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Abstract. In autonomous cars, the automation systems assume complete opera-
tional control. In this situation, it is essential that passengers always feel com-
fortable with the vehicle's decisions. In this project, we are specifically interest-
ed in risk assessment by the passenger of an autonomous car navigating among 
pedestrians in a shared space. A driving simulator experiment was conducted 
with 27 participants. The challenge was twofold: on the one hand, to find a link 
between the pedestrians' avoidance behavior of the vehicle and the risk felt by 
the passenger; and on the other hand, to try to predict this perceived risk in real 
time. The study revealed a significant effect of two factors on the risk assessed 
by the participants: (1) the value of the TTC at the moment the vehicle begins a 
pedestrian avoidance maneuver; (2) the lateral distance it leaves to the pedestri-
an. The proposed real-time prediction model is based on the principle of im-
pulse response operation. This new paradigm assumes that the passenger's risk 
assessment is the result of a quantifiable unconscious internal phenomenon that 
has been estimated using the dynamics of the perceived pedestrian approach. 
The results showed that this approach was predictive of risk for isolated avoid-
ance maneuvers, but was insufficient to explain the variability in the risk as-
sessment behavior of the participants. 

Keywords: Online risk assessment, driving simulator 

1 Introduction 

The advent of driver automation systems in vehicles is changing the driving paradigm 
[1]. At least in the near future, experts in the field consider that the driver will have to 
learn to cooperate with the vehicle [2]. This new role in driving suggests that the user 
of a vehicle equipped with an autonomous driving system will have to continue to 
assess his or her environment and the behavior of the car. On the one hand, this will 
enable them to understand the environment in which they are operating, and on the 
other hand, it will enable them to update their knowledge of the functional state of 
their car. In the introduction to his paper on the importance of taking into account 
processing and action times when studying human-machine interaction, Hollnagel [3] 
suggested that the Human and the machine have a representation of how the other 
works. Man develops such a representation through experience, the machine possess-
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es this representation in its design, and it is somehow transmitted by the engineers 
who developed it. For the driver, this representation (called "internal model") is very 
important because it contains all his or her knowledge on the driving behavior of the 
automaton. This internal model allows the driver to understand and anticipate the 
maneuvers of his or her vehicle. If everything goes well, i.e. if the driver feels that the 
driving automaton is making the right choices, the movement does not alter his emo-
tional state (e.g. stress, anxiety) and the driver remains in a comfortable situation. 

It has been shown that individuals do not necessarily change their social rules 
when acting with an automated system [4]. In a mixed dynamic context, where the 
autonomous vehicle has to make its way among other users (pedestrians, cyclists, 
other autonomous or non-autonomous vehicles), this may mean that the driver expects 
his or her vehicle to act according to the same social rules as he or she does, i.e. to 
adopt the same driving style as he or she does [5]. The maneuvering choices followed 
by the automaton in order to make its way among other users must therefore be close 
to the possible options considered by the driver. Gibson and Crooks [6] suggest that 
there is a dynamic zone that the driver perceives consciously or unconsciously in 
which travel can take place safely (Field of Safe Travel). The acceptable trajectory 
envelope that the driver perceives is subjective and depends, among other things, on 
the driver's experience, the safe distances he or she wishes to travel and the driver's 
perception of his or her own (in our case, the car's) size. It is suggested here that the 
trajectory perceived by the driver plays a major role in how he or she feels when driv-
ing a vehicle equipped with an autonomous driving system: the more the vehicle re-
spects this trajectory, the better the driver will feel. 

These considerations raise the question of the perceived comfort or risk on board 
an autonomous vehicle during a travel among other road users. Unfortunately, there 
are very few studies in the literature on passenger risk perception in an autonomous 
vehicle (e.g., [7–9]). We propose here to study this phenomenon in a dynamic context 
using a driving simulator. Passengers will assess their perceived risk of collision in 
real-time during a trip among pedestrians. The main challenge is to understand the 
dynamics of how a passenger feels when he or she is not in control of the vehicle in 
which he or she is travelling. Such an understanding could then be used to adjust the 
safety margins respected by automated driving cars when travelling among multiple 
other road users. 

This paper therefore presents a pilot study of the online risk assessment in a driver 
simulator. It introduces a new method for the real-time study and prediction of per-
ceived risk. In Section 2, information about the experiment and the data analysis are 
given. Results and interpretations are detailed in Section 3. Finally, a discussion of 
these results and the corresponding conclusions are presented in Section 4. 

2 Method 

2.1 Participants 

For this experiment 27 volunteer participants were recruited aged between 18 to 52 
years (𝑆𝑆𝑆𝑆 =  7.75). They were 17 males and 10 females. The choice was made to 
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select participants with varying degrees of driving experience. 22 participants out of 
27 had a driver's license (average duration = 10 years, 𝑆𝑆𝑆𝑆 = 8.61). 2 individuals had 
a driver license but reported they never drive.  

2.2 Experimental setup and dependent variable 

During the experiment, participants were asked to take place in a fixed-based driv-
ing simulator (Fig. 1.a) operated with SCANeR™ Studio software [10]. They were 
installed in the seat of a virtual autonomous car and were asked to evaluate the risk of 
collision with pedestrians during a driving simulation in a shared space. Such space is 
intended to eliminate any segregation between road users (e.g., absence of road signs 
and road markings) and therefore makes any notion of priority or speed limits implic-
it. This urban design has already been introduced in large cities (e.g., Exhibition Road 
in the museum district of South Kensington in London, UK) and should, among other 
things, enable drivers to integrate better into their environment, resulting in lower 
vehicle speeds and smoother traffic flow [11–13]. During the simulation, participants 
were informed that the vehicle was fully automated and that no action on the controls 
would be required. In order for participants to assess the perceived risk throughout the 
simulation, an analog device has been developed for one-handed use (Fig 1.b). The 
objective was to avoid visual distraction; therefore, the device was designed to be 
used without requiring participants to look at it.  

 

 
Fig. 1. Setup used in the experiment. (a) The fixed-base driver simulator operated by SCAN-
eR™ Studio. (b) The Analog device used for the online risk assessment. The orange box con-
tains a potentiometer linked to an USB alimented Arduino UNO™ electronic board.  

On the basis of the measures collected, 5 participants were found to be non-
responsive (they reported little risk) and have been excluded from the data analysis. 4 
of them were among the 7 participants who do not have a driver license or who never 
drive. This may reflect the fact that driving experience may condition the attitude of 
passengers when they are in a self-driving car.  

(a) (b) 
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2.3 Experiment 

Procedure and instructions. As mentioned above, participants were to pay attention 
to the driving scene and as little as possible on the online rating operation. For this 
reason, prior to the main experiment, each participant conducted a preliminary scenar-
io of autonomous driving on a pedestrian-free road; the objective for participants was 
to optimize the use of the device by finding a good hand position and exploring the 
available rating scale. 

Then, in order to study the online risk assessment, there were two successive simu-
lations, each lasting around 7 minutes of autonomous driving. The experiment has 
been divided into two parts with a break in between to reduce the monotony of the 
task. For both parts, participants were asked to use the analog device for assessing 
their risk of collision in real time. In both scenarios, the autonomous vehicle was trav-
elling at a constant speed of 30km/h. It followed a straight-line trajectory except when 
it had to avoid pedestrians, which happened every 25 seconds. 

Independent variables. Avoidance conditions have been varied as a function of four 
variables:  

• The time-to-collision (TTC) when the avoidance maneuver was triggered. In 
straight line trajectory, the TTC is the time remaining before the vehicle reaches an 
obstacle. It depends on both the distance and the relative speed between the vehicle 
and the obstacle (Fig. 2). In the experiment, 4 values of TTC were tested: 2, 2.5, 3 
and 3.5 seconds.  

 
Fig. 2. The Time-To-Collision (TTC) in a straight forward trajectory. The speed of the car 
(resp. pedestrian) is denoted 𝑣⃗𝑣𝑐𝑐𝑐𝑐𝑐𝑐 (resp. 𝑣𝑣���⃗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). On this illustration, the pedestrian walks 
in the same direction as the vehicle so that the condition 𝑣⃗𝑣𝑐𝑐𝑐𝑐𝑐𝑐 >  𝑣𝑣���⃗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is required. This 
condition is respected by default when the pedestrian walks in the opposite direction 
( 𝑣𝑣���⃗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 < 0). 

• The lateral distance from the pedestrian when the vehicle has reached its position. 
This parameter was introduced to check whether the proximity between vehicle 
and pedestrian affects the risk assessment. 3 values of lateral distance have been 
tested: 0.5, 1, 1.5 meters. 
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The combination of the manipulation of the TTC and the lateral distance allowed 
simulating different safety margins. Because of software constraints, it was not possi-
ble to cross all degrees of the two variables. Indeed, with a TTC of 2 seconds it was 
impossible to respect a lateral distance smaller than 1.5 meter. As a consequence the 
experience plan was not complete: only 8 conditions out of 12 have been tested. 
 
Two additional factors have been manipulated to make the simulations more realistic 
and unpredictable. 

• Half of the pedestrians walked in the same direction as the vehicle (the participant 
could see their back), the other half walked in the opposite way (they were facing 
the vehicle). 

• In a shared space there is no rule concerning the direction the vehicle should avoid 
other road users. For that reason, the direction of the avoidance maneuver was var-
ied between left and right. 

In addition to the 4 parameters influencing avoidance conditions, the pedestrians' 
appearance was arbitrarily chosen from a list of a dozen possibilities (man in T-shirt, 
man in suit, teenager in shorts, etc.). 

2.4 Data Analysis 

Factor analysis. One of the objectives of this study was to find out whether partici-
pants' risk assessment was dependent on pedestrian avoidance conditions. An avoid-
ance maneuver is supposed to create a reaction from the participant in terms of the 
assessed risk. More concretely, an evolution of the assessed risk is expected for each 
pedestrian avoided. As mentioned before, the pedestrians were very far apart from 
each other. The advantage of such a design is twofold: on the one hand, it guarantees 
that the risk assessment necessarily concerns one and only one pedestrian, on the 
other hand, it guarantees that the risk assessment starts and ends at 0. Hence, for each 
avoided pedestrian, a time series of assessed risk was extracted. Data were primarily 
scaled to be in the range [0; 1], and then two indicators were computed: the maximum 
assessed risk (Risk Max) and the area under the risk curve (AUC). Those indicators 
are illustrated on Figure 3. It resulted in two sets of 32 indicator values by participant 
for the two experimental phases. The influence of the independent variables (TTC, 
lateral offset, pedestrian heading and the direction of the avoiding maneuver) on those 
values was assessed by means of analyses of variances.  
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Fig. 3. Example of the assessed risk by a participant for a maneuver of pedestrian avoidance. 
Two indicators were computed: the maximum assessed risk (Risk Max) and the area under the 
risk curve (AUC). It is important to mention that the unimodal specificity of the curve was 
common to all participants. 

Dynamics analysis of the assessed risk. In the considered approach, risk assessment 
is the external expression of an implicit internal phenomenon that can be modelled as 
an impulse response (IR). Formally, an IR is a dynamic function that gives the quanti-
tative reaction of a system to a unitary stimulus (a Dirac impulse). In this context of 
online risk assessment, the objective of the IR is to represent the dynamics of the 
cognitive process that leads to the participant's rating when the vehicle avoids a pe-
destrian. Consequently, the quantitative data collected for each participant should be 
considered as time series of the risk assessment that is assumed to be the response to a 
certain stimulus flow. 

Such a paradigm assumes that risk assessment can be seen as the response of a lin-
ear and time-invariant system to a given input signal [14]. Linearity requires that the 
risk assessment (output) in the case of a response to a linear combination of stimuli 
(inputs) should be the same linear combination of the output responses of the individ-
ual inputs. A simple way to illustrate this concept is to say that the response to a 10 
unit stimulus should be 10 times the response to a 1 unit stimulus whatever the unit. 
The time invariance implies that the response to a stimulus should be independent to 
the moment the stimulus is perceived. That is, a stimulus occurring at a time 𝑡𝑡 should 
produce the same reaction as the same stimulus occurring at a time 𝑡𝑡 + ∆ whatever is 
the ∆.  

The IR is computed using an autoregressive model with exogenous variable (called 
an ARX model). Given a time 𝑡𝑡, a general formula is given in the equation 1. The 
value of risk assessment (the output, denoted 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) is supposed to depend on the 𝑛𝑛𝑛𝑛 
previous values of risk assessment, on 𝑛𝑛𝑛𝑛 values of an exogenous variable (the input, 
denoted 𝑋𝑋) with a delay of 𝑛𝑛𝑛𝑛 time units and on a white noise disturbance (denoted 𝜀𝜀) 
mainly attributed to measurement error or to uncontrollable inputs phenomena. 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) =  ∑ 𝛼𝛼𝑖𝑖 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡 − 𝑖𝑖)𝑛𝑛𝑛𝑛
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗𝑛𝑛𝑛𝑛−1

𝑗𝑗=0 × 𝑋𝑋(𝑡𝑡 − 𝑛𝑛𝑛𝑛 − 𝑗𝑗) +  𝜀𝜀(𝑡𝑡) (1) 

As seen in the equation 1, an ARX model is completely defined with 3 parameters: 
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• 𝑛𝑛𝑛𝑛: Number of autoregressive components, also called the output samples. 
• 𝑛𝑛𝑛𝑛: Number of exogenous components, also called the input samples. 
• 𝑛𝑛𝑛𝑛: Number of input samples (exogenous) that occur before the input affects the 

output, also called the dead time in the system. 

 Those parameters have to be rigorously chosen as they directly condition the form 
of the IR. The latter can be seen as a time series where each value is a linear combina-
tion between, on one side the coefficients 𝛼𝛼𝑖𝑖 and the output series and on the other 
side the coefficients 𝛽𝛽𝑖𝑖 and the input series. In this experimental case, the optimal 
numbers of coefficients (i.e. 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛) were to be found using the data. A grid 
search was performed to find out the best configuration (performance test among 
combinations of the parameters). 

In this study, the exogenous variable introduced in the ARX model is the evolution 
of the retinal expansion rate of the pedestrian. If we consider two points belonging to 
the pedestrian, the retinal expansion rate is the dilation rate of the optical angle (de-
noted 𝜙𝜙) formed by those two points as illustrated on Fig. 3. With some trigonometric 
approximations, the rate of retinal expansion (i.e. 𝜙𝜙 𝜙̇𝜙⁄ ) has been shown to be the 
inverse of TTC [15].The use of this variable in this study of online risk assessment 
turns out to be consistent with many references in the literature about the detection 
and avoidance of upcoming collision by drivers [16–18].  

 
Fig. 4. As demonstrated by Lee [15], with some trigonometric approximation the TTC can be 
expressed as the inverse of the rate of dilatation of the optical angle represented by (any) two 
points on the pedestrian. 

3 Results 

3.1 Effect of TTC and lateral Offset 

As explained before, two indicators (Risk Max and AUC) have been computed for 
each avoided pedestrian and analysis of the variance (ANOVA) were performed to 
figure out whether the factors affected the observed risk assessment. To do that, each 
factor was studied independently. A preliminary analysis revealed that neither the 
direction of the avoidance maneuver (left/right) nor the walking direction of the pe-
destrians (front/back) influenced the risk assessed considering the two indicators. 
Given this result, conditions were taken into account indifferently for the analyses that 
followed. For a given modality of a factor (TTC, lateral offset), all the occurrences 
have been averaged to get one value by participant per indicator. Then, a one-way 
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ANOVA was computed over the 22 resulting values to determine whether the factor 
has a significant effect on the assessed risk.  

The results of the ANOVAs lead to the conclusion of significant effects for the 
TTC on the two indicators (Risk Max: 𝐹𝐹(3, 18) = 20.74, 𝑝𝑝 < .001; AUC: 
𝐹𝐹(3, 18) = 15.75, 𝑝𝑝 < .001). The lateral offset also had an effect although it was 
only significant for RiskMax (Risk Max: 𝐹𝐹(2, 19) = 3.30, 𝑝𝑝 < .05; AUC: 
𝐹𝐹(2, 19) = 2.60, 𝑝𝑝 < .1). In addition, as illustrated on Fig. 5, the latter the maneuver 
was triggered, the higher the indicators are. This supports to the intuitive idea that the 
passenger feels a higher risk when the vehicle starts the avoidance maneuver too late. 
Likewise, the closer the vehicle was to the pedestrian during the avoidance maneuver, 
the higher the assessed risk 5 (Fig. 6).  

However, post hoc tests of the significant difference of the means (Tukey’s HSD 
test) revealed that the lowest values of both the TTC (2 seconds) and the lateral offset 
(0.5 meter) resulted in a significant increase of the assessed risk. 

 

Fig. 5. Effect of the TTC on the two indicators. The stars indicate the results of the post hoc 
tests (∗ : 𝑝𝑝 < .1; ∗∗ : 𝑝𝑝 < .05; ∗∗∗ : 𝑝𝑝 < .001). 

 
Fig. 6. Effect of the lateral offset on the two indicators. The stars indicate the results of the post 
hoc tests (∗ : 𝑝𝑝 < .1). 

*** 
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3.2 Risk prediction 

System identification. The data were then used to determine the extent to which the 
participant's assessment could be modeled as an IR. For this purpose, all avoidance 
maneuvers were treated independently and optimal coefficients were computed using 
MATLAB and the System identification toolbox [19]. A set of optimal coefficients 
corresponds to an IR which fit the best with the observed data in terms of normalized 
root mean squared error (NRMSE). As shown in the equation 2, NRMSE summarizes 
the observed differences between observed and predicted data and take into account 
the actual dispersion of the observed data. Such a performance metric always returns 
a value lower than 1, and the nearer the NRMSE is from 1, the better the predicted 
values are. 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑜𝑜𝑜𝑜𝑜𝑜, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 1 − �∑ �𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)�
2

𝑡𝑡
∑ (𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)−𝑜𝑜𝑜𝑜𝑜𝑜�����)2𝑡𝑡

  (2) 

Given a moment 𝑡𝑡: 

• 𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡): Observed values i.e. the risk assessed by a participant. 
• 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡): Predicted value by the ARX model of the risk assessed. 
• 𝑜𝑜𝑜𝑜𝑜𝑜�����: Mean of the observed values considered in a range of time. 

 Before estimating the coefficients 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 (cf. equation 1), the best parameters of 
the ARX model were obtained (𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛). Since no assumption was privileged, all com-
binations among the grid 𝑛𝑛𝑛𝑛 ∈ [1; 20] × 𝑛𝑛𝑛𝑛 ∈ [1; 20] were firstly tested on the data. 
The performances were compared and finally the values 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛 = 2 were retained 
for all participants. These values were chosen based on an analysis of the performance 
of all the models, and of the gain observed through the introduction of additional co-
efficients. Voluntarily, the chosen ARX model was relatively sparse and gave rise to 
an IR calculated from only 5 coefficients. The fact that 𝑛𝑛𝑛𝑛 = 2 means the autoregres-
sive part of the model concerns only delays of order 1 and 2. That is, the risk assessed 
by a participant at a given time 𝑡𝑡 essentially depends on the risk assessed at time 𝑡𝑡 − 1 
and 𝑡𝑡 − 2. The value of 𝑛𝑛𝑛𝑛 is linked to the reaction to exogenous stimulus (retinal 
expansion rate) and should be interpreted in relation with the value of the last ARX 
parameter, 𝑛𝑛𝑛𝑛. The latter was chosen afterwards by testing all values between 100 
milliseconds and 3 seconds (every 50 milliseconds). This parameter was selected for 
each avoidance maneuver of the participants. As explained before, it corresponds to 
the number of stimulus samples that occur before seeing a reaction on the assessed 
risk by the participant. The lower limit (100ms) was chosen as the minimum time 
interval required to perceive a succession of stimuli for a Human [20]. The upper 
boundary (3s) was selected with regard to data of all participants. Once this parameter 
was found, the parameter 𝑛𝑛𝑛𝑛 = 2 can be interpreted as the number of stimulus sam-
ples that affect the assessed risk after 𝑛𝑛𝑛𝑛 time units. More formally, at a given time 𝑡𝑡, 
the assessed risk depends on the previous values of stimulus which occurred at time 
(𝑡𝑡 − 𝑛𝑛𝑛𝑛) and (𝑡𝑡 − 𝑛𝑛𝑛𝑛 − 1). 
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This procedure of system identification was performed to test whether the risk as-
sessed by a participant could be estimated using an IR and only one exogenous varia-
ble. Out of the 704 overtaking maneuvers, only 679 identifications were processed. 
The remaining 25 maneuvers concerned data with no risk assessed i.e. maneuvers 
where participants did not perceive risk of collision (cursor remaining at 0). These 
excluded cases were found randomly among participant and an examination revealed 
no specific pattern in terms of avoidance conditions or participant profile. 

Global model summary. In addition to the system identification two heuristic ma-
nipulations were operated. 

• The retinal expansion rate exists as soon as the vehicle is approaching to a pedes-
trian. If the speed of the vehicle remains constant at 30 km/h, which was the case in 
the experiment, a pedestrian walking 100 meters in front of the vehicle is already 
supposed to produce a stimulus for the participant although the risk of collision can 
reasonably be considered absent. In the ARX model, this causes the IR to be trig-
gered too early and therefore predicts a non-zero assessed risk when no stimulus is 
actually perceived by participants. To work around this phenomenon, the stimulus 
series was truncated to keep only values that correspond to TTC below 5 seconds 
which was the threshold value found based on the data. 

• The IR has the disadvantage to keep on estimating a non-zero output (and so a risk 
predicted different from 0) even long after a stimulus occurred. In the context of 
the experiment, most of participants returned to a value of 0 just after the avoid-
ance maneuver i.e. when the pedestrian was just behind the vehicle. To cope with 
this phenomenon, the risk predicted by the model was truncated using the distance 
between the pedestrian and the vehicle: as soon as the vehicle moved away from a 
pedestrian, the risk predicted was set to 0. 

A global model strategy is then defined and composed of three steps: (step 1) trun-
cate the exogenous stimulus series, (step 2) identify parameters of the ARX model 
and estimate the coefficients, (step 3) truncate the predicted series. 

Performances. Due to the large amount of data expected, performances were com-
pared and judged through median values per participant. The accuracy of the predict-
ed risk estimation was evaluated with the NRMSE and the threshold of 0.6 was cho-
sen to distinguish good and bad fit. The threshold was selected based on the data fol-
lowing observations: performances lower than 0.6 reflected a predicted series which 
does not fit the observed series (e.g. too large absolute difference between the predict-
ed and the observed values); for performances greater than 0.6, the predicted series 
were well correlated and had low absolute differences with the associated observed 
series. An example of a result with a 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.74 is illustrated on Fig. 7. The IR 
(Fig. 7.a) depends on the estimated parameter 𝑛𝑛𝑛𝑛 and the system identification results 
(coefficients 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖). This curve trend with a positive skewness is very characteris-
tic and corresponds to the majority of cases. It reflects the fact that the occurrence of a 
stimulus leads to a rapid increase and then a gradual decrease in the risk assessed. The 
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estimated IR is then used in the global model detailed above to compute the predicted 
series (Fig. 7.b).  

Out of the 22 participants under analysis, the median performances of 16 were 
greater than 0.6. The profiles of the 6 remaining participants have been studied in 
detail but no specific pattern was found. However, in most cases, the model failed 
because of the form of the assessed risk. The ARX model assumes that an increase of 
the stimulus input (retinal expansion rate) should always result in an increase of the 
output (assessed risk). When this was not the case, the procedure systematically failed 
to estimate a correct IR. For example, some participants assessed a progressive risk 
when approaching a pedestrian by staying on the same value for a long time while the 
rate of retinal expansion increased steadily. 

 
Fig. 7. Result example of the model prediction with the IR (a) obtained after the system identi-
fication and the resulting predicted series (b). The NRMSE computed for this example is 0.74 
which is judged as satisfying. On the IR, the parameter 𝑛𝑛𝑛𝑛 = 12 can be seen at the beginning of 
the series that remains at 0 during 12 time units. 

As a result, the model strategy was found to be effective for more than 70% of par-
ticipants. After this first step, further analysis was conducted to determine whether it 
was possible to estimate a single IR for all avoidance maneuvers of a given partici-
pant. To this end, tests were carried out on all participants and a calculation routine 
was put in place to progressively aggregate the coefficients. The idea was to simulate 
the possibility of adjusting future predictions based on the risk assessed during previ-
ous avoidance maneuvers for a given participant. For example, the prediction of the 
assessed risk at the 10th pedestrian avoidance would depend on the observed values 
for the previous 9 pedestrians. In this example, the coefficients obtained by system 
identification for the previous 9 maneuvers were averaged. Theoretically, this ap-
proach had the advantage of stabilizing the IRs (resulting from the coefficients) as the 
vehicle progressed. This makes sense because the more the participants experimented 
with avoidance maneuvers, the more robust the predictive models became. However, 
this approach yielded disappointing results because the median performance calculat-
ed per participant was never higher than that obtained by system identification. Per-

(a) (b) 
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formance was at least halved for 19 participants; and, surprisingly, for 2 of the re-
maining 3 participants, the median performance obtained by identification was below 
the 0.6 threshold mentioned above.  

This poor performance can be explained by the fact that the participants' behaviors 
were not constant during the experiment in terms of the risk assessed by considering 
only the rate of retinal expansion as an entry stimulus. Therefore, the hypothesis of 
temporal invariance of IR could not be validated by the data, i.e., the same avoidance 
maneuver did not produce the same effect on the participant. 

4 Conclusion and discussions 

Results summary. This experiment made it possible to study in real time the risk felt 
by a passenger when travelling between pedestrians in an autonomous vehicle. Two 
variables were used to manipulate the vehicle's safety margins: (1) the value of the 
TTC when the vehicle starts its avoidance maneuver, (2) the lateral safety distance the 
vehicle leaves with the pedestrian. Two indicators have been proposed to study the 
influence of these parameters on the assessed risk: the maximum value and the area 
under the curve. According to these indicators and the results obtained, the TTC at the 
start of the maneuver and the lateral deviation from the pedestrian have a significant 
effect on the risk assessed: the lower the TTC or the lateral deviation, the more the 
participants considered the maneuver to be risky. However, only the extreme values 
tested for these parameters resulted in significant differences. The risk felt by the 
participants was also analyzed dynamically for predictive purposes. An autoregressive 
model with an exogenous variable was tested to predict the risk assessed in real time 
through the evolution of the rate of retinal expansion when approaching a pedestrian. 
The results obtained by identifying the parameters resulted in sparse models and satis-
factory performance (NRMSE) for more than 70% of the participants. Nevertheless, 
attempts to characterize the participants by their impulse response resulted in predic-
tion performances below those obtained by the models with identified parameters. 

Conclusion. In view of these results, it is clear that the assessed risk by the partici-
pants depends on the dynamics of approach and avoidance of pedestrians by the vehi-
cle. However, the factors tested were not sufficient to explain accurately the assess-
ment behavior observed in the participants. Predicting the risk perceived in an auton-
omous vehicle probably requires considering more complex independent variables 
related to the vehicle dynamics. For instance, aggregate the TTC and the relative time 
separating the vehicle and the obstacle as proposed in [17, 21]. Nevertheless, risk as 
such remains a concept that is complex to define, and if it is considered to be a feeling 
(as suggested by Slovic et al. [22]) it would be intuitive and therefore not entirely 
dependent on objective measures.  

It is also possible that the modeling approach considered is not suitable for predict-
ing a risk feeling in a temporal context. For some participants, it was found that as-
sumptions of linearity and temporal invariance were not satisfied. This may reflect a 
change in the importance or uncertainty that participants placed on the risk of pedes-
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trian collisions (as characterized by Yates and Stones [23]). For future research, a 
criterion to account for changes in passenger perception of the vehicle behavior (in-
ternal model) could therefore be added to the modeling. 
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