, yi = xi} × {0}.

One easily checks that πS(T
k(a)) = ⊤ if and only if

πS(T
k(b)) = ⊤, where πS is the projection onto the state

space and T k(a) represents the k-th iteration of T on a. It is

therefore possible to consider only a standard representative

|[~x]| of ~x ∈ R
n, for instance (x1, . . . , xn, 0, 0, . . .) ∈ R

ω, to

decide whether ~x is accepted by T .

Definition 16. Let T be an algebraic computation tree on R
n,

and T ◦ be the associated directed acyclic graph, built from T
by merging all the leaves tagged YES in one leaf ⊤ and all the

leaves tagged NO in one leaf ⊥. Suppose the internal vertices

are numbered {n+1, . . . , n+ ℓ}; the numbers 1, . . . , n being

reserved for the input.

We define |[T]| as the αact-graphing with control states {n+
1, . . . , n + ℓ,⊤,⊥} and where each internal vertex i of T ◦

defines either:

• a single edge of source R
ω realized by:

– (⋆i(j, k), i 7→ t) (⋆ ∈ {+,−,×}) if i is associated to

fvi = fvj ⋆ fvk and t is the child of i;
– (⋆ci (j), i 7→ t) (⋆ ∈ {+,−,×}) if i is associated to

fvi = c ⋆ fvk and t is the child of i;

• a single edge of source R
ω
k 6=0 realized by:

– (/i(j, k), i 7→ t) if i is associated to fvi = fvj/fvk and

t is the child of i;
– (/ci (k), i 7→ t) if i is associated to fvi = c/fvk and t

is the child of i;

• a single edge of source R
ω
k>0 × {i} realized by

(2
√
i(k), i 7→ t) if i is associated to fvi =

√

fvk and t
is the child of i;

• two edges if i is associated to fvi⋆0 (where ⋆ ranges in >,

>) and its two sons are j and k. Those are of respective

sources R
ω
k⋆0 × {i} and R

ω
k⋆̄0 × {i} (where ⋆̄ =′6′ if

⋆ =′>′, ⋆̄ =′<′ if ⋆ =′>′, and ⋆̄ =′ 6=′ if ⋆ =′=′.),

respectively realized by (Id, i 7→ j) and (Id, i 7→ k)

Proposition 1. Any algebraic computation tree T of depth k is

faithfully and quantitatively interpreted as the αRfull-program

|[T]|. I.e. T computes the membership problem for W ⊆ R
n

if and only if |[T]| computes the membership problem for W
in k steps – that is πS(|[T]|k(|[~x]|)) = ⊤.

As a corollary of this proposition, we get quantitative
soundness.

Theorem 3. The representation of ACTs as αRfull-programs

is quantitatively sound.

B. Algebraic circuits

As we will recover Cucker’s proof that NCR 6= PtimeR,
we introduce the model of algebraic circuits and their
representation as αRfull-programs.

Definition 17. An algebraic circuit over the reals with inputs

in R
n is a finite directed graph whose vertices have labels in

N×N, that satisfies the following conditions:

• There are exactly n vertices v0,1, v0,2, . . . , v0,n with first

index 0, and they have no incoming edges;

• all the other vertices vi,j are of one of the following types:

1) arithmetic vertex: they have an associated arithmetic

operation {+,−,×, /} and there exist natural numbers

l, k, r,m with l, k < i such that their two incoming

edges are of sources vl,r and vk,m;

2) constant vertex: they have an associated real number y
and no incoming edges;

3) sign vertex: they have a unique incoming edge of

source vk,m with k < i.

We call depth of the circuit the largest m such that there exist a

vertex vm,r, and size of the circuit the total number of vertices.

A circuit of depth d is decisional if there is only one vertex

vd,r at level d, and it is a sign vertex; we call vd,r the end

vertex of the decisional circuit.

To each vertex v one inductively associates a function
fv of the input variables in the usual way, where a sign
node with input x returns 1 if x > 0 and 0 otherwise. The
accepted set of a decisional circuit C is defined as the set
S ⊆ R

n of points whose image by the associated function
is 1, i.e. S = f−1

v ({1}) where v is the end vertex of C.

We represent algebraic circuit as computational αRfull-
treeings as follows. The first index in the pairs (i, j) ∈ N×
N are represented as states, the second index is represented
as an index in the infinite product R

ω, and vertices are
represented as edges.

Definition 18. Let C be an algebraic circuit, defined as a

finite directed graph (V,E, s, t, ℓ) where V ⊂ N × N, and

ℓ : V → {init,+,−,×, /, sgn}∪ {constc | c ∈ R} is a vertex

labelling map. We suppose without loss of generality that for

each j ∈ N, there is at most one i ∈ N such that (i, j) ∈ V .

We define N as max{j ∈ N | ∃i ∈ N, (i, j) ∈ V }.

We define the αRfull-program |[C]| by choosing as set of

control states {i ∈ N | ∃j ∈ N, (i, j) ∈ V } and the collection

of edges {e(i,j) | i ∈ N
∗, j ∈ N, (i, j) ∈ V } ∪ {e+(i,j) | i ∈

N
∗, j ∈ N, (i, j) ∈ V, ℓ(v) = sgn} realised as follows:

• if ℓ(v) = constc, the edge e(i,j) is realised as

(+nv

j (c), 0 7→ i) of source R
ω
nv=0 × {0};

• if ℓ(v) = ⋆ (⋆ ∈ {+,−,×}) of incoming edges (k, l) and

(k′, l′), the edge e(i,j) is of source R
ω × {max(k, k′)}

and realised by (⋆j(l, l
′),max(k, k′) 7→ i);

• if ℓ(v) = / of incoming edges (k, l) and (k′, l′), the edge

e(i,j) is of source R
ω
l′ 6=0 × {max(k, k′)} and realised by

(/j(l, l
′),max(k, k′) 7→ i);

• if ℓ(v) = sgn of incoming edge (k, l), the edges e(i,j)
and e+(i,j) are of respective sources R

ω
nv=0∧xl60 × {k}

and R
ω
nv=0∧xl>0 × {k} realised by (Id, k 7→ i) and

(+j(nv, 1), k 7→ i) respectively.

As each step of computation in the algebraic circuit is
translated as going through a single edge in the correspond-
ing αRfull-program, the following result is straightforward.

Theorem 4. The representation of ALGCIRC as αRfull-

programs is quantitatively sound.

C. Algebraic RAMs

In this paper, we will consider algebraic parallel random
access machines, that act not on strings of bits, but on
integers. In order to define those properly, we first define
the notion of (sequential) random access machine (RAM)
before considering their parallelisation.

A RAM command is a pair (ℓ, I) of a line ℓ ∈ N
⋆ and

an instruction I among the following, where i, j ∈ N, ⋆ ∈
{+,−,×, /}, c ∈ Z is a constant and ℓ, ℓ′ ∈ N

⋆ are lines:

skip; Xi := c; Xi := Xj ⋆ Xk; Xi := Xj;
Xi := ♯Xj; ♯Xi := Xj; if Xi = 0 goto ℓ else ℓ′.

A RAM machine M is then a finite set of commands such
that the set of lines is {1, 2, . . . , |M |}, with |M | the length
of M . We will denote the commands in M by (i, InstM (i)),
i.e. InstM (i) denotes the line i instruction.

Following Mulmuley [4], we will here make the assump-
tion that the input in the RAM (and in the PRAM model
defined in the next section) is split into numeric and
nonumeric data – e.g. in the maxflow problem the non-
numeric data would specify the network and the numeric
data would specify the edge-capacities – and that indirect
references use pointers depending only on nonnumeric
data6. We refer the reader to Mulmuley’s article for more
details.

Machines in the RAM model can be represented as
graphings w.r.t. the action αfull. Intuitively the encoding
works as follows. The notion of control state allows to

6Quoting Mulmuley: "We assume that the pointer involved in an indirect
reference is not some numeric argument in the input or a quantity that depends
on it. For example, in the max- flow problem the algorithm should not use an
edge-capacity as a pointer—which is a reasonable condition. To enforce this
restriction, one initially puts an invalid-pointer tag on every numeric argument
in the input. During the execution of an arithmetic instruction, the same tag
is also propagated to the result if any operand has that tag. Trying to use a
memory value with invalid-pointer tag results in error." [4, Page 1468].

represent the notion of line in the program. Then, the
action just defined allows for the representation of all
commands but the conditionals. The conditionals are
represented as follows: depending on the value of Xi one
wants to jumps either to the line ℓ or to the line ℓ′; this is
easily modelled by two different edges of respective sources
H(i) = {~x | xi = 0} and H(i)c = {~x | xi 6= 0}.
Definition 19. Let M be a RAM machine. We define the

translation |[M]| as the αram-program with set of control states

{0, 1, . . . , L, L+1} where each line ℓ defines (in the following,

⋆ ∈ {+,−,×} and we write ℓ++ the map ℓ 7→ ℓ+ 1):

• a single edge e of source X× {ℓ} and realised by:

– (Id, ℓ++) if InstM (ℓ) = skip;

– (consti(c), ℓ++) if InstM (ℓ) = Xi := c;

– (⋆i(j, k), ℓ++) if InstM (ℓ) = Xi := Xj ⋆ Xk;

– (copy(i, j), ℓ++) if InstM (ℓ) = Xi := Xj;

– (copy(i, ♯j), ℓ++) if InstM (ℓ) = Xi := ♯Xj;

– (copy(♯i, j), ℓ++) if InstM (ℓ) = ♯Xi := Xj.

• an edge e of source H(k)×{ℓ} realised by (//i(j, k), ℓ++)
if InstM (ℓ) is Xi := Xj/Xk;

• a pair of edges e, ec of respective sources H(i) × {ℓ}
and H(i)c × {ℓ} and realised by respectively (Id, ℓ 7→
ℓ0) and (Id, ℓ 7→ ℓ1), if the line is a conditional

if Xi = 0 goto ℓ0 else ℓ1.

The translation |[ι]| of an input ι ∈ Z
d is the point (ῑ, 0) where

ῑ is the sequence (ι1, ι2, . . . , ιk, 0, 0, . . .).

Now, the main result for the representation of RAMs

is the following. The proof is straightforward, as each
instruction corresponds to exactly one edge, except for the
conditional case (but given a configuration, it lies in the
source of at most one of the two edges translating the
conditional).

Theorem 5. The representation of RAMs as αfull-program is

quantitatively sound w.r.t. the translation just defined.

D. The Crew operation and PRAMs

Based on the notion of RAM, we are now able to consider
their parallelisation, namely PRAMs. A PRAM M is given
as a finite sequence of RAM machines M1, . . . ,Mp, where p
is the number of processors of M . Each processor Mi has
access to its own, private, set of registers (Xik)k>0 and a
shared memory represented as a set of registers (X0k)k>0.

One has to deal with conflicts when several processors
try to access the shared memory simultaneously. We
here chose to work with the Concurrent Read, Exclusive
Write (crew) discipline: at a given step at which several
processors try to write in the shared memory, only the
processor with the smallest index will be allowed to do so.
In order to model such parallel computations, we abstract
the crew at the level of monoids. For this, we suppose
that we have two monoid actions M〈G,R〉 y X × Y

and M〈H,Q〉 y X × Z, where X represents the shared
memory. We then consider the subset # ⊂ G×H of pairs
of generators that potentially conflict with one another –
the conflict relation.

Definition 20 (Conflicted sum). Let M〈G,R〉, M〈G′,R′〉
be two monoids and # ⊆ G × G′. The conflicted sum of

M〈G,R〉 and M〈G′,R′〉 over #, noted M〈G,R〉∗#M〈G′,R′〉,
is defined as the monoid with generators ({1}×G)∪({2}×G′)
and relations

({1} ×R) ∪ ({2} ×R′) ∪ {(1, e)} ∪ {(1, e′)}
∪{

(

(1, g)(2, g′), (2, g′)(1, g)
)

| (g, g′) /∈ #}
where 1, e, e′ are the units of M〈G,R〉∗#M〈G′,R′〉, M〈G,R〉
and M〈G′,R′〉 respectively.

In the particular case where # = (G × H ′) ∪ (H × G′),
with H,H ′ respectively subsets of G and G′, we will write

the sum M〈G,R〉 ∗H H′ M〈G′,R′〉.
Remark 2. When the conflict relation # is empty, this defines

the usual direct product of monoids. This corresponds to the

case in which no conflicts can arise w.r.t. the shared memory.

In other words, the direct product of monoids corresponds to

the parallelisation of processes without shared memory.

Dually, when the conflict relation is full (# = G×G′), this

defines the free product of the monoids.

Definition 21. Let α : M y X×Y be a monoid action. We

say that an element m ∈ M is central relatively to α (or just

central) if the action of m commutes with the first projection

πX : X × Y → X, i.e.7 α(m);πX = α(m); in other words

m acts as the identity on X.

Intuitively, central elements are those that will not affect
the shared memory. As such, only non-central elements
require care when putting processes in parallel.

Definition 22. Let M〈G,R〉 y X×Y be an AMC. We note Zα

the set of central elements and Z̄α(G) = {m ∈ G | n 6∈ Zα}.

Definition 23 (The CREW of AMCs). Let α : M〈G,R〉 y X×
Y and β : M〈H,Q〉 y X× Z be AMCs. We define the AMC

CREW(α, β) : M〈G,R〉 ∗
Z̄α(G) Z̄β(G′)

M〈G′,R′〉 y X×Y×Z

by letting CREW(α, β)(m,m′) = α(m) ∗ β(m′) on elements

of G×G′, where:

α(m) ∗ β(m′) =
{

∆; [α(m);πY , β(m
′)] if m 6∈ Z̄α(G),m′ ∈ Z̄β(G

′),
∆; [α(m), β(m′);πZ] otherwise,

with ∆ : X×Y×Z → X×Y×X×Z; (x, y, z) 7→ (x, y, x, z).

We can now define amc of PRAMs and thus the in-
terpretations of PRAMs as abstract programs. For each
integer p, we define the amc crewp(αfull). This allows
the consideration of up to p parallel RAMs: the translation
of such a RAM with p processors is defined by extending
the translation of RAMs by considering a set of states equal
to L1 × L2 × · · · × Lp where for all i the set Li is the set
of lines of the i-th processor.

Now, to deal with arbitrary large PRAMs, i.e. with
arbitrarily large number of processors, one considers the
following amc defined as a direct limit.

7Here and in the following, we denote by ; the sequential composition of
functions. I.e. f ; g denotes what is usually written g ◦ f .

Definition 24 (The AMC of PRAMs). Let α : M y X×X

be the AMC αfull. The AMC of PRAMs is defined as αpram =
lim−→ CREWk(α), where CREWk−1(α) is identified with a restric-

tion of CREWk(α) through CREWk−1(α)(m1, . . . ,mk−1) 7→
CREWk(α)(m1, . . . ,mk−1, 1).

Remark 3. We notice that the underlying space of the PRAM

AMC αpram is defined as the union ∪n∈ωZ
ω × (Zω)n which

we will write Z
ω × (Zω)(ω). In practise a given αpram-

program admitting a finite αpram representative will only use

elements in CREWp(αfull), and can therefore be understood as

a CREWp(α)-program.

Theorem 6. The representation of PRAMs as αpram-program

is quantitatively sound.

This result, here stated for integer-valued PRAMs, can
easily be obtained for real-valued PRAMs translated as
αRfull-programs.

IV. ENTROPY AND CELLS

A. Topological Entropy

Topological Entropy is a standard invariant of dynam-
ical system. It is a value representing the average ex-
ponential growth rate of the number of orbit segments
distinguishable with a finite (but arbitrarily fine) precision.
The definition is based on the notion of open covers.

Definition 25 (Open covers). Given a topological space X, an

open cover of X is a family U = (Ui)i∈I of open subsets of

X such that ∪i∈IUi = X. A finite cover U is a cover whose

indexing set is finite. A subcover of a cover U = (Ui)i∈I is

a sub-family S = (Uj)j∈J for J ⊆ I such that S is a cover,

i.e. such that ∪j∈JUj = X. We will denote by Cov(X) (resp.

FCov(X)) the set of all open covers (resp. all finite open

covers) of the space X.

Definition 26. An open cover U = (Ui)i∈I , together with a

continuous function f : X → X, defines the inverse image

open cover f−1(U) = (f−1(Ui))i∈I . Given two open covers

U = (Ui)i∈I and V = (Vj)j∈J , we define their join U ∨ V as

the family (Ui ∩ Vj)(i,j)∈I×J .

Remark 4. If U ,V are finite, f−1(U) and U ∨ V are finite.

Traditionally [17], entropy is defined for continuous
maps on a compact set. However, a generalisation of
entropy to non-compact sets can easily be defined by
restricting the usual definition to finite covers8. This is
the definition we will use here.

Definition 27. Let X be a topological space, and U = (Ui)i∈I

be a finite cover of X. We define the quantity H0
X
(U) =

min{log2(Card(J)) | J ⊆ I,∪j∈JUj = X}.

In other words, if k is the cardinality of the smallest
subcover of U , H0(U) = log2(k).

8This is discussed by Hofer [18] together with another generalisation based
on the Stone-Čech compactification of the underlying space.

Definition 28. Let X be a topological space and f : X → X

be a continuous map. For any finite open cover U of X, define

Hk
X
(f,U) = 1

k
H0

X
(U ∨ f−1(U) ∨ · · · ∨ f−(k−1)(U)).

One can show that the limit limn→∞ Hn
X
(f,U) exists

and is finite; it will be noted h(f,U). The topological
entropy of f is then defined as the supremum of these
values, when U ranges over the set of all finite covers
FCov(X).

Definition 29. Let X be a topological space and f : X → X

be a continuous map. The topological entropy of f is defined

as h(f) = supU∈FCov(X) h(f,U).

B. Graphings and Entropy

We now need to define the entropy of deterministic
graphings. As mentioned briefly already, deterministic
graphings on a space X are in one-to-one correspondence
with partial dynamical systems on X. Thus, we only need
to extend the notion of entropy to partial maps, and we
can then define the entropy of a graphing G as the entropy
of its corresponding map [G].

Given a finite cover U , the only issue with partial
continuous maps is that f−1(U) is not in general a cover.
Indeed, {f−1(U) | U ∈ U} is a family of open sets by
continuity of f but the union ∪U∈Uf

−1(U) is a strict
subspace of X (namely, the domain of f). It turns out
the solution to this problem is quite simple: we notice that
f−1(U) is a cover of f−1(X) and now work with covers
of subspaces of X. Indeed, U ∨ f−1(U) is itself a cover
of f−1(X) and therefore the quantity H2

X
(f,U) can be

defined as (1/2)H0
f−1(X)(U ∨ f−1(U)).

We now generalise this definition to arbitrary iterations
of f by extending Definitions 28 and 29 to partial maps as
follows.

Definition 30. Let X be a topological space and f : X → X

be a continuous partial map. For any finite open cover U of

X, we define Hk
X
(f,U) = 1

k
H0

f−k+1(X)(U ∨ f−1(U) ∨ · · · ∨
f−(k−1)(U)). The entropy of f is then defined as h(f) =
supU∈FCov(X) h(f,U), where h(f,U) is again defined as the

limit limn→∞ Hn
X
(f,U).

We now consider the special case of a graphing G with
set of control states SG. For an intuitive understanding,
one can think of G as the representation of a PRAM

machine. We focus on the specific open cover indexed by
the set of control states, i.e. S = (X×{s}s∈SG), and call it
the states cover. We will now show how the partial entropy
Hk(G,S) is related to the set of admissible sequence of
states. Let us define those first.

Definition 31. Let G be a graphing, with set of control

states SG. An admissible sequence of states is a sequence

s = s1s2 . . . sn of elements of SG such that for all i ∈
{1, 2, . . . , n− 1} there exists a subset C of X – i.e. a set of

configurations – such that G contains an edge from C × {si}
to a subspace of X× {si+1}.

Example 1. As an example, let us consider the very simple

graphing with four control states a, b, c, d and edges from X×
{a} to X× {b}, from X× {b} to X× {c}, from X× {c} to

X× {b} and from X× {c} to X× {d}. Then the sequences

abcd and abcbcbc are admissible, but the sequences aba, abcdd,

and abcba are not.

Lemma 2. Let G be a graphing, and S its states cover. Then

for all integer k, the set Admk(G) of admissible sequences of

states of length k > 1 is of cardinality 2k.H
k(G,S).

A tractable bound on the number of admissible se-
quences of states can be obtained by noticing that the
sequence Hk(G,S) is sub-additive, i.e. Hk+k′

(G,S) 6

Hk(G,S) + Hk′

(G,S). A consequence of this is that
Hk(G,S) 6 kH1(G,S). Thus the number of admissible
sequences of states of length k is bounded by 2k

2H1(G,S).
We now study how the cardinality of admissible sequences
can be related to the entropy of G. This is deduced from
Lemma 2 and the following general result (which does not
depend on the chosen cover).

Lemma 3. For all ǫ > 0 and all cover U , there exists a natural

number N such that ∀k > N , Hk(G,U) < h([G]) + ǫ.

The two previous lemmas combine to give the following.

Lemma 4. Let G be a graphing. Then Card(Admk(G)) =
O(2k.h([G])) as k → ∞.

C. Cells Decomposition

Now, let G be a deterministic graphing with its state
cover S. We fix k > 2 and consider the partition
(C[s])s∈Admk(G) of the space [G]−k+1(X), where the sets
C[s] = C[(s1s2 . . . sk−1, sk)] are defined inductively as
follow:

• C[s1, s2] is the set {x ∈ X | [G](x, s1) ∈ X × {s2}};
• C[(s1s2 . . . sk−1, sk)] is the set {x ∈ X | ∀i ∈
{2, . . . , k}, [G]i−1(x, s1) ∈ X× {si}}.

This decomposition splits the set of initial configurations
into cells satisfying the following property: for any two
initial configurations contained in the same cell C[s], the
k-th first iterations of G go through the same admissible
sequence of states s.

Definition 32. Let G be a deterministic graphing, with its

state cover S. Given an integer k, we define the k-th cell

decomposition of X along G as the partition {C[s] | s ∈
Admk(G)}.

Then Lemma 2 provides a bound on the cardinality of
the k-th cell decomposition. Using the results in the previ-
ous section, we can then obtain the following proposition.

Proposition 2. Let G be a deterministic graphing, with

entropy h(G). The cardinality of the k-th cell decomposition of

X w.r.t. G, as a function c(k) of k, is asymptotically bounded

by g(k) = 2k.h([G]), i.e. c(k) = O(g(k)).

We also state another bound on the number of cells
of the k-th cell decomposition, based on the state cover

entropy, i.e. the entropy with respect to the state cover
rather than the usual entropy which takes the supremum of
cover entropies when the cover ranges over all finite covers
of the space. This is a simple consequence of Lemma 2.

Proposition 3. Let G be a deterministic graphing. We consider

the state cover entropy h0([G]) = limn→∞ Hn
X
([G],S) where

S is the state cover. The cardinality of the k-th cell decompo-

sition of X w.r.t. G, as a function c(k) of k, is asymptotically

bounded by g(k) = 2k.h0([G]), i.e. c(k) = O(g(k)).

V. ENTROPIC COTREES AND THE MAIN LEMMA

A. Lower Bounds through the Milnor-Thom theorem

The results stated in the last section can be used to prove
lower bounds in several models. These results rely on two
ingredients: the above bounds on the cardinality of the
k-th cell decomposition, and the Milnor-Thom theorem.

The Milnor-Thom theorem, which was proven indepen-
dently by Milnor [19] and Thom [20], states bounds on the
sum of the Betti numbers (i.e. the rank of the homology
groups) of an algebraic variety. This theorem provides
bounds on the number of connected components (i.e. the
0-th Betti number β0(V)) of a semi-algebraic variety V .
We here use the statement of the Milnor-Thom theorem
as given by Ben-Or [2, Theorem 2].

Theorem 7. Let V ⊆ R
n be a set defined by polynomial

in·equations (n,m, h ∈ N):

{qi(~x) = 0 | 0 6 i 6 m}
∪ {pi(~x) > 0 | 0 6 i 6 s}

∪ {pi(~x) 6 0 | s+ 1 6 i 6 h}.
Then β0(V) is at most d(2d − 1)n+h−1, where d =
max{2, deg(qi), deg(pj)}.
The lower bounds proofs then proceed by the following
proof strategy:

1) consider an algebraic model of computation, and
define the corresponding amc;

2) show that the cells in the k-th cell decomposition are
semi-algebraic sets defined by systems of equations E
with explicit upper bounds on the number of equations
and the degrees of the polynomials;

3) bound the number of connected components of each
cell by the Milnor-Thom theorem;

4) given an algebraic problem (e.g. a subset of R
k),

deduce lower bounds on the length of the computa-
tions deciding that problem based on its number of
connected components.

Among the lower bound proofs using this proof strategy,
we point out Steele and Yao lower bounds on algebraic
decision trees [1], and Mulmuley’s proof of lower bounds
on “PRAMs without bit operations” [4]. These results do
not use the notion of entropy. Due to space constraints,
we do not detail these in this paper.

We will now explain how this method can be refined
following Ben-Or’s proof of lower bounds for algebraic

computational trees. Indeed, while Mulmuley’s [4] was not
later improved upon, Steele and Yao’s lower bounds were
extended by Ben-Or [2] to encompass algebraic computa-
tional trees with sums, substractions, products, divisions
and square roots. The technique of Ben-Or improves on
Steele and Yao in that it provides a method to deal
with divisions and square roots. We here abstract this
method by considering k-th entropic co-trees which are
a refinement of the k-th cell decomposition. This allows
us to recover Ben-Or’s result, capture Cucker’s proof that
NCR 6= PtimeR, and to strengthen Mulmuley’s result
by allowing the machines considered to use divisions and
square roots.

B. Entropic co-trees

The principle underlying the improvement of Ben-Or on
Steele and Yao consists in adding additional variables to
avoid using the square root or division, obtaining in this
way a system of polynomial equations instead of a single
equation for a given cell in the k-th cell decomposition.
For instance, instead of writing the equation p/q < 0, one
defines a fresh variable r and considers the system {p =
qr; r < 0}.

To adapt it to graphings, we consider the notion of
entropic co-tree of a graphing that generalises the k-th cell
decomposition to account for the instructions used at each
step of the computation.

As we explained in Remark 3, a given PRAM is inter-
preted as a crewp(αRfull)-program for a fixed integer
p (the number of processors). It is therefore enough to
state the following definitions and results for the amc

crewp(αRfull) to apply them to the interpretations of
arbitrary PRAMs.

Definition 33 (k-th entropic co-tree). Consider a deterministic

CREWp(αRfull)-graphing representative T , and fix an element

⊤ of the set of control states. We can define the k-th entropic

co-tree of T along ⊤ and the state cover inductively:

• k = 0, the co-tree COT0(T) is simply the root nǫ =
R

n × {⊤};

• k = 1, one considers the preimage of nǫ through

T , i.e. T−1(Rn × {⊤}) the set of all non-empty sets

α(me)
−1(Rn × {⊤}) and intersects it pairwise with

the state cover, leading to a finite family (of cardinality

bounded by the number of states multiplied by the

number of edges fo T) (ni
e)i defined as ni = T−1(nǫ)∩

R
n×{i}. The first entropic co-tree COT1(T) of T is then

the tree defined by linking each ni
e to nǫ with an edge

labelled by me;

• k + 1, suppose defined the k-th entropic co-tree of T ,

defined as a family of elements nπ
e

where π is a finite

sequence of states of length at most k and e a sequence

of edges of T of the same length, and where nπ
e

and nπ′

e′

are linked by an edge labelled f if and only if π′ = π.s
and e

′ = f.e where s is a state and f an edge of T . We

consider the subset of elements nπ
e′ where π is exactly

of length k, and for each such element we define new

vertices nπ.s
e.e′ defined as α(me)

−1(nπ
e′)∩Rn×{s} when it

is non-empty. The k+1-th entropic co-tree COTk+1(T) is

defined by extending the k-th entropic co-tree COTk(T),
adding the vertices nπ.s

e.e′ and linking them to nπ
e′ with an

edge labelled by e.

We can easily obtain bounds on the size of the cotrees,
refining the bounds on the kth cell decomposition.

Proposition 4. Let G be a deterministic CREW
p(αRfull)-

graphing with a finite set of edges E, and Seqk(E) the set of

length k sequences of edges in G. We consider the state cover

entropy h0([G]) = limn→∞ Hn
X
([G],S) where S is the state

cover. The cardinality of the length k vertices of the entropic

co-tree of G, as a function c(k) of k, is asymptotically bounded

by g(k) = Card(Seqk(E)).2k.h0([G]), which is itself bounded

by 2Card(E).2k.h0([G]).

C. The main lemma

This definition formalises a notion that appears more
or less clearly in the work of Steele and Yao, and of Ben-
Or, as well as in the proof by Mulmuley. The vertices for
paths of length k in the k-th co-tree corresponds to the k-
th cell decomposition, and the corresponding path defines
the polynomials describing the semi-algebraic set decided
by a computational tree. While in Steele and Yao and
Mulmuley’s proofs, one obtain directly a polynomial for
each cell, we here need to construct a system of equations
for each branch of the co-tree.

Given a crewp(αRfull)-graphing representative G we
will write ∂

√
G the maximal value of n for which an

instruction n
√
i(j) appears in the realiser of an edge of G.

Lemma 5. Let G be a computational graphing represen-

tative with edges realised only by generators of the AMC

CREWp(αRfull), and Seqk(E) the set of length k sequences of

edges in G. Suppose G computes the membership problem

for W ⊆ R
n in k steps, i.e. for each element of R

n,

πS(G
k(x)) = ⊤ if and only if x ∈ W . Then W is a semi-

algebraic set defined by at most Card(Seqk(E)).2k.h0([G])

systems of pk equations of degree at most max(2, ∂
√
G) and

involving at most pk + n variables.

The proof of this theorem is long but simple to under-
stand. We define, for each vertex of the k-th entropic co-
tree, a system of algebraic equations (each of degree at
most 2). The system is defined by induction on k, and uses
the information of the specific instruction used to extend
the sequence indexing the vertex at each step. For instance,
the case of division follows Ben-Or’s method, introducing a
fresh variable and writing down two equations as explained
in Section V-B.

VI. RECOVERING RESULTS FROM THE LITERATURE

A. Ben-Or’s theorem

We now recover Ben-Or result by obtaining a bound
on the number of connected components of the subsets

W ⊆ R
n whose membership problem is computed by a

graphing in less than a given number of iterations. This
theorem is obtained by applying the Milnor-Thom theorem
on the obtained systems of equations to bound the number
of connected components of each cell. Notice that in this
case p = 1 and ∂

√
G = 2 since the model of algebraic

computation trees use only square roots. A mode general
result holds for algebraic computation trees extended with
arbitrary roots, but we here limit ourselves here to the
original model.

Theorem 8. Let G be a computational αRfull-graphing repre-

sentative translating an algebraic computational tree, Seqk(E)
the set of length k sequences of edges in G. Suppose G
computes the membership problem for W ⊆ R

n in k steps.

Then W has at most Card(Seqk(E)).2k.h0([G])+132k+n−1

connected components.

Since a subset computed by a tree T of depth k is
computed by |[T]| in k steps by Theorem 3, we get as
a corollary the original theorem by Ben-Or relating the
number of connected components of a set W and the
depth of the algebraic computational trees that compute
the membership problem for W .

Corollary 1 ([2, Theorem 5]). Let W ⊆ R
n be any set, and

let N be the maximum of the number of connected components

of W and R
n \W . An algebraic computation tree computing

the membership problem for W has height Ω(logN).

Remark 5. In the case of algebraic PRAMs discussed in the

next sections, the k-th entropic co-tree COTk(T)[M] of a ma-

chine M defines an algebraic computation tree which follows

the k-th first steps of computation of M . I.e. the algebraic

computation tree COTk(T)[M] approximate the computation

of M in such a way that M and COTk(T)[M] behave in the

exact same manner in the first k steps.

B. Cucker’s theorem

Cucker’s proof considers the problem defined as the
following algebraic set.

Definition 34. Define Fer to be the set:

{x ∈ R
ω | |x| = n ⇒ x2n

1 + x2n

2 = 1},
where |x| = max{n ∈ ω | xn 6= 0}.

It can be shown to lie within PtimeR, i.e. it is decided by
a real Turing machine [21] – i.e. working with real numbers
and real operations –, running in polynomial time.

Theorem 9 (Cucker ([3], Proposition 3)). The problem Fer
belongs to PTIMER.

We now prove that Fer is not computable by an alge-
braic circuit of polylogarithmic depth. The proof follows
Cucker’s argument, but uses the lemma proved in the
previous section.

Theorem 10 (Cucker ([3], Theorem 3.2)). No algebraic circuit

of depth k = logi n and size kp compute Fer.

Proof. For this, we will use the lower bounds result obtained in

the previous section. Indeed, by Theorem 4 and Lemma 5, any

problem decided by an algebraic circuit of depth k is a semi-

algebraic set defined by at most Card(Seqk(E)).2k.h0([G])

systems of k equations of degree at most max(2, ∂
√
G) = 2

(since only square roots are allowed in the model) and in-

volving at most k+n variables. But the curve FR
2n defined as

{x2n

1 +x2n

2 −1 = 0 | x1, x2 ∈ R} is infinite. As a consequence,

one of the systems of equations must describe a set containing

an infinite number of points of FR
2n .

This set S is characterized, up to some transformations on

the set of equations obtained from the entropic co-tree, by a

finite system of in·equalities of the form

s
∧

i=1

Fi(X1, X2) = 0 ∧
t
∧

j=1

Gj(X1, X2) < 0,

where t is bounded by kp and the degree of the polynomials
Fi and Gi are bounded by 2k. Moreover, since FR

2n is a
curve and no points in S must lie outside of it, we must
have s > 0.

Finally, the polynomials Fi vanish on that infinite subset
of the curve and thus in a 1-dimensional component of the
curve. Since the curve is an irreducible one, this implies
that every Fi must vanish on the whole curve. Using the
fact that the ideal (X2n

1 + X2n

2 − 1) is prime (and thus
radical), we conclude that all the Fi are multiples of X2n

1 +
X2n

2 − 1 which is impossible if their degree is bounded by
2log

i n as it is strictly smaller than 2n.

VII. A PROOF THAT NCZ 6= PTIME

In this section, we provide a new presentation of a result
of Mulmuley which is part of his lower bounds for “prams
without bit operations”. The idea is to encode a specific
decision problem and the run of a PRAM as two specific
subsets of the same space and show that no short run of the
machine can define the set of all instances of the decision
problem. More specifically, consider the problem maxflow:
given a weighted graph, find the maximal flow from a
source edge to a target edge. This is an optimization prob-
lem. It can be turned into a decision problem by adding
a new variable z—a threshold—and asking whether there
exists a solution greater than z. This decision problem is
known to be Ptime-complete [11].

A. Geometric Interpretation of Optimization Problems

Let Popt be an optimization problem on R
d. Solving

Popt on an instance t amounts to optimizing a function
ft(·) over a space of parameters. We note MaxPopt(t) this
optimal value. An affine function Param : [p; q] → R

d is
called a parametrization of Popt. Such a parametrization
defines naturally a decision problem Pdec: for all (x, y, z) ∈
Z
3, (x, y, z) ∈ Pdec iff z > 0, x/z ∈ [p; q] and y/z ≤

MaxPopt ◦ Param(x/z).
In order to study the geometry of Pdec in a way that

makes its connection with Popt clear, we consider the
ambient space to be R

3, and we define the ray [p] of a

point p as the half-line starting at the origin and containing
p. The projection Π(p) of a point p on a plane is the
intersection of [p] and the affine plane A1 of equation z = 1.
For any point p ∈ A1, and all p1 ∈ [p], Π(p1) = p. It is clear
that for (p, p′, q) ∈ Z

2 ×N
+, Π((p, p′, q)) = (p/q, p′/q, 1).

The cone [C] of a curve C is the set of rays of points
of the curve. The projection Π(C) of a surface or a curve
C is the set of projections of points in C. We note Front

the frontier set Front = {(x, y, 1) ∈ R
3 | y = MaxPopt ◦

Param(x)}. and we remark that [Front] = {(x, y, z) ∈ R
2×

R
+ | y/z = MaxPopt ◦ Param(x/z)}.
A machine M decides the problem Pdec in k steps if the

partition of accepting cells in Z
3 induced by the machine

– i.e. the k-th cell decomposition – is finer than the one
defined by the problem’s frontier [Front] (which is defined
by the equation y/z ≤ MaxPopt ◦ Param(x/z)).

Parametric Complexity. We now further restrict the class
of problems we are interested in: we will only consider Popt

such that Front is simple enough.

Definition 35. We say that Param is an affine parametrization

of Popt if MaxPopt ◦ Param is convex, piecewise linear

with breakpoints λ1 < · · · < λρ, and such that all (λi)i
and (MaxPopt ◦ Param(λi))i are rational. The parametric

complexity ρ(Param) is the number of breakpoints ρ. The

bitsize of the parametrization is the maximum of the bitsizes

of the numerators and denominators of the coordinates of the

breakpoints of MaxPopt ◦ Param.

An optimization problem admitting an affine
parametrization of complexity ρ is thus represented
by a quite simple surface [Front]: the cone of the graph of
a piecewise affine function, constituted of ρ segments. We
call such a surface is a ρ-fan and define its bitsize as β
if all its breakpoints are rational and the bitsize of their
coordinates is less than β.

The restriction to such optimization problems seems
quite dramatic when understood geometrically. Nonethe-
less, maxflow admits such a parametrization.

Theorem 11 (Murty [22], Carstensen [23]). There exists an

affine parametrization of bitsize O(n2) and complexity 2Ω(n)

of the maxflow problem for directed and undirected networks,

where n is the number of nodes in the network.

Surfaces and fans. An algebraic surface in R
3 is a surface

defined by an equation of the form p(x, y, z) = 0 where p
is a polynomial. If S is a set of surfaces Si, each defined
by a polynomial pi, the total degree of S is defined as the
sum of the degrees of polynomials pi.

Let K be a compact of R
3 delimited by algebraic

surfaces and S be a finite set of algebraic surfaces of total
degree δ. We can assume that K is delimited by two affine
planes of equation z = µ and z = 2µz and the cone of a
rectangle {(x, y, 1) | |x|, |y| 6 µx,y}, by taking any such
compact containing K and adding the surfaces bounding
K to S. S defines a partition of K by considering maximal

compact subspaces of K whose boundaries are included
in surfaces of S. Such elements are called the cells of the
decomposition associated to S.

Definition 36. Let K be a compact of R
3. A finite set of

surfaces S on K separates a ρ-fan Fan on K if the partition

on Z
3 ∩K induced by S is finer than the one induced by Fan.

A major technical achievement of Mulmuley [4] – not
explicitly stated – was to prove the following theorem, of
purely geometric nature. We refer to the long version of
this work9 for a detailed proof of this result.

Theorem 12 (Mulmuley). Let S be a finite set of algebraic

surfaces of total degree δ. There exists a polynomial P such

that, for all ρ > P (δ), S does not separate ρ-fans.

B. Strengthening Mulmuley’s result

We will now prove our strengthening of Mulmuley’s
lower bounds for “PRAMs without bit operations” [4]. For
this, we will combine the results from previous sections to
establish the following result.

Theorem 2. Let G be a deterministic graphing interpreting a

PRAM with 2O((logN)c) processors, where N is the length of

the inputs and c any positive integer.

Then G does not decide maxflow in O((logN)c) steps.

So, let M be an integer-valued PRAM. We can associate
to it a real-valued PRAM M̃ such that M and M̃ accept the
same (integer) values, and the ratio between the running
time of the two machines is a constant. Indeed:

Proposition 5. Euclidian division can be computed by a

constant time real-valued PRAM.

Proof of Theorem 2. Suppose now that |[M]| has a finite set

of edges E. Then |[M̃]| has too has a finite set of edge

of cardinality O(Card(E)). Since the running time of the

initial PRAM over integers is equal, up to a constant, to the

computation time of the CREWp(αRfull)-program |[M̃]|, we

deduce that if M computes maxflow in k steps, then |[M̃]|
computes maxflow in at most Ck steps where C is a fixed

constant.

By Lemma 5, the problem decided by |[M̃]| in Ck steps

defines a system of equations separating the integral inputs

accepted by M from the ones rejected. I.e. if M computes

maxflow in Ck steps, then this system of equations defines

a set of algebraic surfaces that separate the ρ-fan defined by

maxflow. Moreover, this system of equation has a total degree

bounded by Ckmax(2, ∂
√
G)2p× 2O(Card(E)) × 2k.h0(|[M̃]|).

By Theorem 11 and Theorem 12, there exists a polynomial

P such that a finite set of algebraic surfaces of total degree

δ cannot separate the 2Ω(n)-fan defined by maxflow as long

as 2Ω(n) > P (δ). But here the entropy of G is O(p), as the

entropy of a product f × g satisfies h(f × g) 6 h(f) + h(g)

9For the purpose of double-blind reviews, we do not provide an explicit
reference for the moment.

[24]. Hence δ = O(2p2k), contradicting the hypotheses that

p = 2O((logN)c) and k = 2O((logN)c).

This has Theorem 1 as a corollary, which shows that the
class NCZ does not contain maxflow, and hence is distinct
from Ptime. The question of how this class relates to NC

is open: indeed, while bit extractions cannot be performed
in constant time by our machines (a consequence of
Theorem 5), they can be simulated in logarithmic time.

REFERENCES

[1] J. M. Steele and A. Yao, “Lower bounds for algebraic decision
trees,” Journal of Algorithms, vol. 3, pp. 1–8, 1982.

[2] M. Ben-Or, “Lower bounds for algebraic computation trees,”
in Proceedings of the Fifteenth Annual ACM Symposium
on Theory of Computing, ser. STOC ’83. New York,
NY, USA: ACM, 1983, pp. 80–86. [Online]. Available:
http://doi.acm.org/10.1145/800061.808735

[3] F. Cucker, “Pr 6= NCr,” Journal of Complexity,
vol. 8, no. 3, pp. 230 – 238, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0885064X92900246

[4] K. Mulmuley, “Lower bounds in a parallel model
without bit operations,” SIAM J. Comput., vol. 28,
no. 4, pp. 1460–1509, 1999. [Online]. Available:
https://doi.org/10.1137/S0097539794282930

[5] S. Cook, “The complexity of theorem-proving procedures,” in
Proceedings of the 3rd ACM Symposium on Theory of Comput-
ing, 1971.

[6] R. Williams, “Nonuniform acc circuit lower bounds,” J. ACM,
vol. 61, no. 1, pp. 2:1–2:32, Jan. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2559903

[7] T. Baker, J. Gill, and R. Solovay, “Relativizations of the p =
np question,” SIAM Journal on Computing, vol. 4, no. 4, pp.
431–442, 1975.

[8] A. A. Razborov and S. Rudich, “Natural proofs,” Journal of
Computer and System Sciences, vol. 55, no. 1, pp. 24 – 35, 1997.

[9] S. Aaronson and A. Wigderson, “Algebrization: A new
barrier in complexity theory,” ACM Trans. Comput. Theory,
vol. 1, no. 1, pp. 2:1–2:54, Feb. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1490270.1490272

[10] K. D. Mulmuley, “The gct program toward the p vs. np problem,”
Commun. ACM, vol. 55, no. 6, pp. 98–107, Jun. 2012. [Online].
Available: http://doi.acm.org/10.1145/2184319.2184341

[11] L. M. Goldschlager, R. A. Shaw, and J. Staples, “The maximum
flow problem is log space complete for p,” Theoretical Computer
Science, vol. 21, p. 105–111, 1982.

[12] C. A. Neff, “Specified precision polynomial root isolation is in
NC,” Journal of Computer and System Sciences, vol. 48, no. 3,
pp. 429 – 463, 1994.

[13] T. Seiller, “Interaction graphs: Full linear logic,” in IEEE/ACM
Logic in Computer Science (LICS), 2016. [Online]. Available:
http://arxiv.org/pdf/1504.04152

[14] ——, “Interaction graphs: Graphings,” Annals of Pure and
Applied Logic, vol. 168, no. 2, pp. 278–320, 2017.

[15] ——, “Interaction graphs: Nondeterministic automata,” ACM
Transaction in Computational Logic, vol. 19, no. 3, 2018.

[16] ——, “Interaction Graphs: Exponentials,” Logical Methods in
Computer Science, vol. Volume 15, Issue 3, Aug. 2019. [Online].
Available: https://lmcs.episciences.org/5730

[17] R. L. Adler, A. G. Konheim, and M. H. McAndrew, “Topological
entropy,” Transactions of the American Mathematical Society,
vol. 114, no. 2, pp. 309–319, 1965.

[18] J. E. Hofer, “Topological entropy for noncompact spaces.” The
Michigan Mathematical Journal, vol. 21, no. 3, pp. 235–242,
1975.

[19] J. Milnor, “On the Betti numbers of real varieties,” in Proceed-
ings of the American Mathematical Society, 1964, p. 275.

[20] R. Thom, Sur l’homologie des variétés algébriques réelles.
Princeton University Press, 1965, pp. 255–265.

http://doi.acm.org/10.1145/800061.808735
http://www.sciencedirect.com/science/article/pii/0885064X92900246
https://doi.org/10.1137/S0097539794282930
http://doi.acm.org/10.1145/2559903
http://doi.acm.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/2184319.2184341
http://arxiv.org/pdf/1504.04152
https://lmcs.episciences.org/5730

[21] L. Blum, M. Shub, and S. Smale, “On a theory of computation
and complexity over the real numbers: NP-completeness, recur-
sive functions and universal machines,” American Mathematical
Society. Bulletin. New Series, vol. 21, no. 1, pp. 1–46, 1989.

[22] K. G. Murty, “Computational complexity of parametric linear
programming,” Mathematical programming, vol. 19, no. 1, pp.
213–219, 1980.

[23] P. J. Carstensen, “The complexity of some problems in paramet-
ric linear and combinatorial programming,” Ph.D. dissertation,
Ann Arbor, MI, USA, 1983.

[24] L. W. Goodwyn, “The product theorem for topological
entropy,” Transactions of the American Mathematical Society,
vol. 158, no. 2, pp. 445–452, 1971. [Online]. Available:
http://www.jstor.org/stable/1995916

APPENDIX

Proof of Proposition 1. A computation tree defines an αact-

graphing [T], and the natural αact-graphing representative

obtained from the inductive definition of [T] is clearly an

αact-treeing because T is a tree. That this treeing represents

faithfully the computational tree T raises no difficulty.

Let us now show that the membership problem of a subset

W ⊆ R
n that can be decided by a computational αact-

treeing is also decided by an algebraic computation tree T .

We prove the result by induction on the number of states of

the computational αact-treeing. The initial case is when T the

set of states is exactly {1,⊤,⊥} with the order defined by

1 < ⊤ and 1 < ⊥ and no other relations. This computational

αact-treeing has at most 2 edges, since it is deterministic and

the source of each edge is a subset among R
ω, Rω

k>0, Rω
k60,

R
ω
k>0, Rω

k<0, Rω
k=0, and R

ω
k 6=0.

We first treat the case when there is only one edge of source

R
n. An element (x1, . . . , xn) ∈ R

n is decided by T if the

main representative ((x1, . . . , xn, 0, . . .), 1) is mapped to ⊤.

Since there is only one edge of source the whole space, either

this edge maps into the state ⊤ and the decided subset W is

equal to R
n, or it maps into ⊥ and the subset W is empty. In

both cases, there exists an algebraic computation tree deciding

W . For the purpose of the proof, we will however construct

a specific algebraic computation tree, namely the one that

first computes the right expression and then accepts or rejects.

I.e. if the only edge mapping into ⊤ (resp. ⊥) is realised

by an element m in the AMC of algebraic computation trees

which can be written as a product of generators g1, . . . , gk, we

construct the tree of height k+1 that performs (in that order)

the operations corresponding to g1, g2, etc., and then answers

"yes" (resp. "no").

Now, the case where there is one edge of source a strict

subspace, e.g. Rω
k>0 (all other cases are treated in a similar

manner) and mapping into ⊤ (the other case is treated by sym-

metry). First, let us remark that if there is no other edge, one

could very well add an edge to T mapping into ⊥ and realised

by the identity with source the complementary subspace Rω
k<0.

We build a tree as follows. First, we test whether the variable

xk is greater or equal to zero; this node has two children

corresponding to whether the answer to the test is "yes" or

"no". We now construct the two subtrees corresponding to

these two children. The branch corresponding to "yes" is

described by the edge of source R
ω
k>0: we construct the tree

of height k+1 performing the operations corresponding to the

generators g1, g2, etc. whose product defined the realiser m of

e, and then answers "yes" (resp. "no") if the edge e maps into

the state ⊤ (resp. ⊥). Similarly, the other subtree is described

by the realiser of the edge of source R
ω
k<0.

The result then follows by induction, plugging small sub-

trees as described above in place of the leaves of smaller

subtrees.

Proof of Lemma 2. We show that the set Admk(G) of admis-

sible sequences of states of length k has the same cardinality

as the smallest subcover of S∨[G]−1(S)∨· · ·∨[G]−(k−1)(S)).
Hence Hk(G,S) = 1

k
log2(Card(Admk(G))), which implies

the result.

The proof is done by induction. As a base case, we consider

the set of Adm2(G) of length 2 admissible sequences of states

and the cover V = S ∨ [G]−1(S) of D = [G]−1(X). An

element of V is an intersection X× {s1} ∩ [G]−1(X×{s2}),
and is therefore equal to C[s1, s2]×{s1} where C[s1, s2] ⊂ X

is the set {x ∈ X | [G](x, s1) ∈ X×{s2}}. This set is empty if

and only if the sequence s1s2 belongs to Adm2(G). Moreover,

given another sequence of states s′1s
′
2, the sets C[s1, s2] and

C[s1, s2] are disjoint. Hence a set C[s1, s2] is removable from

the cover V if and only if s1s2 is not admissible. This proves

the case k = 2.

The step for the induction is similar. One considers the par-

tition Sk =
∨−(k−1)

i=0 [G]i(S) as Sk−1 ∨ [G]−(k−1)(S). By the

same argument, one shows elements of Sk−1 ∨ [G]−(k−1)(S)
are of the form C[s = (s0s1 . . . sk−1), sk] × {s1} where

C[s, sk] is the set {x ∈ X | ∀i = 2, . . . , k, [G]i−1(x, s1) ∈
X × {si}}. Again, these sets C[s, sk] are pairwise disjoint

and empty if and only if the sequence s0s1 . . . sk−1, sk is not

admissible.

Proof of Lemma 3. Let us fix some ǫ > 0. Notice that if we

let Hk(G,U) = H0(U ∨ [G]−1(U) ∨ · · · ∨ [G]−(k−1)(U))),
the sequence Hk(U) satisfies Hk+l(U) 6 Hk(U) + Hl(U).
By Fekete’s lemma on subadditive sequences, this implies

that limk→∞ Hk/k exists and is equal to infk Hk/k. Thus

h([G],U) = infk Hk/k.

Now, the entropy h([G]) is defined as

supU limk→∞ Hk(U)/k. This then rewrites as

supU infk Hk(U)/k. We can conclude that h([G]) >

infk Hk(U)/k for all finite open cover U .

Since infk Hk(U)/k is the limit of the sequence Hk/k, there

exists an integer N such that for all k > N the following

inequality holds: |Hk(U)/k − infk Hk(U)/k| < ǫ, which

rewrites as Hk(U)/k − infk Hk(U)/k < ǫ. From this we

deduce Hk(U)/k < h([G])+ ǫ, hence Hk(G,U) < h([G])+ ǫ
since Hk(G,U) = Hk(G,U).

Proof of Proposition 4. For a fixed sequence ~e, the number

of elements nπ
~e of length m in COTk(T) is bounded by

the number of elements in the m-th cell decomposition of

T , and is therefore bounded by g(m) = 2m.h0([T]) by 3.

The number of sequences ~e is bounded by Card(Seqk(E))

http://www.jstor.org/stable/1995916

and therefore the size of COTk(T) is thus bounded by

Card(Seqk(E)).2(k+1).h0([T]).

Proof of Lemma 5. If G computes the membership problem

for W in k steps, it means W can be described as the union of

the subspaces corresponding to the nodes nπ
e with π of length

k in COTk(T). Now, each such subspace is an algebraic set,

as it can be described by a set of polynomials as follows.

Finally let us note that, as in Mulmuley’s work [4], since in

our model the memory pointers are allowed to depend only on

the nonnumeric parameters, indirect memory instructions can

be treated as standard – direct – memory instructions. In other

words, whenever an instruction involving a memory pointer is

encountered during the course of execution, the value of the

pointer is completely determined by nonnumerical data, and

the index of the involved registers is completely determined,

independently of the numerical inputs.

We define a system of equations (Ee
i)i for each node nπ

e

of the entropic co-tree COTk(T). We explicit the construction

for the case p = 1, i.e. for the AMC CREW
1(αRfull) = αRfull;

the case for arbitrary p is then dealt with by following the

construction and introducing p equations at each step (one

for each of the p instructions in αRfull corresponding to an

element of CREWp(αRfull)). This is done inductively on the

size of the path ~e, keeping track of the last modifications

of each register. I.e. we define both the system of equations

(Ee
i)i and a function h(e) : Rω + ⊥ → ω (which is almost

everywhere null)10. For an empty sequence, the system of

equations is empty, and the function h(ǫ) is constant, equal

to 0.

Suppose now that ~e′ = (e1, . . . , em, em + 1), with ~e =
(e1, . . . , em), and that one already computed (Ee

i)i>m and the

function h(e). We now consider the edge em+1 and let (r, r′)
be its realizer. We extend the system of equations (Ee

i)i>m by

a new equation Em+1 and define the function h(e′) as follows:

• if r = +i(j, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and

h(e′)(x) = h(e)(x) otherwise; then Em+1 is x
h(e′)(i)
i =

x
h(e′)(j)
j + x

h(e′)(k)
k ;

• if r = −i(j, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and

h(e′)(x) = h(e)(x) otherwise; then Em+1 is x
h(e′)(i)
i =

x
h(e′)(j)
j − x

h(e′)(k)
k ;

• if r = ×i(j, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and

h(e′)(x) = h(e)(x) otherwise; then Em+1 is x
h(e′)(i)
i =

x
h(e′)(j)
j × x

h(e′)(k)
k ;

• if r = /i(j, k), h(e′)(x) = h(e)(x) + 1 if x = i, and

h(e′)(x) = h(e)(x) otherwise; then Em+1 is x
h(e′)(i)
i =

x
h(e′)(j)
j /x

h(e′)(k)
k ;

• if r = +c
i (k), h(e′)(x) = h(e)(x) + 1 if x = i, and

h(e′)(x) = h(e)(x) otherwise; then Em+1 is x
h(e′)(i)
i =

c+ x
h(e′)(k)
k ;

10The use of ⊥ is to allow for the creation of fresh variables not related
to a register.

• if r = −c
i(k), h(e′)(x) = h(e)(x) + 1 if x = i, and

h(e′)(x) = h(e)(x) otherwise; then Em+1 is x
h(e′)(i)
i =

c− x
h(e′)(k)
k ;

• if r = ×c
i(k), h(e′)(x) = h(e)(x) + 1 if x = i, and

h(e′)(x) = h(e)(x) otherwise; then Em+1 is x
h(e′)(i)
i =

c× x
h(e′)(k)
k ;

• if r = /ci(k), h(e′)(x) = h(e)(x) + 1 if x = i, and

h(e′)(x) = h(e)(x) otherwise; then Em+1 is x
h(e′)(i)
i =

c/x
h(e′)(k)
k ;

• if r = n
√
i(k), h(e′)(x) = h(e)(x) + 1 if x = i, and

h(e′)(x) = h(e)(x) otherwise; then Em+1 is x
h(e′)(i)
i =

n

√

x
h(e′)(k)
k ;

• if r = Id, the source of the edge eq is of the form

{(x1, . . . , xn+ℓ) ∈ R
n+ℓ | P (xk)} × {i} where P

compares the variable xk with 0:

– if P (xk) is xk 6= 0, h(e′)(x) = h(e)(x) + 1 if x =
⊥, and h(e′)(x) = h(e)(x) otherwise then Em+1 is

x
h(e′)(⊥)
⊥ x

h(e′)(k)
k − 1 = 0;

– otherwise we set h(e′) = h(e) and Em+1 equal to P .

We now consider the system of equations (Ei)
k
i=1 defined

from the path e of length k corresponding to a node nπ
e

of the k-th entropic co-tree of G. This system consists in

k equations of degree at most max(2, ∂
√
G) and containing

at most k + n variables, counting the variables x0
1, . . . , x

0
n

corresponding to the initial registers, and adding at most k
additional variables since an edge of ~e introduces at most one

fresh variable. Since the number of vertices nπ
e

is bounded by

Card(Seqk(E)).2k.h0([G]) by 4, we obtained the stated result

in the case p = 1.

The case for arbitrary p is then deduced by noticing that

each step in the induction would introduce at most p new

equations and p new variables. The resulting system thus

contains at most pk equations of degree at most max(2, ∂
√
G)

and containing at most pk + n variables.

Proof of Theorem 8. By Lemma 5 (using the fact that p =
1 and

∂
√
G = 2), the problem W decided by G in k

steps is described by at most Card(Seqk(E)).2k.h0([G]) sys-

tems of k equations of degree 2 involving at most k + n
variables. Applying Theorem 7, we deduce that each such

system of in·equations (of k equations of degree 2 in
R

k+n) describes a semi-algebraic variety S such that
β0(S) < 2.3(n+k)+k−1. This begin true for each of the
Card(Seqk(E)).2k.h0([G]) cells, we have that β0(W) <
Card(Seqk(E)).2k.h0([G])+132k+n−1.

Proof of Corollary 1. Let T be an algebraic computation tree

computing the membership problem for W , and consider the

computational treeing [T]. Let d be the height of T ; by

definition of [T] the membership problem for W is computed

in exactly d steps. Thus, by the previous theorem, W has at

most Card(Seqk(E)).2d.h0([T])+132d+n−1 connected compo-

nents. As the interpretation of an algebraic computational tree,

h0([T]) is at most equal to 2, and Card(Seqk(E)) is bounded

by 2d. Hence N 6 2d.22d+13n−132d, i.e. d = Ω(logN).

Proof of Proposition 5. To compute p//q, where p, q ∈ Z,

consider the real-valued machine such that the ith processor

computes x = p/q − i and if 0 < x 6 1, writes i in the

shared memory. This operation generalizes euclidian division

and is computed in constant time. Moreover, this only uses a

number of processor linear in the bitsize of the inputs if they

are integers.

	Introduction
	Mulmuley's result
	Contributions.
	A more detailed view of the proof method

	Programs as Dynamical systems
	Abstract models of computation and graphings
	Quantitative Soundness
	The algebraic amcs

	Algebraic models of computations as amcs
	Algebraic computation trees
	Algebraic circuits
	Algebraic rams
	The Crew operation and prams

	Entropy and Cells
	Topological Entropy
	Graphings and Entropy
	Cells Decomposition

	Entropic Cotrees and the Main Lemma
	Lower Bounds through the Milnor-Thom theorem
	Entropic co-trees
	The main lemma

	Recovering results from the literature
	Ben-Or's theorem
	Cucker's theorem

	A proof that [Z]NC=Ptime
	Geometric Interpretation of Optimization Problems
	Strengthening Mulmuley's result

	References
	Appendix

