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Improved Visual Localization via Graph Smoothing

Carlos Lassance1,2, Yasir Latif3, Ravi Garg3, Vincent Gripon1,2 and Ian Reid3

Abstract— Vision based localization is the problem of inferring
the pose of the camera given a single image. One solution to
this problem is to learn a deep neural network to infer the pose
of a query image after learning on a dataset of images with
known poses. Another more commonly used approach rely on
image retrieval where the query image is compared against the
database of images and its pose is inferred with the help of

the retrieved images. The latter approach assumes that images
taken from the same places consists of the same landmarks
and, thus would have similar feature representations. These
representation can be learned using full supervision to be robust
to different variations in capture conditions like time of the
day and weather. In this work, we introduce a framework to
enhance the performance of these retrieval based localization
methods by taking into account the additional information
including GPS coordinates and temporal neighbourhood of
the images provided by the acquisition process in addition to
the descriptor similarity of pairs of images in the reference
or query database which is used traditionally for localization.
Our method constructs a graph based on this additional
information and use it for robust retrieval by smoothing the
feature representation of reference and/or query images. We
show that the proposed method is able to significantly improve
the localization accuracy on two large scale datasets over the
baselines.

I. INTRODUCTION

Vision-Based Localization (VBL) [1] is the problem of

retrieving the location and orientation (pose) of the camera

which will generate a given query image. VBL can be

used to improve accuracy of vehicle tracking as well as

for accurate visual maps creation via loop closure. The

approaches for addressing VBL can be broadly divided into

two categories [1]:

1) Direct methods: These methods directly retrieve pose

from the visual query – usually by solving a regression

problem. Use of deep learning techniques replacing

this regressing have become prevalent forming the

current state of the art where a set images with known

poses are used to learn a mapping from raw pixel

colors to image poses.

2) Indirect methods: In these methods, the pose informa-

tion is inferred from the visual query using a reference

database, where each image in the database has an

associated pose. This can be seen as an image retrieval

problem where the aim is to find images in the support

set that might have been taken from the same location
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as that of the query image. Once a match or set of

matches is found, the pose for the query image is

computed as a function of the poses of the retrieved

images.

Use of the deep learning for VBL approaches has recently

received a lot of attention both in terms of learning di-

rect image to pose mappings [2], [3] or to generate latent

representation that are resilient to appearance changes [4].

A major drawback of direct approaches is their inability

to generalize to previously unseen locations. Even small

difference of query pose from the training set can cause

gross localization errors and appending new query locations

to the dataset for direct approach will require retraining the

whole pose estimation network from scratch. On the contrary,

indirect methods generalize well to new data without the

need for this retraining.

However, the retrieval based indirect VBL is challenging

because it is extremely difficult to learn a representation

which is resilient to a huge amount of appearance variations.

Moreover, if the pose of the query image is relatively

different from the corresponding images in the database a

correct match needs to be found by interpolation in the latent

representations with additional information. Sequence to

Sequence matching approaches like [5] have been proposed

for making the retrieval more robust in these cases, but the

success of these approaches simply rely on having a large

number of images in the query set.

Proposing a very robust method for sequence/one to one

image matching for localization due to external factors (e.g.

different image acquisition conditions) is a hard problem. A

principled solution will be capable of smartly interpolating

the latent space for retrieval, given some additional informa-

tion about the data. The large support dataset against which a

query can be retrieved generally comes with rich information

such as GPS location of the image and temporal order in

which the images are captured.

In this work, we propose an indirect visual localization

method that takes advantage of the additional information

that might be available for each image in the database, in-

cluding GPS coordinates, consecutiveness in the acquisition

process and similar latent representations. This is particularly

interesting for a robotics setting, where images are almost

always acquired sequentially from a camera mounted on

a vehicle. This sequential nature of the acquisition pro-

cess suggests that images closer in time should also be

close in the latent representation. Indeed, it is intuitive that

temporally adjacent images have similar latent representa-
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tion. Additional information such as GPS coordinates, if

available, can aid in encoding global relationships between

images in the database. We show that by considering such

relationships between images, localization accuracy can be

increased. Moreover, enhancements can be achieved using

only minor adjustments to the inference process. Specifically,

we exploit relationships via a graph smoothing operation [6]

on top of pre-learned deep representations extracted from

NetVLAD [4]. The graph smoothing operation is derived

from the Graph Signal Processing (GSP) framework [6],

and takes advantage of the graph based representation of

the problem. In this graph, each vertex is associated one-to-

one with an image (or equivalently its latent representation).

Edges model relations between images and are derived from

the additional source of information (e.g. temporal adjacency,

GPS, similar latent representations).

Interestingly, the proposed method can be seen as a fine-

tuning of the representations that does not require additional

learning, allowing this operation to be possibly executed on

a resource constrained system.

Main contributions: The main contributions of this work

are two-fold:

1) We apply Graph Signal Processing techniques to the

problem of indirect visual localization. To the best

of our knowledge, we are the first to bring together

the area of Graph Signal Processing and Visual Based

Localization.

2) Through experiments on real-world datasets, we

demonstrate the efficacy of the proposed method in

improving the accuracy of the indirect VBL process

on large scale datasets.

The rest of the paper is organized as follows: we present

a brief overview of related techniques in Section II. In

Section III, we formally introduce the proposed method and

discuss its properties. In Section IV, we derive and discuss

experiments. In Section V, we conclude the work and discuss

future directions.

II. RELATED WORK

Visual localization is a well studied problem in the vision

community and a recent survey can be found in [1]. Tra-

ditional methods address the problem using point features

using a Bag-of-Words (Bow) approach where each image

is represented as histogram of visual word occurrences.

Efficient indexing methods then allow retrieving images

with similar features and a relate pose computation via the

essential matrix. However, such methods can be adversely

affected by changes in condition such as weather, time of the

day and long term changes such as structure of the scene.

Deep learning in direct visual localization: with the recent

revival of deep learning, work has focused on formulating

VBL as an end-to-end learning problem where the pose of

the image is regressed from the raw pixels via a deep neural

network [3]. Other works such as [7] have explored scene

coordinate regressed followed by RANSAC to compute the

camera pose via 3D to 2D correspondences. This has shown

great improvement over the end-to-end approach.

Deep learning in indirect visual localization: as mentioned

in the introduction, various methods in the literature focus on

deep learning for generating good embeddings for indirect

visual localization, such as NetVLAD [4]. In this work, we

build on top of these representations, though the proposed

method could be adapted to any latent representation of

the images. Its main advantage is that it is not required

to perform any additional training. Recent work in robotics

[8] has shown that using sequence information in Bayesian

filtering approach, the accuracy of indirect methods can be

vastly improved, even outperforming direct methods.

Graphs in visual localization: works [9], [2], [10] have

used graphs to increase the performance of visual localization

methods in various ways. One example is the re-ranking of

candidates in indirect VBL, where one can use a graph to

perform a ranking that takes into account more than one

image at a time. This is achieved in [9] by using the closest

pair of images and then performing linear combination of

them. Other works such as [2] use techniques like Pose-

Graph Optimization (PGO) [11] to take advantage of extra

information available (in this case the relative poses of the

“test”). Note that these approaches differ from ours as they

are used only on the query data. As such, they could be

combined with the proposed method, that also considers the

reference database.

GSP: graph signal processing [6] is a mathematical frame-

work that aims at extending harmonic analysis to irregular

domains described using similarity graphs. As such, it is

possible to define tools such as translations [12], convolu-

tions [13], filtering [14] and wavelets [15] taking into account

the complex structure of the inputs. GSP has successfully

been applied to domains ranging from neuroimaging [16] to

deep learning [13], [17], [18]. To our knowledge, the present

work is the first usage of GSP in the context of indirect visual

localization.

III. METHODOLOGY

In this section, we first describe the setting in which the

current solution is applied and then present a formal overview

of the GSP techniques as they are applied to the problem of

visual localization.

A. Problem Setting

We consider the case of autonomous driving where a fleet

of vehicles move around established roads in urban environ-

ments. This is a restricted setting than the more general case

of localizing a freely moving tourist in a city using a mobile

phone. Indeed the geometry of the road structure prevents

significant view point variations. In our case the change in



viewpoint comes from traffic moving in different lanes along

the same road. However, there might be significant viewpoint

changes as vehicles can move during any season and any time

of the day.

The camera mounted on the vehicle provide a stream of

images, that is, we have information about the temporal

adjacency of images. In addition, we are also provided

additional information in the form of GPS location for each

image.

For image representation, we assume a mapping function that

maps each image to a fixed dimensional latent space, with

some resilience to viewpoint and appearance changes. For the

rest of the section, we use images and latent representation

interchangeably to mean a lower dimensional embedding of

the original image into a resilient subspace. A key asset of

the latent space is that it linearizes representations. As such,

by taking the linear combination of latent representations of

actual images, we usually obtain a latent representation of a

natural looking (artificial) image.

B. Graph Signal Processing and Graph Signals Smoothing

In this work we consider graphs defined as tuples G =
〈V,A〉, where V is the finite set of vertices and A is the

weighted adjacency matrix: A[µν] is the weight of the edge

between vertices µ and ν, or 0 if no such edge exists. Vertices

are associated one-to-one with images, and an edge defines

the similarity between two vertices.

In order to avoid irregular artifacts, we consider a normalized

adjacency matrix A = D
−1

W where W is the direct

measure of similarity between two vertices and D is the

degree matrix associated with W:

D[µν] =







∑

k∈V

W[µk] if µ = ν

0 otherwise

.

Note that this normalization is only well-defined if the graph

has no isolated vertex, what we consider to be true in the

following.

Given a graph G = 〈V,A〉, consider a matrix s ∈ R
V ×d,

where d ∈ N. We refer to s as a signal in the remaining of

this work, and typically we consider s to be composed of

the concatenation of latent representations of images corre-

sponding to vertices in V . As such, a row of s corresponds

to an image in the dataset, whereas a column correspond to

a dimension of the feature vectors representing the images.

We define the graph smoothing hG(s) of s as:

hG(s) = A
m
s. (1)

Graph smoothing simply consists of multiplying the normal-

ized matrix A of the graph with the signal. This operation

can be repeated multiple times (represented by the parameter

m). Note that smoothing can be achieved in other ways, for

example using low-pass filters [6] on the graph, which can

be computationally expensive for large graphs. In this work,

we focus on this particular smoothing method (1) for its

simplicity and performance.

Let us explain briefly why this operation has the effect of

smoothing the representations in s. First note that because

A is symmetric and real-valued, it admits |V | eigenvalues

(where | · | denotes the cardinal). The way A has been

normalized, all these eigenvalues are between -1 and 1. Other

interesting properties include that the eigenspace associated

with the eigenvalue 1 is composed of constant vectors and

-1 is not an eigenvalue if the graph is not bipartite.

So, considering the graph is not bipartite, multiplying the

signal by A has the effect of diminishing the influence of all

components of the signal that are not aligned with a constant

vector, while maintaining the latter. As a result, the difference

between representations of neighboring vertices in the graph

is reduced. This operation has the effect of smoothing the

signal, in the sense that the i-th column of the smoothed

signal is such that the difference in values between two

(strongly) connected vertices is going to be smaller than that

before smoothing. In the extreme case of smoothing multiple

times (i.e. large m), this would eventually have the effect of

averaging all representations in connected components of the

graph.

In brief, graph smoothing has the effect of smoothing the

signal values, taking into account strongly connected vertices

in the graph. As a result, outliers are smoothed using similar

images in the graph. In this work, we consider the vertices

to be either the reference database or the query database.

In both cases, the goal is to use graph smoothing to reduce

the noise in the latent representations. This is illustrated in

Figure III-B, where we consider a unidimensional signal rep-

resented using blue (for positive values) and red (for negative

values) bars. Before smoothing (on the left), neighboring

vertices can have large variations in their signal values.

After smoothing (on the right), these variations are lowered.

Note that the parameter m in Equation (1) controls the

intensiveness of smoothing: when m is small (i.e. almost 0),

A
m becomes close to the identity matrix and the smoothing

has almost no effect. When m is large (i.e. m ≫ 1),

A
m becomes an averaging matrix on each of its connected

components.

C. Graph definition

In order to make the graph smoothing improve the accuracy

of VBL, we need to make sure that the edges of the graph

are well chosen to reflect the similarity between two images

represented as vertices, as our main goal is to exploit extra

information available at the database. In this work, we

consider three different sources:

• Metric distance (dist): the distance measured by the

GPS coordinates between vertices µ and ν;

• Sequence (seq): the distance in time acquisition be-

tween two images (acquired as frames in videos);



hG(s)
⇒

Fig. 1. Illustrative example of the graph smoothing operation. The signal
is represented by the blue(positive) and red(negative) bars.

• Latent similarity (latent sim): the cosine similarity

between latent representations.

The matrix W can therefore be derived from the three

sources as:

W = Wdist +Wseq +Wlatent sim.

1) Metric distance: In order to transform the metric distance

into a similarity, we use an exponential kernel. This is

parametrized by a scalar α that controls the sharpness of

the exponential and a threshold parameter maxdistance that

cuts edges between distant vertices:

Wdist[µν] =

{

eαdistµ,ν if distµ,ν < maxdistance

0 otherwise
.

Note that the choice of an exponential kernel may seem

arbitrary, but is often used in the area of Graph Signal

Processing [6].

2) Sequence: To exploit the information of time acquisition

of frames, we use the function seq(k, µ, ν) which returns 1

if the frame distance between µ and ν is exactly k and 0

otherwise. We then build a matrix Wseq parametrized by

scalars βk and kmax:

Wseq[µν] =

kmax
∑

k=1

βkseq(k, µ, ν).

3) Latent similarity: Finally, we define a matrix

Wlatent sim for the latent representations cosine similarity.

This is parametrized by a scalar γ that controls the

importance of the latent similarity. We only compute this

similarity if either the distance similarity or the sequence

similarity is nonzero:

Wlatent sim[µν] =







γsim(µ, ν) if Wdist[µν] > 0
or Wseq[µν] > 0,

0 otherwise

.

where sim is the latent similarity function. In this work we

use the cosine similarity, but any similarity function could

be used.

D. NetVLAD

For image representation in a latent space, we use features

from a pretrained NetVLAD [4], trained on the Pittsburgh

dataset [19], [20]. The model is available online at [21].

NetVLAD is specifically trained to cater for viewpoint and

appearance changes. It maps an image to 32768 dimensional

deeply learnt representation, which we then compressed

to 4096 dimensions using PCA (trained on the support

database) and then finally whitened [22]. We follow the same

image preprocessing from the training of the model, where

images are first resized so that the smaller part has a size of

256 pixels, then we perform a center-crop of 224, and finally

perform standardization.

IV. EXPERIMENTS

A. Dataset generation

In order to verify the effectiveness our method in the setting

of autonomous driving, we need a dataset that is collected

from roads and is large enough to demonstrate appearance

changes and limited viewpoint changes due to road structure.

We collect images from Mapillary API1, which contains

publicy sourced data over time for major roads. To show

the generalization ability of the proposed work, we collect

road imagery from two Australian cities. The first covers the

Central Business District (CBD) area of Adelaide, Australia

and spans an area of roughly 10km2. Since the data is

publicly sourced, there is a lot of viewpoint, illumination

and dynamic changes (cars, pedestrian, etc). The second set

is collected around the Greater Sydney region and covers an

area of around 200km2. We note that the data collected for

the Greater Sydney region contains some sequences that were

generated using different equipment (panoramic cameras) or

different positioning (camera pointed to a vehicule window

instead of the windshield) from the ones used during the

training of the NetVLAD network, which combined with

the total area of the support database creates a much more

challenging problem. In addition to imagery, the collected

data provides sequence information and GPS. The GPS

tracks for the collected data are shown in Figures 2 and 3.

In the rest of the experiment section, we use the terminology

of indirect visual localization, that is, support database refers

to the reference database, validation and test queries refer to

query inputs.

To split the Adelaide dataset in support/validation/test we

randomly choose 4 sequences for validation and 5 sequences

for testing. For the Sydney database, we choose 5 sequences

that could be retrieved with reasonable performance using

our pre-trained NetVLAD (named easy query) and 5 se-

quences at random (hard query). Using GPS as ground truth,

we remove all examples from the query sets that are further

than 25m from the support dataset (i.e. there are no examples

1https://www.mapillary.com/developer/api-documentation/

https://www.mapillary.com/developer/api-documentation/
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Fig. 2. GPS Tracks of image sequence collected around Adelaide CBD
from Mapillary.
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Fig. 3. GPS Tracks of image sequence collected around Sydney from
Mapillary.

TABLE I

SUMMARY OF THE DATASETS USED IN THIS WORK

City Adelaide

# Sequences # Images

Support Database 44 24263
Validation Query 4 2141

Test Query 5 1481

Sydney

# Sequences # Images

Support Database 284 117860
Easy Query 5 1915
Hard Query 5 2285

in the support set in a 25m radius from them)2. The statistics

for each dataset are summarized in table I.

B. Parameter definition

For all the results in the subsequent sections we use the same

parameters, which were obtained using a grid search and

keeping the best score on the Adelaide validation query. We

use the Adelaide test query to ensure that the parameters are

not overfitted to the validation query. Also note that we use

the same parameters for all cities to further validate the fact

that we do not need additional training/parameter search for

each new city. The parameters are α = 0.25, β1 = 0.75, β2 =
0.0625, β3 = 0.0625, kmax = 3, γ = 0.33,m = 2.

C. Results

We test the graph smoothing effect in three different cases.

First the extra data is available only for the support, second

it is available only for the query and finally it is available in

both cases. In each case we report two metrics, the median

localization error over all the queries and the percentage of

localizations that have less than 25m error.

First we perform the tests on the Adelaide dataset and present

the results in table II. The graph smoothing operation was

able to increase performance, even when applied only on the

query database, and as expected, adding the graph smoothing

during both query and support gave the best results. Recall

that the parameters were defined based on the validation

query, under the case where the extra data is available only

for the support database.

TABLE II

RESULTS UNDER DIFFERENT GRAPH SMOOTHING CONDITIONS FOR THE

MAPILIARY ADELAIDE DATASET. GS MEANS GRAPH SMOOTHING

Measure None GS Support GS Query GS S+Q

Validation

acc < 25m 66.84% 74.64% 70.06% 79.03%
median distance 8.76m 7.29m 13.02m 9.17m

Test

acc < 25m 44.63% 50.03% 46.39% 51.32%

median distance 110.66m 24.08m 41.84m 22.81m

Second we validate that the operation can be used on other

cities and that we do not need to perform an additional

2The dataset and code for reproducing the results will be made public on
acceptance of the work.



grid search for the new data. The results are presented

in Table III. As expected the graph smoothing operation

allowed us to get better performance in both median distance

and accuracy, while using the parameters optimized for the

Adelaide dataset. This is inline with our goal that is to have

an operation that we do not have to retrain or re-validate

parameters for a new dataset. We note that the performance

of the hard query set is not inline with a good retrieval

system (several kilometers from the correct point), but it is

included to show that our method allows us to increase the

performance both when the NetVLAD features are already

very good for the task and when they are very bad.

TABLE III

RESULTS UNDER DIFFERENT GRAPH SMOOTHING CONDITIONS FOR THE

MAPILIARY SYDNEY DATASET. GS MEANS GRAPH SMOOTHING

Measure None GS Support GS Query GS S+Q

Easy

acc < 25m 49.45% 56.16% 55.93% 64.21%

median distance 28.25m 13.48m 18.41m 12.13m

Hard

acc < 25m 13.87% 17.33% 16.67% 24.07%

median distance 4000km 3373m 3149m 2151m

D. Ablation studies

To verify that each part of the graph is important, we perform

ablation studies using the Adelaide test query. The results

are presented in Table IV. The table shows that different

sources of information are important, with each one adding to

increase in performance. Metric distance and sequence being

the most important features and latent similarity being more

of a complementary feature (this is expected, as it is being

thresholded by the other two features). This is encouraging

since in the absence of any other external information (GPS,

etc), one can rely on the sequential nature of data collection

to get a boost in localization performance. This information

is readily available in a robotics setting.

TABLE IV

ABLATION STUDY ON THE MAPILIARY ADELAIDE TEST QUERY.

Wdist Wseq Wlatent sim median distance acc < 25m

110.66m 44.63%

X 46.10m 47.26%

X 39.11m 47.53%

X X 42.92m 47.60%

X X 24.75m 50.03%

X X 37.39m 47.47%

X X X 24.08m 50.30%

In the next experiment, we demonstrate the effect of suc-

cessive smoothing. This is achieved by applying smoothing

operation m times. Theoretically, this should help increase

the performance until it hits a ceiling and then it should

start to slowly decrease (as it enforces connected examples

of the database to be too similar to each other). The results

are presented in Fig. 4. As can be seen, there is a clear

pattern of increased performance until m = 2 after which the

performance starts to degrade. It should be noted that even

for m = 10 the graph smoothing operation still performs

better than the baseline (m = 0).

0 2 4 6 8 10

46

48

50

m

ac
c
<

2
5

Fig. 4. Effect of the parameter m on the retrieval accuracy under 25m for
the Adelaide test query.

V. CONCLUSION

This work showed that using techniques from Graph Sig-

nal Processing, the performance of indirect visual based

localization can be improved by incorporating additional

available information. This additional information acts on

the latent representation by making it smoother on a graph

designed using all available information, leading to a boost

in localization. One of the encouraging observation of the

work is that this additional information can take the form of

a simple temporal relationship between surrounding images

acquired in a sequence, and still lead to a significant increase

in performance.

In future work, we would like to use the graph during the

localization inference, to add temporal consistency to the

position inference and also to train the smoothing operation

in an end-to-end fashion.
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