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Abstract

We renormalize, using suitable lenses, small domains ofgur holomorphic line
field of C2 or plane field ofC® where the curvature of a plane-field is concentrated. At a
proper scale the field is almost invariant by translationieWthe field is integrable, the
leaves are locally almost translates of a surface that wiecalllprofile. When the singular
rays of the tangent cone (a generalization to a plane-fietdeofangent cone of a singular
surface is defined) are isolated, we obtain more precisétseStie also generalize a result
of Merle ([Me]) concerning the contact order of generic palarves with the singular level
f = 0 whenw = df. On the way we obtain some classical results (L&’s carsysal the

knotK = ({f = 0} N B,(0,0,0)) in dimension 2 an a maybe less classical ones in dimension
3.
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1 Introduction

¢~y =0}
-y =)

Figure 1:{x3 — y? = 0} and{x® — y? = 1}, a real picture.

In 1968 J. Milnor [Mil], published a book where he shows thatdls of a complex poly-
nomial f : C" — C present some limit topology near an isolated singular poNgss [Ne],
Langevin [Lal] studied the total curvature of the intergetof a level of f with a small ball
centered at the singular point. Then, studying polynonudlsvo variables, Teissier [Tei3],



Garcia-Barroso [GarBar] and Garcia-Barroso and TeisSarBar-Te] got more and more pre-
cise results about where curvature is situated on a giveal {&v= A}, A close to 0. The first
results, in dimension 2, about the pattern of the very curegas of level$f = A}, A close to O,
or of the leaves of a singular foliation defined by an integgagebraic 1-form, were obtained
by the author and J.C Sifre (see [La-Si]).

The results given here are also closely related to Merl&e]] aboutbouquetgsee Defini-
tion 3.2.2) of branches of polar curves in dimension 2.

The goal of this text is, given a 1-form i& with an isolated singular point at the origin, to
renormalize small domains where the curvature is condetria order to findorofiles that is
limit non-trivial plane field or foliation (see Definition 3.3). The choice of the dimension= 3
of the ambient space is first intended to avoid heavy notsititims also the last dimension where
the author has still some geometrical intuition. Wheg d f, renormalizing simultaneoustyf
and f, we prove that the profiles are in this case obtained trangl#ite graph of a polynomial.
We also observe the contact order of generic polar curveshensgingular levelf = 0, gener-
alizing a result of Merle ([Me]). We obtain also a decompositof the linkK = {f = 0} N S,
in pieces which are eithét fiber bundles or fiber bundles ovét. The pieces are glued along
boundary tori.

The figures implying the use of a computer were made by J4€.&8ifl are taken from [La-Si]
or [LaZ2].

2 Preliminaries

2.1 Gauss map and polar curves (in dimension 2)

Given a 1-formw defined onR?, we can define, at a poimh wherew # 0, a Gauss map
G.(m) = kerw(m). It has values ifRPL. The line field kerw defines, where # 0, a foliation
F.. The Gauss ma@, depends only on the foliation.

We can now define theolar setsof a foliation 7, of R? by curves. They are inverse images
of the points ofRP! by the Gauss ma@,,. These polar sets are in general curves, maybe with
singularities. That is why we will abusively use the tepoiar curves

Definition 2.1.1. - The polar curvel[p is the closure of the set (in general a curve, maybe
with singularities) of points of the plane where the linegant at a point m to the leaf.of the
foliation which contains the point m is parallel to a diremti[a, b].

- When the foliation is defined bylaform w, it is the closure of the sé¢tv(a, b) = 0}

This definition holds as well when the foliatighis a foliation ofC2 by complex curves. The
second part of this definition holds also when the 1-forr'tror R" defines only a hyperplane
field.

2.2 Examples in dimensior?

Polar curves near an isolated singularity, the seminal exaple in dimension 2

Let ¢ be the line generated by the vectarlf). The equation of the polar cuni& is then
df(a,b) = 0. Here it writes 8x% — 2by = 0. The genericl{ # 0) polar curves form a family of
parabolas tangent to theaxis and thex-axis.



Figure 2: Polar curves of® — y? = 1 using a suitable lens, the line-field tangentfioafter
enlargement

Notice that, when one observes a family of tangent genetar garvesl [, they look like
lines parallel to the common tangent direction after emt@yg@nough a small enough neighbor-
hood of a point on the common tangent at the origin close totiggn (see Figure 2).

By definition of polar curves, the direction tangentfioat the points of a given segment of
polar curve are parallel. If the direction,b] is not tangent td [, at the origin, the integration
of the line field will give pieces looking like parallel graplmaybe with asymptotes parallel to
thex-axis, the saddle-node of equation= ydx—x?dyis already an example of this phenomenon
in R? or in C2.

Our tool providing a profile is &lewton lens

Definition 2.2.1. A Newton lens is a pair

- an analytic curvey(t) ending at the origin and tangent at the origin to a privileggicec-
tion, say the x-axis,

- an enlargement raté/p = 1/p(X(y(t))), limxg—op(X(t)) =0

The analytic curve will first be thg-axis, then suitably chosen curves tangent toxtaeis
at the singular point.
The definition will stay unchanged i@°.

2.3 Newton-lens cloud and Newton-lens polygon

The Newton cloud of a polynomidi(x,y) = 3 & X'y is the sefi, j} of points of N x N such
thata; j # O (see Figure 3).

The Newton polygon off is the boundary of the convex hull of the union of the upper
guadrants ofN x N of vertices the points of the Newton cloud b{see Figure 3).

Let @, be the change of variables

X = Xo + p1X1
y=p1Y1

Then, we can see this change of variables as a moving lefeddetbbserve a neighborhood
of the point o, 0) if p1 is a function ofxy — 0.



Figure 3: Newton cloud (black dots) and Newton polygon (i) i@ (x, y) = x3—y?+X2y?+ X2y

y

Figure 4: First Newton-lens cloud (black dots and greers$tard first Newton-lens polygon (in
red) of f(x,y) = X3 — y2 + X2y? + X%y

Definition 2.3.1. The first Newton-lens cloud of f is the Newton cloud assatitéhe polyno-
mial ®](f) of the variables gandp;.

The first Newton-lens polygon of f is the boundary of the cold of the union of the
upper quadrants aif x N of vertices the points of the first Newton cloud of f (see Feg#and
4).

We will first consider the exponents of the polynomig|(f) considered as a polynomial of
the two variablesg andp;. -
Then the Newton-lens polygon allows us to chose the vajue x{)l. Let us denote byb;



the change of variables

X = X + X' X1
y =XV

Then we will iterate the construction. After replacing, by a rational power oko, obtain-
ing a change of variableB;_1 we consider the change of variables

Xi—1 = pi X
Yii1 =VYi +p0iYi

We consider the exponentsxp andp; of the polynomiald:®;_; ---®; (f). The Newton-lens
clouds are now ifQ* x N.

Then we will apply a similar construction to a polynomial eioem w = Adx+ Bdyplotting,
after changes of variables, all the exponents of the morisrofaA and ofB.

We also apply this constructions to a polynomigk, y, z2) and a polynomial one-formy =
A(X,y,2dx + B(x,Y,2dy + C(x,y,2)dz In this case, as it would be with more variables, the
Newton-lens clouds are still planar (containedin x N) after the first step.

3 1-formsin dimension3

The advantage of our method is to provide, in particular wheis integrable, a precise de-
scription of the limit shapes of the leaves which appear tlearorigin. Whenw = df, we
unfortunately loose the global structure of the level$ of = 1, 1 — 0.

Let us now consider a 1-form = Adx+ Bdy+ Cdz

Let X be the singular set ab that is wherew is zero. The planefer(w)} define a plane
field P of C3\ Z.

In this text, we assume that the originis an isolated singular point af.

3.1 The tangent cone

Inspired by Euler’s formula valid whew = df, we define the tangent cone of a 1-foan Let
low(w) be the homogeneous form selecting globally the lowest éggrens of the polynomials
A, B andC codficients ofw = Adx+ Bdy+ Cdz if this lowest degree i&, thenvalA > k; let
A(x,y) = low(A) if the valuation ofAis k, zero if the valuation oA is larger thark; we use the
same convention foB andC.

Definition 3.1.1. The equation of theangent conef w = A(X, Y, 2dx+ B(X,y, 2dy+C(Xx, y, 2)dz
at the origin is

low(w(X, Y, 2)(X Y, 2) = Ak(X Y, 2X + Bk(X, Y, 2y + Ck(X,y,2z= 0.

Recall that, given ir©? the 1-formw = A(x, y)dx + B(x, y)dy, the polynomialsxA(x,y) and
yB(X,y) appear in [Ca-Li-Sa]. Notice that, whemas an homogeneous 1-form, the plane field
kerw is constant along rays. In particular, along rays of thee¢ahgone, one has(x,y, z) = 0,
that is the plane ket(X, Y, z) contains the ray - (x,y,2), 1 € C.

Notice also that, whew = df, lowm(w(X, Y, 2)(X, Y, 2) = k- low(f), wherek is the degree of
low(f) (Euler’s equality).



Example: the tangent cone of a linear forms
Let us suppose thai = Adx+ Bdy+ Cdz

A=aXx+by+cz
B= a2x+b2y+ Coz
C =agx+bgy+caz

ap b1 C1 X
Let us denote by the matrix{ a b o ]We can writew = ( dx dy dz)-M{ y ]
ag b3 C3 V4
X
The equation of the tangent cone is tfer y 2 )M[ y
z
It is a quadratic equation which depends only on symmetdza}(tM + M).
0 -a -a
When the matrixM is antisymmetric, say = { a 0 -bs
as b3 0
X
The formw = ( dx dy dz)-M-[ y ] is an example where the tangent cone is the whole
z

space as

(CEERH U EEERH Y

Notice that all rays are separatrices (see Definition 7.5.1)
In fact it is the general form of a linear 1-form such that ttwegent cone is the whole space,
as in that casgM +' M) should be zero.

Remark 3.1.2. A parenthesis ifR3 When the matrix\ is of rank 3, the integrability condition
on the wholeR3, w A dw = 0 V(X Y, 2), writes M — '!M = 0, in other words, the matrix is a
symmetrical one.

Remark When the image of the Gauss map is exactly a projectivefintne foliation defined
by kerw is a family of planes rotating around an axis.

Whenw is linear, we can represent the Gauss map using the matrixnajaM : C3 — C3
1

o]

When the Gauss map is of rank 1, and the linear map repreganthrank 2, the kernel
of the matrix M is a lineL. All the planeskerw contain the lineL. These planes form the
projective lineL. The formw defines a pencil of planes (see Fig@rd.

Remark Notice that, even if the tangent cone is a plane, the mgp maybe locally surjective
and guarantees, whemis homogeneous, that all the polar curves are rays. Thigisdke of
w = wpw = Xdx+ zdy- ydz (the tangent cone has equatigh = 0, it is singular, see below
Definition 3.1.3).



3.1.1 Singular rays of the tangent cone in dimensio3

Definition 3.1.3. A ray {1 - (X,y,2), 4 € C} of this cone issingular forw if A(X,y,2) =
Bk(X,Y,2) = Ck(x,Y,2) =0, that is if loww)(X,y,2) = 0

Definition 3.1.4. The equation of the tangent cone degenerates when all the difithe tangent
cone are singular (see Definition 3.1.3).

This is the case when = df and if f = g2

The equation of the tangent cone provides a projective aDyve CP?.

Proposition 3.1.5. Whenw = df, a line of the tangent cone is singular ferif it is a singular
point ofC,,.

Proof: Let us suppose that theaxis is a singular ray of the tangent conewt df, and that
flow IS homogeneous of degreke £ 1). It means thatvow(1,0,0) = d(fiow)(1,0,0) = 0. The
section of the tangent cone by the plane 1 has the equatioR(y, 2) = A«(1,y,2+yB«(1,Y,2)+

zC(1,y,2) = 0. The gradient of the functioR writes

aA(lyy 2 4 B(L,y,2) + y B 4 z9C

oy
0ALYZ) | yiB | C(1,y, Z) + 75

The point (10, 0) is a singular point of the curve of equatibn= O if
ALy, 2) _0A(LyY.2
oy 0z

As thex-axis is singular we know already thB(1, 0,0) = C(1,0,0) = 0.
The term off which may contribute té?A(li(l 0,0) andA(lyZ)(l 0,0) are respectively of

the formx¥(ay) andx(b2). Butif a # 0 then%, (1 0,0) = B(1,0,0) # O Similarly, if b # O,

5(1, 0,0) = C(1,0,0) # 0. Thereforea = b = 0 and the point (10, 0) is a critical point of
= 0). |
In our search of profiles, the pertinent objects are the risyggitar forw.
Example of the typew = df : xX*+y* —x-y*+Z2 = 0.
The tangent cone has the equatida- xy* = 0. Aslow(w) = —y?dx - 2xydy+ 322dzwe see
that the only degenerate ray is tk@xis.
The reader will find below a profile associated to this example

(1,0,0) + B(1,0,0) = (1,0,0) + C(1,0,0)

3.2 Gauss map, polar surfaces and polar curves in dimensidh

Given a 1-formw defined onC23, we can define, at a poimh wherew # 0, a Gauss map
G.(m) = kerw(m). It has values irCP2. The mapG,, is defined on the complement of the
singular locus ofv. It is therefore defined on a small enough neighborhood obtiggn but for
the origin itself.

Definition 3.2.1.

- The polar set Y = V, associated to a liné generated by a vector v is the closure of the set
of points whereu(v) = 0. Itis in general a surface.

- The polar sefl’, associated to a plane h is the closure of the set of pointsevek, = h.
In general it is a curve.



We will use only the terms “polar surface”, “polar curve” addal with degenerate cases
only if unavoidable.

In other terms the polar cundg, is the inverse image df by the Gauss ma,,. A polar
curvel, h a plane of equatioAx+ By+Cz = 0, is the intersection of two polar surfacésy,
such that the vectors{, b1, ¢1) and @y, by, ¢2) span the plané.

An example of very degenerate case is the farm xdy— ydx It defines the foliation by
planes containing theaxis. The polar sets corresponding to planes transvertse waxis are
empty and they coincide with the plane when it containsztheis.

Example

Suppose thab = wipw IS homogeneous. Then the plane figld= {ker w} is invariant by
homotheties of center the origin.

Given a planeh, in general the set of points whekerw = his a union of rays (lines
containing the origin).

In this case, the polar curves are union of rays where the GaapG,, : (C3\ O) —
CP?; [x,y,7] — [A, B,C] is locally surjective.

In dimension 3, let us suppose that the plangtransverse to the-axis. Therhis spanned
by the vectorsd, b,0) and €, 0,d), b # 0,d # 0 and the polar curvE, is the intersection of the
surfaceS,p o of equationaA+ bB = 0 and the surfac8. o4 of equationcA+ dC = 0.

Definition 3.2.2. Given a subset & CP? of dimensiorl, a neighborhood i of G, a family of
branches of polar curvel,, h ¢ Ng tangent to a ling at the origin form abouquet

A typical case, pertinent when the 1-foranis the diferential of a functionf is G, =
{h such that’ c h}, ¢ a line of CP2.

Definition 3.2.3. When a bouquet of polar curves is tangent to an isolated rayhetangent
cone ofw, say the x-axis, enlarging neighborhoods of a sequence iofgof the x-axis con-
verging to the origin may give rise to a limit plane field in\ant by translations parallel to the
x-axis that we will callprofile. Whenw is integrable we also calprofile a typical leaf of the
enlarged foliation, which is invariant by translations @dlel to the x-axis.

More systematically, we will use Newton lenses (see Defini2.2.1) to find profiles.

The choice of the dimensiam= 3 of the ambient space is intended to avoid heavy notations.
The methods and most of the results extend straightforveaddémensiom.

The induction leading to the construction of the profilesimilgr to the Newton-Puiseux
induction leading to a parametrization of an analytic cur#ec?, but it relies on a dferent
choice of variables and change of variables.

4 The Newton-lens algorithm, first step

We consider a complex polynomialftérential form
w = AX,Y,2dx+ B(x, Y, 2dy + C(X, Y, 2)dz

singular at the origin, that is such thaf0, 0,0) = B(0,0,0) = C(0,0,0) = 0. We will suppose
also that the origin is an isolated singular point.of

The Newton-lens algorithmprovide Newton lenses, that is compute the suitable enlarge
ment rate;(Xp) along successive curvestangent to a singular ray of the tangent cone, that
we will suppose to be thr-axis.



As in the dimension 2 examples (see Figure 2), tfiecé of a moving lens with adapted
stronger and stronger strength when approaching the axigjibe to straighten the polar curves
tangent to thex-axis keeping the directions of the plaries(w).

4.1 The “quiet” regions

Let us first rule out the case where thki@xis is not in the tangent cone or is in the tangent cone
but is not singular fow. In other terms the three cfieients oflow(w)(x, 0,0) = Ax(X, 0, 0)dx +
Bk(x, 0, 0)dy + Ck(x, 0, 0) are not simultaneously zero.

Proposition 4.1.1. When the x-axis is not in the tangent cone or is in the tangeme dut is not
singular forw, the limit of the enlargement of a ball of sizg|",r > 0 shows a plane field which
is a family of parallel planes.

Proof. The diferential formlow(w) = A(X, Y, 2dx + Bk(X, Y, 2dy + Ck(X, Y, 2)dz with Ay, By
andCyx homogeneous polynomials null or of degleeerifies :

Ak(X0,0,0) #0 or Byg(%,0,0)#0 or Ck(x,0,0)+0.

For any exponent > 1

low(w)(Xo + X5 X1, X5 Y1, X5Z41)
= X5(A(L, 0,0)dx + By(1,0,0)dy + Ck(L, 0,0)d2) + o(x¥),

Notice thatdx = x;d Xy, dy = xpd Y1, dz= x{dZ;. Factorizing inlow(w)(Xo + XyX1, X, Y1, X5Z1)
the maximal possible power @, we get the dierential formw, which defines the profile (see
Equation 1)

a)]_(xl, Y]_, Z]_) = Ak(l, 0, O)d X]_ + Bk(l, 0, O)dY]_ + Ck(l, 0, 0)d21

The formw1 is constant (and non-zero), therefore the plane keld; is just a family of parallel
planes. O

In this case, after enlargement and whegn— 0, whenw is integrable, the leaves of the
foliation look more and more like parallel planes.

A simple example is the singularity = df; f(x,y,2) = xy+ yz+ zx= 0. The leaves of the
foliation are the leveld (x,y, 2 = A; they are surfaces, which, along any line through the origin
O =(0,0,0), give, near a pointdxo, toyo, to2o), at any scaleg, r > 1, a limit foliation by parallel
planes. More generally, whenis homogeneous and integrable, even if xh&xis is a singular
ray of the tangent cone, near a poirg,(, 0), after enlargement with ratio/@xp)", r > 1, the
leaves of the foliatiorF look like parallel planes.

4.2 The first change of variables

The focus of the first lens is again the poimx,0, 0) of the-axis, wheréxg| is small. The
first enlargement is of strength/d;) >> 1. We will use values g1 of the formp; = x(r)l, ry >
1,,ryrational. In our construction we can choose any deternanaif x;,. A choice of a complex
enlargement ratio may introduce a rotation of the pictunédioes not change the profile we want
to observe. Now we suppose that thaxis is a singular ray.



For any exponent > 1, the diferential formw writes, after enlargement using a lens cen-
tered at the poinbg, 0, 0) (Ixo| small) of thex-axis (i.e. change of variablas,), as above :

O (w)(X1, Y1,7Z1) = A(Xo + X{)Xl, X(r)Yl, x[)Zl)dxl + B(Xo + X(r)Xl, XBYl, XBZl)le
+ C(Xo + X5 X1, Xy Y1, X5 Z1)dZy
= X1 = X¥wi(Xe, Y1,Z1) + 0(%),  with
w1(X1, Y1,2Z1) = Aa(X1, Y1, Z1)d Xy + By (X1, Y1, Z1)d Yy + Ca(Xa, Y1, Z1)dZy

(1)

wherex{ is the highest power afy which is a factor ofd; (w)(X1, Y1,Z1); Xwi1(X1, Y1,2y) is
the sum of terms of lowest degree g of ®3(w) andé the valuation (inXp) of ®;(w). This
defines the dierential form

w1(X1, Y1,Z1) = Aa(X1, Y1, Z1)d X + B (X1, Y1,Z1)dY: + C1(Xq, Y1, Z1)dZ;.

If r is not strictly superior to 1, wherg tends to 0, the origin (@, 0) will stay at a finite
distance from the new origin, the eventual renormalizedelgeld contains the origin and will
stay singular.

When |A1(X1, Y1, Zl), Bl(Xl, Y1, Zl), Cl(Xl, Y1, Z]_)] define a point ofCP? independent of
(X1, Y1, Z1), the planes of the plane-fiekkrw defined by

w1 = A]_(X]_, Y1, Z]_)dxl + B]_(X]_, Y1, Z]_)dY]_ + C]_(X]_, Y1, Z]_)dzl are paraIIeI planes.

From now on, we suppose that tkexis is an isolated singular ray of the tangent cone.

We shall give necessary conditions iQrto obtain a profile where the planksrw; are not
all vertical.

The exponent; of p; = xgl Is determined using a vertex or a side of tlist Newton-lens
polygonof w.

Recall that theNewton-lens cloudf the polynomial

A(Xo0, p1) = A(Xo + p1X1, p1Y1, pZ1)
is the set of pairsi(j) of exponents of a non zero monomial@f(in the variablesXp, p1)). We
obtain the same way Newton-lens clouds for

B(Xo0,p1) = B(Xo + p1X1, p1Y1, p1Z1) andC(xo, p1) = C(Xo + p1X1, p1Y1, p1Z1).

Definition 4.2.1. Thefirst Newton-lens cloudf w is the union of the Newton-lens clouds of the
three polynomialsA, 8 andC. Thefirst Newton-lens polygownf w is the lower convex hull of
the union of the upper quadrants of vertices the points ofitieNewton-lens cloud @b.

An example in dimension2, f(x,y) = ay’ + bx?y? — cXy + xX°, w = df = (2bxy? — 4cxCy +
5xH)dx + (3ay? + 2bx%y — cx*)dy We get, setting 11 (X0, p1) = w(Xo + p1X1, p1Y1) (We forget

—
%%

Figure 5: A cubic profile.
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about thep;-factor coming from the dierentials).
@1(X0, p1) = [2b(Xo + p1X1)p3Y7 — 4c(Xo + p1X1)3p1Y1 + 5(X0 + p1X1)*|p1d Xy + [3ap?YZ +
2b(xo + p1X1)?p1Y1 — (X0 + p1X1)*]p2d V1.

O\

e

Figure 6: Newton-lens polygon for a cubic profile.

Taking, as the Newton-lens polygon suggestss xg the lowest power oXg is xg Factor-
izing xg provides the dterential equation 10X; = 3an + 2bY: and therefore a cubic profile
X1 =AY+ DY2,

Examples in dimension3

eExample 1 f(X,y, 2) = x3—y?—7%> We getd f = 3x2dx-2ydy-2zdzandlow(d f) = 2ydy-2zdz
The tangent cone is the cylinder of equatidn+ z° = 0; thex-axis is degenerate. It is the only
singular line of the tangent cone.

Its Newton-lens polygon has, as the Newton-lens polygof(rfy) = x3 — y?, just one side
of slope—1/2, therefore takpo = X3.

Therefore we chosk! - xg M as large as we want, as radius of the Ba# B(xp,R= M- xg)
where we will look at the enlarged plane-field.

Performing the change of variable

(X—X0) = %5 - X1
y=X(2)'Y1

b

we see that the Ievélxg = {f = x(z)} have in the balB a shape similar to the solution of the
differential equation

a=x~ogXy1/0Yr ~ (2/3)Y1

b~ 8X1/821 = (2/3)21

which admits the solutioX; = —(1/3)(Y? + Z2)

e Example 2, f(X,y,2) = X* + y* — xy? + Z° (see Figure?).

w=df = (43 — y)dx+ (4y® — 2xy)dy + 3722dz

wiow = —Y2dx — 2xydy+ 37°dz

The tangent cone at the origin has the equation xy* = 0,

wiow = —y?dXx — 2xydy+ 3z2dz The unique singular ray has equatiansy = 0, so it is the
X-axis.

After the change of variables

X=Xo+p1X1, Y=p1Y1, Z=p1Z4, ,

we get, settingp1wi1(Xo, p1) = w(Xo + p1X1,01Y1,01Z1) (we forget about the,-factor coming
from the diferentials).
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@1 = [4(X0 + p1X1)® — p3Y21dXq + [4p3Y3 — 201 (%0 + p1Xa)Ya]d V1

+30%Z2dZy
In our construction, we will choosg; = xgl, ri > 1, rp rational (we can choose any
determination 06([)1) using the slope of a side of the Newton-lens polygon.

G‘\

AR

e

Figure 7: Newton-lens cloud and polygondf = [4(Xo+p1X1)3 - p7YZ1dXa +[4p3Y3 - 201 (X0 +
p]_X]_)Y]_]dY]_ + 3p§Zdel

Here (see Figure 7) we take = xg then wq = 4dX; — 2Y;1dYq, SO

dXy _ l
T = 22Y1 and

Y:
X1271+C

If we want an estimation in terms of the levebf f = A, we see that the intersection pomgtof
Oxand the levelf = A satisfiegxo| = |4|Y/4, thereforgp4| = |A]Y/2.

Notice that we obtained interesting profiles when the bot#lefnpoint of the Newton-lens
polygon, end of a side we considered, was coming from x{;dxl" term of w; itself “coming”
from the a monomial off which is a power ofx only. This computation takes care of half of
what we can observe on Figu®€, the conical shape should be attributed to the homogeneous

part.

4.3 Why the variablesX; does not appear after the first step

We now proceed to understand th&eet of zooming near a poink{, 0, 0) close to the origin in
the x-axis. Let us first consider sloped < (-1/r) < 0 which are not slope of a side of the first
Newton-lens polygon.

We perform the change of variables

X = Xo + X X1
y=X%Y1 (2
Z= x{)Zl

12



Then
@7 (w)(X1, Y1, Z1) = A(Xo + XgX1, Xp Y1, XpZ1)d Xa

+ B(Xo + X1, Xp Y1, X5Z1)d Y1
+ C(Xo + X5 X1, Xy Y1, X5Z1)dZy
= X0w1(X1, Y1,Z1)  with
@1(X. Y1, Z1)Ar(Xa, Y1, Z1) + By(Xa, Y1, Z1) + Ci(Xa, Y1, Z1)
= xgw1 (X1, Y1, Z1) + 0(3), with
w1(X1, Y1,2Z1) = Aa(Xq, Y1, Z1)d Xy + By (X1, Y1, Z1)d Yy
+ C1(X1, Y1, Z1)

®3)

Proposition 4.3.1. The polynomials X1, Y1, Z1), B1(X1, Y1,Z1) and G(X1, Y1,Z1) (see rela-
tions (3) above) do not contain the variablg. X

ﬂ p
\\ JL\%\
\‘Q ™ ig\

p ~
Xo

/

Xo

Figure 8: A tail coming from a point of the Newton-lens polygof w1, left: from a point on a
side, right: from a vertex

Proof. We prove separately thét (X1, Y1, Z1), B1(X1, Y1, 2Z1), C1(X1, Y1, Z1) do not containXj.

Writing A(X,Y,2) = Y apqcXPy9Z, a non zero monomiady o xPy9Z gives a polynomial
ai.j.o(Xo + p1X1)Pp YIp{ Z in Axo + p1Xe. p1Y1. pZ4).

One point comes from the monomig]p; Y;\0{ ZL.

The other points introduced by the termsagf, /(o + p1X1)'p1 Y105 Z¥ containingX; form
atail of slope—1 on the left of f, g, ¢) (in black in Figure 8).

Then a line inR? of slope-1/r, r > 1 below the Newton-lens cloud ofi(xo, p1) cannot
contain a point in this tail.

We proceed in the same way witB(xg, p1) = B(Xo + p1X1,p1Y1,01Z1) andC(Xo,p1) =
C(xo + p1X1,p1Y1, p1Z1). O

A support line of the Newton-lens polygon, contains eithsingle pair {, j), or an edge of
the Newton-lens polygon af. All the corresponding monomiads j X1 YipkZX , bi X0l YipkZK
or G jkXyo1 Y1pkZK give terms which do not contaiX;. They are followed by a tail of slopel

the points of which cannot belong to any side of slefie< r < 0 of the Newton polygon.

13
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~ Xo

Figure 9: Support lines of slopes betweetya; and—1/b; used to build a basic safety annulus

4.4 \ertices of the first Newton-lens polygon

First letp = x{)l, ri > 1 an enlargement rate such thdlt/r, is not a slope of a side of the first
Newton-lens polygon. Performing the change of variablesr(fala 1) we get:

@7 (w)(X1, Y1, Z1) = A(Xo + XpX1. Xo Y1, X Z1)d Xy
+ B(xo + XgX1, X5 Y1, X5Z1)d Y1
+ C(Xo + X5 X1, X5 Y1, X5 Z1)dZy
= xw1(X1, Y1,Z1) + 0(¢),  with
w1(X1, Y1, Z1) = A1(Xq, Y1, Z1)d Xy + B1(Xq, Y1, Z1)dY;
+ Cl(Xl, Yl, Zl)

(4)

whereAq, B; andC; are homogeneous polynomials in the variaMgandZ; of the same degree
which depend only on the vertex of the Newton-lens polygorstfitouched by anféine line
of slope-1/r. Indeed, the degrees jnof the monomials ofA(Xo, oY1, 0Z1), B(Xo + pX1, Y1),
C(xo + pX1,pY1,pZ1) are the same as the degrees of the homogeneous polynomyalZi.

Then the plane fieltkerw; is constant on planes projecting on lines containing thgirori
of the (Y1,Z3)-plane. It defines a Gauss m&,, (X1, Y1,Z1) — kerwi(Xi, Y1,Z1) In this case
image ofG,,, is of dimension 1 irCP?2.

Definition 4.4.1. - Given % # 0 € C, a positive constant$ < a, the zone f{Xg) C {X = X} C
C3is the set of pointy, 2)| < x3. The zone &ya is the union Jy,cc\o Za(Xo)

- Given % # 0 € C, positive constants < a < b, the zone gy(x0) C {X = X} ¢ C3is the
set of points &< |(y, 2| < X3. The zone &xap is the unionJyyec\o Zab(Xo)

The zoneZpy 4 l00ks like a thinned cone.
The zoneZpyap l00ks like a thinned cone on an annulus.
Both admit a tangent line at the origin: tikeaxis.

Observe that any vertex, but the upper left one, of the Newdna polygon is the boundary
of two sides of slopes(1/(riow)) > —(1/(rsup). Lemma 4.4.3 describes the limit, whieg| — 0
of the plane-fielkerw in the regionZoxr,,s.re,+6, 0 1S SUpPposed to be very small compared
to rsupandriow. We will call the regionZoxr,,-sr..+s, 0, @safety funnelthis funnel has a very
thick side and a very thin hole.

Let us concentrate on the upper vertex of the union of sidekpe strictly betweer1 and
0 (see Figure 9). The support lines touching the Newton-feaiggon at this vertex define a

14



zoneZoxa, b, - The formws has cofficientsA, B, C which are homogeneous polynomialsXm
andZ; and define a Gauss map of ima@eof dimension 1. Therefore the image of the zone
Zoxa, b, DY the Gauss map of the formis contained in a neighborhood Gf Getting closer to
the origin makes the neighborhood®fas thin as desired.

Remark 4.4.2. Given a neighborhoodMf G c CP?, any polar curvdh, h ¢ Vo having a point
in Zoxp, IS trapped in %yxp, When approaching the origin. In particular it is tangent tox@t
the origin. Therefore it will look closer and closer, in a@Y-topology, to a line parallel to Ox
when ¥ goes to zero.

As polar curves are analytic curves, the limits of the erdangnt of such a polar curve
trough a Newton-lens will therefore always be a line patdibethe x-axis.

The definition of polar curves implies already that the plaele kerws, that we will con-
struct using the Newton-lens induction if it ends at the fstsp do not depend on the variable
X1. More precisely

Lemma 4.4.3. - Through a lens of magnifying ratigx (rsup> r > riow) centered on the x-axis
at a point close enough from the origin, wherg/riq and—-1/rsypare the slopes of the adjacent
sides to a vertex on the first Newton-lens polygapy(# 1, if one adjacent side is of slofe 1)

or if one extremity belongs to the-axis (we do not consider the casgs= oo corresponding to
a point on the y-axis) we observe a region around the x-axis where, excepgahe x-axis, the
plane-field looks, through the lens, invariant by trangsias parallel to the x-axis. The image of
the Gauss map of the limit plane-field is of dimension

Proof: A vertex of the first Newton-lens polygon corresponds to geahthe formxgp‘j. The
codficients of the terms of the formgp‘j are homogeneous polynomials a priori in the new
variablesXi, Y1 andZ;. The codicients of the 1-formw; depend in fact only in the variablég
andZ; (see Proposition 4.3). In other terms the variakjaloes not appear (see Figure 8, as the
picture is the same for the Newton-lens polygon of a polyrmdrhior of the three ca@cients
(A,B,C) of a 1-formw together. This proves again that the limit plane-field isanant by
translation in theX; direction. O

4.5 Firststep,w = df

Lemma 4.5.1. Whenw = df, choosing an enlarging rate given by a support line of th& fi
Newton-lens polygon containing only one vertex, the fiolrmtooks through the lens more and
more, when xtends to zero, like the product of homogeneous foliatioh@fY1, Z1)-plane and
the x-axis.

Remark 4.5.2. The separatrices (see definition 7.5.1) of the homogenadiasdn defined in
the Y, Z;-plane are lines containing the origin. Their products witie x-axis are pieces of the
limit of the enlargement of £ 0 contained in the domain enlarged by the Newton lens.

Proof: Proof of the lemma Whem = df, a vertex of the first Newton-lens polygon not sit-
uated on thex-axis cannot correspond to a teapqxP~1y9Z of 9f/ax asoxPydz /oy andor
axPyd7 10z would create a term below the support line containing théexerThen, the plane
field defined by the formw; is the product of a line field defined in th¥;(Z;) plane by the
x-axis (a priori, the planes dferw; need not to be parallel to theaxis whernw # df.). O
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Corollary 4.5.3. Whenw = df there is, associated to each vertex of the Newton-lengpel
mial, for any¢ < (rsup— row)/2, @ “security funnel” centered on the x-axis, crossing plane

.. . . . . [ ein—0 .
transverse to the x-axis in annuli of inner radu.[)@“ié and outer radius 52“" where the folia-

tion defined byw looks through a lens of strengﬂff%’_‘S like a product of a transverse line-field
and the x-axis.

Remark 4.5.4. Whenp; = xj,r > 1is an enlargement rate such that/r is not a slope of a side
of the first Newton-lens polygon, the limit Gauss map seeugir a Newton lens is constant on
the planes projecting on rays of tl{¥i, Z;)-plane, and therefore is of rank less or equal to 1.
Therefore a necessary condition in order to get a map

(X1, Y1, Z1) = [A1(X1, Y1, Z1), B1(X1, Y1, Z1), C1(X1, Y1, Z1)] € CP?
of rank2 is thatp, = x(r)l where—1/r; is the slope of an edge of the first Newton-lens polygon of
w.

4.6 Firststep,w = df, polynomial profile

From now on, we suppose thet = p/g, wheres = —q/p is a slope of an edga of the
Newton-lens polygon. It gives, after enlargement, féedential form (see Equation 4)

w1 = A1(Y1,Z1)d Xy + Ba(Y1, Z1)d Y1 + Cy(Y1, Z1)dZ.

Notice that at least one of the déeientsA(X, Y, 2), B(x,V,2), C(x,y,2) of dx, dy, dzin w
should contain a monomial of the forfl, otherwise the whol&-axis would be a set of singular
points.

The codficients A1, B1,C; of dX3,dY1,dZ; in w; need not a priori to contain a constant
term. Let us suppose that a monomagbox" of A(X,y,2) generates a monomiahoox) of
A(Xo +pX1, p1Y1, p1Z1) such that the Newton-lens polygon@fcontains the pointr(, 0, 0). This
point is the extremity of an edge of the Newton-lens polygbslape—(1/r1),r1 > 1. ThenA;
contains a constant term. Therefore we get

B]_ C]_
dX; = —dVY; + —dZz;.
1 A 1+ A 1

A solution of the system of partial dierential equations

0X1  Biu(Y1,Z1) 0Xa  Ci(V1,Zy)

- _ — 5
Y1 A1(Y1,2Z1) 021 Aa(Y1,Z1) ®)

is a profile (see Definition 3.2.3).
Otherwise the induction should be continued.

Whenw if integrable, ifA;(Y1,Z;1) is non zero, then the partialftgrential equations 5 pro-
vide a foliation, as its solution is a limit of leaves of fdl@ns. In particular this is the case when
w=df.

Theorem 4.6.1.Whenw = df, f(x,y, 2) a polynomial with an isolated singularity at the origin
such that the x-axis is a singular ray of the tangent conevof df, when the first step of
the induction provides a profile, lenses of strenggl(‘f@( centered at(xp, 0,0) provide, when
Xo — 0, a polynomial profile, that is the leaves $f; look as parallel graphs of the form
X1 = P]_(Y]_, Z]_) + C.
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We will use the notatiowl, ,f = g—;dy+ g—;dz

On Figure 10, left, the red bullets would correspond to a tefrh providing a term ofd, , f
on a side or slope(1/r), r > 1 of the Newton-lens polygon, and a termdyf under the side
of the Newton-lens polygon.

On Figure 10, right, the red bullets correspond to a terrhrfoviding a term oty . f on the
Xo-axis of the Newton-lens polygon. The following lemma retpeith words the idea conveyed

"N e

Figure 10: Impossible and possible contributions whea d f

by Figure 10 and proves Theorem 4.6.1.

Lemma 4.6.2.If w = df, and if the induction ends at the first step, then one of tggicients
B1(Y1,Z1) of dY; or C1(Y1, Z1) of dZ; in wq is not zero and Ais reduced to a{g(term.

. . . f .
Proof. A monomialaxPydz of f provides a monomigbax’~1ydz of % and monomialsjaxPyd-17

andcaxPydz 1 of dy, f, except ifq = ¢ = 0. Then all the points of the edgeof the Newton-lens

polygon but for the right extremity if it is on th@x-axis come from a monomial % or gz

. . . of :
Indeed, all the points corresponding to monom|alsa—gfare strictly above the edge of slope
in] — 1, 0], except maybe the last point on the right if it is on #aeaxis. O

Let us now prove a result analogous to the 2-dimensional ooeed in Rouile’s thesis
[Rou2].

Proposition 4.6.3. The graph of any polynomial in the variabl€¥;, Z;) can be a profile ob-
tained at the first step of Newton-lens induction.

Proof: It suffices to consider the polynomial

f(XY,2) = an(y,2) + an-1(Y, 2% + - - - + an_k(y, 2%
+oa(y, 232D 421
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Figure 11: The contributions of a term &f

where theg; are homogeneous polynomials of degréethe variablesy(, z). We again use the
notationdy ; which follows Theorem 4.6.1.
Then

df = dy,zan(y, Z) + dy,zan—l(y’ Z) ' XZ +e+ dy,zan—k(y’ Z) : XZk

44 dy’zal(y’ Z)Xz(n_l)

+ 2Xan-1(%, Y)dX + - - - + 2k La, i (y, 2)dx
+--- 4+ (2n - 1)x2"2,

The Newton-lens polygon is therefore analogous to R@sikxample (see Figure 11).0

4.7 Merle-type results (1)

Proposition 4.7.1.In C3, whenw = df and when only one step is needed to obtain a profile, a
bouquet of generic polar curves containing the profile stgyart from the singular level £ 0.

Remark 4.7.2. Of course, Proposition 4.7.1 is valid i@i®>. In that case, it writes in terms of
contact order: the contact order of two curves of a bouquédrger than the contact order of a
curve of the bouquet and the curve=10.

Proof: For that, let us compare the Newton-lens polygong (& + p1X1, p1Y1,01Z1) and of
df(xo + p1X1, p1Y1, 0171).

The slope of the bottom segment of the Newton-lens polygoh (82 in Figure 12) is (in
absolute value) bigger than/@ in Figure 12) the slope of the bottom side of the Newton-lens
polygon ofdf.

This means that a renormalization ball centered@( 0) catching the profile (radius xg)
is much smaller that a renormalization ball centered@td, 0) catching the singular level= 0
(radius= xg/z). In other terms, Merle’s bouquet of polar curves corresia to the tangent
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The two sides
have diterent slopes

N

Figure 12: Comparison of Newton-lens polygons dpurple) andd f (yellow); the tails are not
represented.

Figure 13: Comparison dff = 0} and a bouquet of polar curves.

directions at points of balls whose limits will provide thefle is “far” from the singular level
f=0. O

Whenw = df, the slope of the line joining terms coming from a texfydZ of 9f/ox as
axPyaZ 19y andor oxPydz /0z would create a term below the support line containing theexer
In other words, the bottom side of the Newton-lens polygod bfs the only one which is not
parallel to a side of the Newton-lens polygon fof The only way to get a side o¥(df) non
parallel to a side oiN(f) is when the vertex on the-axis of N(d f) comes froma%(f). When
w = df the Gauss imag€ of Zoy,,r, is a neighborhood of the set bfcontaining thex-axis
which is a projective line itCP2. In that case, the bouquets of strands of polar cufyek not
too close from the lindy of CP? of planes containingx, look more and more like parallel
lines, the leaves of,,, are graphs of polynomials.

5 Further steps

5.1 Example with more than one step

We give now one example, i@, of a profile obtained with two steps of induction.
Example 5.1.1. This example is certainly the shortest possible (threedgrm

f(xy) =y + X%y + X",

Its first Newton-lens polygon (figur@?) on the left) has only one side. Thefdrential form
w1 = A]_(Y]_)dxl + B]_(Y]_)dY]_ is w1 = (2Y1 + l)dY]_
A second step is needed with the roat e1/2. The second Newton-lens polygon is shown
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in Figure (??) on the right. It gives the derential equation :

dX  2Y;
dy, 3~

The integral curves of the profile are parabolas.

5.2 The general construction

We will detail the second step of the induction. We need to@rhat the term#\,, B,, C, of
w2 = Axd Xz + BodY, + CodZ, do not depend on the variabie. The further steps, when needed,
are analogous.

Let us now suppose that(Y1,Z1) = 0. Letpy = x(r)l.

After dividing w(Xo + p1X1, p1Y1, p1Z1) by the maximal power okg, we get a one-form in
the variablesXy, Y1, 71

(51 = Aldxl + B~1dY1 + éldzl
and, considering only the teram of «; which does not contain a factozg, asAi1(Y1,Z1) = 0,

w1 = Blle + Cldzl

In the (Y1, Z1)-plane,w, defines a one-dimensional foliation with singular points thots
(y}.Zz") of (B1=C1=0)

After choosing a root)(l, zl.l) of By + C1 = 0, let us perform the second change of variables

X1 = p2X2
Y1 =Y +p2Y2
21 =7+ p2Zz

We get a Newton-lens cloud and a Newton-lens polygon, now wéfrtices inQ" x N,
plotting the coéicient of formafl(pzxz,yil + p2Yo, zl.1 + p22>); the horizontal axis corresponds
to exponents okg and the vertical axis to exponentsmt

Letpo = x[f, ro any positive rational number. In particular we will soon stat using the
slope of a side\ of the second Newton-lens polygon.

We get

w2(X2, Y2,2Z2) = Ax(X2, Y2, Z2)d X + Ba(X2, Yz, Z2)d Y2 (6)
+Co(X2, Yo, Z2)d 2,

Notice thatw; keeps terms of dierent orders ing. When dealing with the equatioh= 0
we will use similarly the notationg.

Let us first chose a vertex of the Newton-lens polygon. It corresponds to a term of the
form XSQM_, XSQB,Q_ or XSQQQ of A, BorC, where the polynomial§a 2, Qg2 or Qc2 are ho-
mogeneous of the same degree.

The plane-field is then invariant on rays. Therefore the eagscontained in the polar set at
this scale.

The roots ¥i 17 1) belong to the plan& = xg

Moving the pointxg we can follow the rootsy 1z 1). At the scale of the previous change of
variable, and even more at the scale of the present one, #seyile vertical lines.

Therefore the Gauss map associate@d@2acannot contain an open set. Its image is therefore
of dimension 1. The polar loci are then generically surfagg@en of rays. The existence of two

{ D3(@1) (X, Y2, Z2) = X7z = Xjwa(Xa, Y2, Zo) + 0(X7),  With
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different cones is also incompatible with a small change oT he polar surfaces should then be
planes containing the axisxOThis means that the directioA[B, C] depends only on its value
on theY,, Z,-plane where it is constant on rays.

We chose now an exponentorresponding to the slope of a support line of the Newtois-le
polygon aty.

Choosing a side of the Newton-lens polygon ending orxthgis if it exists, and ifAx(X, y, 2)
contributes to this term, will provide a limit plane field. Asfore, we will prove that the limit
plane-field is invariant by translations. Otherwise, wewdti@ontinue the induction.

In both case we need to prove, first that the limit plane-fisldnvariant by translations
along lines parallel to th&,-axis, then that the polynomiaks,, B, andC, do not depend on the
variableXs.

Theorem 5.2.1. The limit plane field is invariant by translations and thenef, whenw is in-
tegrable, the leaves of the foliation it defines are graphaylme with some vertical asymptotes,
from the(Y>, Z;)-plane to the X-axis. We calprofile one of these graphs.

The reader can find in [La-Si] a less geometric prooffof Theorem 5.2.1.

Remark 5.2.2. In [GarBar-Te] Garcia- Barroso and Teissier compute the &stvexponent of
the Puiseux serie of a strand of generic polar curve invguihe slope of the line direction
defining the polar curve in terms of the valaalefining the level = A. It gives both the size
and the localization in terms af of a domain of our profile meeting the levekfa.

Proof: of theorem 5.2.1Corollary 4.5.3 implies that there exists two valuesp# rp > 1 close

to 1 which determine a zoréyy, r, (See Definition 4.4.1)where the planes- kerw define a
Gauss map of very thin image. Therefore a polar curvEy, h not too close fronG, which
starts out ofZoyr,-s) (See also Definition 4.4.1) cannot cra&sx,,. The polar curvd, if it
starts at a point aoy,,, ra > 'c > 'y has to stay irZoy,, and therefore is tangent to the afix

at the origin. Then the strands of polar cur¥gsh not too close fronG, form a bouquet, and
look through a lens of strengtty, ra > r > rp, more and more like parallel lines wheg| — O.
Therefore the plane field defined kgrw, is invariant by translation along thé&-axis. Then,
whenw is integrable, so is, and the leaves ab, are graphs (we accept vertical asymptotes)
of functions not depending on the varial{g. O

Remark 5.2.3. Remark 4.4.2 shows that the consideration of the larger Zgne, n, is already
syficient to trap the polar branches.

In order to continue the induction we need a more “algebnagstilt.

Theorem 5.2.4. The polynomials & X, Yo, Z), Bx(Xo, Yo, Z2) and G(X», Y2, Z») do not con-
tain the variable X.

Proof: We know that the plane fielderw; is invariant by translations parallel to the-axis,
therefore the point4o(X2, Yo, Z2), B2(X2, Yo, Z2), Co(X2, Y2, Z2)] does not depend of, but Ay,
B>, C2> may a priori depend oKo.

Let us consider some (fixed) valyeo andZ; o of Y2 andZ,. The polynomialAx (X, Y20, Z20),
if it is not constant, should have some rogty. If one of the polynomial8B;(X2,0, Y20, Z2,0)
and Ca(X2,0, Y20, Z20) iS not zero, it is also not zero in a neighborhood ¥b 4, Y20, Z2,0).
Then the plan&erw, has a position which is fferent in the neighborhood of the poi¥t €
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the line{Y2 = Y20,2Z> = Zpp} and at the poinK,o € the line{Y2 = Y,0,Z, = Zpp}. Therefore
the polynomialAx(X2, Y20, Z20) should be constant. SimilarB, andC, should be constant on
the line{Y2 = Y20,Z2 = Zo}, unless the three polynomiaks, By, C, are simultaneously zero
on the Iine{Y2 = Yz’o, Zo = Zp_’o}.

Notice that one or two of the constant values (X2, Y20, Z20), B2(X20, Y20,Z20) Or
C2(X2,0, Yz,o, Zz,o) maybe Zero.

Let us now suppose that the three values
Az0(X2,0, Y20, Z20), B2,o(X2,0, Y2,0. Z2,0) @andCo0(X20, Y2,0. Z2,0) are zero.

A priori the setX; = {A, = B, = C, = 0} is an algebraic set.

If a zeromp € X, of the map

(Ag,Bp,Cp) 1 C° — 3

is isolated, it is of non-zero index. Therefore, f@rsmall enough, the mag\§, B, Cy) : C3 —

C3 (see Equation 3 and the beginning of Subsection 5.2 for aitiefimf A, B andC) has also a
zero in a neighborhood 0Kg 0, Y20, Z20). This contradicts the fact that the origin in an isolated
singular point ofw.

Otherwise the algebraic sE} may contain curves and surfaces. The curves cannot be only
lines parallel to theXy-axis as some common zeros @6( B, andC,) are isolated on the line
parallel to theX,-axis trough it.

Let us now consider a regular poink of an arca, contained inX,, and a transverse
holomorphic discD» to the arc at the point. It should contain an isolated zerdhefrhap
(By,Cy) : Dy — C2. For the same reason as above the ni&p@,) : D» — C2 should have
a zero close torp. Moving the pointm, on a neighborhood afy, on a; we get a piece of the
polar curvel,, h = (OY,, 0%). It should haveOx as limit tangent at the origin. Therefore it
should look more and more parallel through the second letist0X; axis.

Let us now consider a regular poimb of a surfaceS, contained inX, where the tangent
plane does not contai@X,. The polar curve troughy cannot have a tangent having a limit in
Tm,S2 providing a contradiction. O

Remark 5.2.5. Using a Newton-lens providing a profile, we do not loose thiarmploranches
going to the limit ¥ — 0. When a branch of the Newton-lens induction ends at a vettex,
situation is diferent. Nevertheless the limiitform is still independent of the last X-variable say
Xp. The conclusion of Remark 4.4.2 are still valid. ThereforanyCX topology the dependence
of the formwp, on the variable X, considering derivatives of order up to k, is going to zerbe T
limit form, which is polynomial, therefore does not depemdtioe variable X. This is true
although the Gauss map of the limit foeny is of rank strictly less tha as the limit polar loci
are planes containing the pXaxis.

If needed, the following steps of the induction provide fey = ApdX, + BpdY, +CpdZ,
where the polynomialp, B, andCp do not depend on the variahig.
The induction stops whefy, # 0.

Remark 5.2.6. The profiles, up to linear isomorphism, are analytic invats of the isolated
singularity. In dimensioR, Zariski defined analytic invariant of an irreducible curekequation
f(x,y) = 0 using relevant cg@cients of the Puiseux expansion of the curve (see [Za]). The
dimension of Zariski’'s module is larger that the dimensioovled by the profiles. It would be
interesting to understand which information the profilegegabout Zariski’s invariants.
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6 What does Newton lenses tell about the levdl = 0 ?

6.1 The singular level{f = 0} c C?

Remark 6.1.1. We know that f is reduced, as a multiple factor will introdaceurve of singular
points. The induction should be stopped when the inducboicerning d f shows a profile. We
may as well suppose that f is irreducible, and study the pssomponent one by one.

The tangent cone of the singular leyél= 0} c C? is where the homogeneous polynomial
sum of the terms of lowest degree bfs zero; it is a finite union of lines. The interesting lines
for us are the lines of multiplicity at least 2.

The change of variableB; is defined by

X = Xo + p1X1
y=p1Y1

Let us chose one side of slopé < 1/r; < 0 of the Newton-lens polygon df (case 1) or a
vertex bounded by two sides of slopg@ 1 and ¥r0,2 — 1 < 1/ro1 < 1/ro2 < 0 (case 2).
Then, takingo1 = x[), r = rq in the first case, o1 < 1/r < 1/ro2 in the second case,
consider .
@1 (f)(X1, Y1) = (%o + XpX1, Xg Y1)

Proposition 6.1.2. Choosingo = x; the sum of the terms corresponding to points of this side of
the Newton-lens polygon provides, after factorizing tlyhbst possible power ofan equation
f1(Y1) (which does not depend of the variablg) XChoosing a slope corresponding to a support
line of a vertex of the first Newton-lens polygon, we géYi) = Yf.

Proof. Writing f(x,y) = 3 apqxPy4, a non zero monomial, oxPy“ gives a polynomiad; j(xo +
p1X1)PogY] in f(xo + p1X1, p1Y1).

One point comes from the monomigfp?Y;.

The other points introduced by the termsagf,(xo +p1X1)'p} Y] containingX; form atail of

slope—-1 on the left of , g, £) (in black in Figure 8, here we apply the same reasoning.to o

Two possibilities can occur:

- 1) the equatiorfi(Y;) = 0 has only simple roots.

- 2) some roots are multiple, more precisely, some factoffg(d%) have an exponent strictly
greater than 1f; = ffll- ffzz Cee
Example with only simple roots f(x,y) = x3 — y°.

DE(F) = (X0 + p1X1)° — (p1Y1)% Choosingor = x'%, we getfy = 1 Y2,

Remembering that = x/?Y; and following a circle of radiugxo| centered at the origin in
the x-plane, we recover ad.carrousel (see [Le]), and a trefoil knot$|5§<OI X (y-axis) (they-axis
is a complex line, that is of real dimension 2).

6.2 Multiple roots of fi(Y;) =0

Example with multiple roots f(x,y) = y* — 2x3y? — 4x°y + x® — x” (example taken from [Bri])
From the construction of the Newton-lens polygon, we geirgga= x;' > andf; = (Y2-1);
the two rootsY; = +1 are double roots.

Next step providep, = xé/4 andfy(Ys2) = Y22—1, equation which have simple roots = +1.
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When f; = 0) has multiple roots, we need to proceed and perform anctiarge of vari-
ablesd,, with c; a roots of one of the multiples factof%.

X1 = paXo
Yi=0C +p2Y2

We get a polynomial in the variableg, p» from the expressiom*ﬁ*(f) Choosing a side
of the Newton-lens polygon indicates the enlarging rateA)L If the polynomial obtained from
the sum of the terms 01)*(1)1 (f) corresponding to point of the side of the second Newtos-len
polygon, after factonzmg the maximal power xy, has only simple roots the induction stops.

The form of the two successive changes of variables iry{plane

y=piY1
Y1=C1+p2Y2

provides, followingxy = |Xo|€? in the x-plane, a two-step & carousel in thg-plane. It provides

also an iterated torus knot, component bf= 0} N S|lxo| x y — plane. In general, the number of

steps of the induction provides the number of iterationdieftorus kno{(f = 0) N S2}.

6.3 InC3 {f =0}

The use of Newton lenses leads, when the tangent cofie ef 0} has only isolated singular
rays, to a decomposition of the lik = {f = 0} N S2 in components which are eith&*-fiber
bundles over an algebraic curves deprived of a finite numbdisos or fiber bundles oves?,
glued along tori.

The tangent cone dff = O} defines a curv&ang of CP? with isolated singularitie$o};
deleting small ballﬁf‘,i,g of radiuse centered at the singular poirits;}, we get a regular complex
curveCang: - Its inverse image by the Hopf ma&s — CP? is aS? fiber bundleA bounded by
tori product of a Hopf fiber and a component of one of the (Ydurdds «; = Sf;i’g N Ctang.

Let us now suppose as usual that ¥aaxis is an isolated singular ray of the tangent cone of
{f = 0}. Consider the change of variables

X = Xo + p1X1
y=p1Y1 (7)
z=p12y

Then
@7 (F)(X1, Y1, Z1) = f(Xo + p1X1, p1Y1, p121).

Lemma 6.3.1. Factorizing the maximal power ofXrom the sum of the terms corresponding to
a side of the Newton-lens polygon of slegE/r; and choosing = xgl, we get a polynomial
f1(Y1, Z1) which does not depend on the variablg X

The proof is the same as the proof of Proposition 4.3.1 (sgper&i8).

Remark 6.3.2. The vertices of the Newton-lens polygon also give rise tooamdgeneous poly-
nomial f of the two variables Yand Z only. The equationif= 0 represents in this case a
finite number of lines.
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Corollary 6.3.3. The knot K is, when f is irreducible, when the singular raytheftangent cone
of f are isolated , and when one step igf&ient to provide a smooth non-multiple transverse
profile, obtained from a fiber space A ovegfg. gluing along the boundary tori of A a fiber
space ovess! (a circle in a complex line parallel to the x-axis) with fiben algebraic curve
deprived of a finite number of discs (a bounded part of an akjelzurve ofC?).

7 Further steps, polynomial profiles

7.1 The second step for the level = 0

Recall that thec-axis is singular forw.
Chose first a regular pointy, c;) of the algebraic curve of equatida(Yy, Z;) = 0.
Let us prove the

Proposition 7.1.1. When the poin{c,, ¢p) is regular, the function A X, Yo, Z5) is cylindrical,
that is, depends only on the variablesahd 2.

Proposition 5.2.4 shows that the assertion is truedfor In fact, the weaker statement:
the plane fieldkerw; is invariant by translation parallel to thé-axis is sdficient to prove
Proposition 7.1.1. We know also that the le¥gk 0 need to be of the form, x x-axis, as it is
the limit of approximations of the levdl = 0 of f.

Proof: As we look at analytic curves tangent to tkeaxis at the origin, after the second
enlargement, a small neighborhood of a point will look mard more like a piece of the-axis.
Theorem 5.2.4 shows that the édaents of the formsv, do not depend on the variabk.
The places wherkerw differs significantly from a direction containir@x is a finite union of
zones union of branches of polar curves of bouquets. A bduguesible through a Newton
lens constructed at the last step of the Newton-lens inolucivhen the slope of the bottom
right segment of the Newton-lens polygon fofs (negative and ) smaller than the bottom right
segment of the Newton-lendf (see Figure 12). Then the last enlargement obtained by an
induction adapted td does not catch the nearest bouquet and the previous ones sieerthem
as their limit is a line parallel to th@x-axis above a root of the equatior; (= C; = 0) (see the
end of Subsection 5.2). Notice that we already know that O can contain only lines parallel
to the x-axis and thatd f), does not depend oX,. Thereforef, cannot depend on the variable
X7_. O

When the slope-1 < s < 0 of the support line is such that the support point is a vertex
bounded by sides of slopel/r,; and-1/r,, of a second Newton-lens polygon, the function
f, is homogeneous in the two variablésandZ,. In the planex = xg, the equationf, = 0 has
then as solutions a finite number of lines through the origin.

Lemma 7.1.2. - When the enlarging ratip, = x(r)z’l, the regular points of AY1, Z;) provide
a transverse L& carousels and therefore fibered pieces iokaKl, defined by the action of'S
obtained following a circle § = {x,€"}.

- a vertex bounded by sides of slopk < s < 0 provides3-dimensional regions of the form
(annulus) x S1.

The arguments necessary to continue the induction, if requare similar.

The hypothesis “isolated singularity” rules out the posisybof multiple components, there-
fore the induction stops whefy(Yy, Zp) has no multiple points. Simultaneously, following the
same path of inductive stepsjs the step where a profile of = d f appears (see Diagram 7.2).
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Lemma 7.1.2 implies Theorem 7.1.3

Theorem 7.1.3.Let f be an algebraic hypersurface with an isolated singplaint at the origin.
Suppose also that its tangent cone has only isolated singaya. Let S be the sphere centered

at the origin of radiuss. Whene is small enough, the link K Sg N {f = 0} is obtained from

the S-fiber bundle A defined at the beginning of the subsection bipgla sequence of fiber
bundles ovess?! of fiber the intersection of a complex curve deprived of nedghoods of its
singular points with a larget-ball of C?, and at the end of each sequence, a fiber bundle over
S? obtained following a circle % = {x,6%}, and of fiber the intersection of an algebraic curve
of C2 with no singularity and a largd-ball .

7.2 Polynomial profile whenw = df

Theorem 7.2.1.Whenw = df, f a polynomial with an isolated singularity at the origamd
such that Ox is an isolated singular ray of the tangent comen tprofiles are graphs of polyno-
mials.

Theorem 7.2.1 is already provedds (see [La-Si]).

Remark 7.2.2. Theorem 7.2.1 is closely related to the position of the betsjaf generic polar
curves with respect to the singular level=f 0, generalizing the 2-dimensional result of Merle
(see [Me].

Given a formw, the profile may be given by fierential equations with cdigcient rational
functions. The saddle-node of equation= ydx — x?dy is already an example of this phe-
nomenon inC? (see figure??).

The diagram 7.2 is a scheme of the proof of Theorem7.2.1. dtaian for Newton poly-
gons isN.

A1 =0
N%
rootofB; =C; =0

not a double root of, = 0 double root off, =0

separatrices are kept aw%?n fNS fobtga}iged
vertical translation,
but, maybe, for a term o®x

a term onOxis the end \

of segments of dierent slopes of ~ A2=0
N(f)andN(df) = polar curves
are kept away fronf =0 o
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7.3 A proof of Theorem 7.2.1

Lemma 7.3.1. The change of variables of the Newton-lens induction ayfdrdntiation com-
mute when the points chosen in ¥, Zp)-plane used to continue the induction are the same
for fp and A,. In other terms

dxp,Ypaqu)p o QDp_l (o] (le = q)p (] q)p_l (] q)]_dx’y’zf

This fact is stficient to compareféciently the Newton-lens polygons éfandd f when the
induction needs more than one step. We need now at each eqréoscompare the multiple
roots of the equatioriiy(Yp, Zp) = 0 and the roots of the system of equatid@ygYp, Zp) = 0 and
Cp(Yp.Zp) =0

The two-dimensional case will guide us. We had noticed irti8e®, observing Newton-
lens polygon at dferent stages that the double rootsfgfY,) = O are roots oBy(Y) =0

Lemma 7.3.2. Again, let us suppose that=df.

- When A = 0, the Newton-lens cloud df,o®,_10®1d f can be obtained from the Newton-
lens cloud ofb, o 1 o @ f using a vertical translation of vectd0, —1) as the Newton-lens
cloud of d f can be obtained from the Newton-cloud of f wheg A.

- When A # Oits only contribution to the Newton-lens polygorcﬁ correspond to a point
on the x-axis. This point is then the extremity of a segme(rienfative) slope larger than the
slope of the bottom segment of the Newton-lens polygcﬁsl of

Whenw = df, if the polynomial A1(X», Y2,2Z5) is non-zero, it is reduced to a constant
term. The proof is the same as in first step we consideredlglasade of the first Newton-
lens polygons off anddf. Moreover the double roots df are the roots oB; = C; = 0.
Therefore (Dz o ®q1)*df = d(®; o @1)*f. The only term ofA, should then come from the term
of (D, 0 CDl) f on thexp-axis. We get a profile from the fiierential equations

92 = By(Ya, Z2) /A2
5% _ Cy(Yo,Z2) 1A

when the polynomiaR; is a non-zero constant. K, = 0, we should continue the induction.

7.4 Merle-type results (2)

Theorem 7.4.1.Whenw = df, the bouquets of polar curves tangent to the x-axis ararsggd
from the singular level t 0 by a security funnel.

Proof: The computation above shows that the small ball of raki:l;lrg+---+rgf containing points
of the polar curves of the bouquet is much smaller that thled@ahdiuslxolrl+~'~”r§ containing
points of f = O nearby. Then the bouquet of polar branches contained irdheZ oxrd" is
separated by a zorﬂaO el from the component of = 0 corresponding to the path Ieadlng to
the profile correspondlng to the bouquet of polar branchea wensidering. O
The ZoneZ,, (e (see Remark 4.4.2) guarantees also the separation of tly@étoof polar
branches from components 6f= 0 obtained by other paths, in particular if the component of
f = 0 we want to avoid is not tangent to tReaxis at the origin.
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choice of a side

choice of a root

choice of a side
f=0

separation of a bouquet

\ a bouquet

of polar curves

Figure 14: A bouquet of polar curves is separated fiom0 by a security funnel

When, at the end of a branch of the Newton-lens induction teeget a profile, we simul-
taneously get a bouquet of branches of polar curves comegmpto directions irCP? avoiding
a neighborhood of the line of planes containing xk&xis. The diagram (see Figure 14) shows
that bouquets of branches of polar curves correspondingfiierent branches of the Newton-
lens induction tree are separated and separated frem0 by annular zones. This provide a
“pedestrian” proof of Merle’s result [Me].

Remark 7.4.2. - The domains of these bouquets are good candidates to prbipdchitz equiv-
alence of the intrinsic and extrinsic distances on a level 1 (see [Neu-Pi2] and [Pi-Te]).

- In C? we can repeat Remark 4.7.2, giving an interpretation of Té@07.4.1 in terms of
contact orders.

7.5 Separatrices

Definition 7.5.1. A separatriof w is an analytic arc S ending at the origin such that

S(x(t), y(t), z(1)) € kerw V.

In particular, whenv = df, and when the origin is the only singular point and is corgdin
in the level f = 0, the analytic curves contained in the lefek 0 ending at the origin are the
separatrices.

In the saddle-node example, tkexis is a separatrix. Notice that in this case the separatri
stays in the bouquet of polar curvieg h “far” from Dy.
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In dimension 2, Rouié (see [Rou3]) considered the role of separatrices in acpéaticase

(quasi functions).

Definition 7.5.2. The separatrices of 4-form w are kept away fromthe bouquets of polar
curvesly, h not too close from the curve, CP? of planes containing the x-axis, if, in a small
enough neighborhood of the singular point, none of thesgbeis contains a separatrix.

Therefore, whem is integrable, the “graph of polynomial” condition will beigranteed if

the separatrices tangent to thaxis at the origin stay away from the very curved zones, imgus
Merle’s ideas, are kept away from all the bouquets of polavesiy, h “far from” Dy.

8 Non-isolated singular rays of the tangent cone, an example

o (X y,2) = X* —y3 + 7% (see Figure 15).
w = df = 4x3dx - 3y’dy + 2zdz

The equation of the tangent conezfs= 0, all the rays of this plane are degenerate.

Figure 15: The surface of equatiafi— y° + 22 = 0 and a levek® — y° + 72 = 2,

f(X,y,2) = A. Let us compute andp1 in terms ofa, using in fact [GarBar-Te] track.
Xg = 4, Ixol = 1Y%, |oa| = |13/

Choosing the singular ra®y, that is using the change of variables

X=Xo+p1X1, Y =Yo+p1Y1, Z=p1Zy, we get

w1 = 403X3dx - 3(yo + p1Y1)?dy + 2p1Z1dz

The Newton-lens polygon provides

w1 = —3dY1 + 221d21

Therefore

dYy; Zz
“— 1 _(2/3)z Y, = L
4z (2/3)Z1, soy 3 ¢

f(x,y,2) = A. Let us computep andp; in terms ofA.

=Yg = A Iyol = 1413, |o1| = 4773
In order to understand the “bag” shape of the levels 4, let us look at the critical points of

the orthogonal projection of the levels on the tangent piaad. These critical points have the
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Figure 16:(x,y,2) = xX* — y° + z2, Newton-lens polygon wher, € Ox and wheryg € Oy

equationd (0,0, 1) = 0, that isz = 0. These critical points are all in the horizontal plane. The
form wyy = 4x3dx — 3y?dy defines a foliation, in fact the levels of the functifr, = x* - y3,
which are the projection of the critical locus of the regtaic of the orthogonal projection on
the horizontal £ = 0) plane of the leveld§ = A. We can study the 2-dimensional function

ﬁﬁ

Figure 17:f(x,y,2) = x* — y° + 7, real picture (sketch) of the critical locus of the projeatin
the (X, y)-plane of polar curves and of two real levels

fry = xX* — y3. Its differential iswyy = 4x3dx - 3y?dy. The Newton-lens polygons df,, and
d fy indicate that the choige; = x3'* will provide a profile.
We get the dierential equation
dx 3,
d, 4!

providing the solutions
1
Xy = va +C

This explains the shape of the sides of the “bag”. The flabbotf the bag comes from the
flat piece of the level through the pointy( 0, 0), of equationfy, = xé which is at distance of
the orderxo|*? of the origin.

Understanding the polar sets, ¢ = H*, for planesH containing a non-isolated ray of the
tangent cone of, and the image by the orthogonal projectiontdrof the critical loci of the
restriction to the leveld = A of the orthogonal projection ofimay help to understand better
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the geometry of the neighborhood of an isolated singulavitgn the tangent cone have non-
isolated singular rays. The symmetry of the examfle y,2) = x* — y® + Z2 with respect to
the “horizontal plane” makes the study deceptively easy Jéneral case implies the study of
the restriction of dierential formw to the surfac#&/,, which makes sense evenuifis not of the
formdf.

This step will be generically unavoidable when we will studforms inC* or C", n > 4.
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