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Abstract

We renormalize, using suitable lenses, small domains of a singular holomorphic line
field of C2 or plane field ofC3 where the curvature of a plane-field is concentrated. At a
proper scale the field is almost invariant by translations. When the field is integrable, the
leaves are locally almost translates of a surface that we will call profile. When the singular
rays of the tangent cone (a generalization to a plane-field ofthe tangent cone of a singular
surface is defined) are isolated, we obtain more precise results. We also generalize a result
of Merle ([Me]) concerning the contact order of generic polar curves with the singular level
f = 0 whenω = d f . On the way we obtain some classical results (Lê’s carousels) on the
knotK = ({ f = 0} ∩ Bε(0, 0, 0)) in dimension 2 an a maybe less classical ones in dimension
3 .
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1 Introduction

{x3 − y2 = 0}
{x3 − y2 = λ}

polar curves

Figure 1:{x3 − y2 = 0} and{x3 − y2 = λ}, a real picture.

In 1968 J. Milnor [Mil], published a book where he shows that levels of a complex poly-
nomial f : Cn → C present some limit topology near an isolated singular point. Ness [Ne],
Langevin [La1] studied the total curvature of the intersection of a level of f with a small ball
centered at the singular point. Then, studying polynomialsof two variables, Teissier [Tei3],
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Garcia-Barroso [GarBar] and Garcia-Barroso and Teissier [GarBar-Te] got more and more pre-
cise results about where curvature is situated on a given level { f = λ}, λ close to 0. The first
results, in dimension 2, about the pattern of the very curvedzones of levels{ f = λ}, λ close to 0,
or of the leaves of a singular foliation defined by an integrable algebraic 1-form, were obtained
by the author and J.C Sifre (see [La-Si]).

The results given here are also closely related to Merle’s ([Me]) aboutbouquets(see Defini-
tion 3.2.2) of branches of polar curves in dimension 2.

The goal of this text is, given a 1-form inC3 with an isolated singular point at the origin, to
renormalize small domains where the curvature is concentrated in order to findprofiles, that is
limit non-trivial plane field or foliation (see Definition 3.2.3). The choice of the dimensionn = 3
of the ambient space is first intended to avoid heavy notations. It is also the last dimension where
the author has still some geometrical intuition. Whenω = d f , renormalizing simultaneouslyd f
and f , we prove that the profiles are in this case obtained translating the graph of a polynomial.
We also observe the contact order of generic polar curves andthe singular levelf = 0, gener-
alizing a result of Merle ([Me]). We obtain also a decomposition of the link K = { f = 0} ∩ Sε
in pieces which are eitherS1 fiber bundles or fiber bundles overS1. The pieces are glued along
boundary tori.
The figures implying the use of a computer were made by J-C. Sifre and are taken from [La-Si]
or [La2].

2 Preliminaries

2.1 Gauss map and polar curves (in dimension 2)

Given a 1-formω defined onR2, we can define, at a pointm whereω , 0, a Gauss map
Gω(m) = kerω(m). It has values inRP1. The line field kerω defines, whereω , 0, a foliation
Fω. The Gauss mapGω depends only on the foliation.

We can now define thepolar setsof a foliationFω of R2 by curves. They are inverse images
of the points ofRP1 by the Gauss mapGω. These polar sets are in general curves, maybe with
singularities. That is why we will abusively use the termpolar curves.

Definition 2.1.1. - The polar curveΓ[a,b] is the closure of the set (in general a curve, maybe
with singularities) of points of the plane where the line tangent at a point m to the leaf Lm of the
foliation which contains the point m is parallel to a direction [a,b].

- When the foliation is defined by a1-formω, it is the closure of the set{ω(a,b) = 0}

This definition holds as well when the foliationF is a foliation ofC2 by complex curves. The
second part of this definition holds also when the 1-form inCn or Rn defines only a hyperplane
field.

2.2 Examples in dimension2

Polar curves near an isolated singularity, the seminal example in dimension 2
Let ℓ be the line generated by the vector (a,b). The equation of the polar curveΓℓ is then

d f(a,b) = 0. Here it writes 3ax2 − 2by = 0. The generic (b , 0) polar curves form a family of
parabolas tangent to thex-axis and thex-axis.
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Figure 2: Polar curves ofx3 − y2 = λ using a suitable lens, the line-field tangent toF after
enlargement

Notice that, when one observes a family of tangent generic polar curvesΓ[a,b] , they look like
lines parallel to the common tangent direction after enlarging enough a small enough neighbor-
hood of a point on the common tangent at the origin close to theorigin (see Figure 2).

By definition of polar curves, the direction tangent toF at the points of a given segment of
polar curve are parallel. If the direction [a,b] is not tangent toΓ[a,b] at the origin, the integration
of the line field will give pieces looking like parallel graphs (maybe with asymptotes parallel to
thex-axis, the saddle-node of equationω = ydx−x2dy is already an example of this phenomenon
in R2 or inC2.

Our tool providing a profile is aNewton lens.

Definition 2.2.1. A Newton lens is a pair
- an analytic curveγ(t) ending at the origin and tangent at the origin to a privilegeddirec-

tion, say the x-axis,
- an enlargement rate1/ρ = 1/ρ(x(γ(t))), lim |x(t)|→0 ρ(x(t)) = 0

The analytic curve will first be thex-axis, then suitably chosen curves tangent to thex-axis
at the singular point.

The definition will stay unchanged inC3.

2.3 Newton-lens cloud and Newton-lens polygon

The Newton cloud of a polynomialf (x, y) =
∑

ai, j xiyj is the set{i, j} of points ofN × N such
thatai, j , 0 (see Figure 3).

The Newton polygon off is the boundary of the convex hull of the union of the upper
quadrants ofN ×N of vertices the points of the Newton cloud off (see Figure 3).

LetΦ1 be the change of variables

x = x0 + ρ1X1

y = ρ1Y1

Then, we can see this change of variables as a moving lens settled to observe a neighborhood
of the point (x0,0) if ρ1 is a function ofx0 → 0.
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Figure 3: Newton cloud (black dots) and Newton polygon (in red) of f (x, y) = x3−y2+x2y2+x2y
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Figure 4: First Newton-lens cloud (black dots and green stars) and first Newton-lens polygon (in
red) of f (x, y) = x3 − y2 + x2y2 + x2y

Definition 2.3.1. The first Newton-lens cloud of f is the Newton cloud associated to the polyno-
mialΦ∗1( f ) of the variables x0 andρ1.

The first Newton-lens polygon of f is the boundary of the convex hull of the union of the
upper quadrants ofN×N of vertices the points of the first Newton cloud of f (see Figures 3 and
4).

We will first consider the exponents of the polynomialΦ∗1( f ) considered as a polynomial of
the two variablesx0 andρ1.

Then the Newton-lens polygon allows us to chose the valueρ1 = xr1
0 . Let us denote bỹΦ1
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the change of variables

x = x0 + xr1
0 X1

y = xr1
0 Y1

Then we will iterate the construction. After replacingρi−1 by a rational power ofx0, obtain-
ing a change of variables̃Φi−1 we consider the change of variablesΦi

Xi−1 = ρiXi

Yi−1 = yi + ρiYi

We consider the exponents inx0 andρi of the polynomialΦ∗i Φ̃i−1
∗
· · · Φ̃1

∗
( f ). The Newton-lens

clouds are now inQ+ × N.
Then we will apply a similar construction to a polynomial one-formω = Adx+Bdyplotting,

after changes of variables, all the exponents of the monomials of A and ofB.
We also apply this constructions to a polynomialf (x, y, z) and a polynomial one-formω =

A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz. In this case, as it would be with more variables, the
Newton-lens clouds are still planar (contained inQ+ × N) after the first step.

3 1-forms in dimension3

The advantage of our method is to provide, in particular whenω is integrable, a precise de-
scription of the limit shapes of the leaves which appear nearthe origin. Whenω = d f , we
unfortunately loose the global structure of the levels off , f = λ, λ→ 0.

Let us now consider a 1-formω = Adx+ Bdy+Cdz.
Let Σ be the singular set ofω that is whereω is zero. The planes{ker(ω)} define a plane

fieldP of C3 \ Σ.
In this text, we assume that the originO is an isolated singular point ofω.

3.1 The tangent cone

Inspired by Euler’s formula valid whenω = d f , we define the tangent cone of a 1-formω. Let
low(ω) be the homogeneous form selecting globally the lowest degree terms of the polynomials
A, B andC coefficients ofω = Adx+ Bdy+ Cdz; if this lowest degree isk, thenvalA ≥ k; let
Ak(x, y) = low(A) if the valuation ofA is k, zero if the valuation ofA is larger thank; we use the
same convention forB andC.

Definition 3.1.1. The equation of thetangent coneofω = A(x, y, z)dx+B(x, y, z)dy+C(x, y, z)dz
at the origin is

low(ω(x, y, z))(x, y, z)) = Ak(x, y, z)x+ Bk(x, y, z)y+Ck(x, y, z)z= 0.

Recall that, given inC2 the 1-formω = A(x, y)dx+ B(x, y)dy, the polynomialsxA(x, y) and
yB(x, y) appear in [Ca-Li-Sa]. Notice that, whenω as an homogeneous 1-form, the plane field
kerω is constant along rays. In particular, along rays of the tangent cone, one hasω(x, y, z) = 0,
that is the plane kerω(x, y, z) contains the rayλ · (x, y, z), λ ∈ C.

Notice also that, whenω = d f , low(ω(x, y, z))(x, y, z) = k · low( f ), wherek is the degree of
low( f ) (Euler’s equality).
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Example: the tangent cone of a linear forms
Let us suppose thatω = Adx+ Bdy+Cdz,

A = a1x+ b1y+ c1z

B = a2x+ b2y+ c2z

C = a3x+ b3y+ c3z

Let us denote byM the matrix



a1 b1 c1

a2 b2 c2

a3 b3 c3

we can writeω =
(

dx dy dz
)
·M·



x
y
z

 .

The equation of the tangent cone is then
(

x y z
)
· M ·



x
y
z

 .

It is a quadratic equation which depends only on symmetrization 1
2(tM +M).

When the matrixM is antisymmetric, sayM =



0 −a2 −a3

a2 0 −b3

a3 b3 0

.

The formω =
(

dx dy dz
)
·M ·



x
y
z

 is an example where the tangent cone is the whole

space as

t


(

dx dy dz
)
M ·



x
y
z







x
y
z

 = (−1)3


(

dx dy dz
)
M ·



x
y
z







x
y
z

 .

Notice that all rays are separatrices (see Definition 7.5.1).
In fact it is the general form of a linear 1-form such that the tangent cone is the whole space,

as in that case
(
M +t M

)
should be zero.

Remark 3.1.2. A parenthesis inR3 When the matrixM is of rank 3, the integrability condition
on the wholeR3, ω ∧ dω = 0 ∀(x, y, z), writesM − tM = 0, in other words, the matrix is a
symmetrical one.

Remark When the image of the Gauss map is exactly a projective lineL, the foliation defined
by kerω is a family of planes rotating around an axis.

Whenω is linear, we can represent the Gauss map using the matrix of amapM : C3 → C3

askerω =

M ·



x
y
z





⊥

.

When the Gauss map is of rank 1, and the linear map representing it of rank 2, the kernel
of the matrixM is a line L. All the planeskerω contain the lineL. These planes form the
projective lineL. The formω defines a pencil of planes (see Figure??).

Remark Notice that, even if the tangent cone is a plane, the mapγωlow maybe locally surjective
and guarantees, whenω is homogeneous, that all the polar curves are rays. This is the case of
ω = ωlow = xdx+ zdy− ydz (the tangent cone has equationx2 = 0, it is singular, see below
Definition 3.1.3).
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3.1.1 Singular rays of the tangent cone in dimension3

Definition 3.1.3. A ray {λ · (x, y, z), λ ∈ C} of this cone issingular forω if Ak(x, y, z) =
Bk(x, y, z) = Ck(x, y, z) = 0, that is if low(ω)(x, y, z) ≡ 0.

Definition 3.1.4. The equation of the tangent cone degenerates when all the lines of the tangent
cone are singular (see Definition 3.1.3).

This is the case whenω = d f and if f = g2.

The equation of the tangent cone provides a projective curveCω ⊂ CP
2.

Proposition 3.1.5. Whenω = d f , a line of the tangent cone is singular forω if it is a singular
point ofCω.

Proof: Let us suppose that thex-axis is a singular ray of the tangent cone ofω = d f , and that
flow is homogeneous of degree (k + 1). It means thatωlow(1,0,0) = d( flow)(1,0,0) = 0. The
section of the tangent cone by the planex = 1 has the equationF(y, z) = Ak(1, y, z)+yBk(1, y, z)+
zCk(1, y, z) = 0. The gradient of the functionF writes

∂A(1,y,z)
∂y + B(1, y, z) + y∂B

∂y + z∂C
∂y

∂A(1,y,z)
∂z + y∂B

∂z +C(1, y, z) + z∂C
∂z

The point (1,0,0) is a singular point of the curve of equationF = 0 if

∂A(1, y, z)
∂y

(1,0,0)+ B(1,0,0) = 0 =
∂A(1, y, z)
∂z

(1,0,0)+C(1,0,0)

As thex-axis is singular we know already thatB(1,0,0) = C(1,0,0) = 0.
The term off which may contribute to∂A(1,y,z)

∂y (1,0,0) andA(1,y,z)
∂z (1,0,0) are respectively of

the formxk(ay) and xk(bz). But if a , 0 then ∂ f
∂y (1,0,0) = B(1,0,0) , 0 Similarly, if b , 0,

∂ f
∂z(1,0,0) = C(1,0,0) , 0. Thereforea = b = 0 and the point (1,0,0) is a critical point of
F = 0). �

In our search of profiles, the pertinent objects are the rays singular forω.
Example of the typeω = d f : x4 + y4 − x · y2 + z3 = 0.

The tangent cone has the equationz3− xy2 = 0. As low(ω) = −y2dx− 2xydy+ 3z2dzwe see
that the only degenerate ray is thex-axis.

The reader will find below a profile associated to this example.

3.2 Gauss map, polar surfaces and polar curves in dimension3

Given a 1-formω defined onC3, we can define, at a pointm whereω , 0, a Gauss map
Gω(m) = kerω(m). It has values inCP2. The mapGω is defined on the complement of the
singular locus ofω. It is therefore defined on a small enough neighborhood of theorigin but for
the origin itself.

Definition 3.2.1.
- The polar set Vℓ = Vv associated to a lineℓ generated by a vector v is the closure of the set

of points whereω(v) = 0. It is in general a surface.
- The polar setΓh associated to a plane h is the closure of the set of points where kerω = h.

In general it is a curve.
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We will use only the terms “polar surface”, “polar curve” anddeal with degenerate cases
only if unavoidable.

In other terms the polar curveΓh is the inverse image ofh by the Gauss mapGω. A polar
curveΓh, h a plane of equationAx+By+Cz= 0, is the intersection of two polar surfacesVai ,bi ,ci

such that the vectors (a1,b1, c1) and (a2,b2, c2) span the planeh.
An example of very degenerate case is the formω = xdy− ydx. It defines the foliation by

planes containing thez-axis. The polar sets corresponding to planes transverse tothez-axis are
empty and they coincide with the plane when it contains thez-axis.
Example

Suppose thatω = ωlow is homogeneous. Then the plane fieldP = {ker ω} is invariant by
homotheties of center the origin.

Given a planeh, in general the set of points wherekerω = h is a union of rays (lines
containing the origin).

In this case, the polar curves are union of rays where the Gauss mapGω : (C3 \ O) →
CP2; [x, y, z] 7→ [A,B,C] is locally surjective.

In dimension 3, let us suppose that the planeh is transverse to thex-axis. Thenh is spanned
by the vectors (a,b,0) and (c,0,d), b , 0,d , 0 and the polar curveΓh is the intersection of the
surfaceSa,b,0 of equationaA+ bB= 0 and the surfaceSc,0,d of equationcA+ dC = 0.

Definition 3.2.2. Given a subset G⊂ CP2 of dimension1, a neighborhood NG of G, a family of
branches of polar curvesΓh, h < NG tangent to a lineℓ at the origin form abouquet.

A typical case, pertinent when the 1-formω is the differential of a functionf is Gℓ =
{h such thatℓ ⊂ h}, ℓ a line ofCP2.

Definition 3.2.3. When a bouquet of polar curves is tangent to an isolated ray ofthe tangent
cone ofω, say the x-axis, enlarging neighborhoods of a sequence of points of the x-axis con-
verging to the origin may give rise to a limit plane field invariant by translations parallel to the
x-axis that we will callprofile. Whenω is integrable we also callprofile a typical leaf of the
enlarged foliation, which is invariant by translations parallel to the x-axis.

More systematically, we will use Newton lenses (see Definition 2.2.1) to find profiles.
The choice of the dimensionn = 3 of the ambient space is intended to avoid heavy notations.

The methods and most of the results extend straightforward to dimensionn.
The induction leading to the construction of the profiles is similar to the Newton-Puiseux

induction leading to a parametrization of an analytic curveof C2, but it relies on a different
choice of variables and change of variables.

4 The Newton-lens algorithm, first step

We consider a complex polynomial differential form

ω = A(x, y, z)dx+ B(x, y, z)dy+C(x, y, z)dz

singular at the origin, that is such thatA(0,0,0) = B(0,0,0) = C(0,0,0) = 0. We will suppose
also that the origin is an isolated singular point ofω.

The Newton-lens algorithmsprovide Newton lenses, that is compute the suitable enlarge-
ment ratesρi(x0) along successive curvesγi tangent to a singular ray of the tangent cone, that
we will suppose to be thex-axis.
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As in the dimension 2 examples (see Figure 2), the effect of a moving lens with adapted
stronger and stronger strength when approaching the originwill be to straighten the polar curves
tangent to thex-axis keeping the directions of the planesker(ω).

4.1 The “quiet” regions

Let us first rule out the case where thex-axis is not in the tangent cone or is in the tangent cone
but is not singular forω. In other terms the three coefficients oflow(ω)(x,0,0) = Ak(x,0,0)dx+
Bk(x,0,0)dy+Ck(x,0,0) are not simultaneously zero.

Proposition 4.1.1.When the x-axis is not in the tangent cone or is in the tangent cone but is not
singular forω, the limit of the enlargement of a ball of size|x0|

r , r > 0 shows a plane field which
is a family of parallel planes.

Proof. The differential formlow(ω) = Ak(x, y, z)dx+ Bk(x, y, z)dy+ Ck(x, y, z)dz, with Ak, Bk

andCk homogeneous polynomials null or of degreek, verifies :

Ak(x0,0,0) , 0 or Bk(x0,0,0) , 0 or Ck(x0,0,0) , 0.

For any exponentr > 1

low(ω)(x0 + xr
0X1, x

r
0Y1, x

r
0Z1)

= xk
0
(
Ak(1,0,0)dx+ Bk(1,0,0)dy+Ck(1,0,0)dz

)
+ o(xk

0),

Notice thatdx= xr
0dX1, dy= xr

0dY1, dz= xr
0dZ1. Factorizing inlow(ω)(x0 + xr

0X1, xr
0Y1, xr

0Z1)
the maximal possible power ofx0, we get the differential formω1 which defines the profile (see
Equation 1)

ω1(X1,Y1,Z1) = Ak(1,0,0)dX1 + Bk(1,0,0)dY1 +Ck(1,0,0)dZ1.

The formω1 is constant (and non-zero), therefore the plane fieldkerω1 is just a family of parallel
planes. �

In this case, after enlargement and whenx0 → 0, whenω is integrable, the leaves of the
foliation look more and more like parallel planes.

A simple example is the singularityω = d f ; f (x, y, z) = xy+ yz+ zx= 0. The leaves of the
foliation are the levelsf (x, y, z) = λ; they are surfaces, which, along any line through the origin
O = (0,0,0), give, near a point (t0x0, t0y0, t0z0), at any scalexr

0, r > 1, a limit foliation by parallel
planes. More generally, whenω is homogeneous and integrable, even if thex-axis is a singular
ray of the tangent cone, near a point (x0,0,0), after enlargement with ratio 1/(x0)r , r > 1, the
leaves of the foliationF look like parallel planes.

4.2 The first change of variables

The focus of the first lens is again the point (x0,0,0) of the-axis, where|x0| is small. The
first enlargement is of strength (1/ρ1) >> 1. We will use values ofρ1 of the formρ1 = xr1

0 , r1 >

1, , r1rational. In our construction we can choose any determination of xr
0. A choice of a complex

enlargement ratio may introduce a rotation of the picture, but does not change the profile we want
to observe. Now we suppose that thex-axis is a singular ray.
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For any exponentr > 1, the differential formω writes, after enlargement using a lens cen-
tered at the point (x0,0,0) (|x0| small) of thex-axis (i.e. change of variablesΦ1), as above :



Φ∗1(ω)(X1,Y1,Z1) = A(x0 + xr
0X1, x

r
0Y1, x

r
0Z1)dX1 + B(x0 + xr

0X1, x
r
0Y1, x

r
0Z1)dY1

+C(x0 + xr
0X1, x

r
0Y1, x

r
0Z1)dZ1

= xθ0ω̃1 = xθ0ω1(X1,Y1,Z1) + o(xθ0), with

ω1(X1,Y1,Z1) = A1(X1,Y1,Z1)dX1 + B1(X1,Y1,Z1)dY1 +C1(X1,Y1,Z1)dZ1

(1)

wherexθ0 is the highest power ofx0 which is a factor ofΦ∗1(ω)(X1,Y1,Z1); xθ0ω1(X1,Y1,Z1) is
the sum of terms of lowest degree inx0 of Φ∗1(ω) andθ the valuation (inx0) of Φ∗1(ω). This
defines the differential form

ω1(X1,Y1,Z1) = A1(X1,Y1,Z1)dX1 + B1(X1,Y1,Z1)dY1 +C1(X1,Y1,Z1)dZ1.

If r is not strictly superior to 1, whenx0 tends to 0, the origin (0,0,0) will stay at a finite
distance from the new origin, the eventual renormalized plane field contains the origin and will
stay singular.

When [A1(X1,Y1,Z1),B1(X1,Y1,Z1),C1(X1,Y1,Z1)] define a point ofCP2 independent of
(X1,Y1,Z1), the planes of the plane-fieldkerω defined by
ω1 = A1(X1,Y1,Z1)dX1 + B1(X1,Y1,Z1)dY1 +C1(X1,Y1,Z1)dZ1 are parallel planes.
From now on, we suppose that thex-axis is an isolated singular ray of the tangent cone.
We shall give necessary conditions onr1 to obtain a profile where the planeskerω1 are not

all vertical.
The exponentr1 of ρ1 = xr1

0 is determined using a vertex or a side of thefirst Newton-lens
polygonof ω.

Recall that theNewton-lens cloudof the polynomial
A(x0, ρ1) = A(x0 + ρ1X1, ρ1Y1, ρZ1)

is the set of pairs (i, j) of exponents of a non zero monomial ofA (in the variables (x0, ρ1)). We
obtain the same way Newton-lens clouds for
B(x0, ρ1) = B(x0 + ρ1X1, ρ1Y1, ρ1Z1) andC(x0, ρ1) = C(x0 + ρ1X1, ρ1Y1, ρ1Z1).

Definition 4.2.1. Thefirst Newton-lens cloudofω is the union of the Newton-lens clouds of the
three polynomialsA, B andC. Thefirst Newton-lens polygonof ω is the lower convex hull of
the union of the upper quadrants of vertices the points of thefirst Newton-lens cloud ofω.

An example in dimension2, f (x, y) = ay3 + bx2y2 − cx4y + x5, ω = d f = (2bxy2 − 4cx3y +
5x4)dx+ (3ay2 + 2bx2y− cx4)dy We get, settingρ1ω̃1(x0, ρ1) = ω(x0 + ρ1X1, ρ1Y1) (we forget

Figure 5: A cubic profile.
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about theρ1-factor coming from the differentials).
ω̃1(x0, ρ1) = [2b(x0 + ρ1X1)ρ2

1Y2
1 − 4c(x0 + ρ1X1)3ρ1Y1 + 5(x0 + ρ1X1)4]ρ1dX1 + [3aρ2

1Y2
1 +

2b(x0 + ρ1X1)2ρ1Y1 − c(x0 + ρ1X1)4]ρ1dY1.

1

2

3

4

1 2 3 4

Figure 6: Newton-lens polygon for a cubic profile.

Taking, as the Newton-lens polygon suggests,ρ1 = x2
0, the lowest power ofx0 is x4

0. Factor-
izing x4

0 provides the differential equation 10dX1 = 3aY2
1 + 2bY1 and therefore a cubic profile

X1 =
a
10Y3

1 +
b
10Y2

1.
Examples in dimension3
•Example 1 f (x, y, z) = x3−y2−z2 We getd f = 3x2dx−2ydy−2zdzandlow(d f) = 2ydy−2zdz.
The tangent cone is the cylinder of equationy2 + z2 = 0; thex-axis is degenerate. It is the only
singular line of the tangent cone.

Its Newton-lens polygon has, as the Newton-lens polygon off (x, y) = x3 − y2, just one side
of slope−1/2, therefore takeρ0 = x2

0.
Therefore we choseM · x2

0, M as large as we want, as radius of the ballB = B(x0,R= M · x2
0)

where we will look at the enlarged plane-field.
Performing the change of variable

(x− x0) = x2
0 · X1

y = x2
0 · Y1

,

we see that the levelCx2
0
= { f = x2

0} have in the ballB a shape similar to the solution of the
differential equation

a ≃ ∂X1/∂Y1 ≃ (2/3)Y1

b ≃ ∂X1/∂Z1 ≃ (2/3)Z1

which admits the solutionX1 = −(1/3)(Y2
1 + Z2

1)

• Example 2, f (x, y, z) = x4 + y4 − xy2 + z3 (see Figure??).
ω = d f = (4x3 − y2)dx+ (4y3 − 2xy)dy+ 3z2dz
ωlow = −y2dx− 2xydy+ 3z2dz
The tangent cone at the origin has the equationz3 − xy2 = 0,
ωlow = −y2dx− 2xydy+ 3z2dz. The unique singular ray has equationsz= y = 0, so it is the

x-axis.
After the change of variables

x = x0 + ρ1X1, y = ρ1Y1, z= ρ1Z1, ,

we get, settingρ1ω̃1(x0, ρ1) = ω(x0 + ρ1X1, ρ1Y1, ρ1Z1) (we forget about theρ1-factor coming
from the differentials).
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ω̃1 = [4(x0 + ρ1X1)3 − ρ2
1Y2

1 ]dX1 + [4ρ3
1Y3

1 − 2ρ1(x0 + ρ1X1)Y1]dY1

+ 3ρ2
1Z2

1dZ1

In our construction, we will chooseρ1 = xr1
0 , r1 > 1, r1 rational (we can choose any

determination ofxr1
0 ) using the slope of a side of the Newton-lens polygon.

Figure 7: Newton-lens cloud and polygon of̃ω1 = [4(x0+ρ1X1)3−ρ2
1Y2

1]dX1+[4ρ3
1Y3

1−2ρ1(x0+

ρ1X1)Y1]dY1 + 3ρ2
1Z2

1dZ1

Here (see Figure 7) we takeρ1 = x2
0, then ω1 = 4dX1 − 2Y1dY1, so

dX1
dY1
= 1

2Y1 and

X1 =
Y2

1
4 + c

If we want an estimation in terms of the levelλ of f = λ, we see that the intersection pointx0 of
Ox and the levelf = λ satisfies|x0| = |λ|

1/4, therefore|ρ1| = |λ|
1/2.

Notice that we obtained interesting profiles when the bottom-left point of the Newton-lens
polygon, end of a side we considered, was coming from the “xk

0dX1” term ofω1 itself “coming”
from the a monomial off which is a power ofx only. This computation takes care of half of
what we can observe on Figure??; the conical shape should be attributed to the homogeneous
part.

4.3 Why the variablesX1 does not appear after the first step

We now proceed to understand the effect of zooming near a point (x0,0,0) close to the origin in
thex-axis. Let us first consider slopes−1 < (−1/r) < 0 which are not slope of a side of the first
Newton-lens polygon.

We perform the change of variables


x = x0 + xr
0X1

y = xr
0Y1

z= xr
0Z1

(2)

12



Then 

Φ∗1(ω)(X1,Y1,Z1) = A(x0 + xr
0X1, x

r
0Y1, x

r
0Z1)dX1

+ B(x0 + xr
0X1, x

r
0Y1, x

r
0Z1)dY1

+C(x0 + xr
0X1, x

r
0Y1, x

r
0Z1)dZ1

= xθ0ω̃1(X1,Y1,Z1) with

ω̃1(X1,Y1,Z1)Ã1(X1,Y1,Z1) + B̃1(X1,Y1,Z1) + C̃1(X1,Y1,Z1)

= xθ0ω1(X1,Y1,Z1) + o(xθ0), with

ω1(X1,Y1,Z1) = A1(X1,Y1,Z1)dX1 + B1(X1,Y1,Z1)dY1

+C1(X1,Y1,Z1)

(3)

Proposition 4.3.1. The polynomials A1(X1,Y1,Z1), B1(X1,Y1,Z1) and C1(X1,Y1,Z1) (see rela-
tions (3) above) do not contain the variable X1.

ρ1

x0

p

ρ1

x0

Figure 8: A tail coming from a point of the Newton-lens polygon of ω1, left: from a point on a
side, right: from a vertex

Proof. We prove separately thatA1(X1,Y1,Z1), B1(X1,Y1,Z1),C1(X1,Y1,Z1) do not containX1.
Writing A(x, y, z) =

∑
ap,q,ℓxpyqzℓ, a non zero monomialap,q,ℓxpyqzℓ gives a polynomial

ai, j,ℓ(x0 + ρ1X1)pρ
q
1Yq

1ρ
ℓ
1Zℓ1 in A(x0 + ρ1X1, ρ1Y1, ρZ1).

One point comes from the monomialxp
0ρ

q
1Yq

1ρ
ℓ
1Zℓ1.

The other points introduced by the terms ofap,q,ℓ(x0 + ρ1X1)iρ
j
1Y j

1ρ
k
1Zk

1 containingX1 form
a tail of slope−1 on the left of (p,q, ℓ) (in black in Figure 8).

Then a line inR2 of slope−1/r, r > 1 below the Newton-lens cloud ofA(x0, ρ1) cannot
contain a point in this tail.

We proceed in the same way withB(x0, ρ1) = B(x0 + ρ1X1, ρ1Y1, ρ1Z1) andC(x0, ρ1) =
C(x0 + ρ1X1, ρ1Y1, ρ1Z1). �

A support line of the Newton-lens polygon, contains either asingle pair (i, j), or an edge of
the Newton-lens polygon ofω. All the corresponding monomialsai, j,kxi

0ρ
j
1Y j

1ρ
k
1Zk

1 , bi, j,kxi
0ρ

j
1Y j

1ρ
k
1Zk

1

or ci, j,kxi
0ρ

j
1Y j

1ρ
k
1Zk

1 give terms which do not containX1. They are followed by a tail of slope−1
the points of which cannot belong to any side of slope−1 < r < 0 of the Newton polygon.

13



ρ

x0

Figure 9: Support lines of slopes between−1/a1 and−1/b1 used to build a basic safety annulus

4.4 Vertices of the first Newton-lens polygon

First letρ = xr1
0 , r1 > 1 an enlargement rate such that−1/r1 is not a slope of a side of the first

Newton-lens polygon. Performing the change of variables (Formula 1) we get:



Φ∗1(ω)(X1,Y1,Z1) = A(x0 + xr
0X1, x

r
0Y1, x

r
0Z1)dX1

+ B(x0 + xr
0X1, x

r
0Y1, x

r
0Z1)dY1

+C(x0 + xr
0X1, x

r
0Y1, x

r
0Z1)dZ1

= xθ0ω1(X1,Y1,Z1) + o(xθ0), with

ω1(X1,Y1,Z1) = A1(X1,Y1,Z1)dX1 + B1(X1,Y1,Z1)dY1

+C1(X1,Y1,Z1)

(4)

whereA1, B1 andC1 are homogeneous polynomials in the variablesY1 andZ1 of the same degree
which depend only on the vertex of the Newton-lens polygon “first” touched by an affine line
of slope−1/r. Indeed, the degrees inρ of the monomials ofA(x0, ρY1, ρZ1), B(x0 + ρX1, ρY1),
C(x0 + ρX1, ρY1, ρZ1) are the same as the degrees of the homogeneous polynomials in Y1,Z1.

Then the plane fieldkerω1 is constant on planes projecting on lines containing the origin
of the (Y1,Z1)-plane. It defines a Gauss mapGω1(X1,Y1,Z1) 7→ kerω1(X1,Y1,Z1) In this case
image ofGω1 is of dimension 1 inCP2.

Definition 4.4.1. - Given x0 , 0 ∈ C, a positive constants1 < a, the zone Za(x0) ⊂ {x = x0} ⊂

C3 is the set of points|(y, z)| < xa
0. The zone ZOx,a is the union

⋃
x0∈C\0 Za(x0)

- Given x0 , 0 ∈ C, positive constants1 < a < b, the zone Za,b(x0) ⊂ {x = x0} ⊂ C
3 is the

set of points xb0 < |(y, z)| < xa
0. The zone ZOx,a,b is the union

⋃
x0∈C\0 Za,b(x0)

The zoneZOx,a looks like a thinned cone.
The zoneZOx,a,b looks like a thinned cone on an annulus.
Both admit a tangent line at the origin: thex-axis.

Observe that any vertex, but the upper left one, of the Newton-lens polygon is the boundary
of two sides of slopes−(1/(r low)) > −(1/(rsup)). Lemma 4.4.3 describes the limit, when|x0| → 0
of the plane-fieldkerω in the regionZOx,rsup−δ,r low+δ, δ is supposed to be very small compared
to rsup andr low. We will call the regionZOx,rsup−δ,r low+δ, δ, asafety funnel; this funnel has a very
thick side and a very thin hole.

Let us concentrate on the upper vertex of the union of sides ofslope strictly between−1 and
0 (see Figure 9). The support lines touching the Newton-lenspolygon at this vertex define a

14



zoneZ0x,a1,b1. The formω1 has coefficientsA,B,C which are homogeneous polynomials inX1

andZ1 and define a Gauss map of imageG of dimension 1. Therefore the image of the zone
Z0x,a1,b1 by the Gauss map of the formω is contained in a neighborhood ofG. Getting closer to
the origin makes the neighborhood ofG as thin as desired.

Remark 4.4.2. Given a neighborhood V0 of G ⊂ CP2, any polar curveΓh,h < V0 having a point
in ZOx,b1 is trapped in ZOx,b1 when approaching the origin. In particular it is tangent to Ox at
the origin. Therefore it will look closer and closer, in anyCk-topology, to a line parallel to Ox
when x0 goes to zero.

As polar curves are analytic curves, the limits of the enlargement of such a polar curve
trough a Newton-lens will therefore always be a line parallel to the x-axis.

The definition of polar curves implies already that the planefield kerω1, that we will con-
struct using the Newton-lens induction if it ends at the firststep do not depend on the variable
X1. More precisely

Lemma 4.4.3. - Through a lens of magnifying ratio x−r
0 , (rsup> r > r low) centered on the x-axis

at a point close enough from the origin, where−1/r low and−1/rsupare the slopes of the adjacent
sides to a vertex on the first Newton-lens polygon (rsup= 1, if one adjacent side is of slope(−1)
or if one extremity belongs to theρ1-axis (we do not consider the case rlow = ∞ corresponding to
a point on the x0-axis) we observe a region around the x-axis where, except along the x-axis, the
plane-field looks, through the lens, invariant by translations parallel to the x-axis. The image of
the Gauss map of the limit plane-field is of dimension1.

Proof: A vertex of the first Newton-lens polygon corresponds to terms of the formxp
0 ρ

q
1. The

coefficients of the terms of the formxp
0 ρ

q
1 are homogeneous polynomials a priori in the new

variablesX1, Y1 andZ1. The coefficients of the 1-formω1 depend in fact only in the variablesY1

andZ1 (see Proposition 4.3). In other terms the variableX1 does not appear (see Figure 8, as the
picture is the same for the Newton-lens polygon of a polynomial f or of the three coefficients
(A,B,C) of a 1-formω together. This proves again that the limit plane-field is invariant by
translation in theX1 direction. �

4.5 First step,ω = d f

Lemma 4.5.1. Whenω = d f , choosing an enlarging rate given by a support line of the first
Newton-lens polygon containing only one vertex, the foliation looks through the lens more and
more, when x0 tends to zero, like the product of homogeneous foliation of the(Y1,Z1)-plane and
the x-axis.

Remark 4.5.2. The separatrices (see definition 7.5.1) of the homogeneous foliation defined in
the Y1,Z1-plane are lines containing the origin. Their products withthe x-axis are pieces of the
limit of the enlargement of f= 0 contained in the domain enlarged by the Newton lens.

Proof: Proof of the lemma Whenω = d f , a vertex of the first Newton-lens polygon not sit-
uated on thex0-axis cannot correspond to a termap,q,ℓxp−1yqzℓ of ∂ f /∂x as∂xpyqzℓ/∂y and/or
∂xpyqzℓ/∂z would create a term below the support line containing the vertex. Then, the plane
field defined by the formω1 is the product of a line field defined in the (Y1,Z1) plane by the
x-axis (a priori, the planes ofkerω1 need not to be parallel to thex-axis whenω , d f .). �
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Corollary 4.5.3. Whenω = d f there is, associated to each vertex of the Newton-lens polyno-
mial, for anyδ < (rsup− r low)/2, a “security funnel” centered on the x-axis, crossing planes

transverse to the x-axis in annuli of inner radius xr low+δ

0 and outer radius x
rsup−δ

0 where the folia-

tion defined byω looks through a lens of strength x
rsup−δ

0 like a product of a transverse line-field
and the x-axis.

Remark 4.5.4.Whenρ1 = xr
0, r > 1 is an enlargement rate such that−1/r is not a slope of a side

of the first Newton-lens polygon, the limit Gauss map seen through a Newton lens is constant on
the planes projecting on rays of the(Y1,Z1)-plane, and therefore is of rank less or equal to 1.
Therefore a necessary condition in order to get a map

(X1,Y1,Z1)→ [A1(X1,Y1,Z1),B1(X1,Y1,Z1),C1(X1,Y1,Z1)] ∈ CP2

of rank2 is thatρ1 = xr1
0 where−1/r1 is the slope of an edge of the first Newton-lens polygon of

ω.

4.6 First step,ω = d f , polynomial profile

From now on, we suppose thatr1 = p/q, wheres = −q/p is a slope of an edge∆ of the
Newton-lens polygon. It gives, after enlargement, a differential form (see Equation 4)

ω1 = A1(Y1,Z1)dX1 + B1(Y1,Z1)dY1 +C1(Y1,Z1)dZ1.

Notice that at least one of the coefficientsA(x, y, z), B(x, y, z), C(x, y, z) of dx, dy, dz in ω
should contain a monomial of the formxn, otherwise the wholex-axis would be a set of singular
points.

The coefficients A1,B1,C1 of dX1,dY1,dZ1 in ω1 need not a priori to contain a constant
term. Let us suppose that a monomialan,0,0xn of A(x, y, z) generates a monomialan,0,0xn

0 of
A(x0+ρX1, ρ1Y1, ρ1Z1) such that the Newton-lens polygon ofω contains the point (n,0,0). This
point is the extremity of an edge of the Newton-lens polygon of slope−(1/r1), r1 > 1. ThenA1

contains a constant term. Therefore we get

dX1 =
B1

A1
dY1 +

C1

A1
dZ1.

A solution of the system of partial differential equations

∂X1

∂Y1
= −

B1(Y1,Z1)
A1(Y1,Z1)

∂X1

∂Z1
= −

C1(Y1,Z1)
A1(Y1,Z1)

(5)

is a profile (see Definition 3.2.3).
Otherwise the induction should be continued.

Whenω if integrable, ifA1(Y1,Z1) is non zero, then the partial differential equations 5 pro-
vide a foliation, as its solution is a limit of leaves of foliations. In particular this is the case when
ω = d f .

Theorem 4.6.1.Whenω = d f , f(x, y, z) a polynomial with an isolated singularity at the origin
such that the x-axis is a singular ray of the tangent cone ofω = d f , when the first step of
the induction provides a profile, lenses of strength x−(r1)

0 centered at(x0,0,0) provide, when
x0 → 0, a polynomial profile, that is the leaves ofFd f look as parallel graphs of the form
X1 = P1(Y1,Z1) + c.
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We will use the notationdy,z f = ∂ f
∂y dy+ ∂ f

∂zdz.
On Figure 10, left, the red bullets would correspond to a termof f providing a term ofdy,z f

on a side or slope−(1/r), r > 1 of the Newton-lens polygon, and a term ofdyzf under the side
of the Newton-lens polygon.

On Figure 10, right, the red bullets correspond to a term off providing a term ofdy,z f on the
x0-axis of the Newton-lens polygon. The following lemma repeat with words the idea conveyed

Figure 10: Impossible and possible contributions whenω = d f

by Figure 10 and proves Theorem 4.6.1.

Lemma 4.6.2. If ω = d f , and if the induction ends at the first step, then one of the coefficients
B1(Y1,Z1) of dY1 or C1(Y1,Z1) of dZ1 in ω1 is not zero and A1 is reduced to a xn0 term.

Proof. A monomialaxpyqzℓ of f provides a monomialpaxp−1yqzℓ of
∂ f
∂x

and monomialsqaxpyq−1zℓ

andℓaxpyqzℓ−1 of dyzf , except ifq = ℓ = 0. Then all the points of the edge∆ of the Newton-lens

polygon but for the right extremity if it is on theOx-axis come from a monomial of
∂

∂y
or
∂

∂z
.

Indeed, all the points corresponding to monomials of
∂ f
∂x

are strictly above the edge∆ of slope

in ] − 1,0], except maybe the last point on the right if it is on thex0 axis. �

Let us now prove a result analogous to the 2-dimensional one proved in Rouilĺe’s thesis
[Rou2].

Proposition 4.6.3. The graph of any polynomial in the variables(Y1,Z1) can be a profile ob-
tained at the first step of Newton-lens induction.

Proof: It suffices to consider the polynomial

f (x, y, z) = an(y, z) + an−1(y, z)x2 + · · · + an−k(y, z)x2k

+ · · · a1(y, z)x2(n−1) + x2n−1.
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Figure 11: The contributions of a term off .

where theai are homogeneous polynomials of degreei in the variables (y, z). We again use the
notationdy,z which follows Theorem 4.6.1.

Then

d f = dy,zan(y, z) + dy,zan−1(y, z) · x2 + · · · + dy,zan−k(y, z) · x
2k

+ · · · + dy,za1(y, z)x2(n−1)

+ 2xan−1(x, y)dx+ · · · + 2kx2k−1an−k(y, z)dx

+ · · · + (2n− 1)x2n−2.

The Newton-lens polygon is therefore analogous to Rouillé’s example (see Figure 11).�

4.7 Merle-type results (1)

Proposition 4.7.1. In C3, whenω = d f and when only one step is needed to obtain a profile, a
bouquet of generic polar curves containing the profile staysapart from the singular level f= 0.

Remark 4.7.2. Of course, Proposition 4.7.1 is valid inC2. In that case, it writes in terms of
contact order: the contact order of two curves of a bouquet islarger than the contact order of a
curve of the bouquet and the curve f= 0.

Proof: For that, let us compare the Newton-lens polygons off (x0 + ρ1X1, ρ1Y1, ρ1Z1) and of
d f(x0 + ρ1X1, ρ1Y1, ρ1Z1).

The slope of the bottom segment of the Newton-lens polygon off (3/2 in Figure 12) is (in
absolute value) bigger than (1/2 in Figure 12) the slope of the bottom side of the Newton-lens
polygon ofd f .

This means that a renormalization ball centered at (x0,0,0) catching the profile (radius≃ x2
0)

is much smaller that a renormalization ball centered at (x0,0,0) catching the singular levelf = 0
(radius≃ x3/2

0 ). In other terms, Merle’s bouquet of polar curves corresponding to the tangent
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The two sides
have different slopes

Figure 12: Comparison of Newton-lens polygons off (purple) andd f (yellow); the tails are not
represented.

B(x0, r f )
B(x0, rd f )

Figure 13: Comparison of{ f = 0} and a bouquet of polar curves.

directions at points of balls whose limits will provide the profile is “far” from the singular level
f = 0. �

Whenω = d f , the slope of the line joining terms coming from a termxpyqzℓ of ∂ f /∂x as
∂xpyqzℓ/∂y and/or ∂xpyqzℓ/∂zwould create a term below the support line containing the vertex.
In other words, the bottom side of the Newton-lens polygon ofd f is the only one which is not
parallel to a side of the Newton-lens polygon off . The only way to get a side ofN(d f) non
parallel to a side ofN( f ) is when the vertex on thex-axis ofN(d f) comes from ∂

∂x( f ). When
ω = d f the Gauss imageG of ZOx,ra,rb is a neighborhood of the set ofh containing thex-axis
which is a projective line inCP2. In that case, the bouquets of strands of polar curvesΓh, h not
too close from the lineDx of CP2 of planes containingOx, look more and more like parallel
lines, the leaves ofFωℓ are graphs of polynomials.

5 Further steps

5.1 Example with more than one step

We give now one example, inC2, of a profile obtained with two steps of induction.

Example 5.1.1.This example is certainly the shortest possible (three terms) :

f (x, y) = y2 + x2y+ x4.

Its first Newton-lens polygon (figure (??) on the left) has only one side. The differential form
ω1 = A1(Y1)dX1 + B1(Y1)dY1 is ω1 = (2Y1 + 1)dY1.

A second step is needed with the root c= −1/2. The second Newton-lens polygon is shown

19



in Figure (??) on the right. It gives the differential equation :

dX2

dY2
= −

2Y2

3
.

The integral curves of the profile are parabolas.

5.2 The general construction

We will detail the second step of the induction. We need to prove that the termsA2,B2,C2 of
ω2 = A2dX2+B2dY2+C2dZ2 do not depend on the variableX2. The further steps, when needed,
are analogous.

Let us now suppose thatA1(Y1,Z1) = 0. Letρ1 = xr1
0 .

After dividing ω(x0 + ρ1X1, ρ1Y1, ρ1Z1) by the maximal power ofx0, we get a one-form in
the variablesX1,Y1,Z1

ω̃1 = Ã1dX1 + B̃1dY1 + C̃1dZ1

and, considering only the termω1 of ω̃1 which does not contain a factorxs
0, asA1(Y1,Z1) = 0,

ω1 = B1dY1 +C1dZ1

In the (Y1,Z1)-plane,ω1 defines a one-dimensional foliation with singular points the roots
(y1

i , z
1
i ) of (B1 = C1 = 0)

After choosing a root (y1
i , z

1
i ) of B1 +C1 = 0, let us perform the second change of variables

X1 = ρ2X2

Y1 = y1
i + ρ2Y2

Z1 = z1
i + ρ2Z2

We get a Newton-lens cloud and a Newton-lens polygon, now with vertices inQ+ × N,
plotting the coefficient of form ˜ω1(ρ2X2, y1

i + ρ2Y2, z1
i + ρ2Z2); the horizontal axis corresponds

to exponents ofx0 and the vertical axis to exponents ofρ2.
Let ρ2 = xr2

0 , r2 any positive rational number. In particular we will soon chose it using the
slope of a side∆ of the second Newton-lens polygon.

We get



Φ∗2(ω̃1)(X2,Y2,Z2) = xr2
0 ω̃2 = xr2

0 ω2(X2,Y2,Z2) + o(xr2
0 ), with

ω2(X2,Y2,Z2) = A2(X2,Y2,Z2)dX2 + B2(X2,Y2,Z2)dY2

+C2(X2,Y2,Z2)dZ2

(6)

Notice thatω̃2 keeps terms of different orders inx0. When dealing with the equationf = 0
we will use similarly the notations̃f2.

Let us first chose a vertexν of the Newton-lens polygon. It corresponds to a term of the
form xs

0QA,2, xs
0QB,2 or xs

0QC,2 of Ã, B̃ or C̃, where the polynomialsQA,2,QB,2 or QC,2 are ho-
mogeneous of the same degree.

The plane-field is then invariant on rays. Therefore the raysare contained in the polar set at
this scale.

The roots (yi,1zi,1) belong to the planex = x0

Moving the pointx0 we can follow the roots (yi,1zi,1). At the scale of the previous change of
variable, and even more at the scale of the present one, they describe vertical lines.

Therefore the Gauss map associated toω2 cannot contain an open set. Its image is therefore
of dimension 1. The polar loci are then generically surfacesunion of rays. The existence of two
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different cones is also incompatible with a small change ofx0. The polar surfaces should then be
planes containing the axis 0x. This means that the direction [A,B,C] depends only on its value
on theY2,Z2-plane where it is constant on rays.

We chose now an exponentr corresponding to the slope of a support line of the Newton-lens
polygon atν.

Choosing a side of the Newton-lens polygon ending on thex-axis if it exists, and ifA2(x, y, z)
contributes to this term, will provide a limit plane field. Asbefore, we will prove that the limit
plane-field is invariant by translations. Otherwise, we should continue the induction.

In both case we need to prove, first that the limit plane-field is invariant by translations
along lines parallel to theX2-axis, then that the polynomialsA2,B2 andC2 do not depend on the
variableX2.

Theorem 5.2.1. The limit plane field is invariant by translations and therefore, whenω is in-
tegrable, the leaves of the foliation it defines are graphs, maybe with some vertical asymptotes,
from the(Y2,Z2)-plane to the X2-axis. We callprofile one of these graphs.

The reader can find in [La-Si] a less geometric proof inC2 of Theorem 5.2.1.

Remark 5.2.2. In [GarBar-Te] Garcia- Barroso and Teissier compute the lowest exponent of
the Puiseux serie of a strand of generic polar curve involving the slope of the line direction
defining the polar curve in terms of the valueλ defining the level f= λ. It gives both the size
and the localization in terms ofλ of a domain of our profile meeting the level f= λ.

Proof: of theorem 5.2.1Corollary 4.5.3 implies that there exists two values ofra > rb > 1 close
to 1 which determine a zoneZOx,ra,rb (see Definition 4.4.1)where the planesh = kerω define a
Gauss map of very thin imageG. Therefore a polar curveΓh, h not too close fromG, which
starts out ofZOx,(rb−δ) (see also Definition 4.4.1) cannot crossZOx,ra. The polar curveΓh, if it
starts at a point ofZOx,ra, ra > rc > rb has to stay inZOx,rb and therefore is tangent to the axisOx
at the origin. Then the strands of polar curvesΓh, h not too close fromG, form a bouquet, and
look through a lens of strengthxr

0, ra > r > rb, more and more like parallel lines when|x0| → 0.
Therefore the plane field defined bykerω2 is invariant by translation along theX2-axis. Then,
whenω is integrable, so isω2 and the leaves ofω2 are graphs (we accept vertical asymptotes)
of functions not depending on the variableX2. �

Remark 5.2.3. Remark 4.4.2 shows that the consideration of the larger zoneZOx,a1,b1 is already
sufficient to trap the polar branches.

In order to continue the induction we need a more “algebraic”result.

Theorem 5.2.4.The polynomials A2(X2,Y2,Z2), B2(X2,Y2,Z2) and C2(X2,Y2,Z2) do not con-
tain the variable X2.

Proof: We know that the plane fieldkerω2 is invariant by translations parallel to theX2-axis,
therefore the point [A2(X2,Y2,Z2),B2(X2,Y2,Z2),C2(X2,Y2,Z2)] does not depend ofX2 but A2,
B2, C2 may a priori depend onX2.

Let us consider some (fixed) valueY2,0 andZ2,0 of Y2 andZ2. The polynomialA2(X2,Y2,0,Z2,0),
if it is not constant, should have some rootX2,0. If one of the polynomialsB2(X2,0,Y2,0,Z2,0)
and C2(X2,0,Y2,0,Z2,0) is not zero, it is also not zero in a neighborhood of (X2,0,Y2,0,Z2,0).
Then the planekerω2 has a position which is different in the neighborhood of the pointX2 ∈
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the line{Y2 = Y2,0,Z2 = Z2,0} and at the pointX2,0 ∈ the line{Y2 = Y2,0,Z2 = Z2,0}. Therefore
the polynomialA2(X2,Y2,0,Z2,0) should be constant. SimilarlyB2 andC2 should be constant on
the line{Y2 = Y2,0,Z2 = Z2,0}, unless the three polynomialsA2,B2,C2 are simultaneously zero
on the line{Y2 = Y2,0,Z2 = Z2,0}.

Notice that one or two of the constant values ofA2(X2,Y2,0,Z2,0), B2(X2,0,Y2,0,Z2,0) or
C2(X2,0,Y2,0,Z2,0) maybe zero.

Let us now suppose that the three values
A2,0(X2,0,Y2,0,Z2,0), B2,0(X2,0,Y2,0,Z2,0) andC2,0(X2,0,Y2,0,Z2,0) are zero.

A priori the setΣ2 = {A2 = B2 = C2 = 0} is an algebraic set.
If a zerom2 ∈ Σ2 of the map

(A2,B2,C2) : C3→ C3

is isolated, it is of non-zero index. Therefore, forx0 small enough, the map (̃A2, B̃2, C̃2) : C3 →

C3 (see Equation 3 and the beginning of Subsection 5.2 for a definition of Ã, B̃ andC̃) has also a
zero in a neighborhood of (X2,0,Y2,0,Z2,0). This contradicts the fact that the origin in an isolated
singular point ofω.

Otherwise the algebraic setΣ2 may contain curves and surfaces. The curves cannot be only
lines parallel to theX2-axis as some common zeros of (A2, B2 andC2) are isolated on the line
parallel to theX2-axis trough it.

Let us now consider a regular pointm2 of an arcα2 contained inΣ2, and a transverse
holomorphic discD2 to the arc at the point. It should contain an isolated zero of the map
(B2,C2) : D2 → C

2. For the same reason as above the map (B̃2, C̃2) : D2 → C
2 should have

a zero close tom2. Moving the pointm2 on a neighborhood ofm2 on α2 we get a piece of the
polar curveΓh, h = (OY2,OZ2). It should haveOx as limit tangent at the origin. Therefore it
should look more and more parallel through the second lens totheOX2 axis.

Let us now consider a regular pointm2 of a surfaceS2 contained inΣ2 where the tangent
plane does not containOX2. The polar curve troughm2 cannot have a tangent having a limit in
Tm2S2 providing a contradiction. �

Remark 5.2.5. Using a Newton-lens providing a profile, we do not loose the polar branches
going to the limit x0 → 0. When a branch of the Newton-lens induction ends at a vertex,the
situation is different. Nevertheless the limit1-form is still independent of the last X-variable say
Xp. The conclusion of Remark 4.4.2 are still valid. Therefore,in anyCk topology the dependence
of the formωp on the variable Xp, considering derivatives of order up to k, is going to zero. The
limit form, which is polynomial, therefore does not depend on the variable Xp. This is true
although the Gauss map of the limit formωp is of rank strictly less that2 as the limit polar loci
are planes containing the Xp-axis.

If needed, the following steps of the induction provide formsωp = ApdXp+BpdYp+CpdZp

where the polynomialAp,Bp andCp do not depend on the variableXp.
The induction stops whenAp , 0.

Remark 5.2.6. The profiles, up to linear isomorphism, are analytic invariants of the isolated
singularity. In dimension2, Zariski defined analytic invariant of an irreducible curveof equation
f (x, y) = 0 using relevant coefficients of the Puiseux expansion of the curve (see [Za]). The
dimension of Zariski’s module is larger that the dimension provided by the profiles. It would be
interesting to understand which information the profiles give about Zariski’s invariants.
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6 What does Newton lenses tell about the levelf = 0 ?

6.1 The singular level{ f = 0} ⊂ C2

Remark 6.1.1. We know that f is reduced, as a multiple factor will introducea curve of singular
points. The induction should be stopped when the induction concerning d f shows a profile. We
may as well suppose that f is irreducible, and study the possible component one by one.

The tangent cone of the singular level{ f = 0} ⊂ C2 is where the homogeneous polynomial
sum of the terms of lowest degree off is zero; it is a finite union of lines. The interesting lines
for us are the lines of multiplicity at least 2.

The change of variablesΦ1 is defined by

x = x0 + ρ1X1

y = ρ1Y1

Let us chose one side of slope−1 < 1/r1 < 0 of the Newton-lens polygon off (case 1) or a
vertex bounded by two sides of slope 1/r0,1 and 1/r0,2 − 1 < 1/r0,1 < 1/r0,2 < 0 (case 2).

Then, takingρ1 = xr
0, r = r1 in the first case, 1/r0,1 < 1/r < 1/r0,2 in the second case,

consider
Φ̃1
∗
( f )(X1,Y1) = f (x0 + xr

0X1, x
r
0Y1)

Proposition 6.1.2. Choosingρ = xr
0 the sum of the terms corresponding to points of this side of

the Newton-lens polygon provides, after factorizing the highest possible power of x0, an equation
f1(Y1) (which does not depend of the variable X1). Choosing a slope corresponding to a support
line of a vertex of the first Newton-lens polygon, we get f1(Y1) = Yp

1 .

Proof. Writing f (x, y) =
∑

ap,qxpyq, a non zero monomialap,qxpyq gives a polynomialai, j(x0+

ρ1X1)pρ
q
1Yq

1 in f (x0 + ρ1X1, ρ1Y1).
One point comes from the monomialxp

0ρ
q
1Yq

1.

The other points introduced by the terms ofap,q(x0+ρ1X1)iρ
j
1Y j

1 containingX1 form atail of
slope−1 on the left of (p,q, ℓ) (in black in Figure 8, here we apply the same reasoning tof ). �

Two possibilities can occur:
- 1) the equationf1(Y1) = 0 has only simple roots.
- 2) some roots are multiple, more precisely, some factors off1(Y1) have an exponent strictly

greater than 1;f1 = f a1
1,1 · f a2

1,2 · · · · .

Example with only simple roots f (x, y) = x3 − y2.
Φ∗1( f ) = (x0 + ρ1X1)3 − (ρ1Y1)2; Choosingρ1 = x3/2

0 , we get f1 = 1− Y2
1.

Remembering thaty = x3/2
0 Y1 and following a circle of radius|x0| centered at the origin in

thex-plane, we recover a L̂e carrousel (see [Le]), and a trefoil knot inS1
|x0|
× (y-axis) (they-axis

is a complex line, that is of real dimension 2).

6.2 Multiple roots of f1(Y1) = 0

Example with multiple roots f (x, y) = y4 − 2x3y2 − 4x5y+ x6 − x7 (example taken from [Bri])
From the construction of the Newton-lens polygon, we get again ρ1 = x3/2

0 and f1 = (Y2
1−1)2;

the two rootsY1 = ±1 are double roots.
Next step providesρ2 = x1/4

0 and f2(Y2) = Y2
2−1, equation which have simple rootsY2 = ±1.
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When f1 = 0) has multiple roots, we need to proceed and perform anotherchange of vari-
ablesΦ2, with c1 a roots of one of the multiples factorsf ai

1,i .

X1 = ρ2X2

Y1 = c1 + ρ2Y2

We get a polynomial in the variablesx0, ρ2 from the expressionΦ∗2Φ̃1
∗
( f ). Choosing a side

of the Newton-lens polygon indicates the enlarging rate (1/ρ2). If the polynomial obtained from
the sum of the terms ofΦ∗2Φ̃1

∗
( f ) corresponding to point of the side of the second Newton-lens

polygon, after factorizing the maximal power ofx0, has only simple roots the induction stops.
The form of the two successive changes of variables in they-plane

y = ρ1Y1

Y1 = c1 + ρ2Y2

provides, followingx0 = |x0|eiθ in thex-plane, a two-step L̂e carousel in they-plane. It provides
also an iterated torus knot, component of{ f = 0} ∩ S1

|x0|
× y− plane. In general, the number of

steps of the induction provides the number of iterations of the torus knot{( f = 0)∩ S3
ε}.

6.3 In C3, { f = 0}

The use of Newton lenses leads, when the tangent cone of{ f = 0} has only isolated singular
rays, to a decomposition of the linkK = { f = 0} ∩ S5

ε in components which are eitherS1-fiber
bundles over an algebraic curves deprived of a finite number of discs or fiber bundles overS1,
glued along tori.

The tangent cone of{ f = 0} defines a curveCtang of CP2 with isolated singularities{σi};
deleting small ballsB4

σi ,ε
of radiusε centered at the singular points{σi}, we get a regular complex

curveCtang,ε . Its inverse image by the Hopf mapS5 → CP2 is aS1 fiber bundleA bounded by
tori product of a Hopf fiber and a component of one of the (usual) links κi = S3

σi ,ε
∩Ctang.

Let us now suppose as usual that thex-axis is an isolated singular ray of the tangent cone of
{ f = 0}. Consider the change of variables

x = x0 + ρ1X1

y = ρ1Y1

z= ρ1Z1

(7)

Then
Φ∗1( f )(X1,Y1,Z1) = f (x0 + ρ1X1, ρ1Y1, ρ1Z1).

Lemma 6.3.1.Factorizing the maximal power of x0 from the sum of the terms corresponding to
a side of the Newton-lens polygon of slope−1/r1 and choosingρ1 = xr1

0 , we get a polynomial
f1(Y1,Z1) which does not depend on the variable X1.

The proof is the same as the proof of Proposition 4.3.1 (see Figure 8).

Remark 6.3.2. The vertices of the Newton-lens polygon also give rise to an homogeneous poly-
nomial f1 of the two variables Y1 and Z1 only. The equation f1 = 0 represents in this case a
finite number of lines.
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Corollary 6.3.3. The knot K is, when f is irreducible, when the singular rays ofthe tangent cone
of f are isolated , and when one step is sufficient to provide a smooth non-multiple transverse
profile, obtained from a fiber space A over Ctang,ε gluing along the boundary tori of A a fiber
space overS1 (a circle in a complex line parallel to the x-axis) with fiber an algebraic curve
deprived of a finite number of discs (a bounded part of an algebraic curve ofC2).

7 Further steps, polynomial profiles

7.1 The second step for the levelf = 0

Recall that thex-axis is singular forω.
Chose first a regular point (c1, c2) of the algebraic curve of equationf1(Y1,Z1) = 0.
Let us prove the

Proposition 7.1.1. When the point(c1, c2) is regular, the function f2(X2,Y2,Z2) is cylindrical,
that is, depends only on the variables Y2 and Z2.

Proposition 5.2.4 shows that the assertion is true ford f . In fact, the weaker statement:
the plane fieldkerω2 is invariant by translation parallel to theX2-axis is sufficient to prove
Proposition 7.1.1. We know also that the levelf2 = 0 need to be of the formA2 × x-axis, as it is
the limit of approximations of the levelf = 0 of f .
Proof: As we look at analytic curves tangent to thex-axis at the origin, after the second
enlargement, a small neighborhood of a point will look more and more like a piece of thex-axis.
Theorem 5.2.4 shows that the coefficients of the formsω2 do not depend on the variableX2.
The places wherekerω differs significantly from a direction containingOx is a finite union of
zones union of branches of polar curves of bouquets. A bouquet is visible through a Newton
lens constructed at the last step of the Newton-lens induction, when the slope of the bottom
right segment of the Newton-lens polygon off is (negative and ) smaller than the bottom right
segment of the Newton-lensd f (see Figure 12). Then the last enlargement obtained by an
induction adapted tof does not catch the nearest bouquet and the previous ones do not see them
as their limit is a line parallel to theOx-axis above a root of the equations (B1 = C1 = 0) (see the
end of Subsection 5.2). Notice that we already know thatf2 = 0 can contain only lines parallel
to thex-axis and that (d f)2 does not depend onX2. Thereforef2 cannot depend on the variable
X2. �

When the slope−1 < s < 0 of the support line is such that the support point is a vertex
bounded by sides of slope−1/r2,1 and−1/r2,2 of a second Newton-lens polygon, the function
f2 is homogeneous in the two variablesY2 andZ2. In the planex = x0, the equationf2 = 0 has
then as solutions a finite number of lines through the origin.

Lemma 7.1.2. - When the enlarging ratioρ2 = xr2,1

0 , the regular points of f2(Y1,Z1) provide
a transverse Lê carousels and therefore fibered pieces of a link K, defined by the action of S1

obtained following a circle S1x0
= {xoeiθ}.

- a vertex bounded by sides of slope−1 < s< 0 provides3-dimensional regions of the form
(annulus) × S1.

The arguments necessary to continue the induction, if required, are similar.

The hypothesis “isolated singularity” rules out the possibility of multiple components, there-
fore the induction stops whenfp(Yp,Zp) has no multiple points. Simultaneously, following the
same path of inductive steps,p is the step where a profile ofω = d f appears (see Diagram 7.2).
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Lemma 7.1.2 implies Theorem 7.1.3

Theorem 7.1.3.Let f be an algebraic hypersurface with an isolated singularpoint at the origin.
Suppose also that its tangent cone has only isolated singular rays. Let S5

ε be the sphere centered
at the origin of radiusε. Whenε is small enough, the link K= S5

ε ∩ { f = 0} is obtained from
theS1-fiber bundle A defined at the beginning of the subsection by gluing a sequence of fiber
bundles overS1 of fiber the intersection of a complex curve deprived of neighborhoods of its
singular points with a large4-ball of C2, and at the end of each sequence, a fiber bundle over
S1 obtained following a circle S1x0

= {xoeiθ}, and of fiber the intersection of an algebraic curve
of C2 with no singularity and a large4-ball .

7.2 Polynomial profile whenω = d f

Theorem 7.2.1. Whenω = d f , f a polynomial with an isolated singularity at the originand
such that Ox is an isolated singular ray of the tangent cone, then profiles are graphs of polyno-
mials.

Theorem 7.2.1 is already proved inC2 (see [La-Si]).

Remark 7.2.2. Theorem 7.2.1 is closely related to the position of the bouquets of generic polar
curves with respect to the singular level f= 0, generalizing the 2-dimensional result of Merle
(see [Me].

Given a formω, the profile may be given by differential equations with coefficient rational
functions. The saddle-node of equationω = ydx− x2dy is already an example of this phe-
nomenon inC2 (see figure??).

The diagram 7.2 is a scheme of the proof of Theorem7.2.1. The notation for Newton poly-
gons isN .

A1 = 0

root of B1 = C1 = 0

not a double root off1 = 0 double root off1 = 0

N(d f) is obtained
fromN( f ) by a
vertical translation,
but, maybe, for a term onOx

separatrices are kept away

a term onOx is the end
of segments of different slopes of
N( f ) andN(d f) =⇒ polar curves
are kept away fromf = 0

A2 = 0
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7.3 A proof of Theorem 7.2.1

Lemma 7.3.1. The change of variables of the Newton-lens induction and differentiation com-
mute when the points chosen in the(Yp,Zp)-plane used to continue the induction are the same
for fp and Ap. In other terms

dXp,Yp,ZpΦp ◦ ϕp−1 ◦ Φ1 f = Φp ◦ Φp−1 ◦ Φ1dx,y,z f

.

This fact is sufficient to compare efficiently the Newton-lens polygons off andd f when the
induction needs more than one step. We need now at each extra step to compare the multiple
roots of the equationfp(Yp,Zp) = 0 and the roots of the system of equationsBp(Yp,Zp) = 0 and
Cp(Yp,Zp) = 0.

The two-dimensional case will guide us. We had noticed in Section 6, observing Newton-
lens polygon at different stages that the double roots offp(Yp) = 0 are roots ofBp(Y) = 0.

Lemma 7.3.2. Again, let us suppose thatω = d f .
- When Ap = 0, the Newton-lens cloud ofΦp◦Φp−1◦Φ1d f can be obtained from the Newton-

lens cloud ofΦp ◦ Φp−1 ◦ Φ1 f using a vertical translation of vector(0,−1) as the Newton-lens
cloud of d f can be obtained from the Newton-cloud of f when A1 = 0.

- When Ap , 0 its only contribution to the Newton-lens polygon of̃d fp correspond to a point
on the x-axis. This point is then the extremity of a segment of(negative) slope larger than the
slope of the bottom segment of the Newton-lens polygon off̃p.

Whenω = d f , if the polynomial A1(X2,Y2,Z2) is non-zero, it is reduced to a constant
term. The proof is the same as in first step we considered parallel side of the first Newton-
lens polygons off andd f . Moreover the double roots off1 are the roots ofB1 = C1 = 0.
Therefore (Φ2 ◦ Φ1)∗d f = d(Φ2 ◦ Φ1)∗ f . The only term ofA2 should then come from the term
of (Φ2 ◦ Φ1)∗ ∂ f

∂x f on thex0-axis. We get a profile from the differential equations

∂X2
∂Y2
= B2(Y2,Z2)/A2

∂X2
∂Z2
= C2(Y2,Z2)/A2

when the polynomialA2 is a non-zero constant. IfA2 = 0, we should continue the induction.

7.4 Merle-type results (2)

Theorem 7.4.1.Whenω = d f , the bouquets of polar curves tangent to the x-axis are separated
from the singular level f= 0 by a security funnel.

Proof: The computation above shows that the small ball of radius|x0|
r1+...+rd f

p containing points

of the polar curves of the bouquet is much smaller that the ball of radius |x0|
r1+...+r f

p containing
points of f = 0 nearby. Then the bouquet of polar branches contained in thezoneZOx,rd f

p
is

separated by a zoneZOx,r f
p,r

d f
p

from the component off = 0 corresponding to the path leading to

the profile corresponding to the bouquet of polar branches wea considering. �

The zoneZOx,r f
p,r

d f
p

(see Remark 4.4.2) guarantees also the separation of the bouquet of polar

branches from components off = 0 obtained by other paths, in particular if the component of
f = 0 we want to avoid is not tangent to thex-axis at the origin.
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choice of a side

choice of a root

choice of a side

separation of a bouquet

a bouquet
of polar curves

f = 0

Figure 14: A bouquet of polar curves is separated fromf = 0 by a security funnel

When, at the end of a branch of the Newton-lens induction tree, we get a profile, we simul-
taneously get a bouquet of branches of polar curves corresponding to directions inCP2 avoiding
a neighborhood of the line of planes containing thex-axis. The diagram (see Figure 14) shows
that bouquets of branches of polar curves corresponding to different branches of the Newton-
lens induction tree are separated and separated fromf = 0 by annular zones. This provide a
“pedestrian” proof of Merle’s result [Me].

Remark 7.4.2. - The domains of these bouquets are good candidates to provide Lipschitz equiv-
alence of the intrinsic and extrinsic distances on a level f= λ (see [Neu-Pi2] and [Pi-Te]).

- In C2 we can repeat Remark 4.7.2, giving an interpretation of Theorem 7.4.1 in terms of
contact orders.

7.5 Separatrices

Definition 7.5.1. A separatrixofω is an analytic arc S ending at the origin such that
.
S(x(t), y(t), z(t)) ∈ kerω ∀t.

In particular, whenω = d f , and when the origin is the only singular point and is contained
in the level f = 0, the analytic curves contained in the levelf = 0 ending at the origin are the
separatrices.

In the saddle-node example, thex-axis is a separatrix. Notice that in this case the separatrix
stays in the bouquet of polar curvesΓh, h “far” from Dx.
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In dimension 2, Rouilĺe (see [Rou3]) considered the role of separatrices in a particular case
(quasi functions).

Definition 7.5.2. The separatrices of a1-form ω are kept away fromthe bouquets of polar
curvesΓh, h not too close from the curve Dx ⊂ CP

2 of planes containing the x-axis, if, in a small
enough neighborhood of the singular point, none of these bouquets contains a separatrix.

Therefore, whenω is integrable, the “graph of polynomial” condition will be guaranteed if
the separatrices tangent to thex-axis at the origin stay away from the very curved zones, or using
Merle’s ideas, are kept away from all the bouquets of polar curvesΓh, h “far from” Dx.

8 Non-isolated singular rays of the tangent cone, an example

• f (x, y, z) = x4 − y3 + z2 (see Figure 15 ).
ω = d f = 4x3dx− 3y2dy+ 2zdz

The equation of the tangent cone isz2 = 0, all the rays of this plane are degenerate.

Figure 15: The surface of equationx4 − y3 + z2 = 0 and a levelx4 − y3 + z2 = λ,

f (x, y, z) = λ. Let us computex0 andρ1 in terms ofλ, using in fact [GarBar-Te] track.
x4

0 = λ, |x0| = |λ|
1/4, |ρ1| = |λ|

3/4

Choosing the singular rayOy , that is using the change of variables
x = x0 + ρ1X1, y = y0 + ρ1Y1, z= ρ1Z1, we get
ω1 = 4ρ3

1X3
1dx− 3(y0 + ρ1Y1)2dy+ 2ρ1Z1dz.

The Newton-lens polygon provides
ω1 = −3dY1 + 2Z1dZ1

Therefore
dY1

dZ1
= (2/3)Z1, so Y1 =

Z2
1

3
+ c

f (x, y, z) = λ. Let us computey0 andρ1 in terms ofλ.
−y3

0 = λ, |y0| = |λ|
1/3, |ρ1| = |λ|

2/3

In order to understand the “bag” shape of the levelsf = λ, let us look at the critical points of
the orthogonal projection of the levels on the tangent planez= 0. These critical points have the
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ρ

x0

ρ

x0

Figure 16: f (x, y, z) = x4 − y3 + z2, Newton-lens polygon whenx0 ∈ Ox and wheny0 ∈ Oy

equationd f(0,0,1) = 0, that isz = 0. These critical points are all in the horizontal plane. The
form ωx,y = 4x3dx− 3y2dy defines a foliation, in fact the levels of the functionfx,y = x4 − y3,
which are the projection of the critical locus of the restriction of the orthogonal projection on
the horizontal (z = 0) plane of the levelsf = λ. We can study the 2-dimensional function

Figure 17: f (x, y, z) = x4 − y3 + z2, real picture (sketch) of the critical locus of the projection on
the (x, y)-plane of polar curves and of two real levels

fx,y = x4 − y3. Its differential isωx,y = 4x3dx− 3y2dy. The Newton-lens polygons offx,y and
d fx,y indicate that the choiceρ1 = x3/2

0 will provide a profile.
We get the differential equation

dX1

dY1
=

3
4

Y1

providing the solutions

X1 =
1
4

Y3
1 + c

This explains the shape of the sides of the “bag”. The flat bottom of the bag comes from the
flat piece of the level through the point (x0,0,0), of equationfx,y = x4

0, which is at distance of
the order|x0|

4/3 of the origin.
Understanding the polar setsVℓ, ℓ = H⊥, for planesH containing a non-isolated ray of the

tangent cone off , and the image by the orthogonal projection onH of the critical loci of the
restriction to the levelsf = λ of the orthogonal projection onℓ may help to understand better
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the geometry of the neighborhood of an isolated singularitywhen the tangent cone have non-
isolated singular rays. The symmetry of the examplef (x, y, z) = x4 − y3 + z2 with respect to
the “horizontal plane” makes the study deceptively easy. The general case implies the study of
the restriction of differential formω to the surfaceVℓ, which makes sense even ifω is not of the
form d f .

This step will be generically unavoidable when we will study1-forms inC4 orCn, n ≥ 4.
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