
HAL Id: hal-02487667
https://hal.science/hal-02487667v1

Preprint submitted on 21 Feb 2020 (v1), last revised 26 Jan 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lower bounds for prams over Z
Luc Pellissier, Thomas Seiller

To cite this version:

Luc Pellissier, Thomas Seiller. Lower bounds for prams over Z. 2020. �hal-02487667v1�

https://hal.science/hal-02487667v1
https://hal.archives-ouvertes.fr

Lower bounds for prams over Z

Luc Pellissier∗

LIX, Inria & École Polytechnique, France
https://lipn.univ-paris13.fr/~pellissier/

luc.pellissier@inria.fr

Thomas Seiller†

CNRS, LIPN – UMR 7030 Université Sorbonne Paris Nord
https://www.seiller.org

seiller@lipn.fr

February 21, 2020

Abstract

This paper presents a new abstract method for proving lower bounds
in computational complexity. Based on the notion of topological entropy
for dynamical systems, the method captures four previous lower bounds
results from the literature in algebraic complexity [SY82, BO83, Cuc92,
Mul99]. Among these results lies Mulmuley’s proof that “prams without
bit operations” do not compute the maxflow problem in polylogarithmic
time [Mul99], which was the best known lower bounds in the quest for a
proof that NC 6= Ptime. Inspired from a refinement of Steele and Yao’s
lower bounds [SY82], due to Ben-Or [BO83], we strengthen Mulmuley’s
result to a larger class of machines, showing that prams over integer do
not compute maxflow in polylogarithmic time.

∗Luc Pellissier was partially supported by the ANR projects Elica and Rapido and the
ANII project “Realizabilidad, forcing y computación cuántica”.

†Thomas Seiller was partially supported by the H2020 programme Marie Skłodowska-Curie
Individual Fellowship (H2020-MSCA-IF-2014) project - ReACT and the CNRS INS2I JCJC
grants BiGRE and LoBE.

1

https://lipn.univ-paris13.fr/~pellissier/
https://www.seiller.org

1 Introduction

The NC vs Ptime question is one of the foremost open questions in compu-
tational complexity. In laymen’s terms, it asks whether a problem efficiently
computable on a sequential machine can be computed substantially more effi-
ciently on a parallel machine. It is well known that any problem in NC, i.e. that
is computable in polylogarithmic time on a parallel machine (with a polynomial
number of processors), belongs to Ptime, i.e. is computable in polynomial time
on a sequential machine. The converse, however, is expected to be false. Indeed,
although many problems in Ptime can be shown to be in NC, some of them
seem to resist efficient parallelisation. In particular it is not known wether the
maxflow problem, known to be Ptime-complete [GSS82], belongs to NC.

As part of the investigations on the NC vs Ptime question, a big step
forward is due to K. Mulmuley. In 1999 [Mul99], he showed that a notion of
machine introduced under the name “prams without bit operations” does not
compute maxflow in polylogarithmic time. This notion of machine, quite ex-
otic at first sight, corresponds to an algebraic variant of prams, where registers
contain integers and individual processors are allowed to perform sums, subtrac-
tions and products of integers. It is argued by Mulmuley that this notion of
machine provides an expressive model of computation, able to compute some
non trivial problems in NC such as Neff’s algorithm for computing approximate
roots of polynomials [Nef94]. Although Mulmuley’s result repesents a big step
forward in the quest for a proof that Ptime and NC are not equal, the result
was not strenghtened or reused in the last 20 years, and remained the strongest
known lower bound result.

Contributions. The present work started from a reformulation of Mulmuley’s
proof, based on the mathematical theory of dynamical systems. At first, this
allowed us to abstract the proof method, and realise the proof technique is the
same as the one of two previous lower bound results from the literature: lower
bounds for algebraic computational trees by Steele and Yao [SY82], and Cucker’s
proof that NCR is different from PtimeR [Cuc92], where NCR and PtimeR

are the algebraic variants of NC and Ptime for machines computing over real
numbers. In a second step, we were able to refine the proof method, following
Ben Or’s improvement [BO83] over Steele and Yao’s result. Finally, applying
this refined proof method to algebraic prams, we strengthen Mulmuley’s result
by showing that prams over the integers do not compute maxflow in polyloga-
rithmic time by proving it holds for a strictly stronger notion of machines. I.e.
the result holds for prams over Z, that is algebraic parallel random access ma-
chines where registers contain integers and individual processors are allowed to
compute euclidean division and square roots in addition to the basic operations
(sums, subtraction and products) allowed in Mulmuley’s model.

In the following section, we start by exposing the mathematics at work in
our proof method. Inspired by earlier work in semantics by the second author
[Sei16, Sei17, Sei18, Sei19], it relies strongly on the theory of dynamical systems.
The next section then explains the concept of topological entropy, an invariant
of dynamical systems that quantifies the growth of the number of orbits. Our
first contribution is to explain how this is used to provide upper bounds on the
number of different subsets a given machine can distinguish in a given number of
computation steps. These upper bounds are used in the literature (though not

2

presented this way) to prove lower bounds results [SY82, Cuc92, Mul99] using
the Milnor-Thom theorem [Mil64, Tho65]. We then continue by explaining how
this general method can be improved following a technique introduced by Ben-
Or [BO83] to generalise Steele and Yao’s lower bounds. Finally, we show that
this improved technique can be used to strengthen the result of Mulmuley, and
prove the following theorem, which is the main result of this paper.

Theorem 1. Let M be a pram over Z with 2O((logN)c) processors, with N the
length of the inputs and c any positive integer. Then M does not decide maxflow

in O((logN)c) steps.

This result improves on the previous strongest known lower bounds obtained
by Mulmuley [Mul99], since Mulmuley showed the exact same statement for
“prams without bit operations”, that is prams over Z whose processors use
only sums, subtractions and multiplications.

2 Programs as Dynamical systems

2.1 Abstract models of computation and graphings

We consider computations as a dynamical process, hence model them as a dy-
namical systems with two main components: a space X that abstracts the notion
of configuration space and a monoid acting on this space that represents the dif-
ferent operations allowed in the model of computation. Although the notion of
space considered can vary (one could consider e.g. topological spaces, measure
spaces, topological vector spaces), we restrict ourselves to topological spaces in
this work.

Definition 2. An abstract model of computation (amc) is defined as a monoid
action α : M y X, i.e. a monoid morphism from M to the group of endomor-
phisms of X.

The monoid M is often given with a set G of generators and a set of relations
R which can be deduced from the image of G through α. We denote such an
amc as α : 〈G,R〉 y X.

Programs in an amc α : 〈G,R〉 y X is then defined as graphings, i.e. graphs
whose vertices are subspaces of the space X (representing sets of configurations
on which the program act in the same way) and edges are labelled by elements
of M〈G,R〉, together with a global control state. More precisely, we use here
the notion of topological graphings1 [Sei17].

Definition 3. A graphing representative G w.r.t. a monoid action α : M y X

is defined as a set of edges EG and for each element e ∈ EG a pair (SG
e ,mG

e) of
a subspace SG

e of X – the source of e – and an element mG
e ∈ M – the realiser

of e.

While graphing representatives are convenient to manipulate, they do pro-
vide too much information about the programs. Indeed, if one is to study
programs as dynamical systems, the focus should be on the dynamics, i.e. on

1While “measured” graphings were already considered [Sei17], the definition adapts in a
straightforward manner to allow for other notions such as graphings over topological vector
spaces – which would be objects akin to the notion of quiver used in representation theory.

3

how the object acts on the underlying space. The following notion of refine-
ment captures this idea that the same dynamics might be represented in many
different ways in a graph-like manner.

Definition 4 (Refinement). A graphing representative F is a refinement of a
graphing representative G, noted F 6 G, if there exists a partition (EF

e)e∈EG

of EF such that ∀e ∈ EG:

(

∪f∈EF
e
SF
f

)

△SG
e = ∅; ∀f 6= f ′ ∈ EF

e , SF
f △SF

f ′ = ∅; ∀f ∈ EF
e , mF

f = mG
e

This induces an equivalence relation defined as F ∼ G ⇔ ∃H, H 6 F ∧H 6 G.

The notion of graphing is therefore obtained by considering the quotient of
the set of graphing representative w.r.t. refinement. More concretely, graphings
are obtained by quotienting the set of graphing representatives w.r.t. the equiv-
alence relation defined as “two graphings are equivalent if their action on the
underlying space are equal”.

Definition 5. A graphing is an equivalence class of graphing representatives
w.r.t. the equivalence relation induced by refinements.

Definition 6. Given an amc α : M y X, an abstract program A is a graphing
GA w.r.t. the monoid action α × Sk y X × S

A, where S
A is a finite set of

control states of cardinality k and Sk is the group of permutations of k elements.

Now, as a sanity check, we will show how the notion of graphing do capture
the dynamics as expected. For this, we restrict to deterministic graphings, and
show the notion relates to the usual notion of dynamical system.

Definition 7. A graphing representative G is deterministic if for all x ∈ X

there is at most one e ∈ EG such that x ∈ SG
e . A graphing is deterministic if

its representatives are deterministic. An abstract program is deterministic if its
underlying graphing is deterministic.

Lemma 8. There is a one-to-one correspondence between deterministic graph-
ings w.r.t. the monoid action M y X and the set of partial dynamical systems
f : X →֒ X whose graph is included in the partial order2 and {(x, y) | ∃m ∈
M,α(m)(x) = y}.

2.2 Algebraic srams

In this paper, we will consider algebraic parallel random access machines, that
act not on strings of bits, but on integers. In order to define those properly,
we first define the notion of (sequential) random access machine (sram) before
considering their parallelisation.

An sram command is a pair (ℓ, I) of a line ℓ ∈ N
⋆ and an instruction I

among the following, where i, j ∈ N, ⋆ ∈ {+,−,×, /}, c ∈ Z is a constant and
ℓ, ℓ′ ∈ N

⋆ are lines:

skip; Xi := c; Xi := Xj ⋆ Xk; Xi := Xj; Xi := ♯Xj; ♯Xi := Xj; if Xi = 0 goto ℓ else ℓ′;

2When α is a group action acting by measure-preserving transformations, this is a Borel

equivalence relation R, and the condition stated here boils down to requiring that f belongs
to the full group of α.

4

A sram machine M is then a finite set of commands such that the set of lines
is {1, 2, . . . , |M |}, with |M | the length of M . We will denote the commands in
M by (i, InstM (i)), i.e. InstM (i) denotes the line i instruction. As the semantics
are straightforward, we will only present their formalization as an amc.

We now define the sram action. As we intend to consider prams, we con-
sider from the begining the memory of a sram to be separated in two infinite
blocks Z

ω , intended to represent both shared and a private memory cells. The
underlying space is X = Z

Z ∼= Z
ω × Z

ω. The set of generators is defined fol-
lowing the possible actions of an sram on the memory: consti(c), addi(j, k),
subi(j, k), multi(j, k), eucli(j, k), copy(i, j), copy(♯i, j), copy(i, ♯j).

Each of the generator acts as follows, with ⋆ ∈ {+,−,×} and writing k//n
the floor of k/n with the convention that k//n = 0 when n = 0:

• α(consti(c))(~x) = (~x{xi := c});

• α(⋆i(j, k))(~x) = (~x{xi := xj ⋆
xk});

• α(copy(i, j))(~x) = (~x{xi :=
xj});

• α(copy(♯i, j))(~x) = (~x{xi :=
xxj

});

• α(copy(i, ♯j))(~x) = (~x{xxi
:=

xj});

• α(eucli(j, k))(~x) = (~x{xi :=
xj//xk}).

Machines in the sram model can be represented as graphings w.r.t. this
action; intuitively the encoding works as follows. The notion of control state
allows to represent the notion of line in the program. Then, the action just
defined allows for the representation of all commands but the conditionals. The
conditionals are represented as follows: depending on the value of Xi one wants
to jumps either to the line ℓ or to the line ℓ′; this is easily modelled by two
different edges of respective sources H(i) = {~x | xi = 0} and H(i)c = {~x | xi 6=
0}.

Definition 9. Let M be a sram machine. We define [M] as the graphing with
set of control states {0, 1, . . . , L, L+ 1} where each line ℓ defines:

• a single edge e of source X × {ℓ} and realised by (in the following, ⋆ ∈
{+,−,×} and we write ℓ++ the map ℓ 7→ ℓ+ 1):

– (Id, ℓ++) if InstM (ℓ) = skip;
– (consti(c), ℓ++) if InstM (ℓ) =

Xi := c;
– (⋆i(j, k), ℓ++) if InstM (ℓ) =

Xi := Xj ⋆ Xk;
– (copy(i, j), ℓ++) if InstM (ℓ) =

Xi := Xj;
– (copy(i, ♯j), ℓ++) if InstM (ℓ) =

Xi := ♯Xj;
– (copy(♯i, j), ℓ++) if InstM (ℓ) =

♯Xi := Xj.

• an edge e of source H(k)×{ℓ} realised by (eucli(j, k), ℓ 7→ ℓ+1) if InstM (ℓ)
is Xi := Xj/Xk;

• a pair of edges e, ec of respective sources H(i)× {ℓ} and H(i)c × {ℓ} and
realised by respectively (Id, ℓ 7→ ℓ0) and (Id, ℓ 7→ ℓ1), if the line is a
conditional if Xi = 0 goto ℓ0 else ℓ1.

We immediately define two other models of computations, derived from the
algebraic srams. First are the real-valued srams defined in the same way than
the integer-valued ones, but with underlying space X = R

Z and the instructions
are adapted accordingly:

5

• the division is the usual operation on the reals: α(eucli(j, k))(~x) = (~x{xi :=
xj/xk});

• the three copy operators are only effective on integers: for instance α(copy(i, j))(~x) =
{

~x{xi := xj} if i and j are integers
~x else

This amc (of real-valued algebraic srams) can be enriched by other opera-
tions, such as the square root. We say that a sram such that all the conditionals
are of the form (ℓ, if Xi = 0 goto ℓ0 else ℓ1) with ℓ0, ℓ1 > ℓ is monotonous as
its control flow only goes forward. A monotonous real-valued algebraic sram

with square roots is called an algebraic computational tree: indeed, we recover
in this way the notion defined by, e.g., Ben-Or [BO83].

2.3 The Crew

Based on the notion of sram, we are now able to consider their parallelisation,
namely prams. A pram M is given as a finite sequence of sram machines
M1, . . . ,Mp, where p is the number of processors of M . Each processor Mi

has access to its own, private, set of registers (Xik)k>0 and a shared memory
represented as a set of registers (X0k)k>0.

One has to deal with conflicts when several processors try to access the
shared memory simultaneously. We here chose to work with the Concurrent
Read, Exclusive Write (crew) discipline: at a given step at which several pro-
cessors try to write in the shared memory, only the processor with the smallest
index will be allowed to do so. In order to model such parallel computations,
we abstract the crew at the level of monoids. For this, we suppose that we
have two monoid actions M〈G,R〉 y X ×Y and M〈H,Q〉 y X × Z, where X

represents the shared memory. We then consider the subset # ⊂ G×H of pairs
of generators that potentially conflict with one another – the conflict relation.

Definition 10 (Conflicted sum). Let M〈G,R〉, M〈G′,R′〉 be two monoids and
⊆ G × G′. The conflicted sum of M〈G,R〉 and M〈G′,R′〉 over #, noted
M〈G,R〉 ∗# M〈G′,R′〉, is defined as the monoid with generators ({1} × G) ∪
({2} ×G′) and relations

({1}×R)∪({2}×R′)∪{
(

(1, g)(2, g′), (2, g′)(1, g)
)

| (g, g′) /∈ #}∪{(1, e)}∪{(1, e′)}

where 1, e, e′ are the neutrals of M〈G,R〉 ∗#M〈G′,R′〉, M〈G,R〉 and M〈G′,R′〉
respectively.

In the particular case where # = (G×H ′)∪(H×G′), with H,H ′ respectively
subsets of G and G′, we will write the sum M〈G,R〉 ∗H H′ M〈G′,R′〉.

Remark. When the conflict relation # is empty, this defines the usual direct
product of monoids. This corresponds to the case in which no conflicts can
arise w.r.t. the shared memory. In other words, the direct product of monoids
corresponds to the parallelisation of processes without shared memory.

Dually, when the conflict relation is full (# = G×G′), this defines the free
product of the monoids, i.e. the case in which all instructions interact with the
shared memory and therefore no real parallelisation is possible.

Definition 11. Let α : M y X × Y be a monoid action. We say that an
element m ∈ M is central relatively to α (or just central) if the action of m

6

commutes with the first projection πX : X ×Y → X, i.e.3 α(m);πX = α(m);
in other words m acts as the identity on X.

Intuitively, central elements are those that will not affect the shared memory.
As such, only non-central elements need to be dealt with care when the processes
are put in parallel.

Definition 12. Let M〈G,R〉 y X × Y be an amc. We note Zα the set of
central elements and Z̄α(G) the set {m ∈ G | n 6∈ Zα}.

Definition 13 (The crew of amcs). Let α : M〈G,R〉 y X × Y and β :
M〈H,Q〉 y X×Z be amcs. We define the amc crew(α, β) : M〈G,R〉 ∗

Z̄α(G) Z̄β(G′)

M〈G′,R′〉 y X ×Y × Z by letting crew(α, β)(m,m′) = α(m) ∗ β(m′) on ele-
ments of G×G′, where:

α(m) ∗ β(m′) =

{

∆; [α(m);πY , β(m
′)] if m 6∈ Z̄α(G),m′ ∈ Z̄β(G

′),
∆; [α(m), β(m′);πZ] otherwise,

with ∆ : (x, y, z) 7→ (x, y, x, z) : X×Y × Z → X×Y ×X× Z.

We can now define amc of prams and thus the interpretations of prams as
abstract programs. For each integer p, we define the amc crewp(α) for α is the
amc for srams defined in the previous section. This allows the consideration
of up to p parallel srams. The interpretation of such a sram with p processors
is then defined by considering a set of states equal to L1 ×L2 × · · · × Lp where
for all i the set Li is the set of labels of the i-th processor.

Now, to deal with arbitrary large prams, i.e. with arbitrarily large number
of processors, one considers the following amc defined as a direct limit.

Definition 14 (The amc of prams). Let α : M y X×X be the sram amc.
The amc of prams is defined as lim

−→
crewk(α), where crewk−1(α) is iden-

tified with a restriction of crew
k(α) through crew

k−1(α)(m1, . . . ,mk−1) 7→
crewk(α)(m1, . . . ,mk−1, 1).

Remark that the underlying space of the pram amc is defined as the union
∪n∈ωZ

ω × (Zω)n which we will write Z
ω × (Zω)(ω).

3 Entropy and Cells

3.1 Topological Entropy

Topological Entropy is a standard invariant of dynamical system. It is a value
representing the average exponential growth rate of the number of orbit seg-
ments distinguishable with a finite (but arbitrarily fine) precision. The defini-
tion is based on the notion of open covers.

Definition 15 (Open covers). Given a topological space X, an open cover of
X is a family U = (Ui)i∈I of open subsets of X such that ∪i∈IUi = X. A finite
cover U is a cover whose indexing set is finite. A subcover of a cover U = (Ui)i∈I

is a sub-family S = (Uj)j∈J for J ⊆ I such that S is a cover, i.e. such that
∪j∈JUj = X. We will denote by Cov(X) (resp. FCov(X)) the set of all open
covers (resp. all finite open covers) of the space X.

3Here and in the following, we denote by ; the sequential composition of functions. I.e. f ; g

denotes what is usually written g ◦ f .

7

Definition 16. An open cover U = (Ui)i∈I , together with a continuous function
f : X → X, defines the inverse image open cover f−1(U) = (f−1(Ui))i∈I . Given
two open covers U = (Ui)i∈I and V = (Vj)j∈J , we define their join U ∨ V as the
family (Ui ∩ Vj)(i,j)∈I×J .

Remark. If U ,V are finite, f−1(U) and U ∨ V are finite as well.

Traditionally [AKM65], entropy is defined for continuous maps on a compact
set. However, a generalisation of entropy to non-compact sets can easily be
defined by restricting the usual definition to finite covers4. This is the definition
we will use here.

Definition 17. Let X be a topological space, and U = (Ui)i∈I be a finite cover
of X. We define the quantity H0

X
(U) = min{log2(Card(J)) | J ⊂ I,∪j∈JUj =

X}.

In other words, if k is the cardinality of the smallest subcover of U , H0(U) =
log2(k).

Definition 18. Let X be a topological space and f : X → X be a continuous
map. For any finite open cover U of X, define Hk

X
(f,U) = 1

k
H0

X
(U ∨ f−1(U) ∨

· · · ∨ f−(k−1)(U)).

One can show that the limit limn→∞ Hn
X
(f,U) exists and is finite; it will be

noted h(f,U). The topological entropy of f is then defined as the supremum of
these values, when U ranges over the set of all finite covers FCov(X).

Definition 19. Let X be a topological space and f : X → X be a continuous
map. The topological entropy of f is defined as h(f) = supU∈FCov(X) h(f,U).

3.2 Graphings and Entropy

We now need to define the entropy of deterministic graphings. As mentioned
briefly already, deterministic graphings on a space X are in one-to-one corre-
spondence with partial dynamical systems on X. Thus, we only need to extend
the notion of entropy to partial maps, and we can then define the entropy of a
graphing G as the entropy of its corresponding map [G].

Given a finite cover U , the only issue with partial continuous maps is that
f−1(U) is not in general a cover. Indeed, {f−1(U) | U ∈ U} is a family of open
sets by continuity of f but the union ∪U∈Uf

−1(U) is a strict subspace of X

(namely, the domain of f). It turns out the solution to this problem is quite
simple: we notice that f−1(U) is a cover of f−1(X) and now work with covers
of subspaces of X. Indeed, U ∨ f−1(U) is itself a cover of f−1(X) and therefore
the quantity H2

X
(f,U) can be defined as (1/2)H0

f−1(X)(U ∨ f−1(U)).
We now generalise this definition to arbitrary iterations of f by extending

Definitions 18 and 19 to partial maps as follows.

Definition 20. Let X be a topological space and f : X → X be a contin-
uous partial map. For any finite open cover U of X, we define Hk

X
(f,U) =

1
k
H0

f−k+1(X)(U ∨ f−1(U) ∨ · · · ∨ f−(k−1)(U)). The entropy of f is then defined

as h(f) = supU∈FCov(X) h(f,U), where h(f,U) is again defined as the limit
limn→∞ Hn

X
(f,U).

4This is discussed by Hofer [Hof75] together with another generalisation based on the
Stone-Čech compactification of the underlying space.

8

We now consider the special case of a graphing G with set of control states
SG. For an intuitive understanding, one can think of G as the representation
of a pram machine. We focus on the specific open cover indexed by the set of
control states, i.e. S = (X × {s}s∈SG), and call it the states cover. We will
now show how the partial entropy Hk(G,S) is related to the set of admissible
sequence of states. Let us define those first.

Definition 21. Let G be a graphing, with set of control states SG. An ad-
missible sequence of states is a sequence s = s1s2 . . . sn of elements of SG such
that for all i ∈ {1, 2, . . . , n − 1} there exists a subset C of X – i.e. a set of
configurations – such that G contains an edge from C × {si} to a subspace of
X× {si+1}.

Example 22. As an example, let us consider the very simple graphing with four
control states a, b, c, d and edges from X × {a} to X × {b}, from X × {b} to
X × {c}, from X × {c} to X × {b} and from X × {c} to X × {d}. Then the
sequences abcd and abcbcbc are admissible, but the sequences aba, abcdd, and
abcba are not.

Lemma 23. Let G be a graphing, and S its states cover. Then for all integer
k, the set Admk(G) of admissible sequences of states of length k > 1 is of

cardinality 2k.H
k(G,S).

A tractable bound on the number of admissible sequences of states can be ob-
tained by noticing that the sequence Hk(G,S) is sub-additive, i.e. Hk+k′

(G,S) 6
Hk(G,S) + Hk′

(G,S). A consequence of this is that Hk(G,S) 6 kH1(G,S).
Thus the number of admissible sequences of states of length k is bounded by
2k

2H1(G,S). We now study how the cardinality of admissible sequences can be
related to the entropy of G. This is deduced from Lemma 23 and the following
general result (which does not depend on the chosen cover).

Lemma 24. For all ǫ > 0 and all cover U , there exists a natural number N
such that ∀k > N , Hk(G,U) < h([G]) + ǫ.

The two previous lemmas combine to give the following.

Lemma 25. Let G be a graphing. Then Card(Admk(G)) = O(2k.h([G])) as
k → ∞.

3.3 Cells Decomposition

Now, let G be a deterministic graphing with its state cover S. We fix k > 2 and
consider the partition (C[s])s∈Admk(G) of the space [G]−k+1(X), where the sets
C[s] = C[(s1s2 . . . sk−1, sk)] are defined inductively as follow:

• C[s1, s2] is the set {x ∈ X | [G](x, s1) ∈ X × {s2}};
• C[(s1s2 . . . sk−1, sk)] is the set {x ∈ X | ∀i ∈ {2, . . . , k}, [G]i−1(x, s1) ∈
X× {si}}.

This decomposition splits the set of initial configurations into cells satisfying
the following property: for any two initial configurations contained in the same
cell C[s], the k-th first iterations of G go through the same admissible sequence
of states s.

9

Definition 26. Let G be a deterministic graphing, with its state cover S. Given
an integer k, we define the k-th cell decomposition of X along G as the partition
{C[s] | s ∈ Admk(G)}.

Then Lemma 23 provides a bound on the cardinality of the k-th cell de-
composition. Using the results in the previous section, we can then obtain the
following proposition.

Proposition 27. Let G be a deterministic graphing, with entropy h(G). The
cardinality of the k-th cell decomposition of X w.r.t. G, as a function c(k) of k,
is asymptotically bounded by g(k) = 2k.h([G]), i.e. c(k) = O(g(k)).

We also state another bound on the number of cells of the k-th cell decom-
position, based on the state cover entropy, i.e. the entropy with respect to the
state cover rather than the usual entropy which takes the supremum of cover
entropies when the cover ranges over all finite covers of the space. This result
is a simple consequence of Theorem 23.

Proposition 28. Let G be a deterministic graphing. We consider the state
cover entropy h0([G]) = limn→∞ Hn

X
([G],S) where S is the state cover. The

cardinality of the k-th cell decomposition of X w.r.t. G, as a function c(k) of k,
is asymptotically bounded by g(k) = 2k.h0([G]), i.e. c(k) = O(g(k)).

4 Algebraic Computation Trees and Ben-Or’s tech-

nique

4.1 Lower Bounds through the Milnor-Thom theorem

The results stated in the last section can be used to prove lower bounds in
several models. These results rely on two ingredients: the above bounds on the
cardinality of the k-th cell decomposition, and the Milnor-Thom theorem.

The Milnor-Thom theorem, which was proven independently by Milnor [Mil64]
and Thom [Tho65], states bounds on the sum of the Betti numbers (i.e. the rank
of the homology groups) of an algebraic variety. This theorem provides bounds
on the number of connected components (i.e. the 0-th Betti number β0(V))
of a semi-algebraic variety V . We here use the statement of the Milnor-Thom
theorem as given by Ben-Or [BO83, Theorem 2].

Theorem 29. Let V ⊆ R
n be a set defined by polynomial in·equations (n,m, h ∈

N):

{qi(~x) = 0 | 0 6 i 6 m} ∪ {pi(~x) > 0 | 0 6 i 6 s} ∪ {pi(~x) 6 0 | s+ 1 6 i 6 h}.

Then β0(V) is at most d(2d− 1)n+h−1, where d = max{2, deg(qi), deg(pj)}.

The lower bounds proofs then proceed by the following proof strategy:

1. consider an algebraic model of computation, and define the corresponding
amc;

2. show that the cells in the k-th cell decomposition are semi-algebraic sets
defined by systems of equations E with explicit upper bounds on the num-
ber of equations and the degrees of the polynomials;

10

3. bound the number of connected components of each cell by the Milnor-
Thom theorem;

4. given an algebraic problem (e.g. a subset of Rk), deduce lower bounds on
the length of the computations deciding that problem based on its number
of connected components.

Among the lower bound proofs using this proof strategy, we point out Steele
and Yao lower bounds on algebraic decision trees [SY82], Cucker’s proof that
NCR (PtimeR [Cuc92], as well as Mulmuley’s proof of lower bounds on
“prams without bit operations” [Mul99]. These results, which do not use the
notion of entropy, and do not cite each other, are thus for the first time related
by our abstract point of view. For more details, we point the interested reader to
an unpublished research report [PS18b] or the long version of this work [PS18a].

We will now explain how this method can be refined following Ben-Or’s proof
of lower bounds for algebraic computational trees. Indeed, while Cucker’s result
[Cuc92] and Mulmuley’s [Mul99] were not later improved upon5, Steele and
Yao’s lower bounds were extended by Ben-Or [BO83] to encompass algebraic
computational trees with sums, substractions, products, divisions and square
roots. The technique of Ben-Or improves on Steele and Yao in that it provides
a method to deal with divisions and square roots. We here abstract this method
by considering k-th entropic co-trees which are a refinement of the k-th cell
decomposition. This allows us to recover Ben-Or’s result and, most importantly,
to strengthen Mulmuley’s result by allowing the machines considered to use
divisions and square roots.

4.2 Entropic co-trees

The principle underlying the improvement of Ben-Or on Steele and Yao consists
in adding additional variables to avoid using the square root or division, obtain-
ing in this way a system of polynomial equations instead of a single equation
for a given cell in the k-th cell decomposition. For instance, instead of writing
the equation p/q < 0, one defines a fresh variable r and considers the system
{p = qr; r < 0}.

To adapt it to graphings, we consider the notion of entropic co-tree of a
graphing that generalises the k-th cell decomposition to account for the instruc-
tions used at each step of the computation.

Definition 30 (k-th entropic co-tree). Consider a deterministic graphing rep-
resentative T , and fix an element ⊤ of the set of control states. We can define
the k-th entropic co-tree of T along ⊤ and the state cover inductively:

• k = 0, the co-tree coT0(T) is simply the root nǫ = R
n × {⊤};

• k = 1, one considers the preimage of nǫ through T , i.e. T−1(Rn × {⊤})
the set of all non-empty sets α(me)

−1(Rn×{⊤}) and intersects it pairwise
with the state cover, leading to a finite family (of cardinality bounded by
the number of states multiplied by the number of edges fo T) (ni

e)i defined
as ni = T−1(nǫ) ∩R

n × {i}. The first entropic co-tree coT1(T) of T is
then the tree defined by linking each ni

e to nǫ with an edge labelled by
me;

5Although one may argue that Cucker’s result did not call for improvement, this is not
true of Mulmuley’s.

11

• k + 1, suppose defined the k-th entropic co-tree of T , defined as a family
of elements nπ

e where π is a finite sequence of states of length at most k
and e a sequence of edges of T of the same length, and where nπ

e and nπ′

e′

are linked by an edge labelled f if and only if π′ = π.s and e
′ = f.e where

s is a state and f an edge of T . We consider the subset of elements nπ
e′

where π is exactly of length k, and for each such element we define new
vertices nπ.s

e.e′ defined as α(me)
−1(nπ

e′) ∩ R
n × {s} when it is non-empty.

The k+1-th entropic co-tree coTk+1(T) is defined by extending the k-th
entropic co-tree coTk(T), adding the vertices nπ.s

e.e′ and linking them to
nπ
e′ with an edge labelled by e.

This definition formalises a notion that appears more or less clearly in the
work of Steele and Yao, and of Ben-Or, as well as in the proof by Mulmuley.
The vertices for paths of length k in the k-th co-tree corresponds to the k-th cell
decomposition, and the corresponding path defines the polynomials describing
the semi-algebraic set decided by a computational tree. While in Steele and Yao
and Mulmuley’s proofs, one obtain directly a polynomial for each cell, we here
need to construct a system of equations for each branch of the co-tree. Before
explaining how this can be done, we first state bounds on the size of entropic
co-trees.

Proposition 31. Let G be a deterministic graphing with a finite set of edges E,
and Seqk(E) the set of length k sequences of edges in G. We consider the state
cover entropy h0([G]) = limn→∞ Hn

X
([G],S) where S is the state cover. The

cardinality of the length k vertices of the entropic co-tree of G, as a function
c(k) of k, is asymptotically bounded by g(k) = Card(Seqk(E)).2k.h0([G]), which
is itself bounded by 2Card(E).2k.h0([G]).

4.3 Abstracting Ben-Or’s technique

We now use Ben-Or proof technique to obtain a bound on the number of con-
nected components of the subsets W ⊆ R

n whose membership problem is com-
puted by a graphing in less than a given number of iterations.

This theorem specialises to the original theorem by Ben-Or relating the
number of connected components of a set W and the depth of the algebraic
computational trees that compute the membership problem for W .

Theorem 32. Let G be a computational graphing representative with edges
realised only by generators of the amc of algebraic computational trees, and
Seqk(E) the set of length k sequences of edges in G. Suppose G computes the
membership problem for W ⊆ R

n in k steps, i.e. for each element of R
n,

πS(G
k(x)) = ⊤ if and only if x ∈ W . Then W is a semi-algebraic set defined by

at most Card(Seqk(E)).2h0([G]) systems of k equations of degree at most 2 and
involving at most k + n variables.

The proof of this theorem is long but simple to understand. We define, for
each vertex of the k-th entropic co-tree, a system of algebraic equations (each
of degree at most 2). The system is defined by induction on k, and uses the
information of the specific instruction used to extend the sequence indexing
the vertex at each step. Division for instance is dealt with following Ben-Or’s
method, by introducing a fresh variable and writing down the two equations
written as the beginning of Section 4.2.

12

Remark. The total degree6 of the system is bounded by 2kCard(Seqk(E)).2h0([G]).

This theorem extends to the case of general computational graphings by
considering the algebraic degree of the graphing.

Definition 33 (Algebraic degree). The algebraic degree of an element of the
amc is the minimal number of generators needed to express it. The algebraic
degree of a graphing is the maximum of the algebraic degrees of the realisers of
its edges.

If an edge is realised by an element m of algebraic degree D, the method
above applies by introducing the D new equations corresponding to the D gener-
ators used to define m. The following general result is then obtained by applying
the Milnor-Thom theorem on the obtained systems of equations to bound the
number of connected components of each cell.

Theorem 34. Let G be a computational graphing representative, Seqk(E) the
set of length k sequences of edges in G, and D its algebraic degree. Suppose
G computes the membership problem for W ⊆ R

n in k steps, i.e. for each
element of R

n, πS(G
k(x)) = ⊤ if and only if x ∈ W . Then W has at most

Card(Seqk(E)).2h0([G])+132kD+n+1 connected components.

Corollary 35 ([BO83, Theorem 5]). Let W ⊆ R
n be any set, and let N be

the maximum of the number of connected components of W and R
n \ W . An

algebraic computation tree computing the membership problem for W has height
Ω(logN).

Finally, let us make the following remark, which will be essential in the next
sections.

Remark. In the case of algebraic prams discussed in the next sections, the k-th
entropic co-tree coTk(T)[M] of a machine M defines an algebraic computational
tree which follows the k-th first steps of computation of M . I.e. the algebraic
computational tree coTk(T)[M] approximate the computation of M in such a
way that M and coTk(T)[M] behave in the exact same manner in the first k
steps.

5 Algebraic surfaces for machines and problems

We now encode a specific decision problem and the run of a pram as two specific
subsets of the same space and show that no short run of the machine can define
the set of all instances of the decision problem.

5.1 Geometric Interpretation of Optimization Problems

Let Popt be an optimization problem on R
d. Solving Popt on an instance t

amounts to optimizing a function ft(·) over a space of parameters. We note
MaxPopt(t) this optimal value. An affine function Param : [p; q] → R

d is called
a parametrization of Popt. Such a parametrization defines naturally a decision
problem Pdec: for all (x, y, z) ∈ Z

3, (x, y, z) ∈ Pdec iff z > 0, x/z ∈ [p; q] and
y/z ≤ MaxPopt ◦ Param(x/z).

6cf. Section 5.2 for the definition.

13

In order to study the geometry of Pdec in a way that makes its connection
with Popt clear, we consider the ambient space to be R

3, and we define the ray
[p] of a point p as the half-line starting at the origin and containing p. The
projection Π(p) of a point p on a plane is the intersection of [p] and the affine
plane A1 of equation z = 1. For any point p ∈ A1, and all p1 ∈ [p], Π(p1) = p.
It is clear that for (p, p′, q) ∈ Z

2 ×N
+, Π((p, p′, q)) = (p/q, p′/q, 1).

The cone [C] of a curve C is the set of rays of points of the curve. The
projection Π(C) of a surface or a curve C is the set of projections of points in C.
We note Front the frontier set Front = {(x, y, 1) ∈ R

3 | y = MaxPopt◦Param(x)}.
and we remark that [Front] = {(x, y, z) ∈ R

2 × R
+ | y/z = MaxPopt ◦

Param(x/z)}.
A machine M decides the problem Pdec in k steps if the partition of accept-

ing cells in Z
3 induced by the machine – i.e. the k-th cell decomposition – is

finer than the one defined by the problem’s frontier [Front] (which is defined by
the equation y/z ≤ MaxPopt ◦ Param(x/z)).

Parametric Complexity. We now further restrict the class of problems we
are interested in: we will only consider Popt such that Front is simple enough.
Precisely:

Definition 36. We say that Param is an affine parametrization of Popt if
MaxPopt ◦ Param is convex, piecewise linear with breakpoints λ1 < · · · < λρ,
and such that all (λi)i and (MaxPopt ◦ Param(λi))i are rational. The paramet-
ric complexity ρ(Param) is the number of breakpoints ρ. The bitsize of the
parametrization is the maximum of the bitsizes of the numerators and denomi-
nators of the coordinates of the breakpoints of MaxPopt ◦ Param.

An optimization problem admitting an affine parametrization of complexity
ρ is thus represented by a quite simple surface [Front]: the cone of the graph of
a piecewise affine function, constituted of ρ segments. We call such a surface
is a ρ-fan and define its bitsize as β if all its breakpoints are rational and the
bitsize of their coordinates is less than β.

The restriction to such optimization problems seems quite dramatic when
understood geometrically. Nonetheless, maxflow admits such a parametrization.

Theorem 37 (Murty [Mur80], Carstensen [Car83]). There exists an affine
parametrization of bitsize O(n2) and complexity 2Ω(n) of the maxflow problem
for directed and undirected networks, where n is the number of nodes in the
network.

5.2 Surfaces from a pram

Let M be an integer-valued pram. We can associate to it a real-valued pram

M ′ such that M and M ′ accept the same (integer) values, and the ratio between
the running time of the two machines is a constant. Indeed,

Proposition 38. Euclidian division can be computed by a constant time real-
valued pram.

Suppose now that M has, as a graphing, a finite set of edges Card(E). M ′

has too, and the cardinality of its set of edges is O(Card(E)). For each k ∈ N,
such a real-valued machine M ′, if it uses p processors, induces a k-th entropic

14

co-tree, which happens to be in a p-fold product of the amc of algebraic com-
putational trees and so can be rewritten (by flattening the said products) in
a co-tree in the amc of algebraic computational trees, but p times longer. By
Theorem 32, this graphing defines a system of equations separating the integral
inputs accepted by M from the others of total degree 2kp×2O(Card(E)).2h0([M]).

Surfaces and fans. An algebraic surface in R
3 is a surface defined by an

equation of the form p(x, y, z) = 0 where p is a polynomial. If S is a set of
surfaces Si, each defined by a polynomial pi, the total degree of S is defined as
the sum of the degrees of polynomials pi.

Let K be a compact of R3 delimited by algebraic surfaces and S be a finite
set of algebraic surfaces of total degree δ. We can assume that K is delimited
by two affine planes of equation z = µ and z = 2µz and the cone of a rectangle
{(x, y, 1) | |x|, |y| 6 µx,y}, by taking any such compact containing K and adding
the surfaces bounding K to S. S defines a partition of K by considering maximal
compact subspaces of K whose boundaries are included in surfaces of S. Such
elements are called the cells of the decomposition associated to S.

Definition 39. Let K be a compact of R
3. A finite set of surfaces S on K

separates a ρ-fan Fan on K if the partition on Z
3∩K induced by S is finer than

the one induced by Fan.

A major technical achievement of Mulmuley [Mul99] – not explicitly stated
– was to prove the following theorem, of purely geometric nature.

Theorem 40 (Mulmuley). Let S be a finite set of algebraic surfaces of total
degree δ. There exists a polynomial P such that, for all ρ > P (δ), S does not
separate ρ-fans.

6 The result

We can then obtain the following result, from which Theorem 1 is a straightfor-
ward corollary, by putting together Theorems 32, 37, and 40.

Theorem 41. Let G be a deterministic graphing interpreting a pram with
2O((logN)c) processors, where N is the length of the inputs and c any positive
integer.

Then G does not decide maxflow in O((logN)c) steps.

The definition of pram we considered is quite idealized in that the complex-
ities are stated without references to the size of the inputs. We can consider
the length of an input to be the minimal length of a binary word representing
it. To account for the size of the input, we can refine the model and consider
that the memory locations do not contain natural numbers but binary words
whose lengths can be a parameter of the model. The approach outlined here
is very sensible to the fact that all computed quantities are polynomial in the
inputs, which would be wrong if we allowed for access of any arbitrary bit of
the memory. Mulmuley defines this model as the pram model without bit oper-
ations, by taking the point of view that the integers stored in the memory really
are binary words, whose individual bits can not be accessed easily.

Here, we are able to compute arbitrary quotients by adding new phantom
variables. Our model is thus of pram without bit operations and arbitrary

15

divisions, in Mulmuley’s parlance. The question of how this class is related
to NC is open: indeed, while bit extractions cannot be performed in constant
time by our machines (a consequence of Theorem 32), they can be simulated in
logarithmic time.

References

[AKM65] R. L. Adler, A. G. Konheim, and M. H. McAndrew. Topologi-
cal entropy. Transactions of the American Mathematical Society,
114(2):309–319, 1965.

[BO83] M. Ben-Or. Lower bounds for algebraic computation trees. In Pro-
ceedings of the Fifteenth Annual ACM Symposium on Theory of Com-
puting, STOC ’83, pages 80–86, New York, NY, USA, 1983. ACM.

[Car83] P. J. Carstensen. The Complexity of Some Problems in Parametric
Linear and Combinatorial Programming. PhD thesis, Ann Arbor, MI,
USA, 1983.

[Cuc92] Felipe Cucker. Pr 6= NCr. Journal of Complexity, 8(3):230 – 238,
1992.

[GSS82] L. M. Goldschlager, R. A. Shaw, and J. Staples. The maximum flow
problem is log space complete for p. Theoretical Computer Science,
21:105–111, 1982.

[Hof75] J. E. Hofer. Topological entropy for noncompact spaces. The Michi-
gan Mathematical Journal, 21(3):235–242, 1975.

[Mil64] John Milnor. On the Betti numbers of real varieties. In Proceedings
of the American Mathematical Society, page 275, 1964.

[Mul99] K. Mulmuley. Lower bounds in a parallel model without bit opera-
tions. SIAM J. Comput., 28(4):1460–1509, 1999.

[Mur80] K. G Murty. Computational complexity of parametric linear program-
ming. Mathematical programming, 19(1):213–219, 1980.

[Nef94] C. Andrew Neff. Specified precision polynomial root isolation is in
NC. Journal of Computer and System Sciences, 48(3):429 – 463,
1994.

[PS18a] Luc Pellissier and Thomas Seiller. Prams over integers do not compute
maxflow efficiently. Submitted, 2018.

[PS18b] Luc Pellissier and Thomas Seiller. Semantics, en-
tropy and complexity lower bounds. Technical Report,
https://www.seiller.org/documents/articles/EntropyLowerBounds.pdf,
2018.

[Sei16] T. Seiller. Interaction graphs: Full linear logic. In IEEE/ACM Logic
in Computer Science (LICS), 2016.

16

https://www.seiller.org/documents/articles/EntropyLowerBounds.pdf

[Sei17] T. Seiller. Interaction graphs: Graphings. Annals of Pure and Applied
Logic, 168(2):278–320, 2017.

[Sei18] Thomas Seiller. Interaction graphs: Nondeterministic automata.
ACM Transaction in Computational Logic, 19(3), 2018.

[Sei19] Thomas Seiller. Interaction Graphs: Exponentials. Logical Methods
in Computer Science, Volume 15, Issue 3, August 2019.

[SY82] J. M. Steele and A. Yao. Lower bounds for algebraic decision trees.
Journal of Algorithms, 3:1–8, 1982.

[Tho65] R. Thom. Sur l’homologie des variétés algébriques réelles, pages 255–
265. Princeton University Press, 1965.

A Omitted proofs

Proof of 23. We show that the set Admk(G) of admissible sequences of states
of length k has the same cardinality as the smallest subcover of S ∨ [G]−1(S) ∨
· · · ∨ [G]−(k−1)(S)). Hence Hk(G,S) = 1

k
log2(Card(Admk(G))), which implies

the result.
The proof is done by induction. As a base case, we consider the set of

Adm2(G) of length 2 admissible sequences of states and the cover V = S ∨
[G]−1(S) of D = [G]−1(X). An element of V is an intersection X × {s1} ∩
[G]−1(X× {s2}), and is therefore equal to C[s1, s2]× {s1} where C[s1, s2] ⊂ X

is the set {x ∈ X | [G](x, s1) ∈ X × {s2}}. This set is empty if and only if
the sequence s1s2 belongs to Adm2(G). Moreover, given another sequence of
states s′1s

′
2, the sets C[s1, s2] and C[s1, s2] are disjoint. Hence a set C[s1, s2] is

removable from the cover V if and only if s1s2 is not admissible. This proves
the case k = 2.

The step for the induction is similar. One considers the partition Sk =
∨−(k−1)

i=0 [G]i(S) as Sk−1 ∨ [G]−(k−1)(S). By the same argument, one shows
elements of Sk−1 ∨ [G]−(k−1)(S) are of the form C[s = (s0s1 . . . sk−1), sk]×{s1}
where C[s, sk] is the set {x ∈ X | ∀i = 2, . . . , k, [G]i−1(x, s1) ∈ X×{si}}. Again,
these sets C[s, sk] are pairwise disjoint and empty if and only if the sequence
s0s1 . . . sk−1, sk is not admissible.

Proof of Lemma 24. Let us fix some ǫ > 0. Notice that if we let Hk(G,U) =
H0(U ∨ [G]−1(U)∨· · ·∨ [G]−(k−1)(U))), the sequence Hk(U) satisfies Hk+l(U) 6
Hk(U) +Hl(U). By Fekete’s lemma on subadditive sequences, this implies that
limk→∞ Hk/k exists and is equal to infk Hk/k. Thus h([G],U) = infk Hk/k.

Now, the entropy h([G]) is defined as supU limk→∞ Hk(U)/k. This then
rewrites as supU infk Hk(U)/k. We can conclude that h([G]) > infk Hk(U)/k
for all finite open cover U .

Since infk Hk(U)/k is the limit of the sequence Hk/k, there exists an in-
teger N such that for all k > N the following inequality holds: |Hk(U)/k −
infk Hk(U)/k| < ǫ, which rewrites as Hk(U)/k − infk Hk(U)/k < ǫ. From
this we deduce Hk(U)/k < h([G]) + ǫ, hence Hk(G,U) < h([G]) + ǫ since
Hk(G,U) = Hk(G,U).

17

Proof of Proposition 31. For a fixed sequence ~e, the number of elements nπ
~e

of length m in coTk(T) is bounded by the number of elements in the m-th
cell decomposition of T , and is therefore bounded by g(m) = 2m.h0([T]) by
Theorem 28. The number of sequences ~e is bounded by Card(Seqk(E)) and
therefore the size of coTk(T) is thus bounded by Card(Seqk(E)).2(k+1).h0([T]).

Proof of Corollary 35. Let T be an algebraic computation tree computing the
membership problem for W , and consider the computational treeing [T]. Let
d be the height of T ; by definition of [T] the membership problem for W
is computed in exactly d steps. Thus, by the previous theorem, W has at
most Card(Seqk(E)).2h0([T])+132d+n+1 connected components. As the inter-
pretation of an algebraic computational tree, h0([T]) is at most equal to 2,
and Card(Seqk(E)) is bounded by 2d. Hence N 6 2d.233n+132d, i.e. d =
Ω(logN).

Proof of Lemma ??. Let

W =
{

x ∈ R |
⌊ x

2k−1

⌋

− 2
⌊ x

2k

⌋

= 1
}

W is the disjoint union of m−k+1 intervals, and so is its complement in]0; 2m[.
So, by Theorem 35, any algebraic computation tree computing the k-th bit has
height Ω(logm− k).

Proof of Theorem 32. If G computes the membership problem for W in k steps,
it means W can be described as the union of the subspaces corresponding to
the nodes nπ

e
with π of length k in coTk(T). Now, each such subspace is an

algebraic set, as it can be described by a set of polynomials as follows.
We define a system of equations (Ee

i)i for each node nπ
e of the entropic co-tree

coTk(T). This is done inductively on the size of the path ~e, keeping track of the
last modifications of each register. I.e. we define both the system of equations
(Ee

i)i and a function h(e) : Rω + ⊥ → ω (which is almost everywhere null)7.
For an empty sequence, the system of equations is empty, and the function h(ǫ)
is constant, equal to 0.

Suppose now that ~e′ = (e1, . . . , em, em + 1), with ~e = (e1, . . . , em), and that
one already computed (Ee

i)i>m and the function h(e). We now consider the
edge em+1 and let (r, r′) be its realizer. We extend the system of equations
(Ee

i)i>m by a new equation Em+1 and define the function h(e′) as follows:

• if r = addi(j, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and h(e′)(x) = h(e)(x)

otherwise; then Em+1 is x
h(e′)(i)
i = x

h(e′)(j)
j + x

h(e′)(k)
k ;

• if r = subi(j, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and h(e′)(x) = h(e)(x)

otherwise; then Em+1 is x
h(e′)(i)
i = x

h(e′)(j)
j − x

h(e′)(k)
k ;

• if r = multi(j, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and h(e′)(x) = h(e)(x)

otherwise; then Em+1 is x
h(e′)(i)
i = x

h(e′)(j)
j × x

h(e′)(k)
k ;

• if r = divi(j, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and h(e′)(x) = h(e)(x)

otherwise; then Em+1 is x
h(e′)(i)
i = x

h(e′)(j)
j /x

h(e′)(k)
k ;

7The use of ⊥ is to allow for the creation of fresh variables not related to a register.

18

• if r = addi(c, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and h(e′)(x) = h(e)(x)

otherwise; then Em+1 is x
h(e′)(i)
i = c+ x

h(e′)(k)
k ;

• if r = subi(c, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and h(e′)(x) = h(e)(x)

otherwise; then Em+1 is x
h(e′)(i)
i = c− x

h(e′)(k)
k ;

• if r = multi(c, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and h(e′)(x) = h(e)(x)

otherwise; then Em+1 is x
h(e′)(i)
i = c× x

h(e′)(k)
k ;

• if r = divi(c, k), h(e
′)(x) = h(e)(x) + 1 if x = i, and h(e′)(x) = h(e)(x)

otherwise; then Em+1 is x
h(e′)(i)
i = c/x

h(e′)(k)
k ;

• if r = sqrti(k), h(e
′)(x) = h(e)(x) + 1 if x = i, and h(e′)(x) = h(e)(x)

otherwise; then Em+1 is x
h(e′)(i)
i =

√

x
h(e′)(k)
k ;

• if r = Id, the source of the edge eq is of the form {(x1, . . . , xn+ℓ) ∈ R
n+ℓ |

P (xk)} × {i}.

– If P (xk) is xk 6= 0, h(e′)(x) = h(e)(x) + 1 if x = ⊥, and h(e′)(x) =

h(e)(x) otherwise then Em+1 is x
h(e′)(⊥)
⊥

x
h(e′)(k)
k − 1 = 0;

– otherwise we set h(e′) = h(e) and Em+1 equal to P .

We now consider the system of equations (Ei)
k
i=1 defined from the path

e of length k corresponding to a node nπ
e

of the k-th entropic co-tree of G.
This system consists in k equations of degree at most 2 and containing at most
k + n variables, counting the variables x0

1, . . . , x
0
n corresponding to the initial

registers, and adding at most k additional variables since an edge of ~e introduces
at most one fresh variable. Since the number of vertices nπ

e is bounded by
Card(Seqk(E)).2k.h0([G]) by Theorem 31, we obtained the stated result.

Proof of Proposition 38. To compute p//q, where p, q ∈ Z, consider the real-
valued machine such that the ith processor computes x = p/q−i and if 0 < x 6 1,
writes i in the shared memory. This operation generalizes euclidian division and
is computed in constant time. Moreover, this only uses a number of processor
linear in the bitsize of the inputs if they are integers.

Proof of Theorem 41. Let n = N2c and consider the problem 37 of Thm. 37 and
its family of affine parametrizations of bitsize O(n2) = O(N4c) and complexity

ρ(n) = 2Ω(n) = 2Ω(N2c).
By Section 5.2, we know that the partition induced by G after O((logN)c)

can be defined by a set of equations of total degree 2O((logN)c)2O((logN)c) =
2O((logN)c).

Let P be the polynomial of Thm. ??. For large enough values of N , ρ(n)
is larger than P (2O((logN)c)) = 2O((logN)c). So, G does not decide maxflow in
O((logN)c) steps.

19

	Introduction
	Programs as Dynamical systems
	Abstract models of computation and graphings
	Algebraic srams
	The Crew

	Entropy and Cells
	Topological Entropy
	Graphings and Entropy
	Cells Decomposition

	Algebraic Computation Trees and Ben-Or's technique
	Lower Bounds through the Milnor-Thom theorem
	Entropic co-trees
	Abstracting Ben-Or's technique

	Algebraic surfaces for machines and problems
	Geometric Interpretation of Optimization Problems
	Surfaces from a pram

	The result
	Omitted proofs

