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We study existence and uniqueness of L p ([0, T ]×Ω)-bounded mild solutions for a class of semilinear stochastic evolutions equations driven by a general class of Lévy processes without Gaussian component including both the non square integrable (α-stable process) and the square integrable cases on a probability space. This is done using a stochastic analysis on the jumps of the Lévy process pocess with particular attention to the non square integrable case (for instance the α-stable process, α ∈ (0, 2)) through a truncation method by separating the big and small jumps together with a classical fixed point theorem ; under local Lipschitz, Hölder, linear growth conditions on the coefficients. Finally, we give an example to show usefulness of the theoritical results that we obtain in this paper.

Introduction

In this paper, we consider the following class of semilinear stochastic differential equation driven by a general class of Lévy processes Z defined on a probability space (Ω, F, P) :

{ dX(t) = [AX(t) + F (t, X(t))]dt + G(t, X(t))dZ(t), t ∈ [0, T ] X(0) = x 0 ∈ X, (1) 
when Z is square integrable or non square integrable, for instance the stable process process with index α ∈ (0, 2)) in an appropriate space X with T > 0 a time horizon, whereas the operator A : D(A) ⊆ X → X is a linear operator, in general unbounded, defined on a certain dense linear subspace D(A) which generates a strongly continuous one-parameter semigroup (also known as C 0 -semigroup) S(t) of bounded operators on X; F : [0, T ] × Ω × X → X, G : [0, T ] × Ω × X → X are two functions to be specied later and the initial value x 0 ∈ X is a random variable on Ω and F 0 -adapted. We first investigate the stochastic continuity and integrability of the solutions trajectories of the stochastic partial differential equation [START_REF] Peszat | Stochastic Partial Differential Equations with Lévy noise[END_REF] and then the existence and uniqueness of the mild solution in an appropriate space. We apply our abstract result to a stochastic partial differential equation (SPDE) namely the one dimensional stochastic heat equation driven by an α-stable process Z, α ∈ (0, 2), with Dirichlet boundary conditions:    du(t, x) = ∂ 2 u(t,x) ∂x 2 dt + F (t, u(t, x))dt + sin(t)ϕ(u(t, x))dZ(t) u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

u(0, x) = h(x) ∈ L 2 [0, 1] (2) 
In the case where Z is a Wiener process, the theory of stochastic equations ( 1) is well understood as well as the case A = 0 where (1) is just a stochastic differential equation (SDE): dX(t) = F (t, X(t)dZ(t) + G(t, X(t))dt, X(0) = x 0 .

(
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Recall that, one of the most important property of Brownian motion, is that almost every path of Brownian motion is continuous, that is, has no jumps. In the case when Z is a Brownian motion (even in the innite dimensional case), there is a rich litterature on the existence and uniqueness of weak, strong solution and mild solutions under various conditions on the coefficient of the above SDE and SPDE, see [START_REF] Peszat | Stochastic Partial Differential Equations with Lévy noise[END_REF][START_REF] Da Prato | Stochastic Equations in Infinite Dimensions[END_REF][START_REF] Komatsu | On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type[END_REF] and references therein.

It is know that if we integrate with respect to a Brownian process, then it is enough to assume that the integrand is measurable, adapted and locally square integrable. Obviously if X is cádlág and adpated, then X(t-), t ∈ [0, T ] is predictable. Unfortunaltely, in some important cases, it is not known when solutions X of (1) have cádlág trajectories and a possible lack of cádlág regularity is pointed out for instance in [START_REF] Peszat | Stochastic Partial Differential Equations with Lévy noise[END_REF], [Proposition 9.4.4]. The problem of predictability of integrands is also treated in several papers, see for instance [START_REF] Albeverio | Existence of mild solutions for stochastic dierential equations and semilinear equations with non-Gaussian Lévy noise[END_REF], [START_REF] Mandrekar | Lévy noises and stochastic integrals on Banach spaces[END_REF], [START_REF] Mandrekar | Generalized Ornstein-Uhlenbeck processes on separable Banach spaces[END_REF], [START_REF] Mandrekar | Relation between stochastic integrals and the geometry of Banach spaces[END_REF] and [START_REF] Mandrekar | Existence and uniqueness of path wise solutions for stochastic integral equations driven by non Gaussian noise on separable Banach spaces[END_REF]. This motivates the authors in [START_REF] Priola An | Zabczyk Structural properties of semilinear SPDEs driven by cylindrical stable processes Probab[END_REF] to study the existence of adpated stochastic continuous solutions (this garantees a predictable modification) of (1) when Z is a stable cylindrical process in a Hilbert space with F (t, X(t)) := K(X(t)) and G = 1 under the fact A generate a C 0 -semigroup of the form e tA under classical Lipchitz condition on F, G. Again for such cylindrical stable process Z in Hilbert space, the authors in [START_REF] Sun | Pathwise Uniqueness for a Class of SPDEs Driven by Cylindrical α-Stable Processes Potential[END_REF] investigate recently pathwise uniqueness and weak existence for the SPDE with Hölder continous coeficient when G = 1 and F (t, X(t)) = B(X(t)) to generalise an infinite dimensional generalisation of the result of [START_REF] Priola An | Zabczyk Structural properties of semilinear SPDEs driven by cylindrical stable processes Probab[END_REF]. For a jump process Z for instance a Lévy process, there is also some significants existence results in both finite and infinite dimensional space; see for instance [START_REF] Li | Strong solutions for stochastic differential equations with jumps[END_REF][START_REF] Situ | Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering[END_REF][START_REF] Sato | Lévy processes and innite divisible distributions Cambridge Studies in Advanced Mathematics[END_REF][START_REF] Bertoin | Lévy Processes[END_REF] and references there in. But if we consider a Lévy process Z with unbounded jumps and with infinite jump activity like α-stable processes, α ∈ (0, 2), in a finite time period, new phenomena (like the so called-heavy tailed phenomena) and difficulties appear so that one need to make a different analysis since the situation changes completely. For any t ≥ 0, the expectation E|Z(t)| p is finite when 0 ≤ p < α, but when ≥ α, it is infinite and in particular when α ≤ 1, even the expected value of X t is not well-dened. The upshot of this is that an α-stable process may exhibit large-magnitude, low-intensity jumps which are very rare but whose size forces the expectation to be infinite. The behavior of a stochastic integral driven by an α-stable driving process Z is pertubed by the regularly varying tails of the α-stable process Z. One cannot expect a stable stochastic integral to be square integrable, so that the tools often used in stochastic calculus in a Hilbert space can't work directly in the case of an α-stable processes.

When A = 0 and Z being a purely discontinuous Lévy process including α-stable process, pathwise uniqueness and weak existence result of (3) was studied under various conditions on the coefficient such as Lipschitz continuity, boundness, Hölder continuity, see [START_REF] Fournier | On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes[END_REF][START_REF] Bass | Stochastic differential equations driven by symmetric stable processes[END_REF][START_REF] Bass | Stochastic differential equations driven by stable processes for which pathwise uniqueness fails Stochastic Process[END_REF]. In the case A ̸ = 1, to the best of our knowledge there is no references dealing with existence, uniqueness, stochastically continuous and L p -estimates of solutions of (1) in the non square integrable Lévy processes such as α-stable processes.

The novelty of our paper is based on the new model ( 1) considering a general Lévy processus including α-stable process Z and coeficient G ̸ = 1. For this stochastic model, we show that under an appropriate condition on F and G we can obtain the stochastic continuity of the mild solutions as well as some integrability properties using an original method based on a troncation procedure in the Lévy Itô decomposition of Z. For more references of this technique we refer the reader to our early paper [START_REF] Joulin | A note on convex ordering for stable stochastic integrals[END_REF]. In order to control and analyse the effect of the jumps, we separate big and small jumps and obtain some new stochastic convolutions integrals when the operator A generates a strongly continuous one-parameter semigroup.

This paper is organized as follows. Section 2 deals with some preliminaries intended to introduce briefly basic facts on general Lévy process including the non square integrable case, for instance the α-stable process and some of their important properties in order to clarify the computation of the tail behavior of the stochastic convolutions integrals equations. In section 3 and 4 , we give some important results based on a square and non square integrable Lévy process namely the existence and uniqueness of adpated stochastic continuous L p ([0, T ] × Ω)-bounded solutions, see Theorem 3.3 and Theorem 4.6. We illustrate our conditions with the above onedimensional stochastic heat equation driven by an α-stable process.

Preliminaries

Let us recall some basics definitions and properties for Lévy processes. We follow the presentation in [START_REF] Sato | Lévy processes and innite divisible distributions Cambridge Studies in Advanced Mathematics[END_REF], [START_REF] Applebaum | Lévy Processes and Stochastic Calculus In[END_REF]. Assume that the probability space (Ω, F, P) is equipped with some filtration (F t ) t∈[0,T ] satisfying the usual conditions. From these properties it follows that X is continuous in probability :

∀ ϵ > 0, lim s→0 P (|Z(t + s) -Z(t)| > ϵ) = 0.
Note that the properties of stationary and independent increments implies that a Lévy process is a (strong) Markov process. Lévy processes are essentially processes with jumps, because it can be shown that any Lévy process which has a.s. continuous trajectories is a Brownian motion with drift. There are plenty classical examples of Lévy processes. As a jump process, it can be described by its Poisson jump measure (jump measure of Z on interval [0, t]) defined as

µ(t, A) = ∑ 0≤s≤t I A (Z(s) -Z(s-)),
the number of jumps of Z on the interval [0, t] whose size lies in the set A bounded below. For such A, the process µ(, A) is a Poisson process with intensity ν(A) := E(µ(1, A)).

We now examine the characteristic functions of Lévy processes. Denote by φ Zt the characteristic function of a Lvy process Z at time t.

Theorem 2.1 (Lévy -Khintchine formula).

There exists (unique) b ∈ R, σ ≥ 0, and a measure ν (Lévy measure), with no atom at zero (ν

({0} = 0), satistying ∫ R (1 ∧ x 2 )ν(dx) < ∞ such that φ Zt (u) = exp t ( iub - 1 2 σ 2 u 2 + ∫ +∞ -∞ (e iuy -1 -iuyI |y|≤1 )ν(dy) ) , t ∈ [0, T ].
(4) Conversely, given any admissible choices (b, σ, ν), there exists a Lévy process Z with characteristic exponent given by the above formula.

The first part of this theorem is rather technical, see [START_REF] Sato | Lévy processes and innite divisible distributions Cambridge Studies in Advanced Mathematics[END_REF], Theorem 8.1. The second part amounts to constructing a Lévy process out of its characteristics, and can be seen as part of the more detailed Lévy-Itô decomposition.

Theorem 2.2 (Lévy -Itô decomposition). For a Lévy process Z, denote by μ(t, A) = µ(t, A) -tν(A)

the compensated random martingale measure of µ. Then, there exist b ∈ R, σ ≥ 0 and a standard Brownian motion B such that

Z(t) = bt + σB(t) + ∫ t 0 ∫ |x|≤1 xμ(ds, dx) + ∫ t 0 ∫ |x|>1 xµ(ds, dx).
(
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This means that all Lévy processes are sum of a drift, a Brownian motion and a Poisson process. The Lévy measure is responsible for the richness of the class of Lévy processes and carries useful information about not only the path structure of the process but also on the finiteness of the moments of a Lévy process. In this paper we shall be concerned with purely discontinuous Lévy processes meaning without gaussian component. We wil consider general class of Lévy processes inclunding both the square integrable and the non square integrable cases; more precisely we assume in the rest of this paper that (H β,p ν ) There exist β ∈ (0, 2) such that ∀p ∈ (0, β) :

∫ |x|≥1 |x| p ν(dx) < ∞ and ∫ |x|≥1 |x| 2 ν(dx) = +∞. or (H 2 ν ) ∫ |x|≥1 |x| 2 ν(dx) < ∞.
The following examples provide some concrete examples of (square intégrable) Lévy processes with condition (H 2 ν ).

2.1.1. Gamma Processes. Let α, λ > 0 and define the probability measure

µ α,λ (dx) = α λ Γ(λ) x λ-1 e -αx dx
supported in [0, ∞) : this is called Gamma(α, λ) distribution. Note that when λ = 1 this is the exponential distribution. The probability measure µ α,λ is infinitely divisible and we obtain the Lévy-Khintchine decomposition with

σ = 0, b = ∫ 1 0 xν(dx) where ν(dx) = λx -1 e -αx dx concentrated on (0, ∞).

Inverse Gaussian Processes.

Let W = W (t), t ≥ 0 be a standard Brownian motion. Define the first passage time τ s = inf{t > 0 : W (t) + at ≥ s} that is the first time a Brownian motion with linear drift a > 0 crosses above level s. It is shown that the process τ = {τ t : t ≥ 0} has stationary independent increments. Continuity of the paths of W ensures that τ has right continuous paths. Further, it is clear that τ has almost surely non-decreasing paths, which guarantees its paths have left limits as well as being yet another example of a Subordinator. According to the definition of τ as a sequence of first passage time which is a stopping time, τ is also the almost sure right inverse of the path of the graph of {W (t) + bt : t ≥ 0}. From this τ earns its name as the inverse Gaussian process. The random variable τ s is infinitely divisible for s > 0. The Lévy-Khintchine decomposition give

σ = 0; b = -2sa -1 ∫ a 0 1 √ 2π e -y 2 /2 dy and ν(dx) = s √ 2πx 3 e -a 2 x/2 dx concentrated on (0, ∞).
Now, let us introduce a particular class of Lvy processes which is not square integrable. An example of Lévy process which is not square integrable namely satisfying condition (H β,p ν ) is the following α-stable process (with β = α).

Stable process.

We follow the presentation in our paper [START_REF] Joulin | A note on convex ordering for stable stochastic integrals[END_REF] or [START_REF] Manou-Abi | Théorémes limites et ordres stochastiques relatifs aux lois et processus stables[END_REF], (see also [START_REF] Joulin | On maximal inequalities for stable stochastic integrals[END_REF]). For the sake of briefness, by an α-stable process Z where α ∈ (0, 2) with characteristics (b, c + , c -), we will implicitly mean, in the remainder of this paper, an (F t ) t≥0 -adapted real cádlág stable process with characteristic function given by

φ Zt (u) = exp t ( iub + ∫ +∞ -∞ (e iuy -1 -iuyI |y|≤1 )ν(dy) ) , t ∈ [0, T ], (6) 
where b stands for the drift parameter of Z and ν the Lévy measure defined on R \ {0} by

ν(dx) := dx |x| α+1 ( c + 1 {x>0} + c -1 {x<0}
) .

The parameters c + , c -above are non-negative with furthermore c + + c -> 0 and

c + = c -when α = 1.
The process is said to be symmetric if c + = c -:= c. It i said to be strictly α-stable for b = 0.

In the case α ∈ (1, 2), the drift parameter is given by

b := - ∫ |y|>1 y ν(dy) = - (c + -c -) α -1 when α ̸ = 1.
However if α = 1 , we specify that b = 0 which is a restriction ensuring that the only (strictly) 1-stable process we consider is the symmetric Cauchy process.

Note that for α < 1 the process Z is a finite variation process whereas when α ≥ 1,the process has unbounded jumps :

∑ s≤t ∆Z s = +∞, t > 0.
If 1 < α < 2 and Z symmetric (ν symmetric) note that the characteristic function becomes simply

φ Zt (u) = exp ( t ∫ +∞ -∞ (e iuy -1 -iuy)ν(dy) ) , tt ∈ [0, T ], (7) 
because

∫ |y|>1 y ν(dy) = 0.
An α-stable process is closely related to the notion of self-similar process. The process Z is said to be strictly α-stable if we have the self-similarity property

k -1/α (Z(kt)) t∈[0,T ] d = (Z(t)) t∈[0,T ] ,
where k > 0 and the equality d = is understood in the sense of finite dimensional distributions. More generally an α-stable process Z is a process having the following self-similarity property : there exist

d : (0, ∞) × [0, ∞) → R such that k -1/α (Z(kt)) t∈[0,T ] + d(k, t) d = ( Z(t)) t∈[0,T ] ,
Note that α-stable processes are interesting due to the self-similarity property and the fact that the Lévy measure and the Lévy-Itô decomposition are almost totally explicit for the one dimensional case. 

Basic defintions and notations. Recall that

L p ([0, T ] × Ω) is the space of all measurable stochastic processes X(t), t ∈ [0, T ] on Ω × [0, T ] such that ||X(t)|| p = ( E|X(t)| p ) 1/p < ∞
E|X(t + h) -X(t)| p = 0.
Denote by S a continuous semigroup on X that is a map S : R + → L(X) such that 1. S(0) = I for all t ≥ 0 where I is the identity operator on X.

S(t

+ s) = S(t)S(s) = for all s, t ≥ 0 3. ||S(t)x -x|| → 0; t → 0 for all x ∈ X, with ||.|| denoting the operator norm on L(X).
Definition 2.5. [START_REF] Albeverio | Existence of mild solutions for stochastic dierential equations and semilinear equations with non-Gaussian Lévy noise[END_REF] We say that S is a pseudo-contraction semigroup on X if

||S(t)|| ≤ e at ∀t > 0,
for some constant a > 0.

If a = 0, S(t) is called a contraction semigroup.

Recall that for any C 0 -semigroup S there are constants M > 0 and ω ∈ R such that ||S(t)|| ≤ M e ωt ∀t > 0 (8) If [START_REF] Mandrekar | Existence and uniqueness of path wise solutions for stochastic integral equations driven by non Gaussian noise on separable Banach spaces[END_REF] holds with M = 1 then S is a a pseudo-contraction (generalized contraction) semigroup. If moreover, ω ≤ 0 that is there exist a > 0 such that

||S(t)|| ≤ e -at

∀t > 0 then S is a contraction semigroup. In this cas we'll say that S is exponentially stable.

Throughout this paper, we will need first the following assumption :

(H1): A generates a C 0 -semigroup process (S(t)) t≥0 on X which is a generalized contraction semigroup.

Note that if A generates a semi group (S(t)) t≥0 then the process Y defined by Y (s) = S(t -s)X(s) verify for s < t the following relation

dY (s) = -AS(t -s)X(s) + S(t -s)dX(s) = -AS(t -s)X(s) + S(t -s)AX(s) + S(t -s)F (s, X(s))ds + S(t -s)G(s, X(s))dZ(s) = S(t -s)F (s, X(s))ds + S(t -s)G(s, X(s))dZ(s). Thus dY (s) = S(t -s)F (s, X(s))ds + S(t -s)G(s, X(s))dZ(s). (9) 
Integrating ( 9) on [0, t] we obtain that

X(t) -S(t)x 0 = ∫ t 0 S(t -s)F (s, X(s))ds + ∫ t 0 S(t -s)G(s, X(s))dZ(s).
Therefore, Definition 2.6. By a mild solution of equation ( 1) with initial condition X 0 = x 0 , we mean a predictable stochastic process (X(t)) t∈[0,T ] with respect to the natural filtration of Z that satisfies the following corresponding stochastic convolution integral equation :

X(t) = S(t)x 0 + ∫ t 0 S(t -s)F (s, X(s))ds + ∫ t 0 S(t -s)G(s, X(s))dZ(s).
Now let come back to a general Lévy process Z without Gaussian component. Let

F Z t := σ(Z s : s ∈ [0, t]), t ∈ [0,
T ] its natural filtration that satisfies the usual hypothesis, that is completeness and right-continuity.

As a Lévy process, Z is a semimartingale whose Lévy-Itô decomposition is given by

Z t = b t + ∫ t 0 ∫ |x|≤1 x (µ -σ)(ds, dx) + ∫ t 0 ∫ |x|>1 x µ(ds, dx), t ∈ [0, T ],
Note that for all t ∈ [0, T ] we have :

∫ t 0 S(t -s)G(s, X(s))dZ(s) = ∫ t 0 bS(t -s)G(s, X(s))ds + ∫ t 0 ∫ |y|≤1 yS(t -s)G(s, X(s)) μ(ds, dy) + ∫ t 0 ∫ |y|>1 y S(t -s)G(

s, X(s))µ(ds, dy)

Note that the last two Lévy processes defined by the integrals above are independent. The first one has a compactly supported Lévy measure and is a squareintegrable martingale with infinitely many jumps bounded by R (small jumps) on each compact time interval, whereas the second one is an integrable compound Poisson process with jumps larger than R (big jumps).

The square integrable case

We consider here Lévy process which satisfies condition (H 2 ν ) and we make the following additional asumptions :

(H2) F, G : [0, T ] × X → X are jointly measurable functions such that |F (t, y)| 2 ∨ |G(t, y)| 2 ≤ C(1 + |y| 2 ), C > 0 ∀y ∈ X, t ∈ [0, T ].
3.1. L 2 -boundedness property. Now let us estabilished an L 2 -boundedness property of the stochastic convolution integral process X.

Lemma 3.1. Assume that E|x 0 | 2 < ∞. Set K ν := b 2 + a ∫ R * y 2 ν(dy) + aν({|y| ≥ 1}) ∫ |y|≥1 y 2 ν(dy)
Under Hypothesis (H1) and (H2) we have uniformly in t ∈ [0, T ] :

E|X(t)| 2 ≤ ( 3 E|x 0 | 2 + 3C 2 a (1 + 3K ν ) ) e Kν .
Proof. We have

E|X(t)| 2 ≤ 3 E|S(t)x 0 | 2 + 3 p E ∫ t 0 S(t -s)F (s, X(s))ds 2 + 3E ∫ t 0 S(t -s)G(s, X(s))dZ(s) 2 ≤ 3 ||S(t)||E|x 0 | 2 + 3E ( ∫ t 0 |S(t -s)F (s, X(s))|ds ) 2 + 3E ( ∫ t 0 |S(t -s)G(s, X(s))|dZ(s) ) 2 = I 1 (t, p) + I 2 (t, p) + I 3 (t, p) It is clear that I 1 (t, p) ≤ 3 E|x 0 | 2 .
Using Cauchy Schwarz inequality, Assumption (H2) on F and Assumption (H1), we have the following estimate

I 2 (t, p) ≤ 3E ( ∫ t 0 ||S(t -s)|| × |F (s, X(s))|ds ) 2 ≤ 3 E ( ∫ t 0 e -a(t-s) |F (s, X(s))|ds ) 2 ≤ 3 ∫ t 0 e -a(t-s) ds ∫ t 0 e -a(t-s) E|F (s, X(s))| 2 ds ≤ 3 C a ∫ t 0 e -a(t-s) (1 + E|X(s)| 2 )ds ≤ 3C a 2 + 3C a ∫ t 0 e -a(t-s) E|X(s)| 2 ds.
Now, let us deal with the estimation of I 3 (t, p). Note that

∫ t 0 S(t -s)G(s, X(s))dZ(s) = ∫ t 0 bS(t -s)G(s, X(s))ds + ∫ t 0 ∫ |y|≤1 yS(t -s)G(s, X(s) μ(ds, dy) + ∫ t 0 ∫ |y|>1 yS(t -s)G(s, X(s))µ(ds, dy) = ∫ t 0 bS(t -s)G(s, X(s))ds + ∫ t 0 ∫ R * yS(t -s)G(s, X(s)) μ(ds, dy) + ∫ t 0 ∫ |y|>1 yS(t -s)G(s, X(s))dsν(dy).
We have

E ∫ t 0 S(t -s)G(s, X(s))dZ(s) 2 ≤ 3E ∫ t 0 bS(t -s)G(s, X(s))ds 2 + 3E ∫ t 0 ∫ R * yS(t -s)G(s, X(s)) μ(ds, dy) 2 + 3E ( ∫ t 0 ∫ |y|>1 yS(t -s)G(s, X(s))dsν(dy) 2 .
By Assumption (H1) we have :

E ∫ t 0 bS(t -s)G(s, X(s))ds 2 ≤ b 2 E (∫ t 0 e -a(t-s) |G(s, X(s))|ds ) 2 . ( 10 
)
Using Cauchy-Schwarz' inequality, and Assumption (H2) on G we have obtain

E ∫ t 0 bS(t -s)G(s, X(s))ds 2 ≤ b 2 a ∫ t 0 e -a(t-s) EG(s, X(s)) 2 ds b 2 C a ∫ t 0 e -a(t-s) (1 + E(X(s)) 2 )ds
By the isometry formula for Poisson stochastic integrals, Assumption (H1) and Assumption (H2) on G we have :

E ( ∫ t 0 ∫ R * |yS(t -s)G(s, X(s))| μ(ds, dy) ) 2 ≤ C ∫ R * y 2 ν(dy) ∫ t 0 e -2a(t-s) (1 + EX(s) 2 )ds C ∫ R * y 2 ν(dy) ∫ t 0 e -a(t-s) (1 + EX 2 (s))ds
Again by Chebychev's inequality, Assumption (H1), Cauchy-Schwarz inequality and Assumption (H2) on G we have :

E ( ∫ t 0 ∫ |y|>1 |yS(t -s)G(s, X(s))|dsν(dy) ) 2 ≤ C ( ∫ |y|≥1 |y|ν(dy) ) 2 × E ( ∫ t 0 e -a(t-s) |G(s, X(s))|ds ) 2 ≤ Cν({|y| ≥ 1}) ∫ |y|≥1 y 2 ν(dy) × ∫ t 0 e -a(t-s) (1 + E|X(s)| 2 )ds
Combining the above calculations, we obtain that

E (∫ t 0 S(t -s)G(s, X(s))dZ(s) ) 2 ≤ 3 b 2 C a ∫ t 0 e -a(t-s) (1 + E(X(s)) 2 )ds + 3C ∫ R * y 2 ν(dy) ∫ t 0 e -a(t-s) (1 + EX 2 (s))ds + 3Cν({|y| ≥ 1}) ∫ |y|≥1 y 2 ν(dy) ∫ t 0 e -a(t-s) (1 + E|X(s)| 2 )ds
Finaly, gathering all this estimates, we have

E|X(t)| 2 ≤ 3 E|x 0 | 2 + 3C a 2 + 3C a ∫ t 0 e -a(t-s) E|X(s)| 2 ds. ≤ 9 b 2 C a ∫ t 0 e -a(t-s) (1 + E(X(s)) 2 )ds + 9C ∫ R * y 2 ν(dy) ∫ t 0 e -a(t-s) (1 + EX 2 (s))ds + 9Cν({|y| ≥ 1}) ∫ |y|≥1 y 2 ν(dy) ∫ t 0 e -a(t-s) (1 + E|X(s)| 2 )ds
This implies by the well-known Gronwall inequality the desired result. □

Stochastic continuity.

As mentioned in the introduction, it is know that when integrating with respect to a Brownian process, it is enough to assume that the integrand is measurable, adapted and locally square integrable with respect to time with probability 1. But if X is cádlág and adapted, unfortunately, in important cases X does not have a predictable modication. For instance this is the case for stochastic convolution processes : ∫ t 0

S(t -s)H(s, X(s))dZ(s)

where the integrand depends on t and Z is a discontinuous Lévy process. Since any adapted stochastically continuous process has a predictable modification ([1], Prop. 3.21), it suffices to check if the stochastic continuity holds.

Lemma 3.2. Assume that E|x 0 | 2 < ∞. Under Hypothesis (H1) and (H2) we have :

lim h→0 sup t∈[0,T ] E|X(t + h) -X(t)| 2 = 0.
Hence X is stochatically continous.

Proof. We have

X(t + h) -X(t) = (S(t + h) -T (t))x 0 + ∫ t+h 0 S(t + h -s)F (s, X(s))ds - ∫ t 0 C(t -s)F (s, X(s))ds + ∫ t+h 0 S(t + h -s)G(s, X(s))dZ(s) - ∫ t 0

S(t -s)G(s, X(s))dZ(s).

Then we have

E(|X(t + h) -X(t)| 2 ≤ 3EA(t, h) 2 + 3EB(t, h) 2 + 3EC(t, h) 2 .
where

A(t, h) = |S(t + h) -S(t))x 0 | = |S(t)(S(h) -I)x 0 | B(t, h) = ∫ t+h 0 S(t + h -s)F (s, X(s))ds - ∫ t 0 S(t -s)F (s, X(s))ds and C(t, h) = ∫ t+h 0 S(t + h -s)g(s)dZ(s) - ∫ t 0

S(t -s)g(s)dZ(s) .

We have,

EA(t, h) 2 ≤ ||S(t)(S(h) -

I)|| 2 E|x 0 | 2 ≤ e -at ||S(h) -I|| E|x 0 | 2 .
Since S(t) is a uniformy strongly continuous semi group and

E|x 0 | 2 < ∞ then lim h→0 sup t≥0 EA(t, h) 2 = 0.
To estimate EB(t, h) 2 , we will start from the following identity :

∫ t+h 0 S(t+h-s)F (s, X(s))ds-S(h) ∫ t 0 S(t-s)F (s, X(s))ds = S(h) ∫ t+h t S(t-s)F (s, X(s))ds. ( EM 1) 
Then we get

EB(t, h) 2 ≤ 2||S(h) -I)|| 2 E (∫ t 0 |||S(t -s)|||F (s, X(s))|ds ) 2 + 2||S(h)|| 2 E ( ∫ t+h t ||S(t -s)|||F (s, X(s))|ds ) 2 ≤ J 1 (t, h) + J 2 (t, h).
where

J 1 (t, h) = 2||S(h) -I)|| 2 E (∫ t 0 |||S(t -s)|||F (s, X(s))|ds ) 2
and

J 2 (t, h) = 2||S(h)|| 2 E ( ∫ t+h t ||S(t -s)|||F (s, X(s))|ds ) 2 .
Similarly to the estimation of I 2 (t, p) we obtain that

J 1 (t, h) ≤ ||S(h) -I)|| 2 6C a 2 ( 1 + a ∫ t 0 e -a(t-s) E|X(s)| 2 ds ) ≤ ||S(h) -I)|| 2 6C a 2 (1 + sup t≥0 E|X(t)| 2 )
and

J 2 (t, h) ≤ 6C a 2 ||S(h)|| 2 ( 1 + (e ah -1)) sup t≥0 E|X(t)| 2 )
From the above computation, it is clear that

lim h→0 sup t≥0 EB(t, h) 2 = 0.
Now, let come back to the estimation of EC(t, h) 2 . We start from the following identity :

∫ t+h 0 S(t + h -s)G(s, X(s))dZ(s) -S(h) ∫ t 0 S(t -s)G(s, X(s))dZ(s) = ∫ t+h t

S(t + h -s)G(s, X(s))dZ(s). (EM 2)

We have

3EC(t, h) 2 ≤ 6EU (t, h) 2 + 6EV (t, h) 2
where

U (t, h) = (S(h) -I) ∫ t 0 S(t -s)G(s, X(s))dZ(s)
and

V (t, h) = ∫ t+h t S(t + h -s)G(s, X(s))dZ(s) Note that EU (t, h) 2 ≤ ||S(h) -I|| 2 E ( ∫ t 0 S(t -s)G(s, X(s))dZ(s) ) 2
Using the computation of I 3 (t, p) we have

EU (t, h) 2 ≤ ||S(h) -I|| 2 3C a 2 K ν ( 1 + sup t≥0 E|X(t)| 2 ) EV (t, h) 2 ≤ ||S(h)|| 2 3C a 2 K ν (e ah -1) ( 1 + sup t≥0 E|X(t)| 2 )
Hence , we conclude that lim h→0 sup t≥0 EC(t, h) 2 = 0; so that the trajectories of X(t) are stochastically continuous. □ 3.3. Existence of predictable and bounded solutions of the SPDE. Now we can establish the main result of this section. We make the following additional asumptions :

(H3) F, G : [0, T ] × X → X are continuous L-Lipchitz functions that is : |F (t, y) -F (t, z)| 2 ≤ L|y -z| 2 L F > 0 y, z ∈ X Theorem 3.3.
Under the hypothesis (H1), (H2) and (H3), if E|x 0 | 2 < ∞ then for any T > 0, there exists a unique mild solution of (1) which is

(1) uniformly L 2 (Ω × [0, T ])-bounded that is t → E|X(t)| p is bounded for all t ∈ [0, T ]. (2) F t -

adapted and stochastically continuous, hence has a predictable version.

Remark 3.1. For any C 0 -semigroup S such that ||S(t)|| ≤ M e ωt , M > 0, ω ≥ 0, the statement of the previous theorem will always remain true, it suffices to repalce for instance -a by ω.

Proof. Denote by X the collection of all stochastically continous and L 2 ([0, T ] × Ω)bounded stochastic processes X(t), t ∈ [0, T ] such that E|X(t)| 2 < ∞ for all T > 0. It is well-known that for the space X is a Banach space when it is equipped with the norm

||X|| T = ( E sup t∈[0,T ] |X(t)| 2 ) 1/2 .
We consider the family of equivalent norms for some γ > 0 to be choose later.

||X|| γ := sup t∈[0,T ] e -γt ( E|X(t)| 2 ) 1/2 for some γ > 0.
Then X equipped with ||.|| γ is a Banach space. Define the following operator Γ on the Banach space (X, ||.||) by

(ΓX)(t) = S(t)x 0 + ∫ t 0 S(t -s)F (s, X(s))ds + ∫ t 0 S(t -s)g(s)ϕ(X(s))dZ(s).
Note that S(t)x 0 , ∫ t 0 S(t -s)F (s, X(s))ds and ∫ t 0 S(t -s)G(s, X(s))dZ(s) are in X according to the previous sections. Then for any X ∈ X, Γ maps the space X into itself.

Finally for any X, Y ∈ X we have :

e -2γt E|ΓX(t) -ΓY (t)| 2 ≤ 2 (∫ t 0 e -2a(t-s) ds ) E ∫ t 0 e -2γ(t-s) e -2γs |F (s, X(s)) -F (s, Y (s))| 2 ds + 2E (∫ t 0 e -a(t-s) e -γt |G(s, X(s)) -G(s, Y (s))|dZ(s) ) 2 ≤ L a sup t∈[0,T ] e -2γt E|X(t) -Y (t)| 2 ∫ t 0 e -2γ(t-s) ds + 2E (∫ t 0 e -(γ+a)(t-s) e -γs |G(s, (X(s)) -G(s, Y (s))|dZ(s) ) 2 ≤ L aγ sup t∈[0,T ] e -2γt E|X(t) -Y (t)| 2 + 6L aγ K ν sup t∈[0,T ] e -2γt E|X(t) -Y (t)| 2 So that ||ΓX -ΓY || γ ≤ √ L aγ + 6L aγ K ν ||X -Y || γ Choosing γ such that √ L aγ + 6L aγ K ν < 1
allows us to complete the proof by the well-known Banach fixed-point theorem. □

The non square integrable case

We consider a Lévy process Z satisfying condition (H β,p ν ). In order to control the jump size of Z and the moment behavior of the stochastic convolution integral, let us introduce a truncation method like in our paper [START_REF] Joulin | A note on convex ordering for stable stochastic integrals[END_REF], [START_REF] Manou-Abi | Théorémes limites et ordres stochastiques relatifs aux lois et processus stables[END_REF]; see also [START_REF] Joulin | On maximal inequalities for stable stochastic integrals[END_REF]. As a Lévy process, Z is a semimartingale whose Lévy-Itô decomposition is given by

Z t = b R t + ∫ t 0 ∫ |x|≤R x (µ -σ)(ds, dx) + ∫ t 0 ∫ |x|>R x µ(ds, dx), t ∈ [0, T ],
where R is some arbitrary positive truncation level (classically chosen to be 1) and

µ is a Poisson random measure on [0, T ] × R with intensity σ(dt, dx) = dt ⊗ ν(dx). Here b R is the drift parameter given by b R := b + ∫ 1<|x|≤R x ν(dx)
We make the following additional asumptions :

(A1) We assume that the Lévy measure ν of Z is supported on R * with ν({0}) = 0 such that for all R ≥ 1 ν ( {y ∈ R : |y| > R ) ≤ C 1 (ν)R -β and ν ( {y ∈ R : 0 < |y| ≤ R ) ≤ C 2 (ν)R -β
where C 1 (ν) and C 2 (ν) are non negative constants depending on the paramters of the Lévy measure. Note that this latter assumption is sufficient to ensure that the integral in the Lévy-Khintchine formula converges.

(A2) F, G : [0, T ] × X → X are measurable functions such that |F (t, y)| p ≤ C(1 + |y| p ) C > 0 y ∈ X and G(t, z) = g(t) ϕ(z), t ∈ [0T ]; z ∈ X where ϕ : X → X is a bounded function and g : [0, T ] × R a measurable function such that η(a, T, g) := ( sup 0≤t≤T ∫ t
e -a(t-s) g 2 (s)ds

) 1/2 < ∞. (A3) F : [0, T ] × X → X is a continuous L F -Lipchitz function that is : |F (t, y) -F (t, z)| p ≤ L F |y -z| p L F > 0 y, z ∈ X The function ϕ : X → X is Hölder continuous with exponent p 2 that is |ϕ(y) -ϕ(z)| ≤ |y -z| p/2 y, z ∈ X
In the sequel, we'll frequently make use of the following constant :

η(a, T, g, h) := ( sup 0≤t≤T ∫ t+h t e -a(t-s) g 2 (s)ds ) 1/2 K ν (a, b, ϕ) = 8b 2 ||ϕ|| 2 ∞ a + 8||ϕ|| 2 ∞ C 1 (ν)C 2 (ν) a + 4||ϕ|| 2 ∞ C 2 (ν) K ν (a, b, ϕ, h) = 8b 2 ||ϕ|| 2 ∞ a + 8||ϕ|| 2 ∞ C 1 (ν)C 2 (ν) a + 4||ϕ|| 2 ∞ C 2 (ν)
4.1. L p -boundedness property. We analyse the tail and moment behavior of the stochastic convolution integrals obtained by convolution of the contractive semigroup T (t) with respect to the non square integrable Lévy process Z.

Now let us first estabilished an explicit bound on the tail behavior of

∫ t 0 T (t -s)G(s, X(s))dZ(s)
In view of this, we have Lemma 4.1. Let Z be a non square integrable Lévy process satisfying Condition (H 2 ν ). Under Hypothesis (A1) and (A2) we have for some β ∈ (0, 2) and all x ≥ η(a, T, g)

P ( ∫ t 0 S(t -s)G(s, X(s))dZ(s) ≥ x ) ≤ η β (a, T, g) x β (K ν (a, b, ϕ) + T C 1 (ν)) .
Corollary 4.2. Let Z be a stable process with index α ∈ (0, 2). Under Hypothesis (A2) we have for all x ≥ η(a, T, g)

P ( ∫ t 0 S(t -s)G(s, X(s))dZ(s) ≥ x ) ≤ η α (a, T, g) x α ( 8b 2 ||ϕ|| 2 ∞ a + 8||ϕ|| 2 ∞ (c + + c -) 2 a α(2 -α) + 4||ϕ|| 2 ∞ (c + + c -) 2 -α + T (c + + c -) α 
) .

Indeed for a stable process Z with index α ∈ (0, 2) Condition (A1) and (H β,p ν ) holds for β = α and

C 1 (ν) = c + + c - α and C 2 (ν) = c + + c - 2 -α .
Now, let us start the proof of Lemma 4.1.

Proof. Let x > 0 be fixed. We have

P ( ∫ t 0 S(t -s)G(s, X(s))dZ(s) ≥ x ) ≤ P ( ∫ t 0 |b R S(t -s)G(s, X(s))|ds ≥ x 2 ) + P ( ∫ t 0 ∫ |y|≤R |yS(t -s)G(s, X(s)| μ(ds, dy) ≥ x 2 ) + P ( ∫ t 0 ∫ |y|>R |yS(t -s)G(s, X(s))|µ(ds, dy) > 0 ) .
Let us, firstly, investigate the drift integral part

∫ t 0 b R |S(t -s)G(s, X(s))|ds.
By Chebychev inequality, Cauchy-Schwarz inequality, Assumption (A1) and (A2) we have :

P ( ∫ t 0 b R |S(t -s)G(s, X(s))|ds ≥ x 2 ) ≤ 4b 2 R x 2 E (∫ t 0 e -a(t-s) |g(s)| |ϕ(X(s))|ds ) 2 . ≤ 4b 2 R ax 2 ∫ t 0 e -a(t-s) g 2 (s)Eϕ(X(s)) 2 ds.
Using the fact that ϕ si bounded, the condition on g, Assumption (H1) and (A1), we get for β ∈ (0, 2) and all x ≥ η(a, T, g) :

P ( ∫ t 0 b R |S(t -s)G(s, X(s))|ds ≥ x 2 ) ≤ 4b 2 R ||ϕ|| 2 ∞ x 2 η 2 (a, T, g) ≤ 8 ||ϕ|| 2 ∞ ax 2 ( b 2 + ν({y ∈ R : |y| > 1})R 2-β ) η 2 (a, T, g). ≤ 8b 2 ||ϕ|| 2 ∞ ax β η β (a, T, g) + 8 ||ϕ|| 2 ∞ ax 2 C 1 (ν)C 2 (ν)R 2-β η 2 (a, T, g) because b 2 R ≤ 2b 2 + 2ν{y ∈ R : 1 < |y| ≤ R} ∫ 1<|y|≤R y 2 ν(dy) ≤ 2b 2 + 2ν{y ∈ R : |y| > 1} ∫ |y|≤R y 2 ν(dy) ≤ 2b 2 + 2C 1 (ν)R 2 ∫ |y|≤R ν(dy) ≤ 2b 2 + 2C 1 (ν)C 2 (ν)R 2-β .
From Chebychev's inequality, isometry formula for Poisson stochastic integrals, assumptions (A1) and (A2), we have 

P ( ∫ t 0 ∫ |y|≤R |yS(t -s)g(s)ϕ(X(s))| μ(ds, dy) ≥ x 2 ) ≤ 4 x 2 E ( ∫ t 0 ∫ |y|≤R |yS(t -s)g(s)ϕ(X(s))| μ(ds, dy) ) 2 ≤ 4 x 2 ∫ |y|≤R y 2 ν(dy) ∫ t 0 e -2a(t-s) g 2 (s)Eϕ(X(s)) 2 ds ≤ 4C 2 (ν) R 2-β x 2 ∫ t 0 e -a(t-s) g 2 (s)Eϕ(X(s)) 2 ds ( * ) ≤ 4C 2 (ν) R 2-β x 2 ||ϕ|| 2 ∞ η 2 (
P(N t > 0) = 1 -P ( N t = 0 ) ≤ 1 -P(T R 1 > t) = 1 -exp -tν ( {y ∈ R : |y| > R} ) ≤ tν ( {y ∈ R : |y| > R} ) = T C 1 (ν) R -β
Therefore choosing the truncation level

R = x η(a, T, g) ≥ 1
and rearranging the terms, we obtain for all x ≥ η(a, T, g) :

P ( ∫ t 0 S(t -s)g(s)ϕ(X(s))dZ(s) ≥ x ) ≤ η β (a, T, g) x β (K ν (a, b, ϕ) + T C 1 (ν)) .
□ Now, we will estabilished an L p -boundedness property of the stochastic convolution integral process X. 

E|X(t)| p ≤ e 3 p a -p C 3 p ( E|x 0 | p + C ( 1 
a ) p/q + η p (a, T, g) ( 1 + (K ν (a, b, ϕ) + T C 1 (ν)) p β -p ) )
where q stands for the conjuguate of p.

According to the same reason as in ... we deduce that Corollary 4.4. Let Z be a stable process with index α ∈ (0, 2). Under Hypothesis (A2) we have for we have uniformly in t ∈ [0, T ] :

E|X(t)| p ≤ e 3 p a -p C 3 p ( E|x 0 | p + C ( 1 
a ) p/q + η p (a, T, g) ( 1 + K(T, a, b, ϕ, α, c + , c -) p α -p ) )
where

K(T, a, b, ϕ, α, c + , c -) = 8b 2 ||ϕ|| 2 ∞ a + 8||ϕ|| 2 ∞ (c + + c -) 2 aα(2 -α) + 4(c + + c -)||ϕ|| 2 ∞ 2 -α + T (c + + c -) α .
Now, let us start the proof of Lemma 4.3.

Proof. Let p > 0. We have 

E|X(t)| p ≤ 3 p E|S(t)x 0 | p + 3 p E ∫ t 0 S(t -s)F (s, X(s))ds p + 3 p E ∫ t 0 S(t -s)G(s, X(s))dZ(s) p ≤ 3 p ||S(t)||E|x 0 | p + 3 p E ( ∫ t 0 |S(t -s)F (s, X(s))|ds ) p + 3 p E ( ∫ t 0 |S(t -s)G(s, X(s))|dZ(s) ) p = I 1 (t,
) p = p ∫ +∞ 0 px p-1 P (∫ t 0 |S(t -s)g(s)ϕ(X(s))|dZ(s) ≥ x ) dx, = η(a, T, g) p + ∫ +∞ η(a,T,g) P (∫ t 0 |S(t -s)g(s)ϕ(X(s))|dZ(s) ≥ x ) dx.
Using Lemma 4.1 one obtain that :

E ( ∫ t 0 |S(t-s)g(s)ϕ(X(s))|dZ(s)
) p ≤ η p (a, T, g)

( 1 + K ν (a, b, ϕ) p β -p ) provided p ∈ (0, β).
(11) Finaly, gathering all this estimates, we have

E|X(t)| p ≤ 3 p E|x 0 | p + 3 p C a p + 3 p ( 1 a 
) p/q C ∫ t 0 e -a(t-s) E|X(s)| p ds + 3 p η p (a, T, g)

( 1 + K ν (a, b, ϕ) p β -p ) .
This implies by the well-known Gronwall inequality the desired result. □ 

E|X(t + h) -X(t)| p = 0.
We start the proof like in Lemma 3.2.

Proof. For any ϵ > 0, we have

P(|X(t + h) -X(t)| > ϵ) ≤ P(A(t, h) > ϵ/3) + P(B(t, h) > ϵ/3) + P(C(t, h) > ϵ/3) where A(t, h) = |S(t + h) -S(t))x 0 | = |S(t)(S(h) -I)x 0 | B(t, h) = ∫ t+h 0 S(t + h -s)F (s, X(s))ds - ∫ t 0 S(t -s)F (s, X(s))ds and C(t, h) = ∫ t+h 0 S(t + h -s)g(s)ϕ(X(s))dZ(s) - ∫ t 0 S(t -s)g(s)ϕ(X(s))dZ(s) .
We have,

P(A(t, h) > ϵ/3) ≤ 3 p ϵ p e -apt ||S(h) -I|| E|x 0 | p . so that for all ϵ > 0, lim h→0 sup t≥0 P(A(t, h) > ϵ/3) = 0.
To estimate B(t, h), we start again from identity (EM 1) :

P(B(t, h) > ϵ/3) ≤ 3 p ϵ p EB(t, h) p ≤ 6 p ϵ p ||S(h) -I)|| p E (∫ t 0 |||S(t -s)|||F (s, X(s))|ds ) p + 6 p ϵ p ||S(h)|| p E ( ∫ t+h t ||S(t -s)|||F (s, X(s))|ds ) p ≤ J 1 (t, h) + J 2 (t, h).
where

J 1 (t, h) = 6 p ϵ p ||S(h) -I)|| p E (∫ t 0 |||S(t -s)|||F (s, X(s))|ds ) p and J 2 (t, h) = 6 p ϵ p ||S(h)|| p E ( ∫ t+h t ||S(t -s)|||F (s, X(s))|ds ) p .
Similarly to the estimation of the previous I 2 (t, p) we obtain that

J 1 (t, h) ≤ 6 p ϵ p ||S(h) -I)|| p C ( 1 a ) p ( 1 + sup t∈[0,T ] E|X(t)| p ) and J 2 (t, h) ≤ 6 p ϵ p ||S(h)|| p ( e ah -1 a 
) p C ( 1 + sup t∈[0,T ] E|X(t)| p ) Thus, it is clear that lim h→0 sup t≥0 P(B(t, h) > ϵ/3) = 0.
Now, note also that from identity (EM 2) with G(s, X(s)) = g(s)ϕ(X(s)) we have :

P(C(t, h) > ϵ/3) ≤ P(U (t, h) > ϵ/6) + P(V (t, h) > ϵ/6)
where

U (t, h) = (S(h) -I) ∫ t 0 |S(t -s)g(s)ϕ(X(s))|dZ(s)
and

V (t, h) = ∫ t+h t |S(t + h -s)g(s)ϕ(X(s))|dZ(s) Note that P(U (t, h) > ϵ/6) ≤ 6 p ϵ p ||S(h) -I|| p E ( ∫ t 0 |S(t -s)g(s)ϕ(X(s))|dZ(s) ) p
Using the estimation in (11), we have

P(U (t, h) > ϵ/6) ≤ 6 p ϵ p ||S(h) -I|| p η p (a, T, g) ( 1 + K ν (a, b, ϕ) p β -p ) provided p ∈ (0, β). so that lim h→0 sup t≥0 P(U (t, h) > ϵ/6) = 0.
Finally, since N t+h -N t has the same law as N h ; using the same arguments of calculus in [START_REF] Li | Strong solutions for stochastic differential equations with jumps[END_REF], we have

P ( ∫ t+h t |S(t + h -s)G(s, X(s|dZ(s) ≥ ϵ 6 ) ≤ 6 p ϵ p ||S(h)|| p η p (a, T, g, h) ( hC 1 (ν) + K ν (a, b, ϕ, h) p β -p )
Hence , we conclude that lim h→0 sup t≥0 P(C(t, h) > ϵ/3) = 0; and we conclude that the trajectories are stochastically continuous under the p-th moment. □ 4.3. Existence of stochastically continuous and bounded solutions of the SPDE. Now we can establish the main result of this section. We give a result, not only on the existence of the mild solution but also integrability of the solutions trajectories and predictable predictability).

Theorem 4.6. Let p ∈ (0, β) and β ∈ (0, 2). Let Z be a non square integrable Lévy process more precisely satisfying Condition (H β,p ν ). Under hypothesis (A1), (A2) and (A3), if E|x 0 | p < ∞ and T > 0, there exist a unique mild solution of (1) which is L p (Ω × [0, T ])-bounded that is t → E|X(t)| p is bounded for all t ∈ [0, T ] and predictable. In the case β ∈ (0, 1] we need the following additional strong condition

2 p L p F ( 1 a 
) p/q + 2 p η p (a, T, g)

( 1 + K ν (a, b, ϕ, T ) p β -p ) < 1 ( * * )
where q stand for the conjugate of p and

K ν (a, b, ϕ, T ) = 8b 2 ||ϕ|| 2 ∞ a + 8||ϕ|| 2 ∞ C 1 (ν)C 2 (ν) a + 4||ϕ|| 2 ∞ C 2 (ν) + C 1 (ν)T.
Remark 4.1. One can be disapointed to require the strong condition ( * * ). But one can see that this latter condition holds for a symmetric α-stable process (c + = c -) = c of order α ∈ (0, 1] and g(t) = C 0 sin(t) if we choose C 0 such that

2 p L p F ( 1 a 
) p/q + (a2) 

S(t -s)g(s)ϕ(X(s))dZ(s).

Note that S(t)x 0 , ∫ t 0 S(t -s)F (s, X(s))ds and ∫ t 0 S(t -s)g(s)ϕ(X(s))dZ(s) are in X according to previous sections. For any X ∈ X, Γ maps the space X into itself. Finally for any X, Y ∈ X we have for all p ≥ 1 : 

( L F ( 1 
aqγ
) p/q + η p (a, T, g, γ)

( 1 + K ν (a, b, ϕ, T ) p β -p ))
.

Choosing γ sufficiently large so that

( L F ( 1 
aqγ
) p/q + η p (a, T, g, γ)

( 1 + K ν (a, b, ϕ, T ) p β -p ))
< 1 allows us to complete the proof by the well-known Banach fixed-point theorem.

For p ∈ (0, 1), note that the space X is a linear complete separable metric space when it is equipped with the following distance In this case, it is easy to see that for any X ∈ X, Γ maps the space X into itself.

Taking any X, Y ∈ X we have for all p ∈ (0, 1) : 

E|ΓX(t
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 43 Assume that E|x 0 | p < ∞ for p ∈ (0, β). Under Hypothesis (A1) and (A2) we have uniformly in t ∈ [0, T ] :
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  ) -Y (t)| p dt.

  Definition

	Definition 2.2. A stochastic process X(t) : t ∈ [0, T ] is said to be stochastically
	continuous (or continuous in probability) if for all ϵ > 0
	lim h→0	t∈[0,T ] sup	P(|X(t + h) -X(t)| > ϵ) = 0.
	Definition 2.3. A stochastic process X(t) : t ∈ [0, T ]is said to be bounded in
	probability or stochastically bounded if lim t∈[0,T ] N →∞ sup P	(	|X(t)| > N	)	= 0

when p > 0 and t ∈ [0, T ]. 2.4. A stochastic process X(t) : t ∈ [0, T ] is said to be continuous in the p-th moment if lim h→0 sup t∈[0,T ]

  a, T, g).

	Now, we proceed with the study of the compound Poisson stochastic integral
	∫ t	∫
	N t =	y S(t -s)g(s)ϕ(X(s)) µ(ds, dy).
	0	|y|>R
	Now, denote by T R 1 , the first jump time of the Poisson process µ R} × [0, t] ) on the set {y ∈ R : |y| > R} which is exponentially distributed with ( {y ∈ R : |y| > parameter ν ( {y ∈ R : |y| > R} ) , see e.g. [13], [Theorem 21.3].
	If a.s. T R 1 occurs after time t, then the compound Poisson stochastic integral N t is
	identically 0 on the interval [0, t]. Thus we have

  p) + I 2 (t, p) + I 3 (t, p) It is clear that I 1 (t, p) ≤ 3 p E|x 0 | p < ∞ for all p > 0.

		I 2 (t, p) ≤ 3 p E ( ∫ t	||S(t -s)|| × |F (s, X(s))|ds ) p
		0 ( ∫ t ≤ 3 p E		e -a(t-s) |F (s, X(s))|ds	) p
		≤ 3 p	0 ( ∫ t e -a(t-s) ds ) p/q	ds	∫ t	e -a(t-s) E||F (s, X(s))|| p ds
		≤ 3 p C	0 ( ∫ t	e -a(t-s) ds ) p/q	0 ∫ t ds	e -a(t-s) (1 + E|X(s)| p )ds
		0 a p + 3 p ≤ 3 p C	(	1 a	) p/q	C	∫ t 0	0 e -a(t-s) E|X(s)| p ds
	where q stands for the conjuguate of p.
	Now, let us deal with the estimation of I 3 (t, p). Note that by integration, we have
	for any p > 0,					
	( ∫ t						
	E	|S(t -s)g(s)ϕ(X(s))|dZ(s)
	0						
	Using Holder inequality and the linear growth assumption, we have the following
	estimate					

  .2. Stochastic continuity. For discontinuous and non square integrable Lévy process Z, we established the following stochastic continuity under condition(H β,p 

	lim h→0	sup t∈[0,T ]

ν ) Lemma 4.5. Assume that E|x 0 | p < ∞ for p ∈ (0, β). Under Hypothesis (A1) and (A2) we have :

  Note also that the remark 3.1 formulated previously also applies for this result.Proof. Denote by X the collection of all adapted stochastically continous andL p ([0, T ]× Ω)-bounded stochastic processes X(t), t ∈ [0, T ] such that E|X(t)| p < ∞ for p > 0.It is well-known that for p ≥ 1, the space X is a Banach space when it is equipped with the norm|X(t)| p ) 1/p .Thus, we can consider the family of equivalent norms for some γ > 0 to be choose later :||X||

	p C p 0	( 1 +	32c||ϕ|| 2 ∞ aα(2 -α)	+ 8	c||ϕ|| 2 ∞ 2 -α	+	2T c α	)	< 1
	Remark 4.2. ||X|| T =	(	E sup				
				t∈[0,T ]				

γ := sup t∈[0,T ] e -γt ( E|X(t)| p )

1/p . Note also that X equipped with ||.|| γ is again a Banach space. Define the following operator Γ on the Banach space (X, ||.||) by (ΓX)(t) = S(t)x 0 + ∫ t 0 S(t -s)F (s, X(s))ds + ∫ t 0

  ) -ΓY (t)| p ≤ 2 p M p

		(∫ t	) p/q	∫ t
					e -a(t-s) ds	E
				0			0	) p
	≤ 2 p L p F	(	∫ t	e -a(t-s) ds ) p/q	∫ t	E|X(s) -Y (s)| p ds
	0 (∫ t				0	) p
	+ 2 p E			e -a(t-s) |g(s)| |ϕ(X(s)) -ϕ(Y (s))|dZ(s)
	0 ( 1 a (∫ t ≤ 2 p L p F	) p/q	d p (X, Y )	) p
	+ 2 p E			e -a(t-s) |g(s)| |ϕ(X(s)) -ϕ(Y (s))|dZ(s)
			0			

e -a(t-s) |F (s, X(s)) -F (s, Y (s))| p ds + 2 p E (∫ t 0 e -a(t-s) |g(s)| |ϕ(X(s)) -ϕ(Y (s))|dZ(s)

Note that the calculus above in previous section we have : E (∫ t 0 e -a(t-s) |g(s)||ϕ(X(s)) -ϕ(Y (s))|dZ(s)

) p/q + 2 p η p (a, T, g)

The proof is completed by using the contraction mapping theorem. □ 4.4. An illustrative example. In order to illustrate usefulness of the theoretical results established, we consider the following one-dimensional stochastic heat equation driven by a strictly stable process Z with Dirichlet boundary conditions:

where Z(t) is an α-stable process defined on the filtered probability space (Ω, F, F t , P); h ∈ L p [0, 1]. Denote by ϕ and F functions satisfying assumptions (A3) and (A3). Define

Let Φ n (t) = √ 2 sin(nπt) for all n ∈ N. Φ n are eigenfunctions of the operator (A, D(A)) with eigenvalues λ n = -n 2 . Then, A generates a C 0 semigroup (S(t)) of the form

The equation ( 12) is of the form

On can apply Theorem 4.6 with a = π 2 , β(a, g, T ) = 1 π 2 under Assumptions (A2) and (A3). Conflict of Interests. The authors declare that there is no conflict of interest regarding the publication of this paper.