
HAL Id: hal-02487175
https://hal.science/hal-02487175v1

Preprint submitted on 21 Feb 2020 (v1), last revised 24 Nov 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cyclic proofs, system T, and the power of contraction
Denis Kuperberg, Laureline Pinault, Damien Pous

To cite this version:
Denis Kuperberg, Laureline Pinault, Damien Pous. Cyclic proofs, system T, and the power of con-
traction. 2020. �hal-02487175v1�

https://hal.science/hal-02487175v1
https://hal.archives-ouvertes.fr

Cyclic proofs, system T, and the power of contraction∗

Denis Kuperberg

Plume team, LIP, CNRS, ENS de Lyon

Lyon, France

Laureline Pinault

Plume team, LIP, CNRS, ENS de Lyon

Lyon, France

Damien Pous

Plume team, LIP, CNRS, ENS de Lyon

Lyon, France

Abstract
We study a cyclic proof system C over regular expression

types, inspired by linear logic and non-wellfounded proof

theory. Proofs in C denote total computable functions; we

analyse the relative strength of C andGödel’s systemT, show-

ing that contraction plays a crucial role. In the general case,

we show that the two systems capture the same functions

on natural numbers. In the affine case, we manage to give a

direct and uniform encoding of C into T, translating cycles

into explicit recursions. We also show that for functions on

natural numbers, removing contraction reduces the expres-

sivity precisely to primitive recursive functions—providing

an alternative and more general proof of a result by Dal Lago.

The two upper bounds on the expressivity of C w.r.t. func-

tions on natural numbers are obtained by formalising weak

normalisation of a small step reduction semantics in subsys-

tems of second-order arithmetic: ACA0 and RCA0.

Whether a direct and uniform translation from C to T can

be given in the presence of contraction remains open.

1 Introduction
In recent years there has been a surge of interest in the theory

of non-wellfounded proofs. This is an approach to infinitary

proof theory where proofs remain finitely branching but are

permitted to be infinitely deep. A correctness criterion is

usually required to guarantee consistency, typically some 𝜔-

regular condition on the infinite branches. Proofs whose de-

pendency graphs are regular trees are known as cyclic proofs;
being finite objects, they can be exchanged and checked,

thus playing the role of traditional inductive proofs. A natu-

ral question is whether specific cyclic and inductive proof

systems have the same logical strength. Inductive proofs can

usually be translated easily into cyclic ones (see, e.g., [9]),

while the converse problem is often harder [7, 29], or im-

possible [6, 12]. Cyclic proofs systems have been recently

used in the context of the mu-calculus [2, 16] and Kleene

algebra [13–15], in order to obtain completeness results, and

in the context of linear logics [17, 18]

Here we propose a cyclic proof system which we study

from the other side of the Curry-Howard correspondence.

We look at cyclic proofs as computational devices, and we

characterise their computational strength in terms of more

∗
This work has been supported by the European Research Council (ERC)

under the European Union’s Horizon 2020 programme (CoVeCe, grant

agreement No 678157), and by the LABEX MILYON (ANR-10-LABX-0070)

of Université de Lyon, within the program "Investissements d’Avenir" (ANR-

11-IDEX-0007) operated by the French National Research Agency (ANR).

traditional devices: primitive recursive functions and Gödel’s

system T (i.e., simply typed lambda-calculus with natural

numbers and recursion).

We consider the formulas of intuitionistic multiplicative

additive linear logic (IMALL) with a least fixpoint operator

for lists. We can thus manipulate datatypes consisting of

natural numbers and functions, but also pairs, lists, or sums,

without the need for encodings. Our cyclic proof system,

which we call system C, is basically the sequent system LAL

for action lattices from [15], to which we add the three usual

structural rules: exchange, weakening and contraction. Pro-

ceeding this way makes it possible to consider the affine
fragment Caff of C, where the contraction rule is forbidden.

Accordingly, we use a variant of Gödel’s system T with

the same formulas/types as C in order to ease comparisons.

We define this type system in a slightly non-standard way:

like for C, we use explicit structural rules in order to be able

to talk about the affine fragment Taff of T.

Contraction indeed plays an important role in those sys-

tems: we show that

1. affine C and affine T are equally expressive (at all

types), and their functions on the natural numbers

(N) are the primitive recursive functions;

2. C and T capture the same functions on N.

We obtain those results via the translations summarised

below, where dotted arrows denote encodings restricted to

functions on natural numbers.

T C

Thm. 3.4

Cor. 6.7, via ACA0

Taff Caff
prim. rec.

Thm. 3.4

Thm. 4.5

Thm. 2.13

Cor. 6.13, via RCA0

As expected, we can easily translate terms of T into cyclic

proofs of C (Thm. 3.4); this translation is uniform and maps

affine terms to affine proofs. We also observe that we do

not need contraction to encode primitive recursive functions

into C (Thm. 2.13).

Encoding cyclic proofs into T is much harder: we have to

delineate possibly complex cycle structures in order to use

the very basic recursion capacities of T. We provide a direct

and uniform encoding in the affine case (Thm. 4.5), which

we do not know how to extend in presence of contraction.

In order to get our upper bounds on the expressivity of C

and affine C for functions on N (Cor. 6.7 and Cor. 6.13), we

1

Denis Kuperberg, Laureline Pinault, and Damien Pous

define a small steps reduction semantics for C. This seman-

tics matches the higher-level and higher-order semantics we

use elsewhere in the paper, and we prove that it is weakly

normalising. We obtain Cor. 6.7 by observing that this weak

normalisation proof can be performed inside the subsystem

ACA0 of second order arithmetic [30], whose provably recur-

sive functions are precisely those from system T.

For the affine case (Cor. 6.13), Dal Lago’s systemH(∅) [27]
is a variant of Gödel’s system Twhich characterises primitive

recursive functions and which is really close to our affine

version of T. Unfortunately, we need additive pairs in order

to translate affine C into affine T. Those are not available in

H(∅), and it is not clear how to extend Dal Lago’s proof to

deal with such operations: his proof is complex and relies

on a semantics based on geometry of interaction, whose

extension to additives is notoriously difficult [1, 5, 19, 23].

We actually prove Cor. 6.13 by using another proof of

weak normalisation, which works only on the image of our

translation from affine T to C. This argument can be for-

malised into another subsystem of second order arithmetic,

RCA0, which is known to define only the primitive recursive

functions [3]. This eventually gives us an alternative and

more general proof of Dal Lago’s result.

Relatedwork SystemTwas originally introduced byGödel

in [21] as an equational theory built up over a fragment of

the term calculus that we identify as T here. That work in-

troduced the celebrated ‘Dialectica’ functional interpretation,
that allows T to interpret Peano Arithmetic.

1
Our work can

be seen as a natural counterpart in T to recent work on cyclic

versions of arithmetic [12, 29].

Other infinitary versions of system T are well-known, in

particular [31]. These also induce a ‘term model’ of T where

recursors are replaced by infinitely long yet well-founded

terms. This difference resembles the difference between logi-

cal systems with 𝜔-branching versus their non-wellfounded

counterparts, e.g. as in arithmetic [12, 29].

The role of contraction w.r.t expressivity we exhibit in

the present work is reminiscent of a recent result [26]: in a

specific cut-free fragment of C, affine proofs capture precisely

the regular languages while proofs with contraction capture

the DLogSpace ones.

Notation. Given two sets𝑋,𝑌 , wewrite𝑋×𝑌 for their Carte-

sian product, 𝑋+𝑌 for their disjoint union, 𝑌𝑋
for the set of

functions from 𝑋 to 𝑌 , and 𝑋 ∗ for the set of finite sequences
(lists) over 𝑋 . Given such a sequence 𝑙 , we write |𝑙 | for its
length and 𝑙𝑖 for its 𝑖th element. We write 1 for the singleton

set {⟨⟩} and ⟨𝑥,𝑦, 𝑧⟩ for tuples. We use commas to denote

concatenation of both sequences and tuples, and 𝜖 or just a

blank to denote the empty sequence.

1
Gödel only treated Heyting Arithmetic, the intuitionistic counterpart of

Peano Arithmetic. An interpretation of the latter is duly obtained by com-

position with an appropriate double-negation translation.

2 System C and its semantics
2.1 Regular expressions as types
We let the letters 𝑎, 𝑏 range over the elements of a fixed set𝐴

of type variables. We define types with the following syntax.

𝑒, 𝑓 := 𝑎 | 𝑒 · 𝑓 | 𝑒 + 𝑓 | 𝑒∗ | 1 | 𝑒 → 𝑓 | 𝑒 ∩ 𝑓

The five first entries correspond to regular expressions; the

arrow adds function spaces. The role of the intersection

operator will be explained later. We call types formulas when
this is more natural.

We assume a family (𝐷𝑎)𝑎∈𝐴 of sets indexed by𝐴. To every

type 𝑒 , we associate a set [𝑒] of values, by induction on 𝑒:

[𝑒 · 𝑓] ≜ [𝑒]× [𝑓] [𝑒+ 𝑓] ≜ [𝑒]+ [𝑓] [𝑒→𝑓] ≜ [𝑓] [𝑒]

[𝑒∗] ≜ [𝑒]∗ [𝑎] ≜ 𝐷𝑎 [1] ≜ 1 [𝑒∩ 𝑓] ≜ [𝑒] × [𝑓]
We let 𝐸, 𝐹 range over finite sequences of types. Given such

a sequence 𝐸 = 𝑒1, . . . , 𝑒𝑛 , we write [𝐸] for [𝑒1] × · · · × [𝑒𝑛].
We define a sequent proof system, where sequents have the

shape 𝐸 ⊢ 𝑒 , and where proofs of such sequents denote

functions from [𝐸] to [𝑒].

2.2 Non-wellfounded proofs
The rules are given in Fig. 1; in addition to the structural
rules (exchange, weakening, contraction, axiom, and cut), we

have introduction rules on the left and on the right for each

type connective (logical rules). Those rules are standard, they
are those of intuitionistic multiplicative additive linear logic,

when interpreting · as multiplicative conjunction (⊗), + as
additive disjunction (⊕), ∩ as additive conjunction (&), and
→ as linear arrow (−◦). The rules for type 𝑒∗ correspond to

unfolding rules, looking at 𝑒∗ as the least fixpoint expression
𝜇𝑥 .1 + 𝑒 · 𝑥 (e.g., from the 𝜇-calculus).

Those rules are also essentially the same as those used

for action lattices in [15]. The only differences are that they

can be slightly simplified here since we have the exchange

rule, and that we have only one arrow operation, being in a

commutative setting (again, due to the exchange rule).

A (binary, possibly infinite) tree is a non-empty and prefix-

closed subset of {0, 1}∗, which we view with the root, 𝜖 , at

the bottom; elements of {0, 1}∗ are called addresses.

Definition 2.1. A preproof is a labelling 𝜋 of a tree by se-

quents such that, for every node 𝑣 with children 𝑣1, . . . 𝑣𝑛

(𝑛 = 0, 1, 2), the expression

𝜋 (𝑣1) · · · 𝜋 (𝑣𝑛)
𝜋 (𝑣)

is an instance

of a rule from Fig. 1. Given an address 𝑣 in a preproof 𝜋 ,

we write 𝜋𝑣 for the sub-preproof rooted at 𝑣 , defined by

𝜋𝑣 (𝑤) = 𝜋 (𝑣𝑤). A preproof is regular if it has finitely many

distinct subtrees. A preproof is cut-free (resp. affine, linear)
if it does not use the cut rule (resp. c rule, c and w rules).

We write ⊑ (resp. ⊏) for the prefix relation (resp. strict

prefix) on {0, 1}∗. The formula 𝑒 in an instance of the cut
rule is called the cut formula; the formulas appearing in lists

2

Cyclic proofs, system T, and the power of contraction

𝐸, 𝑓 , 𝑒, 𝐹 ⊢ 𝑔
x
𝐸, 𝑒, 𝑓 , 𝐹 ⊢ 𝑔

𝐸 ⊢ 𝑔
w
𝑒, 𝐸 ⊢ 𝑔

𝑒, 𝑒, 𝐸 ⊢ 𝑔
c
𝑒, 𝐸 ⊢ 𝑔

id
𝑒 ⊢ 𝑒

𝐸 ⊢ 𝑒 𝑒, 𝐹 ⊢ 𝑔
cut

𝐸, 𝐹 ⊢ 𝑔

𝑒, 𝑓 , 𝐸 ⊢ 𝑔
·-𝑙
𝑒 · 𝑓 , 𝐸 ⊢ 𝑔

𝑒, 𝐸 ⊢ 𝑔 𝑓 , 𝐸 ⊢ 𝑔
+-𝑙

𝑒 + 𝑓 , 𝐸 ⊢ 𝑔
𝐸 ⊢ 𝑔 𝑒, 𝑒∗, 𝐸 ⊢ 𝑔

∗-𝑙
𝑒∗, 𝐸 ⊢ 𝑔
𝐸 ⊢ 𝑔

1-𝑙

1, 𝐸 ⊢ 𝑔
𝐸 ⊢ 𝑒 𝑓 , 𝐹 ⊢ 𝑔

→-𝑙

𝑒 → 𝑓 , 𝐸, 𝐹 ⊢ 𝑔
𝑒𝑖 , 𝐸 ⊢ 𝑔

∩-𝑙𝑖 𝑖 ∈ {0, 1}
𝑒0 ∩ 𝑒1, 𝐸 ⊢ 𝑔

𝐸 ⊢ 𝑒 𝐹 ⊢ 𝑓
·-𝑟

𝐸, 𝐹 ⊢ 𝑒 · 𝑓
𝐸 ⊢ 𝑒𝑖

+-𝑟𝑖 𝑖 ∈ {0, 1}
𝐸 ⊢ 𝑒0 + 𝑒1

∗-𝑟𝜖 ⊢ 𝑒∗
𝐸 ⊢ 𝑒 𝐹 ⊢ 𝑒∗

∗-𝑟 ::
𝐸, 𝐹 ⊢ 𝑒∗

1-𝑟

⊢ 1
𝑒, 𝐸 ⊢ 𝑓

→-𝑟

𝐸 ⊢ 𝑒 → 𝑓

𝐸 ⊢ 𝑒 𝐸 ⊢ 𝑓
∩-𝑟

𝐸 ⊢ 𝑒 ∩ 𝑓

Figure 1. The rules of C.

𝐸, 𝐹 of any rule instance are called auxiliary formulas, and
the non auxiliary formula appearing in the antecedent of the

conclusion of the logical rules is called the principal formula.
Three examples of regular preproofs are depicted in Fig. 2.

The backpointers are used to denote circularity: the actual

preproofs are obtained by unfolding. Only the topmost pre-

proof satisfies the validity criterion which we define below.

Before that, we need to define a notion of thread, which are

the branches of the shaded trees depicted on the preproofs.

All rules but the cut rule have the subformula property:

every formula appearing in the premisses is a subformula

of one of the formulas appearing in the conclusion, usually

called its immediate descendant in the literature. We use a

slightly stricter notion of ancestry in the present paper.

Definition 2.2. A position in a preproof 𝜋 is a pair ⟨𝑣, 𝑖⟩
consisting of an address 𝑣 and an index 𝑖 such that 𝜋 (𝑣) =
𝐸 ⊢ 𝑓 and 𝐸𝑖 is a star formula. A ∗-𝑙 address is an address

pointing at the conclusion of a ∗-𝑙 step; ⟨𝑣, 𝑖⟩ is a ∗-𝑙 position
when 𝑣 is a ∗-𝑙 address and 𝑖 = 0 .

A position ⟨𝑣, 𝑖⟩ is a parent of a position ⟨𝑤, 𝑗⟩ if |𝑣 | =
|𝑤 | + 1 and, looking at the rule applied at address𝑤 the two

positions point at the same place in the lists 𝐸, 𝐹 of auxiliary

formulas, or at the formula 𝑒 (resp. 𝑒 or 𝑓) when this is the

contraction rule (resp. exchange rule), or at the principal

formula 𝑒∗ when this is the ∗-𝑙 rule and 𝑣 = 𝑤1. We write

⟨𝑣, 𝑖⟩ ◁ ⟨𝑤, 𝑗⟩ in the former cases, and ⟨𝑣, 𝑖⟩ ◁· ⟨𝑤, 𝑗⟩ in the

latter case (in which case 𝑖 = 1 and 𝑗 = 0). ⟨𝑣, 𝑖⟩ is an ancestor

of ⟨𝑤, 𝑗⟩ when those positions are related by the transitive

closure of the parentship relation.

The graph of the parentship relation is depicted in Fig. 2

using shaded thick lines and an additional bullet to indicate

when we pass principal steps (◁·). Note that in rule ∗-𝑙 , the
occurrence of 𝑒 in the second premiss is not a parent of 𝑒∗ in
the conclusion. Due to this restriction, positions linked by

the ancestry relation all point to the same star formula.

Remark 2.3. Notice that if 𝑢 ⊑ 𝑣 are addresses in a preproof
𝜋 , then a position at 𝑣 has at most one ancestor at 𝑢. Moreover,
it is only in the presence of contraction that a position at𝑢 may
have two ancestors at 𝑣 .

Definition 2.4. A thread is a branch of the ancestry graph;

it is principal when it visits a ∗-𝑙 position, spectator if it is
never principal, valid if it is principal infinitely many often.

In the first preproof of Fig. 2, the infinite red thread ⟨𝜖, 0⟩ ▷·
⟨1, 1⟩ ▷ ⟨10, 0⟩ ▷· ⟨101, 1⟩ ▷ ⟨1010, 0⟩ . . . is valid while the infi-
nite green thread ⟨𝜖, 1⟩▷⟨1, 2⟩▷⟨10, 1⟩▷⟨101, 2⟩▷⟨1010, 1⟩ . . .
is spectator. In the second preproof, all threads are finite: the

instances of the cut rule disconnect the various copies of the
thread ⟨𝜖, 0⟩ ▷· ⟨1, 1⟩occurring in the only infinite branch of

the preproof. In the third preproof, all infinite threads are

spectator: principal steps force the thread to terminate.

Definition 2.5. A preproof is valid if every infinite branch

contains a valid thread. A proof is a valid preproof. We write

𝜋 : 𝐸 ⊢ 𝑒 when 𝜋 is a proof whose root is labelled by 𝐸 ⊢ 𝑒 .

In Fig. 2, only the first preproof is valid, thanks to the

infinite red thread. The second preproof is invalid: every

thread is finite. The third preproof is invalid: infinite threads

along the (infinitely many) infinite branches are all spectator.

This validity criterion is essentially the same as in LKA [15],

which in turn is an instance of the one for 𝜇MALL [17]: we

just had to extend the notion of ancestry to cover the weak-

ening and contraction rules. This induces some subtleties:

Remark 2.6. In a fixed branch of an affine preproof, every
maximal thread is determined by its first element (a position).
This is not true with contraction since we can choose which
parent position to follow at each contraction step.

2.3 Computational interpretation of system C
We now show how to interpret a proof 𝜋 : 𝐸 ⊢ 𝑒 as a function
[𝜋] : [𝐸] → [𝑒]. Since proofs are not well-founded, we

cannot reason directly by induction on proofs.We use instead

the following relation, which we prove to be well-founded.

Definition 2.7. A computation in a fixed proof 𝜋 is a pair

⟨𝑣, 𝑠⟩ consisting of an address 𝑣 of 𝜋 with 𝜋 (𝑣) = 𝐸 ⊢ 𝑒 ,

and a value 𝑠 ∈ [𝐸]. Given two computations, we write

⟨𝑣, 𝑠⟩ ≺ ⟨𝑤, 𝑡⟩ when |𝑣 | = |𝑤 | + 1 and
1. for all 𝑖, 𝑗 s.t. ⟨𝑣, 𝑖⟩ ◁ ⟨𝑤, 𝑗⟩, we have 𝑠𝑖 = 𝑡 𝑗 , and

2. for all 𝑖, 𝑗 s.t. ⟨𝑣, 𝑖⟩ ◁· ⟨𝑤, 𝑗⟩, we have |𝑠𝑖 | < |𝑡 𝑗 |.
3

Denis Kuperberg, Laureline Pinault, and Damien Pous

id
𝑒∗ ⊢ 𝑒∗

...

𝑒∗, 𝑒∗ ⊢ 𝑒∗
id

𝑒 ⊢ 𝑒
id

𝑒∗ ⊢ 𝑒∗
∗-𝑟 ::

𝑒, 𝑒∗ ⊢ 𝑒∗

𝑒, 𝑒∗, 𝑒∗ ⊢ 𝑒∗
∗-𝑙

𝑒∗, 𝑒∗ ⊢ 𝑒∗
•

∗-𝑟𝜖
⊢ 𝑏∗

id
𝑎 ⊢ 𝑎

id
𝑎∗ ⊢ 𝑎∗

∗-𝑟 ::
𝑎, 𝑎∗ ⊢ 𝑎∗

...

𝑎∗ ⊢ 𝑏∗
cut

𝑎, 𝑎∗ ⊢ 𝑏∗
∗-𝑙

𝑎∗ ⊢ 𝑏∗
•

• ...

𝑒∗ ⊢ 𝑓

...

𝑒∗ ⊢ 𝑓
w

𝑒∗, 𝑒∗ ⊢ 𝑓
w

𝑒, 𝑒∗, 𝑒∗ ⊢ 𝑓
∗-𝑙

𝑒∗, 𝑒∗ ⊢ 𝑓
c

𝑒∗ ⊢ 𝑓

•

Figure 2. Three regular preproofs.

The two conditions state that the values assigned to star

formulas should remain the same along auxiliary steps and

decrease in length along principal steps.

Lemma 2.8. The relation ≺ on computations is well-founded.

Proof. An infinite descending sequence would correspond

to an infinite branch of 𝜋 . This branch would contain a valid

thread, which is forbidden by 1/ and 2/: we would obtain an

infinite sequence of lists of decreasing length. □

Definition 2.9. The return value [𝑣] (𝑠) of a computation

⟨𝑣, 𝑠⟩ with 𝜋 (𝑣) = 𝐸 ⊢ 𝑒 is a value in [𝑒] defined by well-

founded induction on ≺ and case analysis on the rule used

at address 𝑣 . We list only the most interesting cases below;

see App. A.1 for the complete enumeration.

id : [𝑣] (𝑠) ≜ 𝑠

cut : [𝑣] (𝑠, 𝑡) ≜ [𝑣1] ([𝑣0] (𝑠), 𝑡)
c : [𝑣] (𝑥, 𝑠) ≜ [𝑣0] (𝑥, 𝑥, 𝑠)
·-𝑟 : [𝑣] (𝑠, 𝑡) ≜ ⟨[𝑣0] (𝑠), [𝑣1] (𝑡)⟩
→-𝑙 : [𝑣] (ℎ, 𝑠, 𝑡) ≜ [𝑣1] (ℎ([𝑣0] (𝑠)), 𝑡)
→-𝑟 : [𝑣] (ℎ) ≜ (𝑥 ↦→ [𝑣0] (𝑥, ℎ))
∗-𝑙 : [𝑣] (𝑙, 𝑠) is defined by case analysis on the list 𝑙 :

• [𝑣] (𝜖, 𝑠) ≜ [𝑣0] (𝑠)
• [𝑣] (𝑥 :: 𝑞, 𝑠) ≜ [𝑣1] (𝑥, 𝑞, 𝑠)

In each case, the recursive calls are made on strictly smaller

computations: they occur on direct subproofs, the values

associated to auxiliary formulas are left unchanged, and in

the second subcase of the ∗-𝑙 case, the length of the list

associated to the principal formula decreases by one.

Note that in the cut and→-𝑙 cases, the values [𝑣0] (𝑠) and
ℎ([𝑣0] (𝑠)) might be arbitrary large. This is not problematic:

the corresponding positions have no children, so that those

values are left unconstrained by the relation ≺.
Definition 2.10. The semantics of a proof 𝜋 : 𝐸 ⊢ 𝑒 is the
function [𝜋] : [𝐸] → [𝑒] defined by [𝜋] (𝑠) ≜ [𝜖] (𝑠).

Let us compute the semantics of the first (and only) proof

in Fig. 2. We have

[𝜖] (𝜖, 𝑙) = [0] (𝑙) = 𝑙

[𝜖] (𝑥 :: 𝑞, 𝑙) = [1] (𝑥, 𝑞, 𝑙) = [11] (𝑥, [10] (𝑞, 𝑙))
= [110] (𝑥) :: [111] ([10] (𝑞, 𝑙))
= 𝑥 :: [10] (𝑞, 𝑙) = 𝑥 :: [𝜖] (𝑞, 𝑙)

rem

𝑒 ⊢ 1
𝐸 ⊢ 𝑓

1-𝑙
1, 𝐸 ⊢ 𝑓

cut
𝑒, 𝐸 ⊢ 𝑓

dup

𝑒 ⊢ 𝑒 · 𝑒
𝑒, 𝑒, 𝐸 ⊢ 𝑓

·-𝑙
𝑒 · 𝑒, 𝐸 ⊢ 𝑓

cut
𝑒, 𝐸 ⊢ 𝑓

Figure 3. Deriving weakening and contraction.

In the last equality we used the fact that 𝜋01 = 𝜋𝜖 , so that

[01] = [𝜖]. We recognise for [𝜖] the standard definition of

list concatenation, which is recursive on its first argument.

Trying to perform such computations on the two invalid

preproofs from Fig. 2 would give rise to non-terminating

behaviours, e.g., [𝜖] (𝑥 :: 𝑞) ⇝ [11] (𝑥 :: 𝑞) = [𝜖] (𝑥 :: 𝑞) in
the second preproof.

2.4 Weakening and contraction
A type is closed when it does not contain variables; it is posi-
tive when it does not contain negative connectives (→,∩).

Lemma 2.11. For every closed type 𝑒 , there is a linear regular
proof rem𝑒 : 𝑒 ⊢ 1.

Proof. By induction on 𝑒 , see App. A.2. □

As a consequence, weakening is admissible for closed

types, by replacing it with the gadget on the left in Fig. 3.

The linear system also allows for some form of duplication:

while arrow types cannot be duplicated, basic types such as

natural numbers (1∗) or lists of natural numbers (1∗∗) can.

Lemma 2.12. For every positive closed type 𝑒 , there is a lin-
ear regular proof dup𝑒 : 𝑒 ⊢ 𝑒 · 𝑒 such that for all 𝑥 ∈ [𝑒],
[dup𝑒] (𝑥) = ⟨𝑥, 𝑥⟩.

Proof. Again by induction on 𝑒 , see App. A.2. □

Like above, it follows that positive closed instances of the

contraction rule are derivable in the linear system using the

gadget on the right in Fig. 3. However, they are not admis-

sible in general: the gadget does cut the potential threads

on the contracted formula, so that it cannot be freely used

in arbitrary proofs. For instance, anticipating on Sect.2.5 be-

low, if we use it to replace the contraction on a star formula

in the proof from Fig. 5, the affine preproof we obtain is

not valid: the green thread is cut at each iteration. Actually,

4

Cyclic proofs, system T, and the power of contraction

if contraction on closed types was derivable in a thread-

preserving way, and thus admissible, we would obtain a

counter-example to Cor. 6.13 below.

2.5 Functions on natural numbers
Natural numbers can be represented through the type 1

∗
of

lists over the singleton set. The logical rules for this specific

instance of the star type can be optimised as follows:

𝐸 ⊢ 𝑔 1
∗, 𝐸 ⊢ 𝑔

1
∗
-𝑙

1
∗, 𝐸 ⊢ 𝑔

1
∗
-𝑟0 ⊢ 1∗

𝐸 ⊢ 1∗
1
∗
-𝑟𝑆

𝐸 ⊢ 1∗

Those rules are immediate consequences of the logical rules

for 1 and star. Using these rules, we deduce that for all 𝑛 ∈ N,
we can build a finite proof 𝑛 : ⊢ 1∗ such that [𝑛] () = 𝑛.

Similarly, for every function (even an uncomputable one)

𝑓 : N → N, we can obtain a proof 𝑓 : 1
∗ ⊢ 1

∗
such that

[𝑓] = 𝑓 : repeatedly apply the 1
∗
-𝑙 rule to obtain a comb-

shape infinite tree, and fill the remaining leaves with finite

proofs for the successive values of the function. This proof,

which is essentially the graph of the function 𝑓 , is linear and

cut-free, but not regular in general.

Our first expressivity result for regular proofs is:

Theorem 2.13. For every primitive recursive function 𝑓 :

N × · · · × N → N, there exists a linear and regular proof
𝜋 : 1

∗ × · · · × 1∗ ⊢ 1∗ such that [𝜋] = 𝑓 .

Proof. By induction on definition scheme for primitive recur-

sive functions. The constant 0-ary function and the successor

1-ary functions give rise to simple finite proofs. The pro-

jection functions just require weakening for 1
∗
(Lem. 2.11).

Function composition is implemented using the cut rule, as
expected, but it also requires duplicating the arguments to

provide them to the composed functions. For instance, to

compose a 2-ary function ℎ with two 1-ary functions 𝑓 , 𝑔,

we use the following scheme:

𝜋𝑓

1
∗ ⊢ 𝑠

𝜋𝑔

1
∗ ⊢ 𝑡

𝜋ℎ

𝑠, 𝑡 ⊢ 𝑟
cut

𝑠, 1∗ ⊢ 𝑟
cut

1
∗, 1∗ ⊢ 𝑟

c′

1
∗ ⊢ 𝑟

We used the abbreviations 𝑟 = 𝑠 = 𝑡 = 1
∗
to distinguish

between the respective return types of ℎ, 𝑓 and 𝑔, and we

marked with c′ our usage of the derivable contraction rule

(Lem. 2.12). That this step cuts the threads is not problematic

here: cycles cannot visit this contraction step.

It remains to deal with primitive recursion. Suppose 𝑓 is

defined by primitive recursion:{
𝑓 0 ®𝑦 = 𝑔 ®𝑦
𝑓 (𝑆𝑥) ®𝑦 = ℎ 𝑥 (𝑓 𝑥 ®𝑦) ®𝑦

where 𝑔 and ℎ are primitive recursive functions of respective

arity 𝑛 and 𝑛+2. By induction hypothesis we have 𝜋𝑔 and 𝜋ℎ ,

proofs that encode 𝑔 and ℎ. In the recursive definition above,

one can observe that both 𝑥 and the ®𝑦 are used twice. The

latter can easily be handled using the derivable contraction

rule since they are not involved in the termination argument.

On the contrary, the duplication of 𝑥 is problematic since the

corresponding thread should validate the recursion. To cir-

cumvent this difficulty, we perform a recursion that returns

a copy of the recursive argument together with the expected

return value. We write 𝐸 for the sequence of 1
∗
s of length 𝑛

(i.e., the types for ®𝑦). We use 𝑟 = 1
∗
to denote the return type

of the primitive recursion scheme, and 𝑒∗ = 1
∗
to denote the

type of the recursive argument. We set 𝑟 ′ = 𝑒∗ · 𝑟 and we

construct the proof in Fig. 4. □

Note that when displaying proofs, we omit usages of the

exchange rule, which typically make it possible to apply left

introduction rules on arbitrary formulas rather than just on

the first one. Moreover, we sometimes abbreviate sequences

of steps or standalone proofs using double bars.

The above argument works in the fragment of C without

arrows, sums, and intersections, and where star and unit are

replaced with a base type for natural numbers together with

the dedicated rules for 1
∗
. Pairs are necessary to avoid using

the contraction rule and remain in the affine fragment.

As announced in the introduction, the contraction rule

makes it possible to go beyond primitive recursion:

Example 2.14. We give a regular proof whose semantics is

Ackermann-Péter’s function in Fig. 5. The subproof labelled

with 𝑆 is a proof for the successor function. The subproof

labelled with 1 is a proof for the constant value 1.

The preproof is valid: every infinite branch either goes

infinitely often through loops (𝑎) or (𝑎′), in which case

it is validated by the green thread where we go right on

contraction steps whenever the next visited backpointer is

a (𝑏); or it eventually goes only through loop (𝑏), in which

case it is validated by the red thread.

Its semantics satisfies the same recursive equations as

those defining Ackermann’s function 𝐴(𝑛, 𝑘): we have

[𝜖] (𝑛, 𝑘) = [0] (𝑛, 𝑛, 𝑘) = 𝐴(𝑛, 𝑘)
[01] (𝑛, 𝑆𝑛, 𝑘) = 𝐴(𝑆𝑛, 𝑘)

[00] (_, 𝑘) = [000] (𝑘) = 𝐴(0, 𝑘) = 𝑆𝑘

[010] (𝑛, _) = [0100] (𝑛) = 𝐴(𝑆𝑛, 0) = 𝐴(𝑛, 1)
[011] (𝑛, 𝑆𝑛, 𝑘) = 𝐴(𝑆𝑛, 𝑆𝑘) = 𝐴(𝑛,𝐴(𝑆𝑛, 𝑘)) □

We prove in the next section that we can actually repre-

sent all system T functions with regular proofs, the class of

which we call system C. We can go beyond total functions

by forgetting the validity criterion: we can encode the min-

imisation operator using a regular but invalid preproof, so

that every computable partial function can be represented

by a regular preproof (see App. A.3).

5

Denis Kuperberg, Laureline Pinault, and Damien Pous

∗-𝑟𝜖 ⊢ 𝑒∗
𝜋𝑔

𝐸 ⊢ 𝑟·-𝑟
𝐸 ⊢ 𝑟 ′

...

𝑒∗, 𝐸 ⊢ 𝑟 ′

cons

𝑒, 𝑒∗ ⊢ 𝑒∗
𝜋ℎ

𝑒∗, 𝑟 , 𝐸 ⊢ 𝑟
·-𝑟

𝑒, 𝑒∗, 𝑒∗, 𝑟 , 𝐸 ⊢ 𝑟 ′
c′

𝑒, 𝑒∗, 𝑟 , 𝐸 ⊢ 𝑟 ′
·-𝑙

𝑒, 𝑟 ′, 𝐸 ⊢ 𝑟 ′
cut

𝑒, 𝑒∗, 𝐸, 𝐸 ⊢ 𝑟 ′
c′, . . . , c′

𝑒, 𝑒∗, 𝐸 ⊢ 𝑟 ′
∗-𝑙

𝑒∗, 𝐸 ⊢ 𝑟 ′

id
𝑟 ⊢ 𝑟

w′

𝑟, 𝑒∗ ⊢ 𝑟
·-𝑙

𝑟 ′ ⊢ 𝑟
cut

𝑒∗, 𝐸 ⊢ 𝑟

•

•

Figure 4. Regular linear proof for primitive recursion; 𝑒 ≜ 1, 𝑟 ≜ 1
∗
; 𝑟 ′ ≜ 𝑒∗ · 𝑟 .

𝑆

𝑘 ⊢ 1∗
w

𝑚, 𝑘 ⊢ 1∗

1

⊢ 1∗

...

𝑛, 𝑘 ⊢ 1∗
cut

𝑛 ⊢ 1∗
w

𝑛, 𝑚 ⊢ 1∗

...

𝑚, 𝑘 ⊢ 1∗

...

𝑛, 𝑘 ⊢ 1∗
cut

𝑛, 𝑚, 𝑘 ⊢ 1∗
1
∗
-𝑙

𝑛, 𝑚, 𝑘 ⊢ 1∗
1
∗
-𝑙

𝑛, 𝑚, 𝑘 ⊢ 1∗
c

𝑛, 𝑘 ⊢ 1∗

•
•

(𝑎)
(𝑏)

(𝑎′)

Figure 5. A regular proof for Ackermann-Péter’s function; 𝑛 ≜𝑚 ≜ 𝑘 ≜ 1
∗
.

3 Extended, resource-tracking system T
We define in this section the variant of system T we will

work with. We use the following syntax for terms, where 𝑥

ranges over a set of variables and 𝑖 ranges over 0, 1.

𝑀, 𝑁,𝑂 ::= 𝑥 | 𝜆𝑥.𝑀 | 𝑀𝑁

| ⟨𝑀, 𝑁 ⟩ | let ⟨𝑥,𝑦⟩ := 𝑀 in 𝑁

| ⟨⟩ | let ⟨⟩ := 𝑀 in 𝑁

| i𝑖𝑀 | D(𝑀 ;𝑥 .𝑁 ;𝑥 .𝑂)
| [] | 𝑀 :: 𝑁 | R(𝑀 ;𝑁 ;𝑥 .𝑦.𝑂)
| ⟨⟨𝑀, 𝑁 ⟩⟩ | p𝑖𝑀

It consists of a lambda-calculus extended with pairs, sin-

gletons, sums, lists, and additive pairs. We let Γ,Δ range

typing environments, i.e., lists of pairs of a variable and a

type. The type system is given in App. B (Fig. 9). Unlike

for C, typing derivations are just finite trees built from the

rules, as usual. This type system however departs from the

standard presentations in that it keeps track of the usage of

resources: the rules for the various connectives are those of a

linearly typed lambda-calculus. We include contraction and

weakening rules (c,w), so that the standard typing rules for

system T are all admissible.

The structural and introduction rules are term-decorated

versions of the corresponding rules of C (Fig. 1). In contrast,

the elimination rules differ: they follow the ‘natural deduc-

tion’ scheme and each of them intuitively contains a cut on
the corresponding formula.

Let us focus on the recursion operator on lists (R). This
operator expects a list as first argument, and then two ar-

guments for the case of the empty list and for the case of a

non-empty list. Intuitively, we have

R([];𝑀 ;𝑥 .𝑦.𝑁) = 𝑀

R(𝑋 ::𝑄 ;𝑀 ;𝑥 .𝑦.𝑁) = 𝑁 {𝑥 ← 𝑋 ;𝑦 ← R(𝑄 ;𝑀 ;𝑥 .𝑦.𝑁)}

Note that this is an iterator rather than a recursor: the tail
of the list (𝑄) is not given to 𝑁 . This is not a restriction

since recursors can be encoded from iterators and pairs. Its

(elimination) typing rule is the following one:

Γ ⊢ 𝐿 : 𝑒∗ Δ ⊢ 𝑀 : 𝑔 𝑥 : 𝑒,𝑦 : 𝑔 ⊢ 𝑁 : 𝑔
∗-𝑒

Γ,Δ ⊢ R(𝐿;𝑀 ;𝑥 .𝑦.𝑁) : 𝑔

Like in Dal Lago’s systemH(∅) [27], the important point is

that the third argument (the one being iterated) is typed in

the empty environment—except for its two variables 𝑥 for

the head of the list and 𝑦 for the value of the recursive call

on the tail of the list. This is crucial in the affine system to

get a linear recursion operator; this is not a restriction in the

full system, thanks to arrows and contraction (see App. B.1).

Terms should always be considered equipped with their

typing derivation. A typed term is affine (resp. linear) when
its typing derivation does not use c (resp. c and w).
Given a typing environment Γ = 𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛 , we

write Γ for the list of types 𝑒1, . . . , 𝑒𝑛 .

6

Cyclic proofs, system T, and the power of contraction

Definition 3.1. The semantics of a typed term Γ ⊢ 𝑀 : 𝑒 is

the function [𝑀] : [Γ] → [𝑒] defined as follows by induction
on the typing derivation:

id : [𝑥] (𝑠) ≜ 𝑠

→-𝑒 : [𝑀𝑁] (𝑠, 𝑡) ≜ [𝑀] (𝑠) ([𝑁] (𝑡))
c : [𝑀] (𝑣, 𝑠) ≜ [𝑀] (𝑣, 𝑣, 𝑠)
·-𝑖 : [⟨𝑀, 𝑁 ⟩] (𝑠, 𝑡) ≜ ⟨[𝑀] (𝑠), [𝑁] (𝑡)⟩
∗-𝑒 : [R(𝐿;𝑀 ;𝑥 .𝑦.𝑁)] (𝑠, 𝑡) ≜ ℎ(𝑥1, ℎ(𝑥2, . . . ℎ(𝑥𝑛, 𝑎) . . .)),

where the induction provided a list [𝐿] (𝑠) = 𝑥1, . . . , 𝑥𝑛 ,

an element 𝑎 ≜ [𝑀] (𝑡), and a function ℎ ≜ [𝑁].
The other cases are given in App. B.2.

Note that in the contraction case (c), the two occurrences

of 𝑀 are shortands for two distinct stages of the typing

derivation: the recursive call is made on a smaller typing

derivation, even though the typed term remains unchanged.

Example 3.2. We can define list concatenation as follows:

𝜆ℎ.𝜆𝑘.R(ℎ;𝑘 ;𝑥 .𝑞𝑘.𝑥 ::𝑞𝑘)

This term has type 𝑒∗ → 𝑒∗ → 𝑒∗ for every type 𝑒 . Note

that this term is strictly linear: it is typed without exchange,

contraction and weakening.

Example 3.3. Remember that we code natural numbers

as lists over the singleton set. Writing 1 for the constant

⟨⟩::[] and 𝑆 for the successor function 𝜆𝑛.⟨⟩::𝑛, we can define

Ackermann’s function as follows:

𝜆𝑛.R(𝑛; 𝑆 ; _.𝑓 .𝜆𝑘.R(𝑘 ; 𝑓 1; _.𝑟 .𝑓 𝑟))

This term can be typed with type 1
∗ → 1

∗ → 1
∗
in the empty

environment. The outer recursion produces a function of

type 1
∗ → 1

∗
. This term is not affine: we need the contraction

rule since 𝑓 is used twice in the outer recursion.

As announced before, system C contains system T:

Theorem 3.4. For every typing derivation Γ ⊢ 𝑀 : 𝑒 , there
exists a regular proof𝑀 : Γ ⊢ 𝑒 such that [𝑀] = [𝑀]. If𝑀 is
affine/linear, so is𝑀 .

The proof is given in App. B.3; all constructions of system

T map directly to their counterpart in C, without forging

any new formula (unlike in Fig. 4 for the encoding of the

primitive recursion scheme).

Encoding the term given in Ex. 3.2 for list concatenation

yields the first proof in Fig. 2. In contrast, encoding the term

we provided for Ackermann’s function (Ex. 3.3) does not

yield the proof given in Fig. 5: the outer recursion in this

term constructs functional values, which give rise through

the encoding to cycles over sequents with arrow types on

the right. More importantly, the proof in Fig. 5 has a non-

trivial cycle structure, while in the proofs in the image of the

encoding every infinite branch eventually loops on a single

cycle of the finite presentation of the proof.

4 From affine C to affine T (using ∩)
The converse direction, encoding cyclic proofs into system T

terms, is much harder since we have to delineate the possibly

complex cycle structure of the starting proof in order to

recover simple structural recursion schemes.

We provide a direct translation for the affine case in this

section, where we proceed in two steps: first we show that

affine regular proofs can be presented in such a way that

cycles are associated to star formulas and occur in a hier-

archic way (this is the notion of ranked proof in Sect. 4.3),

this makes it possible to proceed bottom up in a second step,

translating cycles associated to a given star formula into

blocks of functions defined by mutual recursion (Sect. 4.4).

The second step is inspired by the one sketched in [15,

Thm. 33] to translate regular proofs in LAL into equational

proofs in action lattices. However, the authors of [15] did not

realise that the first step we describe here is necessary, so

that their argument is incorrect. The technique we present

here makes it possible to repair it, fortunately.

4.1 Proofs with backpointers
We first formalise precisely how regular proofs are repre-

sented by finite proof graphs with backpointers, as pictured

earlier in the paper. We start by defining auxiliary notions.

Definition 4.1. A proof with backpointers (bp-proof for short)
is a pair 𝜋bp = ⟨𝜋, Pts⟩ where 𝜋 is a proof, and Pts is a set of
backpointers, where each backpointer pt has a source address
src(pt) and a target address tgt (pt), such that

• For all pt ∈ Pts, tgt (pt) ⊏ src(pt) and the subtrees of

𝜋 rooted in src(pt) and tgt (pt) are isomorphic.

• For every infinite branch 𝐵 of 𝜋 , there exists a unique

pt ∈ Pts with src(pt) ∈ 𝐵.
An address of a bp-proof is a source if it is the source of a
backpointer, it is canonical if it is a prefix of a source address.

This definition is similar to that of ‘cycle normal form’

from [8]. Notice that the definition implies that in every bp-

proof ⟨𝜋, Pts⟩, the set Pts is finite. Moreover, to define such

a bp-proof it suffices to describe the (finite) restriction of 𝜋

to canonical addresses, as it was done earlier in the figures

of this paper. Every regular proof can be represented as a

bp-proof. We show below that backpointers can be assumed

to satisfy additional properties related to threads.

4.2 Idempotent normal form
Let 𝜋 be a regular proof and let 𝑠 be the maximal length of

sequent antecedents in 𝜋 . Let F be the set of partial functions

[0; 𝑠 [→ [0; 𝑠 [. This set equipped with composition ◦ is a
finite monoid. An element 𝑓 ∈ F is idempotent if 𝑓 ◦ 𝑓 = 𝑓 .

If 𝑢 ⊏ 𝑣 are addresses in 𝜋 , we define 𝑓𝑢,𝑣 ∈ F by

𝑓𝑢,𝑣 (𝑗) ≜
{
𝑖 if ⟨𝑣, 𝑗⟩ is an ancestor of ⟨𝑢, 𝑖⟩
undefined if no such 𝑖 exists

7

Denis Kuperberg, Laureline Pinault, and Damien Pous

Given a backpointer pt, we write 𝑓pt for 𝑓src (pt),tgt (pt) .
We say that a bp-proof is in idempotent normal form, or an

ibp-proof, if for all backpointers pt, tgt (pt) is a ∗-𝑙 address
and 𝑓pt is an idempotent with 𝑓pt (0) = 0. This means that the

branches that eventually loop only through this backpointer

can be validated by the thread which is principal at tgt (pt).
Since there are other infinite branches in general, the validity

criterion is still required for ibp-proofs.

Example 4.2. Let us go back to the proof for Ackermann-

Péter’s function given in Fig. 5. The depicted backpointers do

not point to ∗-𝑙 address; they need to be shifted one level up

in order to have this property. After doing so we get an ibp-

proof: (𝑎) and (𝑎′) both give rise to the idempotent partial

function 0, 1 ↦→ 0, and (𝑏) to the idempotent 0, 1 ↦→ 1; 2 ↦→ 2.

Proposition 4.3. Every regular proof 𝜋 can be extended into
an ibp-proof ⟨𝜋, Pts⟩.

We give the proof in App. C.1. The key idea is that since F
is a finite monoid, any sequence containing sufficiently many

elements has an idempotent infix. This makes it possible to

cut every infinite branch of the starting proof by inserting an

idempotent backpointer between two of the infinitely many

∗-𝑙 positions of a thread validating the branch.

4.3 Ranked proofs
A ranked proof is a tuple ⟨𝜋, Pts, rk⟩ such that 𝜋bp = ⟨𝜋, Pts⟩
is an ibp-proof and rk is a function from positions of 𝜋 to

N satisfying the following properties, where we write rk(𝑣)
for rk⟨𝑣, 0⟩ when 𝑣 is a ∗-𝑙 address.

(BP) backpointers preserve ranks: for all pt ∈ Pts, for all 𝑖 ,
rk⟨src(pt), 𝑖⟩ = rk⟨tgt (pt), 𝑖⟩.

(Con) Positions with the same rank are strongly connected

via threads and backpointers with that rank.

(Dec) Ranks decrease along threads, except when passing

through ∗-𝑙 steps of higher ranks: if ⟨𝑣, 𝑖⟩ is the parent
of ⟨𝑤, 𝑗⟩, then either we have rk⟨𝑣, 𝑖⟩ ≤ rk⟨𝑤, 𝑗⟩, or 𝑣
is a ∗-𝑙 address and rk⟨𝑤, 𝑗⟩, rk⟨𝑣, 𝑖⟩ < rk(𝑣).

(Thd) Backpointers preserve threads of higher ranks: for all

pt ∈ Pts, for all 𝑖 such that rk⟨tgt (pt), 𝑖⟩ > rk⟨src(pt)⟩,
there is a thread from ⟨tgt (pt), 𝑖⟩ to ⟨src(pt), 𝑖⟩.

(Blk) If 𝑢 ⊏ 𝑣 ⊏ 𝑤 are ∗-𝑙 addresses with rk(𝑢) = rk(𝑤),
then rk(𝑣) ≤ rk(𝑢).

(Org) A ∗-𝑙 address 𝑣 is an origin of rank 𝑟 if 𝑣 is a minimal

∗-𝑙 address with rk(𝑣) = 𝑟 . We require that if 𝑢 ⊏ 𝑣

are origin addresses then rk(𝑢) > rk(𝑣).

By (BP) a ranked proof uses only finitely many ranks. Rule

(Blk) implies that the threads enforced by condition (Thd) are

actually spectactor from ⟨tgt (pt), 𝑖⟩ to ⟨src(pt), 𝑖⟩. Together
with (Dec), this means that threads along a backpointer with

rank 𝑟 behave like in the picture below:

Note that the conditions on ranks imply validity, see App. C.3.

Proposition 4.4. Every affine and regular proof 𝜋 can be
extended into a ranked proof ⟨𝜋, Pts, rk⟩.
Proof. We describe a recursive algorithm that builds a set of

backpointers and assigns ranks to all canonical star positions

in App. C.2. Intuitively, we first compute an ibp-proof and

we consider the graph of its addresses where sources and

targets of backpointers are identified. We treat its strongly

connected components (SCCs) independently. In each SCC,

we identify a master thread: a thread that visits each node

of the graph infinitely many times by going through all

backpointers, and thus validates the corresponding infinite

branch of the starting proof. We reserve a maximal rank for

the positions of this thread and we rearrange backpointers of

the starting ibp-proof to satisfy structural constraints related

to rules (Thd) and (Blk). We update the graph accordingly,

remove the edges corresponding to principal steps of the

master thread, and proceed recursively with its SCCs to

assign ranks to the remaining positions. When combining

the ranks assigned on each SCC, we shift them to avoid

conflicts (Con) and satisfy rules (Dec), (Org), and (Blk): SCCs

with smaller addresses get higher ranks. □

The above construction fails with contraction, see App. C.4.

4.4 Affine translation
We can finally translate ranked proofs into system T terms.

Given a list of expressions 𝐸 = 𝑒1, . . . , 𝑒𝑛 and a list of

variables 𝑋 = 𝑥1, . . . , 𝑥𝑛 , we write 𝑋 : 𝐸 for the typing

environment 𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛 . We moreover write 𝐸 → 𝑓

for the type 𝑒1 → . . .→ 𝑒𝑛 → 𝑓 .

Theorem 4.5. For every regular and affine proof 𝜋 : 𝐸 ⊢ 𝑒
and every variable list 𝑋 of size |𝐸 | there exists an affine term
𝑀 such that 𝑋 : 𝐸 ⊢ 𝑀 : 𝑒 and [𝜋] = [𝑀].
Proof. By Prop. 4.4, it suffices to prove the property for ranked

proofs. We do so by lexicographic induction on the rank of

the proof followed by its size, where the rank of a ranked

proof is its highest assigned rank and the size of a bp-proof

is its number of canonical addresses.

If the proof does not end with a ∗-𝑙 , there are no back-

pointers pointing to the root, so that the subproofs rooted

at its premisses are standalone and ranked proofs of strictly

smaller size and at most same rank. We translate those to

terms by induction, and we combine those terms to obtain

the desired term. For instance, in the case of a cut, we obtain
two terms 𝑀 and 𝑁 and we construct the term (𝜆𝑥 .𝑀)𝑁 .

Those cases are listed in App. C.5.

8

Cyclic proofs, system T, and the power of contraction

Otherwise, the root must be of the form 𝑒∗, 𝐸0 ⊢ 𝑒0, and its
rank𝑚 must be maximal by condition (Org). This is where

we have to produce recursive terms. We explore the ancestry

tree of 𝑒∗ as long as its rank is𝑚 and we find:

• canonical ∗-𝑙 addresses 𝑣0, . . . , 𝑣𝑛, . . . , 𝑣𝑛′ of rank 𝑚,

labelled with sequents (𝑒∗, 𝐸𝑖 ⊢ 𝑒𝑖)𝑖∈[0;𝑛] (with 𝑣0 = 𝜖),

such that 𝑣0, . . . , 𝑣𝑛 are not sources and 𝑣𝑛+1, . . . , 𝑣𝑛′
are sources (pointing to the former ones);

• canonical addresses𝑤1, . . . ,𝑤𝑝 labelled with sequents

(𝐹 𝑗 , 𝑒∗, 𝐹 ′𝑗 ⊢ 𝑓𝑗)𝑗 ∈[1;𝑝] such that (𝑤 𝑗 , |𝐹 𝑗 |) has rank < 𝑚.

The situation is illustrated in the following picture:

We construct a term that defines simultaneously all func-

tions ([𝑣𝑖])𝑖∈[0;𝑛] , by an encoding of mutual recursion. The

addresses𝑤 𝑗 correspond to points where we escape from this

recursion, e.g., to enter a recursion on an other argument.

Let𝑔 ≜ 𝑒∗∩⋂𝑖∈[0;𝑛] (𝐸𝑖 → 𝑒𝑖). This type𝑔 is the ‘invariant’
of our recursion: it contains room for all the mutually defined

functions and for a copy of the starting recursive argument.

Given a list 𝑥,𝑋 of variables for the sequence 𝑒∗, 𝐸0, we
construct a term𝑀 of the form

𝑀 ≜ (p0p1R(𝑥 ;𝑀𝜖
;𝑦.𝑘.𝑀 ::)) 𝑋1 . . . 𝑋𝑙

with ⊢ 𝑀𝜖
: 𝑔 and 𝑦 : 𝑒, 𝑘 : 𝑔 ⊢ 𝑀 ::

: 𝑔, so that we have

𝑥 : 𝑒∗, 𝑋 : 𝐸0 ⊢ 𝑀 : 𝑒0 as expected.

This term iterates the function 𝜆𝑦𝑘.𝑀 ::
over the list 𝑥 ,

starting from𝑀𝜖
, to obtain a value of type 𝑔; then it calls the

first mutually defined function in that value.

Defining𝑀𝜖
is easy. For all 𝑖 ∈ [0;𝑛], the subproof rooted

at 𝑣𝑖0, i.e., the left premiss of the ∗-𝑙 node at 𝑣𝑖 , is a standalone
ranked proof of 𝐸𝑖 ⊢ 𝑒𝑖 , with strictly smaller rank and size.

Indeed, by (Blk), backpointers whose source belongs to this

subproof may not point below it. We can thus translate these

subproofs by induction and obtain terms 𝑀𝜖
𝑖 ⊢ 𝐸𝑖 → 𝑒𝑖 for

all 𝑖 ≤ 𝑛. We combine them as follows:

𝑀𝜖 ≜ ⟨⟨[], ⟨⟨𝑀𝜖
0
, . . . , ⟨⟨. . . , 𝑀𝜖

𝑛⟩⟩⟩⟩⟩⟩
Defining𝑀 ::

is more involved. Our goal here is to obtain

for all 𝑖 ≤ 𝑛 a term 𝑀 ::

𝑖 of type 𝐸𝑖 → 𝑒𝑖 in environment

𝑦 : 𝑒, 𝑘 : 𝑔. Then we will combine those terms as follows:

𝑀 :: ≜ ⟨⟨𝑦 :: p1𝑘, ⟨⟨𝑀 ::

0
, . . . , ⟨⟨. . . , 𝑀 ::

𝑛⟩⟩⟩⟩⟩⟩
As expected, we use the subproof rooted at 𝑣𝑖1 to define𝑀 ::

𝑖 .

However, this subproof ends with 𝑒, 𝑒∗, 𝐸𝑖 ⊢ 𝑒𝑖 , and is not

standalone: backpointers along 𝑒∗ may escape this subproof.

To obtain a ranked proof of 𝑒, 𝑔, 𝐸𝑖 ⊢ 𝑒𝑖 , we copy this subproof

bottom up, substituting ancestors of 𝑒∗ by 𝑔 as long as their

rank is𝑚. Several situations appear when doing so:

• we reach a ∗-𝑙 node forwhich 𝑒∗ is principal: an address
𝑣𝑘0 with 𝑘0 ≤ 𝑛′. If 𝑘0 ≤ 𝑛 we set 𝑘 ≜ 𝑘0, otherwise 𝑣𝑘0
is the source of a backpointer to 𝑣𝑘1 for some 𝑘1 ≤ 𝑛

and we set 𝑘 ≜ 𝑘1. We stop copying and we insert the

following finite proof:

→-𝑙, id
𝐸𝑘 → 𝑒𝑘 , 𝐸𝑖 ⊢ 𝑒𝑘

∩-𝑙1,∩-𝑙2
𝑔, 𝐸𝑘 ⊢ 𝑒𝑘

• we reach a node for which 𝑒∗ is spectator and its rank

decreases. This means we reached an address 𝑤 𝑗 for

some 𝑗 ∈ [1;𝑝]. We insert a ∩-𝑙1 rule to transform the

type 𝑔 in the produced proof back into an 𝑒∗, and we

copy the remainder of the ranked proof as is, without

performing the substitution anymore.

• we reach a backpointer following another star formula.

Since𝑚 is maximal, the target of this backpointer must

be above 𝑣𝑖1 by (Blk). Moreover if 𝑒∗ still occurs at
the source of this backpointer, its thread must have

been preserved by (Thd) and remained spectator, so

that 𝑒∗ was uniformly substituted into 𝑔 along it. The

backpointer can thus be inserted in the copied proof.

The produced object is a ranked proof (with smaller rank);

in particular, the ranks of ∗-𝑙 positions it contains must have

their origins inside it by (Blk), so that condition (Org) is

preserved. We can thus obtain𝑀 ::

𝑖 by induction. □

The type 𝑔 used as invariant for recursions in the above

proof is reminiscent of the type 𝑟 we used to encode primitive

recursion (Fig. 4). Its first component gives access to a copy

of the current value of type 𝑒∗ in those cases where we exit

the mutual recursion before exhausting this value.

It is crucial that 𝑔 is defined using additive pairs in order

to obtain an affine term. Indeed, while 𝑀𝜖
is typed in the

empty context, the variables 𝑦 and 𝑘 must be provided to all

components of𝑀 ::
. Contraction would thus be required if we

had been using usual (multiplicative) pairs. Symmetrically,

having additive pairs makes it possible to avoid weakenings

at the various places where values of type 𝑔 are used (to

perform recursive calls, to get the current value of type 𝑒∗,
and to eventually call the first mutually defined function).

Remark 4.6. Let C’ be the fragment of C where contraction
is allowed, except on star formulas. The above argument still
works and gives us a direct and uniform encoding of C’ into T:
threads in C’ behave exactly like in affine C. Moreover, contrac-
tion on star formulas is derivable in C’ (by an easy adaptation
of Lem. 2.12), so that Thm. 3.4 can be refined into an encoding
of T into C’. C’ and T are thus equally expressive, at all types.
Note however that the proof we gave in Fig. 5 for Ackermann’s
function does not belong to C’, and that it is not clear how to
implement this function in C’ without using arrow types.

9

Denis Kuperberg, Laureline Pinault, and Damien Pous

5 Subsystems of second-order arithmetic
We define in this section the second-order logics ACA0 and

RCA0, as well as the properties we need about them. A com-

prehensive introduction to these theories and the ‘reverse

mathematics’ program can be found in [22, 30]. Also, an

excellent introduction to the functional interpretations of

proofs, including for the theories covered here, is [4].

5.1 Some ‘second-order’ theories of arithmetic
We consider a two-sorted first-order language, henceforth

called ‘second-order logic’ as is traditional, consisting of indi-

vidual variables 𝑥,𝑦, 𝑧 etc., terms 𝑠, 𝑡, 𝑢 etc., and set variables

𝑋,𝑌, 𝑍 etc. We have quantifiers for both the individual sort

and the set sort. There is a single binary relation symbol ∈
connecting the two sorts, allowing us to write formulas of

the form 𝑡 ∈ 𝑋 . (We may sometimes write 𝑋 (𝑡) instead.) We

have an equality relation for the individual sort; set equality

is expressed by extensionality: 𝑋 = 𝑌 ≜ ∀𝑥 (𝑋 (𝑥) ≡ 𝑌 (𝑥)).
The language of arithmetic consists of the non-logical sym-

bols 0, 𝑆, +,×, <, with their usual intended interpretations.

A theory is just a set of closed formulas, and we say that a

theory 𝑇 proves a formula 𝜑 , if 𝜑 is a logical consequence of

𝑇 . The base theory Q2 extends second-order logic by basic

axioms governing the behaviour of the non-logical symbols,

namely stating that (0, 𝑆0, +,×, <) is a commutative semiring

discretely ordered by 𝑆 . Bounded quantifiers are of the shape

∃𝑥 (𝑥 < 𝑡 ∧ 𝜑) and ∀𝑥 (𝑥 < 𝑡 ⇒ 𝜑).

Definition 5.1 (Arithmetical hierarchy). A possibly open

formula is in Σ0

0
= Π0

0
= Δ0

0
if it has only bounded quantifiers.

From here we define the arithmetical hierarchy as follows:

• Σ0

𝑘+1 formulas are those of the form ∃®𝑥 .𝜑 with 𝜑 ∈ Π0

𝑘
.

• Π0

𝑘+1 formulas are those of the form ∀®𝑥 .𝜑 with 𝜑 ∈ Σ0

𝑘
.

A formula is Δ0

𝑘
(provably in a theory𝑇) if it is equivalent to

both a Σ0

𝑘
formula and a Π0

𝑘
formula (resp., provably in 𝑇).

We define the following axiom schemata for induction and
comprehension, where free variables may occur in 𝜑 :

• (𝜑-IND): (𝜑 (0) ∧ ∀𝑥 (𝜑 (𝑥) ⇒ 𝜑 (𝑆𝑥))) ⇒ ∀𝑥𝜑 (𝑥).
• (𝜑-CA): ∃𝑋∀𝑥 (𝑋 (𝑥) ≡ 𝜑)

Definition 5.2 (ACA0, RCA0). • ACA0 extends Q2 by

all instances of induction and comprehension.

• RCA0 extends Q2 by axioms 𝜑-IND where 𝜑 ∈ Σ0

1
and

𝜑-CA where 𝜑 is provably Δ0

1
.

We often write formulas in natural language to stand for

their obvious formalisation in arithmetic. We do not concern

ourselves with such low-level encodings in the sequel. State-

ments written in natural language are typically robust under

the choice of encoding.

5.2 Provably total computable functions
The utility of the second-order theories we have introduced,

for this work, lies in the fact that they may reason about

programs and potentially infinite computations, by way of

quantification over set variables. What is more, the func-

tions they may well-define, or programs that they may prove

terminating, are well-understood, in terms of their computa-

tional strength: we may freely use such functions in logical

formulas without affecting logical complexity.

Proposition 5.3 (Witnessing forACA0). SupposeACA0 proves
∀®𝑥∃𝑦𝜑 (®𝑥,𝑦), where 𝜑 is Σ0

1
and contains no set symbols. Then

there is a term𝑀 of T with a typing derivation 𝑥1 : 1∗, . . . , 𝑥𝑛 :

1
∗ ⊢ 𝑀 : 1

∗ such that N ⊨ ∀®𝑥 .𝜑 (®𝑥, [𝑀]).

This result follows immediately from the conservativ-

ity of ACA0 over Peano Arithmetic and thence, under the

Gödel-Gentzen double-negation translation, Gödel’s Dialec-

tica functional interpretation of Heyting Arithmetic into T

(see, e.g., [4] for more details).

A similar characterisation of RCA0 is also known. This

theory is conservative over 𝐼Σ1, the restriction of Peano

Arithmetic to Σ1-induction, which is known to well-define

only primitive recursive natural number functions. This re-

sult was originally established by Parsons in his predicative
functional interpretation [28], though there are also direct

proofs available, e.g. by cut-elimination (see [10]).

Proposition 5.4 (Witnessing forRCA0). SupposeRCA0 proves
∀®𝑥∃𝑦𝜑 (®𝑥,𝑦), where 𝜑 is Σ0

1
and contains no set symbols. Then

there is a primitive recursive function 𝑓 (®𝑥) such that N ⊨
∀®𝑥 .𝜑 (®𝑥, 𝑓 (®𝑥)).

5.3 Reverse mathematics of cyclic proof checking
While the notion of preproof can easily be formalised already

in RCA0, dealing with the validity criterion is non-trivial:

we must be able to verify it within our theories too. In fact,

the correctness of a generic cyclic proof checker is not avail-

able in RCA0 due to Gödelian arguments applied to nontriv-

ial relationships between cyclic and inductive fragments of

arithmetic, cf. [12]. However, it is known that for any fixed

preproof, RCA0 can check whether it is valid or not:

Proposition 5.5 ([12], also implicit in [25]). Let 𝜋 be a reg-
ular proof. Then RCA0 proves that 𝜋 (written as a finite graph)
is a proof, i.e., that each infinite branch contains a valid thread.

This is a nontrivial result that is obtained by formalising

the reduction of proof validity to the universality problem

for nondeterministic Büchi automata and proving the cor-

rectness of a universality algorithm (see App. D.4).

6 Small steps reduction semantics for C
We fix a regular proof 𝜋 in this section.We define a simplified

version of the rewriting system used in [15] to prove cut-

elimination in the system LAL. Programs are defined via the

following syntax, where 𝑣 ranges over addresses.

𝑃,𝑄 ::= ⟨⟩ | [] | 𝑃 :: 𝑃 | 𝑣 (𝑃1, . . . , 𝑃𝑛)
10

Cyclic proofs, system T, and the power of contraction

The first three entries correspond to constructors for single-

tons and lists. The fourth one corresponds to calling the node

𝑣 of 𝜋 with the given list of arguments. This syntax is much

simpler than that used in [15]: we put constructors only for

singletons and lists, which are the only types we want to

observe in the present work. In particular, we do not need

lambda abstractions to represent functional values. Also note

that in contrast to [15], programs are always ‘closed’.

We use a simple type system to rule out ill-formed pro-

grams. Typing judgements have the form ⊢ 𝑃 : 𝑒 ; intuitively

meaning that the program 𝑃 produces values of type 𝑒 .

⊢ ⟨⟩ : 1 ⊢ [] : 𝑒∗
⊢ 𝑃 : 𝑒 ⊢ 𝑄 : 𝑒∗

⊢ 𝑃 :: 𝑄 : 𝑒∗

⊢ 𝑃1 : 𝑒1 . . . ⊢ 𝑃𝑛 : 𝑒𝑛

⊢ 𝑣 (𝑃1, . . . , 𝑃𝑛) : 𝑓
𝜋 (𝑣) = 𝑒1, . . . , 𝑒𝑛 ⊢ 𝑓

Every program has at most one typing derivation, which

can be computed in linear time. This argument is easily

formalisable in RCA0.

We associate to every program 𝑃 of type 𝑒 a semantic

value [𝑃] ∈ [𝑒], by induction:

[⟨⟩] ≜ ⟨⟩ [[]] ≜ 𝜖 [𝑃 ::𝑄] ≜ [𝑃] :: [𝑄]
[𝑣 (𝑃1, . . . , 𝑃𝑛)] ≜ [𝑣] ([𝑃1], . . . , [𝑃𝑛])

Note that [𝑣] is the semantics of the node 𝑣 in the proof 𝜋

(Def. 2.9). This semantics cannot be defined in our second-

order theories: values may be objects of arbitrary type.

Definition 6.1 (Reduction). Reduction, written ⇝, is the

smallest relation on programs which is closed under all con-

texts and satisfies the following rules, defined by case analy-

sis on the rules used at addresses mentioned in the program.

We omit some rules, see App. E.1 for an exhaustive list. We

use 𝑣 (resp. 𝑤) to range over addresses of left (resp. right)

introduction rules, and 𝑢 to range over other addresses.

id : 𝑢 (𝑃) ⇝ 𝑃 cut : 𝑢 (®𝑃, ®𝑄) ⇝ 𝑢1(𝑢0(®𝑃), ®𝑄)

∗-𝑙 : 𝑣 ([], ®𝑅) ⇝ 𝑣0(®𝑅) ∗-𝑟𝜖 :𝑤 () ⇝ []

∗-𝑙 : 𝑣 (𝑃 ::𝑄, ®𝑅) ⇝ 𝑣1(𝑃,𝑄, ®𝑅) ∗-𝑟 :: :𝑤 (®𝑃, ®𝑄) ⇝ 𝑤0(®𝑃)::𝑤1(®𝑄)

→-𝑙/→-𝑟 : 𝑣 (𝑤 (®𝑃), ®𝑄, ®𝑅) ⇝ 𝑣1(𝑤0(𝑣0(®𝑄), ®𝑃), ®𝑅)

As expected, subject reduction holds, so that we only work

with well-typed programs in the sequel.

Notice that⇝ is computable in RCA0, and so is provably

Δ0

1
. We also have the following characterisation of irreducible

programs, still in RCA0

Lemma 6.2. If 𝑃 is irreducible, then 𝑃 is of the form
• ⟨⟩, [], or 𝑃1 :: 𝑃2 for some programs 𝑃1, 𝑃2; or,
• 𝑣 (®𝑃) for some 𝑣 s.t. 𝜋𝑣 ends with +-𝑟𝑖 , ·-𝑟 , ∩-𝑟 or→-𝑟 .

It follows that every irreducible program of type 𝑒∗ is a
list of irreducible programs of type 𝑒 .

We also have that reductions preserve the semantics. We

use this property only at the meta-level: it cannot even be

stated in ACA0 since it involves higher-order objects:

Proposition 6.3 (Semantic preservation). For all programs
𝑃, 𝑃 ′, if 𝑃 ⇝ 𝑃 ′ then [𝑃] = [𝑃 ′].

Given a natural number 𝑛, let us write 𝑛 for its encoding as

a closed program of type 1
∗
, such that [𝑛] = 𝑛. By Lem. 6.2,

the irreducible programs of type 1
∗
are all of this shape. This

simple encoding makes it possible to reason about proofs

from natural numbers to natural numbers: if 𝜋 : 1
∗ ⊢ 1∗, then

for all 𝑛, [𝜋] (𝑛) can be obtained by reducing the program

𝜋 (𝑛). (Writing 𝜋 (®𝑃) for 𝜖 (®𝑃).)

6.1 Weak normalisation in ACA0

We write 𝑃 ↓𝜋 𝑃 ′ when 𝑃 reduces to an irreducible 𝑃 ′ via
the left-most innermost strategy. We want to show:

Theorem 6.4 (Weak normalisation). For all proofs 𝜋 , ACA0

proves that for all 𝑃 , there exists 𝑃 ′ with 𝑃 ↓𝜋 𝑃 ′.

To prove it, we use the following sets R𝑒 of reducible pro-
grams, defined by induction on 𝑒 . Those are inspired by

reducibility candidates [20, 32].

R𝑒∗ ≜ {𝑃 | 𝑃 ↓𝜋 𝑄1 :: · · · :: 𝑄𝑛, 𝑄1, . . . , 𝑄𝑛 ∈ R𝑒 }

R𝑒→𝑓 ≜ {𝑃 | 𝑃 ↓𝜋 𝑣 (®𝑄), 𝑣 a→-𝑟,∀𝑄 ∈ R𝑒 , 𝑣0(𝑄, ®𝑄) ∈ R𝑓 }

The remaining cases are given in App. E.2. If ®𝑃 = 𝑃1, . . . , 𝑃𝑛

and 𝐸 = 𝐸1, . . . , 𝐸𝑛 , we write ®𝑃 ∈ R𝐸 when 𝑃𝑖 ∈ R𝐸𝑖 for all 𝑖 .

Note that these sets are defined non-uniformly in ACA0: we

use separate instances of comprehension at each stage. This

is not a problem: we will need only finitely many of them

since the starting proof is regular.

Every program in R𝑒 is weakly normalisable by definition,

so that it suffices to show that all programs of type 𝑒 belong

to R𝑒 . We proceed by induction on the syntax of programs.

The constructor cases are straightforward; for the remaining

case we use the following proposition:

Proposition 6.5. For every address 𝑣 with 𝑣 : 𝐸 ⊢ 𝑒 , and for
all programs ®𝑃 ∈ R𝐸 , we have 𝑣 (®𝑃) ∈ R𝑒 .

This property on addresses is locally preserved by the

rules of C. This observation is not sufficient to conclude

since we work with non-wellfounded proofs. We actually

prove a strengthening of local preservation, by contraposite:

Lemma 6.6. For every address𝑤 : 𝐸 ⊢ 𝑒 , for all ®𝑃 ∈ R𝐸 such
that 𝑤 (®𝑃) ∉ R𝑒 , there are 𝑣, 𝐹, 𝑓 , ®𝑄 such that |𝑣 | = |𝑤 | + 1,
𝑣 : 𝐹 ⊢ 𝑓 , 𝑣 (®𝑄) ∉ R𝑓 , and:

1. for all 𝑖, 𝑗 s.t. ⟨𝑣, 𝑖⟩ ◁ ⟨𝑤, 𝑗⟩, we have |𝑄𝑖 | = |𝑃 𝑗 |, and
2. for all 𝑖, 𝑗 s.t. ⟨𝑣, 𝑖⟩ ◁· ⟨𝑤, 𝑗⟩, we have |𝑄𝑖 | < |𝑃 𝑗 |.

(Where given 𝑃 ∈ R𝑒∗ , we write |𝑃 | for the length of the list
given by the definition of R𝑒∗ .)

11

Denis Kuperberg, Laureline Pinault, and Damien Pous

Proof of Prop. 6.5. Suppose by contradiction that for some

address 𝑣 : 𝐸 ⊢ 𝑒 we have ®𝑃 ∈ R𝐸 such that 𝑣 (®𝑃) ∉ R𝑒 .

By using Lem. 6.6 repeatedly, we can construct an infinite

branch of 𝜋 starting at 𝑣 . We conclude like in Lem. 2.8. □

This concludes the ACA0 proof of Thm. 6.4 and we deduce:

Corollary 6.7. If 𝜋 : 1
∗ . . . 1∗ ⊢ 1∗ is a regular proof, then

there exists a term𝑀 from system T such that [𝜋] = [𝑀].

Proof (case of a unary function). By Prop. 5.5 and Thm. 6.4

we obtain a proof inACA0 of “∀𝑛, ∃𝑚, 𝜋 (𝑛) ↓𝜋 𝑚”. By Prop. 5.3,

we can thus extract a system T term 𝑀 such that for all 𝑛,

𝜋 (𝑛) ⇝∗ [𝑀] (𝑛). By Prop. 6.3, we deduce that for all 𝑛,

[𝜋] (𝑛) = [𝜋 (𝑛)] = [[𝑀] (𝑛)] = [𝑀] (𝑛). □

6.2 Weak normalisation in RCA0

Given Prop. 5.4, it could be tempting to revisit the proof from

the previous section, trying to see if we could use RCA0 in-

stead of ACA0 in the absence of contraction. This fails, how-

ever, because the R𝑒 sets already require set comprehensions

outside Δ0

1
(due to the quantifier alternation in the definition

of R𝑒→𝑓). We need only finitely many such sets for a given

regular proof, so that we could hope to use only their defin-

ing formulas, but then our main induction on the syntax of

programs, to prove that all programs of type 𝑒 belong to R𝑒 ,
is not a Σ0

1
-induction.

A different termination proof, inspired from [15], can be

given in the affine case, using weak König’s lemma. RCA0 ex-

tended with this axiom (WKL0) is known to be conservative

over RCA0 for arithmetical formulas (see App. D.2), so that

working in WKL0 still makes it possible to extract primitive

recursive functions. Unfortunately, this second proof does

not seem to be formalisable in WKL0 (see App. E.3).
We use a third termination argument instead, relying on

the translation from Sect. 4.

Definition 6.8. A simple proof is an ibp-proof such that for

every backpointer pt, src(pt) = tgt (pt)10 and the node at

tgt (pt)1 is a cut.

𝐸 ⊢ 𝑔

...

𝑒∗, 𝐸 ⊢ 𝑔 𝑒, 𝑔 ⊢ 𝑔
cut

𝑒, 𝑒∗, 𝐸 ⊢ 𝑔
∗-𝑙

𝑒∗, 𝐸 ⊢ 𝑔
•

•

In other words, a simple proof is equivalent to a well-founded

proof using the following derivable rule:

𝐸 ⊢ 𝑔 𝑒, 𝑔 ⊢ 𝑔
∗-𝑙 ′

𝑒∗, 𝐸 ⊢ 𝑔
Our translation from T to C (Thm. 3.4) actually produces

simple proofs, so that by Thm. 4.5, every affine proof can be

translated into a simple affine proof with the same semantics.

Accordingly, we assume in the rest of this section that the

fixed proof 𝜋 is affine and simple.

We update the notion of reduction accordingly: we write

·
⇝ for the relation defined like in Def. 6.1, except that when

𝑣 is the target of a backpointer, we use the following rule

instead of the two ∗-𝑙 reduction rules:

𝑣 (𝑃1:: . . . ::𝑃𝑛 ::[], ®𝑅)
·
⇝ 𝑣11(𝑃1, . . . , 𝑣11(𝑃𝑛, 𝑣0[®𝑅]))

This rule has to be compared with the 2𝑛 + 1 reductions we
can obtain with⇝:

𝑣 (𝑃1:: . . . ::𝑃𝑛 ::[], ®𝑅) ⇝ 𝑣1(𝑃1, 𝑃2:: . . . ::𝑃𝑛 ::[], ®𝑅)

⇝ 𝑣11(𝑃1, 𝑣10(𝑃2:: . . . ::𝑃𝑛 ::[], ®𝑅))

. . .⇝ 𝑣11(𝑃1, . . . , 𝑣 (10)𝑛11(𝑃𝑛, 𝑣 (10)𝑛 ([], ®𝑅)))

⇝ 𝑣11(𝑃1, . . . , 𝑣 (10)𝑛11(𝑃𝑛, 𝑣 (10)𝑛0(®𝑅)))

The main advantage of

·
⇝ is that when 𝑃

·
⇝ 𝑃 ′, if 𝑃 contains

only canonical addresses, then so does 𝑃 ′.

Lemma 6.9. If there is an infinite leftmost innermost reduc-
tion sequence along ⇝, then there is an infinite reduction
sequence along ·

⇝ where programs only contain canonical
addresses.

Proof. By mapping addresses into their canonical adressess

and compressing finite sequences of reductions as above. □

We assume all programs only mention canonical adresses

in the sequel. Let𝑚(𝑃) be the finite multiset of (canonical)

addresses mentioned in a program 𝑃 . These multisets can

be represented and computed in RCA0 via appropriate en-

codings; we write𝑚(𝑢) for the number of occurrences of an

address 𝑢 in a multiset𝑚.

We write ⪰ for the multiset ordering, where addresses are

ordered by reverse prefix ordering (i.e., longer addresses are

considered as smaller):

𝑚 ⪰ 𝑚′ ≜ ∀𝑣,𝑚(𝑣) ≥ 𝑚′(𝑣) ∨ ∃𝑢,𝑢 ⊑ 𝑣,𝑚(𝑢) > 𝑚′(𝑢)

Lemma 6.10. If 𝑃 ·
⇝ 𝑃 ′ then𝑚(𝑃) ≻𝑚(𝑃 ′).

Proof. By straightforward analysis of the reduction rules.

(Note that the reduction rule for contraction fails this prop-

erty because it duplicates arbitrary addresses.) □

This suffices to deduce at the meta-level that every left-

most innermost reduction sequence along ⇝ terminates.

Indeed, since we have finitely many canonical addresses

in 𝜋 , the reverse prefix ordering on canonical addresses is

well-founded, as well as the above multiset ordering.

This latter result cannot be proved uniformly in RCA0,

however (see Cor. 6.14 below). Instead, we prove that the

multiset order on a fixed and finite order is provably well-

founded in RCA0:

Proposition 6.11. For all 𝑛 ∈ N, RCA0 proves that the mul-
tiset order on [0;𝑛] is well-founded.

12

Cyclic proofs, system T, and the power of contraction

Proof. Write max𝑚 for the maximal number occurring in a

finite multiset𝑚 of natural numbers (−1 if𝑚 is empty). We

prove the following property by (meta-level) induction on 𝑛:

RCA0 proves ∀(𝑚𝑖)𝑖∈N, (∀𝑖,𝑚𝑖 ≻𝑚𝑖+1) ⇒ max𝑚0 ≥ 𝑛

(This property entails well-foundedness over multisets on

[0;𝑛 − 1].)
• the case 𝑛 = 0 is trivial since𝑚0 cannot be empty.

• for the inductive case, suppose by contradiction that

there exists a decreasing sequence (𝑚𝑖)𝑖∈N such that

max𝑚0 < 𝑛 + 1, i.e. max𝑚0 ≤ 𝑛.

– By a Δ0

0
induction, we get ∀𝑖,max𝑚𝑖 ≤ 𝑛.

– By a secondΔ0

0
induction, we get∀𝑖,𝑚𝑖+1 (𝑛) ≤ 𝑚𝑖 (𝑛).

The function 𝑖 ↦→ 𝑚𝑖 (𝑛) is thus decreasing, so that

it must stationate: there exists 𝑗 such that for all 𝑘 ,

𝑚 𝑗+𝑘 (𝑛) =𝑚 𝑗 (𝑛). (This can be proved by absurd and

Π0

1
-induction, which is available in RCA0 [11].)

Now consider the sequence𝑚′𝑖 ≜𝑚 𝑗+𝑖\𝑛, where𝑚\𝑛
denotes the multiset𝑚 where all occurrences of 𝑛 have

been removed. This sequence is decreasing by Δ0

0
in-

duction, and satisfies max𝑚′
0
< 𝑛, thus contradicting

the induction hypothesis. □

(That we restrict to multiset order on a finite total order

in the above statement is not a restriction since every finite

partial order—like our reverse prefix ordering on canonical

addresses—embeds in a finite total order.)

Theorem 6.12 (Weak normalisation). For all affine simple
proof 𝜋 , RCA0 proves that for all 𝑃 , there exists 𝑃 ′ with 𝑃 ↓𝜋 𝑃 ′.

Proof. Write 𝑃𝑛 for the 𝑛-th reduct of 𝑃 via the leftmost in-

nermost strategy (if any). It suffices to show that there exists

𝑛 such that 𝑃𝑛 is irreducible. Suppose by contradiction that

for all 𝑛, 𝑃𝑛 can be reduced, i.e., 𝑃𝑛 ⇝ 𝑃𝑛+1 since we fixed
a strategy. By Lem. 6.9 and Lem. 6.10, we find an infinite

decreasing sequence of multisets over [0;𝑛] where 𝑛 is the

maximal length of canonical addresses in 𝜋 , contradicting

Prop. 6.11. □

Corollary 6.13. If 𝜋 : 1
∗ . . . 1∗ ⊢ 1∗ is an affine regular proof,

then [𝜋] is primitive recursive.

Proof. We first translate 𝜋 into an affine term and then back

into a simple affine proof using Thms. 4.5 and 3.4. Then

we proceed Like for Cor. 6.7, using Thm. 6.12 and Prop. 5.4

instead of Thm. 6.4 and Prop. 5.3. □

Corollary 6.14. RCA0 cannot prove that the multiset order
on N is well-founded.

Proof. If this was a theorem of RCA0, then we would get a

uniform proof of Thm. 6.12, from which we could extract

a ‘universal primitive recursive function’ whose complex-

ity would bound the complexity of all primitive recursive

functions (via Thm. 2.13). □

7 Conclusions and future work
We proposed the cyclic sequent proof system C and we stud-

ied its expressive power as computational device, by com-

paring it with an appropriate version of Gödel’s system T.

Encoding cyclic proofs into recursive ones is nontrivial, but

we managed to give a direct encoding from C to T in the

affine case. To measure the complexity of functions of C and

its affine variant we then appealed to proofs of totality in sys-

tems of second-order arithmetic, thus obtaining simulations

in T and primitive recursive arithmetic, respectively.

We used the connectives of IMALL plus a least fixpoint

operator for lists to illustrate the genericity of our approach.

Small fragments of C are already complete w.r.t. the consid-

ered classes of functions (e.g., 1
∗
and · do suffice to capture

primitive recursive functions). Conversely, other least fix-

point operators could easily be handled (e.g., 𝜇𝑥 .𝑒 + 𝑥 · 𝑥
for binary trees with leaves in 𝑒). Cyclic systems with both

least and greatest fixpoints have been studied in the litera-

ture [17, 18]; whether they correspond to appropriate exten-

sions of T is left for future work.

Our current translation of C into T (with contraction)

works for natural number functions, but it is not immediate

that it scales to higher types. Indeed, while usual reducibility

and hereditary recursivity arguments may indeed be carried

out in constructive arithmetic, our proof of totality by con-

tradiction and infinite descent comprises nonconstructive

reasoning. While the Dialectica functional interpretation en-

sures that our translation from C to T for natural number

functions is constructive, it would be interesting to attain

a ‘direct’ translation, e.g. in the style of Sect. 4, that could

work at higher types too.

The type levels of recursors in T programs are closely

related to the logical complexity of induction in Peano Arith-

metic (in the sense of Def. 5.1). At this level of granularity, it

was observed recently in [12] that there is indeed a difference

between cyclic and inductive proofs: cyclic proofs using Σ𝑛
formulas is equivalent to inductive proofs using Σ𝑛+1 for-
mulas (over Π𝑛+1 theorems). It would be natural to expect,

therefore, that C restricted to level 𝑛 types is equivalent to T

restricted to level 𝑛 + 1 recursors (over level 𝑛 + 1 functions),
but that remains a topic for future work.

Acknowledgements. We are grateful to Anupam Das for

early discussions on this work and later for convincing us to

use second order theories of arithmetic like ACA0 and RCA0

and pointing out a bug in a preliminary version. We would

also like to thank Olivier Laurent, Pierre Clairambault, Colin

Riba, and Ludovic Patey for many helpful discussions.

References
[1] S. Abramsky, E. Haghverdi, and P. Scott. Geometry of interaction and

linear combinatory algebras. Mathematical Structures in Computer
Science, 12(5):625–665, 2002.

13

Denis Kuperberg, Laureline Pinault, and Damien Pous

[2] B. Afshari and G. E. Leigh. Cut-free completeness for modal mu-

calculus. In Proc. LiCS, pages 1–12, 2017.
[3] J. Avigad. Formalizing forcing arguments in subsystems of second-

order arithmetic. Annals of Pure and Applied Logic, 82(2):165 – 191,

1996.

[4] J. Avigad and S. Feferman. Gödel’s functional interpretation. In S. R.

Buss, editor, Handbook of Proof Theory. Elsevier, 1998.
[5] P. Baillot and M. Pedicini. Elementary complexity and geometry of

interaction. Fundamenta Informaticae, 45(1-2):1–31, 2001.
[6] S. Berardi and M. Tatsuta. Classical system of martin-löf’s inductive

definitions is not equivalent to cyclic proof system. In Proc. FoSSaCS,
pages 301–317, 2017.

[7] S. Berardi and M. Tatsuta. Equivalence of inductive definitions and

cyclic proofs under arithmetic. In Proc. LiCS, pages 1–12, 2017.
[8] J. Brotherston. Cyclic proofs for first-order logic with inductive defi-

nitions. In Proc. Proceedings of TABLEAUX-14, volume 3702 of LNAI,
pages 78–92. Springer-Verlag, 2005.

[9] J. Brotherston and A. Simpson. Sequent calculi for induction and

infinite descent. Journal of Logic and Computation, 21(6):1177–1216,
2011.

[10] S. R. Buss. The witness function method and provably recursive

functions of Peano arithmetic. In Studies in Logic and the Foundations
of Mathematics, volume 134, pages 29–68. Elsevier, 1995.

[11] S. R. Buss. Handbook of proof theory, volume 137. Elsevier, 1998.

[12] A. Das. On the logical complexity of cyclic arithmetic. Logical Methods
in Computer Science, Volume 16, Issue 1, Jan. 2020.

[13] A. Das, A. Doumane, and D. Pous. Left-handed completeness for

Kleene algebra, via cyclic proofs. In Proc. LPAR, volume 57 of EPiC
Series in Computing, pages 271–289. Easychair, 2018.

[14] A. Das and D. Pous. A cut-free cyclic proof system for Kleene algebra.

In Proc. TABLEAUX, volume 10501 of Lecture Notes in Computer Science,
pages 261–277. Springer, 2017.

[15] A. Das and D. Pous. Non-wellfounded proof theory for

(Kleene+action)(algebras+lattices). In Proc. CSL, volume 119 of LIPIcs,
pages 18:1–18:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2018.

[16] A. Doumane. Constructive completeness for the linear-time 𝜇-calculus.

In Proc. LiCS, pages 1–12, 2017.
[17] A. Doumane, D. Baelde, and A. Saurin. Infinitary proof theory: the

multiplicative additive case. In Proc. CSL, volume 62 of LIPIcs, pages
42:1–42:17, Sept. 2016.

[18] J. Fortier and L. Santocanale. Cuts for circular proofs: semantics and

cut-elimination. In Proc. CSL, volume 23 of LIPIcs, pages 248–262, 2013.
[19] J.-Y. Girard. Geometry of interaction iii: accommodating the additives.

In Proc. Proceedings of the workshop on Advances in linear logic, pages
329–389. Cambridge University Press, 1995.

[20] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge

University Press, USA, 1989.

[21] V. K. Gödel. Über eine bisher noch nicht benütze erweiterung des

finiten standpunktes. Dialectica, 12(3-4):280–287, 1958.
[22] D. R. Hirschfeldt. Slicing the truth: On the computable and reverse

mathematics of combinatorial principles. World Scientific, 2014.

[23] N. Hoshino, K. Muroya, and I. Hasuo. Memoryful geometry of in-

teraction: from coalgebraic components to algebraic effects. In Proc.
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Con-
ference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), page 52.
ACM, 2014.

[24] U. Kohlenbach. Effective bounds from ineffective proofs in analysis:

An application of functional interpretation and majorization. The
Journal of Symbolic Logic, 57(4):1239–1273, 1992.

[25] L. Kołodziejczyk, H. Michalewski, P. Pradic, and M. Skrzypczak. The

logical strength of Büchi’s decidability theorem. Logical Methods in
Computer Science, Volume 15, Issue 2, May 2019.

[26] D. Kuperberg, L. Pinault, and D. Pous. Cyclic Proofs and Jumping

Automata. In Proc. FSTTCS, Bombay, India, Dec. 2019.

[27] U. D. Lago. The geometry of linear higher-order recursion. ACM Trans.
Comput. Log., 10(2):8:1–8:38, 2009.

[28] C. Parsons. On n-quantifier induction. The Journal of Symbolic Logic,
37(3):466–482, 1972.

[29] A. Simpson. Cyclic arithmetic is equivalent to peano arithmetic. In

Proc. FoSSaCS, pages 283–300, 2017.
[30] S. G. Simpson. Subsystems of second order arithmetic, volume 1. Cam-

bridge University Press, 2009.

[31] W. Tait. Infinitely long terms of transfinite type. In J. Crossley and

M. Dummett, editors, Formal Systems and Recursive Functions, vol-
ume 40 of Studies in Logic and the Foundations of Mathematics, pages
176 – 185. Elsevier, 1965.

[32] W. W. Tait. Intensional interpretations of functionals of finite type i.

The Journal of Symbolic Logic, 32(2):198–212, 1967.

A Additional details for Sect. 2
A.1 Return value of a computation
We give the complete version of Def. 2.9.

The return value [𝑣] (𝑠) of a computation ⟨𝑣, 𝑠⟩ with 𝜋 (𝑣) =
𝐸 ⊢ 𝑒 is a value in [𝑒] defined by well-founded induction on

≺ and case analysis on the rule used at address 𝑣 . We list all

cases below.

id : [𝑣] (𝑠) ≜ 𝑠

cut : [𝑣] (𝑠, 𝑡) ≜ [𝑣1] ([𝑣0] (𝑠), 𝑡)
c : [𝑣] (𝑥, 𝑠) ≜ [𝑣0] (𝑥, 𝑥, 𝑠)
x : [𝑣] (𝑠, 𝑥,𝑦, 𝑡) ≜ [𝑣0] (𝑠,𝑦, 𝑥, 𝑡)
w : [𝑣] (𝑥, 𝑠) ≜ [𝑣0] (𝑠)
·-𝑙 : [𝑣] (⟨𝑥,𝑦⟩, 𝑠) ≜ [𝑣0] (𝑥,𝑦, 𝑠)
·-𝑟 : [𝑣] (𝑠, 𝑡) ≜ ⟨[𝑣0] (𝑠), [𝑣1] (𝑡)⟩
→-𝑙 : [𝑣] (ℎ, 𝑠, 𝑡) ≜ [𝑣1] (ℎ([𝑣0] (𝑠)), 𝑡)
→-𝑟 : [𝑣] (ℎ) ≜ (𝑥 ↦→ [𝑣0] (𝑥, ℎ))
∗-𝑙 : [𝑣] (𝑙, 𝑠) is defined by case analysis on the list 𝑙 :

• [𝑣] ([], 𝑠) ≜ [𝑣0] (𝑠)
• [𝑣] (𝑥 :: 𝑞, 𝑠) ≜ [𝑣1] (𝑥, 𝑞, 𝑠)

∗-𝑟𝜖 :[𝑣] () ≜ 𝜖

∗-𝑟 :: : [𝑣] (𝑠, 𝑡) ≜ [𝑣0] (𝑠) :: [𝑣1] (𝑡)
+-𝑙 : [𝑣] (𝑥, 𝑠) is defined by case analysis on 𝑥 :

• if 𝑥 ∈ [𝑒], [𝑣] (𝑥, 𝑠) ≜ [𝑣0] (𝑥, 𝑠)
• if 𝑥 ∈ [𝑓], [𝑣] (𝑥, 𝑠) ≜ [𝑣1] (𝑥, 𝑠)

+-𝑟𝑖 :[𝑣] (𝑠) ≜ [𝑣0] (𝑠)
1-𝑙 :[𝑣] (⟨⟩, 𝑠) ≜ [𝑣0] (𝑠)
1-𝑟 :[𝑣] () ≜ ⟨⟩
∩-𝑙𝑖 :[𝑣] (⟨𝑥0, 𝑥1⟩, 𝑠) ≜ [𝑣0] (𝑥𝑖 , 𝑠)
∩-𝑟 :[𝑣] (𝑠) ≜ ⟨[𝑣0] (𝑠), [𝑣1] (𝑠)⟩

In each case, the recursive calls are made on strictly smaller

computations: they occur on direct subproofs, the values

associated to auxiliary formulas are left unchanged, and in

the second subcase of the ∗-𝑙 case, the length of the list

associated to the principal formula decreases by one.

A.2 Weakening and contraction
Proof of Lem. 2.11. We proceed by induction on 𝑒 . The first

interesting case is the weakening of a star formula 𝑒∗ which
14

http://dx.doi.org/10.1109/LICS.2017.8005088
http://dx.doi.org/10.1109/LICS.2017.8005088
http://dx.doi.org/https://doi.org/10.1016/0168-0072(96)00003-6
http://dx.doi.org/https://doi.org/10.1016/0168-0072(96)00003-6
http://dx.doi.org/10.1007/978-3-662-54458-7_18
http://dx.doi.org/10.1007/978-3-662-54458-7_18
http://dx.doi.org/10.1109/LICS.2017.8005114
http://dx.doi.org/10.1109/LICS.2017.8005114
http://dx.doi.org/10.1093/logcom/exq052
http://dx.doi.org/10.1093/logcom/exq052
https://lmcs.episciences.org/6008
http://dx.doi.org/10.29007/hzq3
http://dx.doi.org/10.29007/hzq3
http://dx.doi.org/10.1007/978-3-319-66902-1_16
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.19
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.19
http://dx.doi.org/10.1109/LICS.2017.8005075
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.42
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.42
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.248
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.248
http://dx.doi.org/10.1111/j.1746-8361.1958.tb01464.x
http://dx.doi.org/10.1111/j.1746-8361.1958.tb01464.x
http://www.jstor.org/stable/2275367
http://www.jstor.org/stable/2275367
http://dx.doi.org/10.23638/LMCS-15(2:16)2019
http://dx.doi.org/10.23638/LMCS-15(2:16)2019
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2019.45
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2019.45
http://dx.doi.org/10.1145/1462179.1462180
http://dx.doi.org/10.1007/978-3-662-54458-7_17
http://dx.doi.org/https://doi.org/10.1016/S0049-237X(08)71689-6
http://dx.doi.org/10.2307/2271658

Cyclic proofs, system T, and the power of contraction

is depicted on the left of Fig. 6. The rule marked 𝐼𝐻 is the

weakening rule derived for 𝑒 by induction hypothesis and

the widget on the left in Fig. 3. The second interesting case

is the weakening of an arrow formula 𝑒 → 𝑓 depicted on the

right of Fig. 6. The proof (inh𝑒) is a witness that every closed
type 𝑒 is inhabited, which is easily shown by induction on 𝑒 .

The rule 𝐼𝐻 is the weakening rule derived for 𝑓 by induction

hypothesis. □

Proof of Lem. 2.12. We proceed by induction on 𝑒; the inter-

esting case is the duplication of a star formula 𝑒∗, which is

depicted in Fig. 7. The subproofs labelled with ’cons’ consist

of an application of the ∗-𝑟 :: rule followed by two identity

axioms. The rule marked 𝐼𝐻 at address 110 is the contraction

rule derived for 𝑒 by induction hypothesis and the widget

on the right in Fig. 3. □

A.3 Minimisation operator
We show in this section that by dropping the validity condi-

tion, we can encode the minimisation operator 𝜇, yielding

Turing-completeness of the proof system.

We define 𝜇 with one integer parameter 𝑥 , as any tuple

of parameters can be encoded in one. Thus 𝜇 is defined as

follows: if 𝑓 : N×N→ N, then 𝜇 (𝑓) (𝑥) is the smallest𝑦 ∈ N
such that 𝑓 (𝑦, 𝑥) = 0, and is undefined if no such 𝑦 exists.

Therefore, the 𝜇 operator has type (N ×N→ N) → N→
N. The preproof 𝜋𝜇 is represented in Fig. 8. In this figure, 𝑥,𝑦

stand for 1
∗
, 𝑓 stands for 1

∗ · 1∗ → 1
∗
, and 𝑘 stands for 1

∗
: it

stores the result 𝑓 (𝑦, 𝑥). We note 𝑘⊳ the predecessor of 𝑘 and

𝑦 ′ the successor of 𝑦. Principal formulas may be emphasised

by a red font.

The principle behind this preproof is simply to compute

𝑘 = 𝑓 (𝑦, 𝑥) for 𝑦 = 0, 1, 2, . . . , and returns 𝑦 as soon as 𝑘 = 0.

The preproof is not valid, as the infinite branch contains no

validating thread. The only infinite thread in this branch is

the one following 𝑥 , which is never principal.

In order to give a semantic to such an invalid preproof (as a

partial function on natural numbers), one can use the small-

step semantic from Sect. 6.1: feed the proof with natural

numbers and try to compute a result value with leftmost

innermost reduction strategy. If this terminates, we can read

back a natural number by Lem. 6.2, otherwise the function

is undefined at the considered point.

B Additional details for Sect. 3
B.1 Encoding of classical system T
Let us show how our version of system T can encode the

more classical recursion operator, thereby proving the two

systems are equivalent.

Let us call R𝑇 the classical recursion operator from system

𝑇 . We recall below the behaviour of R𝑇 , and the correspond-

ing typing rule:

R𝑇 ([], 𝑀, 𝑥 .𝑞.𝑦.𝑁) = 𝑀

R𝑇 (𝑋 ::𝑄,𝑀, 𝑥 .𝑞.𝑦.𝑁) = 𝑁 {𝑥←𝑋 ;𝑞←𝑄 ;𝑦←R𝑇 (𝑞,𝑀, 𝑥 .𝑦.𝑞.𝑁)}

Γ ⊢ 𝐿 : 𝑒∗ Γ ⊢ 𝑀 : 𝑔 Γ, 𝑥 : 𝑒, 𝑞 : 𝑒∗, 𝑦 : 𝑔 ⊢ 𝑁 : 𝑔
R𝑇

Γ ⊢ R𝑇 (𝐿,𝑀, 𝑥 .𝑞.𝑦.𝑁) : 𝑔
There are several differenceswith our typing rule forR: the

tail 𝑞 is fed to the function 𝑁 , the context Γ can be duplicated,
and a non-empty context can be used by the function 𝑁 .

We show that R𝑇 can be encoded by a term of T (together

with its typing derivation).

The idea is to duplicate the necessary information using

contractions, and to use our restricted recursor with an en-

riched return type 𝑔′.
Let Γ = ®𝑢 : 𝐸 be an arbitrary context, and 𝑒 be a type. We

define the type 𝑔′ ≜ ®𝐸 → (𝑒∗ ·𝑔). We use our affine recursor

scheme R with arguments 𝐿 (unchanged),𝑀 ′ ≜ 𝜆®𝑢.⟨[], 𝑀⟩
and

𝑥 .𝑦 ′.𝑁 ′ ≜ 𝜆®𝑢.(let ⟨𝑞,𝑦⟩ := 𝑦 ′(®𝑢) in 𝑥 .𝑞.𝑦.𝑁).
Notice that provided𝑀 :𝑔 and𝑁 :𝑔, we have𝑀 ′:𝑔′ and𝑥 .𝑦 ′.𝑁 ′:𝑔′

as desired for the use of R. Typing derivations showing this

are omitted.

Finally, the term R𝑇 (𝐿,𝑀, 𝑥 .𝑞.𝑦.𝑁) is now encoded as

let⟨𝑙, 𝑟 ⟩ := R(𝐿,𝑀 ′, 𝑥 ′.𝑦 ′.𝑁 ′) (®𝑢) in 𝑟 .

The following typing derivation (admitting the recursion-

free typing for 𝑀 ′, 𝑁 ′) in our system can then serve as a

macro of the R𝑇 typing rule above. For clarity, we use ·−p1
as a shortcut for the projection on the second component of

a product.

Γ ⊢ 𝐿:𝑒∗ 𝑀 ′ : 𝑔′ 𝑥 : 𝑒,𝑦 ′ : 𝑔′ ⊢ 𝑁 ′ : 𝑔′
∗-𝑒

Γ ⊢ R(𝐿,𝑀 ′, 𝑥 ′.𝑦 ′.𝑁 ′) : 𝑔′
id

Γ ⊢ ®𝑢 : 𝐸
→-𝑒

Γ, Γ ⊢ R(𝐿,𝑀 ′, 𝑥 ′.𝑦 ′.𝑁 ′) (®𝑢) : 𝑒∗·𝑔
c

Γ ⊢ R(𝐿,𝑀 ′, 𝑥 ′.𝑦 ′.𝑁 ′) (®𝑢) : 𝑒∗·𝑔
·−p1

Γ ⊢ R𝑇 (𝐿,𝑀, 𝑥 .𝑞.𝑦.𝑁) : 𝑔

B.2 Complete list for Def. 3.1
We provide here the full list defining the semantic of terms

from T, completing Def. 3.1.

id : [𝑥] (𝑠) ≜ 𝑠

→-𝑒 : [𝑀𝑁] (𝑠, 𝑡) ≜ [𝑀] (𝑠) ([𝑁] (𝑡))
c : [𝑀] (𝑣, 𝑠) ≜ [𝑀] (𝑣, 𝑣, 𝑠)
·-𝑖 : [⟨𝑀, 𝑁 ⟩] (𝑠, 𝑡) ≜ ⟨[𝑀] (𝑠), [𝑁] (𝑡)⟩
∗-𝑒 : [R(𝐿;𝑀 ;𝑥 .𝑦.𝑁)] (𝑠, 𝑡) ≜ ℎ(𝑥1, ℎ(𝑥2, . . . ℎ(𝑥𝑛, 𝑎) . . .)),

where the induction provided a list [𝐿] (𝑠) = 𝑥1, . . . , 𝑥𝑛 ,

an element 𝑎 ≜ [𝑀] (𝑡), and a function ℎ ≜ [𝑁].
x : [𝑀] (𝑠,𝑢, 𝑣, 𝑡) ≜ [𝑀] (𝑠, 𝑣,𝑢, 𝑡)
w : [𝑀] (𝑣, 𝑠) ≜ [𝑀] (𝑠)
·-𝑒 : [let ⟨𝑥,𝑦⟩ := 𝑀 in 𝑁] (𝑠, 𝑡) ≜ [𝑁] (𝑢, 𝑣) where the in-

duction provided [𝑀] (𝑠) = ⟨𝑢, 𝑣⟩.
15

Denis Kuperberg, Laureline Pinault, and Damien Pous

1-𝑟
⊢ 1

...

𝑒∗ ⊢ 1
𝐼𝐻

𝑒, 𝑒∗ ⊢ 1
∗-𝑙

𝑒∗ ⊢ 1

inh𝑒 ⊢ 𝑒
𝐼𝐻

𝑓 ⊢ 1
→-𝑙

𝑒 → 𝑓 ⊢ 1

Figure 6. Weakening of star and arrow formulas.

∗-𝑟𝜖 ⊢ 𝑒∗
∗-𝑟𝜖 ⊢ 𝑒∗·-𝑟

⊢ 𝑒∗ · 𝑒∗

...

𝑒∗ ⊢ 𝑒∗ · 𝑒∗

cons

𝑒, 𝑒∗ ⊢ 𝑒∗
cons

𝑒, 𝑒∗ ⊢ 𝑒∗
·-𝑟

𝑒, 𝑒, 𝑒∗, 𝑒∗ ⊢ 𝑒∗ · 𝑒∗
𝐼𝐻

𝑒, 𝑒∗, 𝑒∗ ⊢ 𝑒∗ · 𝑒∗
·-𝑙

𝑒, 𝑒∗ · 𝑒∗ ⊢ 𝑒∗ · 𝑒∗
cut

𝑒, 𝑒∗ ⊢ 𝑒∗ · 𝑒∗
∗-𝑙

𝑒∗ ⊢ 𝑒∗ · 𝑒∗
•

Figure 7. Duplicating a star formula.

1
∗
-𝑟0 ⊢ 1∗

·-𝑟
𝑦, 𝑥 ⊢ 𝑦 · 𝑥

id
𝑦 ⊢ 1∗

w
𝑦, 𝑓 , 𝑥 ⊢ 1∗

𝑆

𝑦 ⊢ 𝑦 ′

...

𝑦 ′, 𝑓 , 𝑥 ⊢ 1∗
cut

𝑦, 𝑓 , 𝑥 ⊢ 1∗
w

𝑘⊳, 𝑦, 𝑓 , 𝑥 ⊢ 1∗
1
∗
-𝑙

𝑘,𝑦, 𝑓 , 𝑥 ⊢ 1∗
→-𝑙

𝑦,𝑦, 𝑓 , 𝑓 , 𝑥, 𝑥 ⊢ 1∗
𝑐, 𝑐, 𝑐

𝑦, 𝑓 , 𝑥 ⊢ 1∗
cut

𝑓 , 𝑥 ⊢ 1∗

Figure 8. The preproof 𝜋𝜇 for minimisation.

+-𝑒 : [D(𝑆 ;𝑥 .𝑀 ;𝑦.𝑁)] (𝑠, 𝑡) ≜ [𝑀] ([𝑆] (𝑠), 𝑡) if [𝑆] (𝑠) ∈
[𝑒] and [𝑁] ([𝑆] (𝑠), 𝑡) otherwise.

1-𝑒 : [let ⟨⟩ := 𝑀 in 𝑁] (𝑠, 𝑡) ≜ [𝑁] (𝑡)
∩-𝑒𝑖 : [p𝑖𝑀] (𝑠) ≜ [𝑀] (𝑠)
+-𝑖 𝑗 : [i𝑗𝑀] (𝑠) ≜ [𝑀] (𝑠)
∗-𝑖𝜖 : [[]] () ≜ 𝜖 .

∗-𝑖:: : [𝑀 :: 𝑁] (𝑠, 𝑡) ≜ [𝑀] (𝑠) :: [𝑁] (𝑡)
1-𝑖 : [⟨⟩] () ≜ 1

→-𝑖 : [𝜆𝑥 .𝑀] (𝑠) ≜ 𝑢 ↦→ [𝑀] (𝑢, 𝑠)
∩-𝑖 : [⟨⟨𝑀, 𝑁 ⟩⟩] (𝑠) ≜ ⟨[𝑀] (𝑠), [𝑁] (𝑠)⟩

B.3 From system T to system C
We give here the encoding from system T to system C.

Theorem B.1 (Thm. 3.4 in the main text). For every typing
derivation Γ ⊢ 𝑀 : 𝑒 , there exists a regular proof 𝑀 : Γ ⊢ 𝑒
such that [𝑀] = [𝑀]. If𝑀 is affine/linear, so is𝑀 .

Proof. We proceed by induction on the typing derivation.

The structural rules (exchange, weakening, contraction and

identity) as well as the introduction rules of system T trans-

late immediately to their counterparts in systemC. It remains

to deal with the elimination rules of system T. Leaving the

∗-𝑒 rule aside, they all translate into a cut on the eliminated

formula, followed by an application of the corresponding

left introduction rule (and an identity rule for the negative

connectives ∩ and →). For instance, for the ·-𝑒 case (i.e.,

term let ⟨𝑥,𝑦⟩ := 𝑀 in 𝑁), we obtain two regular proofs

𝑀 : Γ ⊢ 𝑒 · 𝑓 and 𝑁 : 𝑒, 𝑓 ,Δ ⊢ 𝑔 by induction, and we

construct the following preproof:

𝑀

Γ ⊢ 𝑒 · 𝑓

𝑁

𝑒, 𝑓 ,Δ ⊢ 𝑔
·-𝑙

𝑒 · 𝑓 ,Δ ⊢ 𝑔
cut

Γ,Δ ⊢ 𝑔

This preproof regular and valid: every infinite branch even-

tually belongs either to𝑀 or 𝑁 .

The ∗-𝑒 case (i.e., term R(𝐿;𝑀 ;𝑥 .𝑦.𝑁)) is the only one

where we introduce circularities: we obtain by induction

16

Cyclic proofs, system T, and the power of contraction

Γ, 𝑦 : 𝑓 , 𝑥 : 𝑒,Δ ⊢ 𝑀 : 𝑔
x
Γ, 𝑥 : 𝑒,𝑦 : 𝑓 ,Δ ⊢ 𝑀 : 𝑔

Γ ⊢ 𝑀 : 𝑓
w
𝑥 : 𝑒, Γ ⊢ 𝑀 : 𝑓

𝑥 : 𝑒, 𝑥 : 𝑒, Γ ⊢ 𝑀 : 𝑓
c

𝑥 : 𝑒, Γ ⊢ 𝑀 : 𝑓
id
𝑥 : 𝑒 ⊢ 𝑥 : 𝑒

Γ ⊢ 𝑀 : 𝑒 · 𝑓 𝑥 : 𝑒,𝑦 : 𝑓 ,Δ ⊢ 𝑁 : 𝑔
·-𝑒

Γ,Δ ⊢ let ⟨𝑥,𝑦⟩ := 𝑀 in 𝑁 : 𝑔

Γ ⊢ 𝑆 : 𝑒 + 𝑓 𝑥 : 𝑒,Δ ⊢ 𝑀 : 𝑔 𝑦 : 𝑓 ,Δ ⊢ 𝑁 : 𝑔
+-𝑒

Γ,Δ ⊢ D(𝑆 ;𝑥 .𝑀 ;𝑦.𝑁) : 𝑔
Γ ⊢ 𝐿 : 𝑒∗ Δ ⊢ 𝑀 : 𝑔 𝑥 : 𝑒,𝑦 : 𝑔 ⊢ 𝑁 : 𝑔

∗-𝑒
Γ,Δ ⊢ R(𝐿;𝑀 ;𝑥 .𝑦.𝑁) : 𝑔
Γ ⊢ 𝑀 : 1 Δ ⊢ 𝑁 : 𝑔

1-𝑒

Γ,Δ ⊢ let ⟨⟩ := 𝑀 in 𝑁 : 𝑔

Γ ⊢ 𝑀 : 𝑒 → 𝑓 Δ ⊢ 𝑁 : 𝑒
→-𝑒

Γ,Δ ⊢ 𝑀𝑁 : 𝑓

Γ ⊢ 𝑀 : 𝑒0 ∩ 𝑒1
∩-𝑒𝑖 𝑖 ∈ {0, 1}

Γ ⊢ p𝑖𝑀 : 𝑒𝑖

Γ ⊢ 𝑀 : 𝑒 Δ ⊢ 𝑁 : 𝑓
·-𝑖

Γ,Δ ⊢ ⟨𝑀, 𝑁 ⟩ : 𝑒 · 𝑓
Γ ⊢ 𝑀 : 𝑒 𝑗

+-𝑖 𝑗 𝑗 ∈ {0, 1}
Γ ⊢ i𝑗𝑀 : 𝑒0 + 𝑒1

∗-𝑖𝜖 ⊢ [] : 𝑒∗
Γ ⊢ 𝑀 : 𝑒 Δ ⊢ 𝑁 : 𝑒∗

∗-𝑖::
Γ,Δ ⊢ 𝑀 :: 𝑁 : 𝑒∗

1-𝑖

⊢ ⟨⟩ : 1
𝑥 : 𝑒, Γ ⊢ 𝑀 : 𝑓

→-𝑖

Γ ⊢ 𝜆𝑥 .𝑀 : 𝑒 → 𝑓

Γ ⊢ 𝑀 : 𝑒 Γ ⊢ 𝑁 : 𝑓
∩-𝑖

Γ ⊢ ⟨⟨𝑀, 𝑁 ⟩⟩ : 𝑒 ∩ 𝑓

Figure 9. Typing rules for system T.

three regular proofs 𝐿 : Γ ⊢ 𝑒∗, 𝑀 : Δ ⊢ 𝑔 and 𝑁 : 𝑒, 𝑔 ⊢ 𝑔,
and we construct the following preproof:

𝐿

Γ ⊢ 𝑒∗

𝑀

Δ ⊢ 𝑔

...

𝑒∗,Δ ⊢ 𝑔
𝑁

𝑒,𝑔 ⊢ 𝑔
cut

𝑒, 𝑒∗,Δ ⊢ 𝑔
∗-𝑙

𝑒∗,Δ ⊢ 𝑔
cut

Γ,Δ ⊢ 𝑔

•

•

This preproof is regular by construction, and valid: the only

infinite branch that does not eventually belong either to 𝐿,

𝑀 or 𝑁 is the one along the constructed cycle, which it is

validated by the red thread on 𝑒∗.
We use the contraction/weakening typing rule from sys-

tem T only to translate contraction/weakening nodes in the

starting proof, whence the second part of the statement. □

C Proofs and details for Sect. 4
C.1 Proof of Prop. 4.3
Let 𝜋 be a regular proof. We have to define a set of back-

pointers turning 𝜋 into an ibp-proof.

We first establish a generic lemma. A backpointer condition
𝑃 is a property of bp-proofs of the form: “for each backpointer

pt, a property 𝑃 (pt) depending only on src(pt), tgt (pt), and
the branch from the root of the proof to src(pt) is verified”.

We say that a backpointer pt is correct when it verifies the

first item from Def. 4.1, i.e. the subtrees rooted in src(pt) and
tgt (pt) are isomorphic.

Lemma C.1. Let 𝜋 be a preproof and 𝑃 be a backpointer
condition such that for every infinite branch of 𝜋 , there exists
a correct backpointer pt such that 𝑃 (pt) is satisfied. Then 𝜋

can be turned into a bp-preproof where all backpointers satisfy
𝑃 .

Proof. For each infinite branch 𝜌 of 𝜋 , we define the back-

pointer pt𝜌 given by the hypothesis of the Lemma.

Let Pts0 = {pt𝜌 | 𝜌 branch of 𝜋}, and Pts1 = {pt ∈ Pts0 |
∀pt ′ ∈ Pts0, src(pt ′) ̸⊏ src(pt)}, i.e. we only keep pointers

from Pts0 with a minimal source. We show that Pts1 is fi-
nite. Indeed, assume Pts1 is infinite, and let 𝑇 = {𝑢 | ∃pt ∈
Pts1, 𝑢 ⊑ src(pt)}. Since 𝑇 contains all sources from Pts1,
and that this sources are incomparable with each other, 𝑇

is infinite. By König’s lemma, since 𝑇 is finitely branching,

𝑇 contains an infinite branch 𝜌 . By definition of Pts1, there
exists pt ∈ Pts1 with src(pt) ⊑ src(pt𝜌). Let 𝑣 be an address

of 𝜌 with src(pt) ⊑ 𝑣 . Since 𝜌 is contained in 𝑇 , there must

be pt ′ ∈ Pts1 with 𝑣 ⊑ src(pt ′). We obtain src(pt) ⊏ src(pt ′),
contradicting the fact that pt ′ ∈ Pts1. We can thus con-

clude that Pts1 is finite. Let Pts2 = {pt ∈ Pts1 | ∀pt ′ ∈
Pts1, src(pt) = src(pt ′) ⇒ tgt (pt) ⊑ tgt (pt ′)}, i.e. for each
possible source we keep only the pointer with the smallest

target. Since each pointer pt in Pts2 is correct and satisfies

𝑃 (pt), and since each branch of 𝜋 contains the source of

exactly one pointer from Pts2, we obtain that ⟨𝜋, Pts2⟩ is a
bp-proof satisfying the backpointer condition 𝑃 . □

Thanks to Lem. C.1, in order to show Prop. 4.3 it suffices

to show the following lemma:

Lemma C.2. If 𝜋 is a regular proof, every infinite branch 𝜌

of 𝜋 can be equipped with an idempotent correct backpointer.

Proof. Let 𝑠 be the maximal length of sequent antecedents

in 𝜋 and F be the set of partial functions on [0; 𝑠 [.
17

Denis Kuperberg, Laureline Pinault, and Damien Pous

Let eval : F ∗ → F be the evaluation morphism, defined

inductively by eval(𝜖) = id and eval(®𝑢𝑓) = eval(®𝑢) ◦ 𝑓 .
Since F is a finite monoid, there exists𝑚 ∈ N such that any

word ®𝑢 ∈ F𝑚
contains an infix ®𝑣 ∈ F + such that eval(®𝑣) is

idempotent.

We say that two ∗-𝑙 addresses 𝑢, 𝑣 have same type if the
subtrees rooted in 𝑢, 𝑣 in 𝜋 are isomorphic. By extension, the

type of a position is the type of its address.

Since 𝜋 is valid and the number of distinct types is finite,

every branch of 𝜋 contains a thread going through infinitely

many ∗-𝑙 positions of the same type, and in particular it is the

case for the branch 𝜌 where we want to find an idempotent

correct backpointer. Let 𝑛 ∈ N such that the prefix of 𝜌 of

length 𝑛 contains a thread which goes through𝑚 + 1 such
positions ⟨𝑣0, 0⟩, ⟨𝑣1, 0⟩, . . . , ⟨𝑣𝑚, 0⟩ of the same type.

For all 𝑖 ∈ [1;𝑚], we define 𝑓𝑖 = 𝑓𝑣𝑖−1,𝑣𝑖 ∈ F as above.

By choice of 𝑚, there exists 𝑖 < 𝑗 ∈ [1;𝑚] such that 𝑓 =

𝑓𝑖 ◦ 𝑓𝑖+1 ◦ · · · ◦ 𝑓𝑗 is idempotent. Moreover, as witnessed by

the thread 𝑡 , we have 𝑓 (0) = 0. We define a backpointer pt
with src(pt) = 𝑣 𝑗 and tgt (pt) = 𝑣𝑖−1. □

Together with Lem. C.1, we can conclude that every regu-

lar proof can be extended into an ibp-proof.

We now state a strengthening of Lem. C.2.

Lemma C.3. Let 𝜋 be a regular proof, and ⟨𝑢, 0⟩ be a ∗-𝑙
position of 𝜋 . Every infinite branch of 𝜋 can be equipped by a
correct idempotent backpointer pt such that
• either ⟨src(pt), 0⟩ and ⟨tgt (pt), 0⟩ are ancestors of ⟨𝑢, 0⟩,
• or the segment [tgt (pt), src(pt)] contains no ∗-𝑙 position
that is an ancestor of ⟨𝑢, 0⟩.

Proof. This is an adaptation of the proof of Lem. C.2. When

the branch 𝜌 is fixed, two cases can occur:

• if infinitely many ancestors of ⟨𝑢, 0⟩ are principal on 𝜌 ,

then infinitely many of them have the same type, and

we can use the proof of Lem. C.2 to define a correct

idempotent backpointer between two of them.

• if only finitely many ancestors of ⟨𝑢, 0⟩ are principal on
𝜌 , it suffices to consider a suffix 𝜌 ′ of 𝜌 containing none
of these positions, and use the proof of Lem. C.2 to

define a correct idempotent backpointer in this suffix.

□

C.2 Proof of Prop. 4.4
We want to show that every affine and regular proof 𝜋 can

be extended into a ranked proof ⟨𝜋, Pts, rk⟩.
We describe a recursive algorithm that builds a set of back-

pointers and assigns ranks to all canonical star positions. We

start by recalling the global proof scheme. Roughly, the idea

is to consider the graph of addresses where sources and

targets of backpointers are identified. Strongly Connected

Components (SCCs) of this graph can then be treated in-

dependently. In each SCC, we identify a master thread: a

thread that explores each canonical address infinitely many

times by going through all backpointers, and validates the

corresponding infinite branch. When this thread is identified,

we change the positions of backpointers to satisfy structural

constraints related to rules (Thd) and (Blk), and we assign

positions of this thread with the maximal rank of the SCC.

We then remove addresses where this thread is principal,

and recursively work on SCCs obtained on the remaining

parts of the graph. When recombining SCCs together, ranks

are shifted to satisfy rules (Con), (Dec), (Org), and (Blk), by

avoiding overlaps of ranks and assigning higher ranks to

SCCs with smaller addresses.

Let us now give a more detailed step-by-step description

of this recursive algorithm:

1. Use Prop. 4.3 to obtain Pts0 such that 𝜋0

bp = ⟨𝜋, Pts0⟩ is
an ibp-proof.

2. Consider the canonical graph𝐺 of canonical addresses,

where sources and targets of backpointers from Pts0
are identified. We will treat separately each strongly

connected component (SCC) of𝐺 . When ranks have

been assigned in each SCC, a shift is applied (i.e. all

ranks of the same SCC are shifted by the same amount)

so that different SCCs do not share ranks, and rules

(Dec) and (Org) are respected.

3. We now describe the process of assigning ranks within

a SCC of the canonical graph. By strong connected-

ness, we can build an infinite path visiting all nodes

of this graph infinitely many times. This corresponds

to an infinite branch in 𝜋 , which must be validated

by a master thread 𝑡 : a thread going through all back-

pointers infinitely many times. All positions of this

master thread are assigned with a maximal rank 𝑀 .

This rank 𝑀 is a placeholder standing for “maximal

rank in the current SCC”, and will be shifted to an

appropriate value after the subsequent recursive calls

are completed.

4. We now need to reorganise backpointers in order to

respect rule (Thd) and (Blk) in the final bp-proof, by

forbidding a ∗-𝑙 rule of maximal rank 𝑀 to occur in

the scope of a backpointer linking rules of lower rank

(to be assigned later).

This construction is given by Lem. C.1 and C.3, where

the distinguished position ⟨𝑢, 0⟩ is the origin of rank

𝑀 . This shows that we can choose idempotent back-

pointers that are either linking addresses of rank𝑀 , or

that do not contain addresses of rank𝑀 in their scope.

In this last case the thread of rank 𝑀 is spectactor

between the source and the target of the backpointer.

5. We now consider the strongly connected canonical

graphs obtained by removing all ∗-𝑙 rules of rank 𝑀 ,

and call recursively the algorithm from step 2 on each

of these strongly connected graphs. As before, ranks

of each SCC will then be shifted to avoid overlaps and

respect rules (Dec) and (Org).

18

Cyclic proofs, system T, and the power of contraction

This process terminates, because the maximal number of

formulas with unassigned rank in a sequent decreases at each

step. Indeed, our master thread visited every sequent of the

strongly connected canonical graph, and assigned rank 𝑀

to a star position in each sequent. Moreover, this algorithm

generates a set of pointers Pts and a rank function rk such

that ⟨𝜋, Pts, rk⟩ is a ranked proof. Rule (BP) is ensured by the
identification of sources and target of pointers in canonical

proof graphs. Rules (Dec) and (Org) are ensured when shift-

ing the ranks of SCC after internal computations. Rule (Thd)

is ensured by the choice of master thread of maximal rank,

that must be preserved in all paths of the canonical graph.

Rule (Blk) is ensured by step 4 and by avoiding overlapping

of ranks between different SCCs. Rule (Con) is ensured by

step 3, where all positions assigned with the same rank are

connected by a thread, and by avoiding overlapping of ranks

between SCCs. Originally, only canonical star positions are

assigned a rank, but it is straightforward to extend the rank

function to all star positions.

C.3 Validity of proofs in ranked normal form
Lemma C.4. Every (affine) ranked preproof is valid.

Proof. We show this result by exhibiting a valid thread for

each infinite branch of the preproof.

Let ⟨𝜋, Pts, rk⟩ be an (affine) ranked preproof. Let 𝜌 be an

infinite branch of 𝜋 , corresponding to an infinite path 𝑏 in

the canonical graph of 𝜋 , staying in canonical address and

following backpointers. Let Pts∞ be the restriction of Pts to
the backpointers that are seen infinitely often when going

along 𝑏. This set is not empty because 𝑏 is infinite and Pts
is finite. Let 𝑟 be the maximal rank in Pts∞ and 𝑏𝑝 be the

associated backpointer:

𝑟 = max{rk(src(𝑝𝑡)) | 𝑝𝑡 ∈ Pts∞} = rk(src(𝑏𝑝))

There exists some node 𝑣 in the infinite path 𝑏 such that

from this node the only backpointers that are seen form

exactly the set Pts∞. Note that from this point every node is

between tgt (𝑝𝑡) and src(𝑝𝑡) for some 𝑝𝑡 ∈ Pts∞ (depending

on the current node). Let’s follow (in 𝑏) the thread of the

principal formula of the first occurrence of the node src(𝑏𝑝)
after 𝑣 . Then the thread goes only through positions of the

proof that are located between the target and the source of a

backpointer of rank 𝑟 ′ ≤ 𝑟 . If 𝑟 ′ < 𝑟 , the thread exists and

stays spectator between those points by (Thd). If 𝑟 ′ = 𝑟 , the

thread also exists between the target and the source of the

backpointer because 𝜋 being a ranked preproof implies in

particular that it is an ibp-preproof. Moreover this thread is

principal infinitely often because the node src(𝑏𝑝) is visited
infinitely often. Thus any branch 𝜌 is valid, and the ranked

preproof 𝜋 is valid. □

C.4 Why the ranked approach cannot be adapted
with contractions

The affine construction fails with contrac-

tions, because of patterns as depicted on

the right, where the potential idempotent

backpointer pt is such that 𝑓pt (0) is defined
but different from 0.

On the cycle of the pattern the red thread exists, is not valid,

but is not really spectator either since it can branch to a ∗-𝑙
rule whenever it wants.

This is exactly the phenomenon that happens in the proof

for Ackermann-Péter’s function given in Sect. 2.5, Fig. 5.

The following picture sketches the structure and thread be-

haviour of the ibp-proof obtained in Ex. 4.2, ignoring some

irrelevant parts.

We can recognise on the cycle formed by the backpointer

(𝑏) the pattern depicted above, that makes it impossible to

assign a rank function that would not violate the (Blk) rule.

In order for the (Blk) rule to be verified by the (𝑎′) pointer,
the green formulas should have a higher rank than the red

one. However the green formula is not a real recursive ar-

gument of the left loop so if the backpointer (𝑏) is left as
represented on the above picture the later translation would

not yield an equivalent T term. Yet if the backpointer (𝑏) is
shifted one level up so that it points to the red ∗-𝑙 address it
would again violate the (Blk) rule.

This shows that no thread can be chosen as the master

thread, and the construction is stuck.

C.5 Typing derivations for the affine C to affine T
translation

We give here the typing derivations needed in the simple

cases of translation from affine C to affine T (Thm. 4.5). The

cases for right introduction rules are given in Fig. 10; the

ones for left introduction rules and cut are given in Fig. 11.

D Additional details on subsystems of
second-order arithmetic

D.1 Definition of RCA0

In the definition of RCA0 (Def. 5.2), the available instances of

comprehension and the notion of RCA0 itself are mutually

defined. It is equivalent to extending Q2 by Σ0

1
-induction

19

Denis Kuperberg, Laureline Pinault, and Damien Pous

1-𝑖

⊢ ⟨⟩ : 1
∗-𝑖𝜖 ⊢ [] : 𝑒∗

𝑋 : 𝐸 ⊢ 𝑀 : 𝑒 𝑌 : 𝐹 ⊢ 𝑁 : 𝑓
·-𝑖

𝑋 : 𝐸,𝑌 : 𝐹 ⊢ ⟨𝑀, 𝑁 ⟩ : 𝑒 · 𝑓

𝑋 : 𝐸 ⊢ 𝑀 : 𝑒𝑖
+-𝑖𝑖 𝑖 ∈ {0, 1}

𝑋 : 𝐸 ⊢ i𝑖𝑀 : 𝑒0 + 𝑒1

𝑥 : 𝑒, 𝑋 : 𝐸 ⊢ 𝑀 : 𝑓
→-𝑖

𝑋 : 𝐸 ⊢ 𝜆𝑥.𝑀 : 𝑒 → 𝑓

𝑋 : 𝐸 ⊢ 𝑀 : 𝑒 𝑋 : 𝐸 ⊢ 𝑁 : 𝑓
∩-𝑖

𝑋 : 𝐸 ⊢ ⟨⟨𝑀, 𝑁 ⟩⟩ : 𝑒 ∩ 𝑓

𝑋 : 𝐸 ⊢ 𝑀 : 𝑒 𝑌 : 𝐹 ⊢ 𝑁 : 𝑒∗
∗-𝑖::

𝑋 : 𝐸,𝑌 : 𝐹 ⊢ 𝑀 :: 𝑁 : 𝑒∗

Figure 10. The typing derivations for right rules where

green sequents represent the results obtained through the

induction.

and the following schema,

∀𝑥 (𝜑 ≡ 𝜓) ⇒ ∃𝑋∀𝑥 (𝑋 (𝑥) ≡ 𝜑)
where 𝜑 and𝜓 vary over Σ0

1
formulas.

D.2 Definition ofWKL0
WKL0 extends RCA0 with weak König’s lemma:

“every infinite binary tree has an infinite branch”.

This statement may be formalised as follows:

• “𝑋 is infinite” is formalised as ∀𝑥∃𝑦 > 𝑥 .𝑦 ∈ 𝑋 , stating

that there are arbitrarily large elements of 𝑋 .

• We may define the terms 𝑆1𝑡 ≜ 2𝑡 + 1 and 𝑆2𝑡 ≜ 2𝑡 + 2
to stand for the two children of a node 𝑡 in a binary

tree.
2
Note here that we are construing numbers as

binary strings in dyadic notation.

• “𝑋 is a tree” is formalised as ∀𝑥 ∈ 𝑋 (𝑥 = 0 ∨ ∃𝑦 ∈
𝑋 (𝑥 = 𝑆1𝑦 ∨ 𝑥 = 𝑆2𝑦), stating that 𝑋 is prefix-closed.

• “𝑌 is an infinite branch” is formalised as 0 ∈ 𝑌 ∧ ∀𝑥 ∈
𝑌 (𝑆1𝑥 ∈ 𝑌 ≡ 𝑆2𝑥 ∉ 𝑌), stating that every node in 𝑌

has exactly one child.

WhileWKL0 is strictly stronger than RCA0, it is conservative

over RCA0 for arithmetical formulas:

Theorem D.1 (Harrington, e.g. see [3]). If 𝜑 is arithmetical
and WKL0 proves 𝜑 , then RCA0 proves 𝜑 .

To extract primitive recursive functions, we only need

the rather weak specialisation of this result to 𝜑 ∈ Π0

2
. This

2
Even more formally, 2𝑥 + 1 is 𝑆𝑆0 × 𝑥 + 𝑆0 and so on.

id
𝑥 : 1 ⊢ 𝑥 : 1 𝑋 : 𝐸 ⊢ 𝑀 : 𝑒

1-𝑒
𝑥 : 1, 𝑋 : 𝐸 ⊢ let ⟨⟩ := 𝑥 in𝑀 : 𝑒

id
𝑧 : 𝑒 · 𝑓 ⊢ 𝑧 : 𝑒 · 𝑓 𝑥 : 𝑒,𝑦 : 𝑓 , 𝑋 : 𝐸 ⊢ 𝑁 : 𝑔

·-𝑒
𝑧 : 𝑒 · 𝑓 , 𝑋 : 𝐸 ⊢ let ⟨𝑥,𝑦⟩ := 𝑧 in 𝑁 : 𝑔

id
𝑧 : 𝑒 + 𝑓 ⊢ 𝑧 : 𝑒 + 𝑓 𝑥 : 𝑒, 𝑋 : 𝐸 ⊢ 𝑀 : 𝑔 𝑦 : 𝑓 , 𝑋 : 𝐸 ⊢ 𝑁 : 𝑔

+-𝑒
𝑧 : 𝑒 + 𝑓 , 𝑋 : 𝐸 ⊢ D(𝑧;𝑥 .𝑀 ;𝑦.𝑁) : 𝑔

𝑥 : 𝑓 , 𝑌 : 𝐹 ⊢ 𝑀 : 𝑔
→-𝑖

𝑌 : 𝐹 ⊢ 𝜆𝑥.𝑀 : 𝑓 → 𝑔

id
𝑦 : 𝑒 → 𝑓 ⊢ 𝑦 : 𝑒 → 𝑓 𝑋 : 𝐸 ⊢ 𝑁 : 𝑒

→-𝑒
𝑦 : 𝑒 → 𝑓 , 𝑋 : 𝐸 ⊢ 𝑦𝑁 : 𝑓

→-𝑒
𝑦 : 𝑒 → 𝑓 , 𝑋 : 𝐸,𝑌 : 𝐹 ⊢ (𝜆𝑥.𝑀) (𝑦𝑁) : 𝑔

id
𝑧 : 𝑒0 ∩ 𝑒1 ⊢ 𝑧 : 𝑒0 ∩ 𝑒1∩-𝑒𝑖
𝑧 : 𝑒0 ∩ 𝑒1 ⊢ p𝑖𝑧 : 𝑒𝑖

𝑥 : 𝑒𝑖 , 𝑋 : 𝐸 ⊢ 𝑀 : 𝑓
→-𝑖

𝑋 : 𝐸 ⊢ 𝜆𝑥 .𝑀 : 𝑒𝑖 → 𝑓
→-𝑒

𝑧 : 𝑒0 ∩ 𝑒1, 𝑋 : 𝐸 ⊢ (𝜆𝑥.𝑀) (p𝑖𝑧) : 𝑓

𝑋 : 𝐸 ⊢ 𝑁 : 𝑒

𝑥 : 𝑒, 𝑌 : 𝐹 ⊢ 𝑀 : 𝑔
→-𝑖

𝑌 : 𝐹 ⊢ 𝜆𝑥.𝑀 : 𝑒 → 𝑔
→-𝑒

𝑋 : 𝐸,𝑌 : 𝐹 ⊢ (𝜆𝑥 .𝑀)𝑁 : 𝑔

Figure 11. The typing derivations for left rules where green
sequents represent the results obtained through the induc-

tion. The last derivation is the one for cut rule, as described

in Sect. 4.4. The typing rules for weakening and identity are

trivial and omitted here.

particular specialisation has several proofs, first by Friedman

via model-theoretic methods, and then more directly in [24]

using the Dialectica interpretation.

Together with Prop. 5.4, we have:

Proposition D.2 (Witnessing for WKL0). Suppose WKL0
proves ∀®𝑥∃𝑦𝜑 (®𝑥,𝑦), where 𝜑 is Σ0

1
and contains no set symbols.

Then there is a primitive recursive function 𝑓 (®𝑥) such that
N ⊨ ∀®𝑥 .𝜑 (®𝑥, 𝑓 (®𝑥)).

D.3 Extraction and certification
The Dialectica interpretation actually gives us more than

Prop. 5.3: it also implies that a proof of correctness is ex-

tracted within a rudimentary equational theory over T
3
.

However we do not concern ourselves with this additional

feature in this work.

Similarly, we can getmore from the assumptions of Prop. D.2,

in the sense that a proof of correctness is also extracted

within an equational theory over the primitive recursive

functions, known as primitive recursive arithmetic.

3
As pointed out in the introduction, strictly speaking it is this theory that

is usually called T, whereas our calculus comprises only its underlying term

language.

20

Cyclic proofs, system T, and the power of contraction

D.4 Büchi automata algorithms in RCA0

The correctness of universality or inclusion algorithms for

Büchi automata usually rely on Ramsey’s theorem,
4
which

is not provable in RCA0 even for pairs with two colours

(see, e.g., [22]), but it is known that the result can also be

formalised using the so-called additive version of Ramsey’s

theorem, where the colouring must be compatible with a

semigroup structure; this argument was used in [25]. It is

this step where the non-uniformity of the above proposi-

tion is crucial, since the result is established by a meta-level

induction on the number of colours, cf. [12]. Note that the

usual Ramsey theorem is not typically proved by induction

on the number of colours and, as established in [12], no uni-

versality algorithm can be proved correct uniformly in RCA0

by reduction to a form of Gödel incompleteness for cyclic

theories of arithmetic.

E Additional details for Sect. 6
E.1 Reduction
We give here a more explicit definition of the reduction

relation (Def. 6.1): reduction (⇝) is the least relation on

programs which is closed under contexts (i.e., if 𝑃 ⇝ 𝑃 ′

then 𝑃 :: 𝑄 ⇝ 𝑃 ′ :: 𝑄 , 𝑄 :: 𝑃 ⇝ 𝑄 :: 𝑃 ′, and 𝑣 (®𝑄, 𝑃, ®𝑅) ⇝
𝑣 (®𝑄, 𝑃 ′, ®𝑅)), and such the following rules are satisfied. In each
case, we assume that the length of the vectors of programs

match the length of the corresponding lists of formulas.

structural reductions:

• If 𝜋𝑢 is id
𝑒 ⊢ 𝑒

then 𝑢 (𝑃) ⇝ 𝑃 .

• If𝜋𝑢 ends
𝐸, 𝑓 , 𝑒, 𝐹 ⊢ 𝑔

x
𝐸, 𝑒, 𝑓 , 𝐹 ⊢ 𝑔

then𝑢 (®𝑃, 𝑃,𝑄, ®𝑄) ⇝ 𝑢0(®𝑃,𝑄, 𝑃, ®𝑄).

• If 𝜋𝑢 ends

𝐸 ⊢ 𝑔
w
𝑒, 𝐸 ⊢ 𝑔

then 𝑢 (𝑃, ®𝑃) ⇝ 𝑢0(®𝑃).

• If 𝜋𝑢 ends

𝑒, 𝐸 ⊢ 𝑔
c
𝑒, 𝑒, 𝐸 ⊢ 𝑔

then 𝑢 (𝑃, ®𝑃) ⇝ 𝑢0(𝑃, 𝑃, ®𝑃).

• If𝜋𝑢 ends
𝐸 ⊢ 𝑒 𝑒, 𝐹 ⊢ 𝑓

cut
𝐸, 𝐹 ⊢ 𝑓

then𝑢 (®𝑃, ®𝑄) ⇝ 𝑢1(𝑢0(®𝑃), ®𝑄).

constructor reductions:

• If 𝜋𝑤 ends 1-𝑟

⊢ 1
then𝑤 () ⇝ ⟨⟩.

• If 𝜋𝑤 ends ∗-𝑟𝜖 ⊢ 𝑒∗
then𝑤 () ⇝ [].

• If 𝜋𝑤 ends

𝐸 ⊢ 𝑒 𝐹 ⊢ 𝑒∗
∗-𝑟 ::

𝐸, 𝐹 ⊢ 𝑒∗
then𝑤 (®𝑃, ®𝑄) ⇝ 𝑤0(®𝑃) ::

𝑤1(®𝑄).
left/constructor reductions:

4
For any function 𝑐 : N𝑘 → {0, . . . , 𝑛 − 1}, there is an infinite set 𝑋 and

𝑚 < 𝑛 such that ∀𝑥1, . . . , 𝑥𝑘 .𝑐 (®𝑥) =𝑚.

• If 𝜋𝑣 ends
𝐸 ⊢ 𝑔

1-𝑙

1, 𝐸 ⊢ 𝑔
then 𝑣 (⟨⟩, ®𝑃) ⇝ 𝑣0(®𝑃).

• If 𝜋𝑣 ends
𝐸 ⊢ 𝑔 𝑒, 𝑒∗, 𝐸 ⊢ 𝑔

∗-𝑙
𝑒∗, 𝐸 ⊢ 𝑔

then 𝑣 ([], ®𝑃) ⇝ 𝑣0(®𝑃)

and 𝑣 (𝑃 :: 𝑄, ®𝑃) ⇝ 𝑣1(𝑃,𝑄, ®𝑃).

left/right reductions:

• If 𝜋𝑤 ends

𝐸 ⊢ 𝑒 𝐹 ⊢ 𝑓
·-𝑟

𝐸, 𝐹 ⊢ 𝑒 · 𝑓
and 𝜋𝑣 ends

𝑒, 𝑓 ,𝐺 ⊢ 𝑔
·-𝑙
𝑒 · 𝑓 ,𝐺 ⊢ 𝑔

then 𝑣 (𝑤 (®𝑃, ®𝑄), ®𝑅) ⇝ 𝑣0(𝑤0(®𝑃), 𝑣1(®𝑄), ®𝑅).

• If𝜋𝑤 ends

𝐸 ⊢ 𝑒𝑖
+-𝑟𝑖

𝐸 ⊢ 𝑒0 + 𝑒1
and𝜋𝑣 ends

𝑒0, 𝐹 ⊢ 𝑔 𝑒1, 𝐹 ⊢ 𝑔
+-𝑙

𝑒0 + 𝑒1, 𝐹 ⊢ 𝑔
then 𝑣 (𝑤 (®𝑃), ®𝑄) ⇝ 𝑣𝑖 (𝑤0(®𝑃), ®𝑄), for 𝑖 ∈ {0, 1}.

• If𝜋𝑤 ends

𝐸 ⊢ 𝑒0 𝐸 ⊢ 𝑒1
∩-𝑟

𝐸 ⊢ 𝑒0 ∩ 𝑒1
and𝜋𝑣 ends

𝑒𝑖 , 𝐹 ⊢ 𝑔
∩-𝑙𝑖

𝑒0 ∩ 𝑒1, 𝐹 ⊢ 𝑔
then 𝑣 (𝑤 (®𝑃), ®𝑄) ⇝ 𝑣0(𝑤𝑖 (®𝑃), ®𝑄), for 𝑖 ∈ {0, 1}.

• If𝜋𝑤 ends

𝑒, 𝐸 ⊢ 𝑓
→-𝑟

𝐸 ⊢ 𝑒 → 𝑓
and𝜋𝑣 ends

𝐹 ⊢ 𝑒 𝑓 ,𝐺 ⊢ 𝑔
→-𝑙

𝑒 → 𝑓 , 𝐹 ,𝐺 ⊢ 𝑔
then 𝑣 (𝑤 (®𝑃), ®𝑄, ®𝑅) ⇝ 𝑣1(𝑤0(𝑣0(®𝑄), ®𝑃), ®𝑅).

Note that the choice of using left/constructor or left/right

rules for a given connective corresponds to the choice of

having explicit constructors for that connective in the syntax

of programs. Constructors are put for all connectives in [15];

in that case, constructors for negative connectives should

not be considered as evaluation contexts.

We prove the characterisation of irreducible programs, in

RCA0:

Lemma E.1 (Lem. 6.2 in the main text). If 𝑃 is irreducible,
then 𝑃 is of the form

• ⟨⟩, [], or 𝑃1 :: 𝑃2 for some programs 𝑃1, 𝑃2; or,
• 𝑣 (®𝑃) for some 𝑣 s.t. 𝜋𝑣 ends with +-𝑟𝑖 , ·-𝑟 , ∩-𝑟 or→-𝑟 .

Proof. The characterisation given in the statement is com-

putable, and so we may prove the lemma by Σ0

1
-induction

on the structure of programs. If 𝑃 starts with a construc-

tor, we are done; otherwise, if 𝑃 = 𝑣 [®𝑃] then 𝑣 cannot be a

structural rule, the identity rule, or the cut rule, otherwise 𝑃

would reduce. If 𝑣 is a left introduction rule then by induc-

tion 𝑃1 (which is irreducible) must be a constructor or of the

form𝑤 [®𝑄] with𝑤 a right introduction rule, thus enabling a

reduction step for 𝑃 , a contradiction. □

E.2 Reducible programs (ACA0)
We abbreviate 𝑃 ↓𝜋 𝑃 ′ as 𝑃 ↓ 𝑃 ′ in the sequel.

21

Denis Kuperberg, Laureline Pinault, and Damien Pous

The complete definition of the sets R𝑒 of reducible pro-
grams is the following:

R1 ≜ {𝑃 | 𝑃 ↓ ⟨⟩}
R𝑒∗ ≜ {𝑃 | 𝑃 ↓ 𝑄1 :: · · · :: 𝑄𝑛, 𝑄1, . . . , 𝑄𝑛 ∈ R𝑒 }

R𝑒 ·𝑓 ≜ {𝑃 | 𝑃 ↓ 𝑣 (®𝑄, ®𝑅), 𝑣 a ·-𝑟, 𝑣0(®𝑄) ∈ R𝑒 , 𝑣1(®𝑅) ∈ R𝑓 }

R𝑒∩𝑓 ≜ {𝑃 | 𝑃 ↓ 𝑣 (®𝑄), 𝑣 a ∩-𝑟, 𝑣0(®𝑄) ∈ R𝑒 , 𝑣1(®𝑄) ∈ R𝑓 }

R𝑒0+𝑒1 ≜ {𝑃 | 𝑃 ↓ 𝑣 (®𝑄), 𝑣 a +-𝑟𝑖 , 𝑣𝑖 (®𝑄) ∈ R𝑒𝑖 }

R𝑒→𝑓 ≜ {𝑃 | 𝑃 ↓ 𝑣 (®𝑄), 𝑣 a→-𝑟,∀𝑄 ∈ R𝑒 , 𝑣0(𝑄, ®𝑄) ∈ R𝑓 }

(Like above, in the second case, assuming that the lengths of

the vectors are consistent with the rule instances used at 𝑣 .)

The key technical lemma for weak normalisation is proved

below, in ACA0. We often use the fact that if 𝑃 ∈ R𝑒 , then

𝑃 ↓ 𝑃 ′ for some 𝑃 ′ ∈ R𝑒 , which we abbreviate as 𝑃 ↓ 𝑃 ′ ∈ R𝑒 .
We also write 𝑃 ∈ R↓𝑒 when 𝑃 ∈ R𝑒 and 𝑃 is irreducible. We

use the notation⇝ only for left-most innermost reduction

steps.

Lemma E.2 (Lem. 6.6 in the main text). For every address
𝑤 : 𝐸 ⊢ 𝑒 , for all ®𝑃 ∈ R𝐸 such that 𝑤 (®𝑃) ∉ R𝑒 , there are
𝑣, 𝐹, 𝑓 , ®𝑄 such that |𝑣 | = |𝑤 | + 1, 𝑣 : 𝐹 ⊢ 𝑓 , 𝑣 (®𝑄) ∉ R𝑓 , and:

1. for all 𝑖, 𝑗 s.t. ⟨𝑣, 𝑖⟩ ◁ ⟨𝑤, 𝑗⟩, we have |𝑄𝑖 | = |𝑃 𝑗 |, and
2. for all 𝑖, 𝑗 s.t. ⟨𝑣, 𝑖⟩ ◁· ⟨𝑤, 𝑗⟩, we have |𝑄𝑖 | < |𝑃 𝑗 |.

(Where given 𝑃 ∈ R𝑒∗ , we write |𝑃 | for the length of the list
given by the definition of R𝑒∗ .)

Proof. We can assume w.l.o.g. that the elements of ®𝑃 are

irreducible. We reason by case analysis on the rule used at

𝑤 ; we only list the most significant cases. We call the vector

®𝑄 we have to provide the witness.

cut : 𝜋𝑤 ends

𝐸 ⊢ 𝑒 𝑒, 𝐹 ⊢ 𝑓
cut

𝐸, 𝐹 ⊢ 𝑓
. Assume ®𝑃 ∈ R↓

𝐸
, ®𝑄 ∈ R↓

𝐹

and𝑤 (®𝑃, ®𝑄) ∉ R𝑓 . There are two cases:

• if 𝑤0(®𝑃) ∉ R𝑒 then we choose 𝑣 = 𝑤0, taking ®𝑃 as

witness.

• if 𝑤0(®𝑃) ∈ R𝑒 then we choose 𝑣 = 𝑤1, taking

𝑤0(®𝑃), ®𝑄 as witness since

𝑤 (®𝑃, ®𝑄) ⇝ 𝑤1(𝑤0(®𝑃), ®𝑄)

c : 𝜋𝑤 ends

𝑒, 𝐸 ⊢ 𝑔
c
𝑒, 𝑒, 𝐸 ⊢ 𝑔

. Assuming 𝑃 ∈ R↓𝑒 , ®𝑃 ∈ R↓
𝐸
, we

take 𝑣 = 𝑤0 with witness 𝑃, 𝑃, ®𝑃 , since

𝑤 (𝑃, ®𝑃) ⇝ 𝑤0(𝑃, 𝑃, ®𝑃)

→-𝑟 : 𝜋𝑤 ends

𝑒, 𝐸 ⊢ 𝑓
→-𝑟

𝐸 ⊢ 𝑒 → 𝑓
. Assume ®𝑃 ∈ R↓

𝐸
and𝑤 (®𝑃) ∉

R𝑒→𝑓 .𝑤 (®𝑃) is irreducible, so that there must be a 𝑅 ∈
R𝑒 such that 𝑤0(𝑅, ®𝑃) ∉ R𝑓 . We choose 𝑣 = 𝑤0 with

𝑅, ®𝑃 as witness.

→-𝑙 : 𝜋𝑤 ends

𝐸 ⊢ 𝑒 𝑓 , 𝐹 ⊢ 𝑔
→-𝑙

𝑒 → 𝑓 , 𝐸, 𝐹 ⊢ 𝑔
. Assume 𝑃 = 𝑢 [®𝑅] ∈

R↓
𝑒→𝑓

, ®𝑃 ∈ R↓
𝐸
, ®𝑄 ∈ R↓

𝐹
and 𝑤 (𝑃, ®𝑃, ®𝑄) ∉ R𝑔. There

are two cases:

• if𝑤0(®𝑃) ∉ R𝑒 , we take 𝑣 = 𝑤0 with witness ®𝑃 .
• if𝑤0(®𝑃) ∈ R𝑒 , then𝑤0(®𝑃) ↓ 𝑃0 ∈ R𝑒 . By definition

of R𝑒→𝑓 we obtain 𝑢0(𝑃0, ®𝑅) ∈ R𝑓 . We choose 𝑣 =

𝑤1, taking 𝑢0(𝑃0, ®𝑅), ®𝑄 as witness, since

𝑤 (𝑃, ®𝑃, ®𝑄) ⇝ 𝑤1(𝑢0(𝑤0[®𝑃], ®𝑅), ®𝑄)

⇝∗ 𝑤1(𝑢0(𝑃0, ®𝑅), ®𝑄)

∗-𝑟 :: : 𝜋𝑤 ends

𝐸 ⊢ 𝑒 𝐹 ⊢ 𝑒∗
∗-𝑟 ::

𝐸, 𝐹 ⊢ 𝑒∗
. Assume ®𝑃 ∈ R↓

𝐸
, ®𝑄 ∈ R↓

𝐹
,

and 𝑤 (®𝑃, ®𝑄) ∉ R𝑒∗ . If 𝑤0(®𝑃) ∉ R𝑒 we take 𝑣 = 𝑤0

with ®𝑃 as witness. Otherwise 𝑤0(®𝑃) ↓ 𝑅0 ∈ R𝑒 and

we take 𝑣 = 𝑤1 with ®𝑄 as witness. Indeed, if we had

𝑤1(®𝑄) ∈ R𝑒∗ then we would get𝑤1(®𝑄) ↓ 𝑅1 :: · · · :: 𝑅𝑛
with the 𝑅𝑖 in R𝑒 ; this would contradict the assumption

about𝑤 since

𝑤 (®𝑃, ®𝑄) ⇝ 𝑤0(®𝑃) :: 𝑤1(®𝑄)

⇝∗ 𝑅0 :: 𝑤1(®𝑄)
⇝∗ 𝑅0 :: 𝑅1 :: · · · :: 𝑅𝑛

∗-𝑙 : 𝜋𝑤 ends

𝐸 ⊢ 𝑔 𝑒, 𝑒∗, 𝐸 ⊢ 𝑔
∗-𝑙

𝑒∗, 𝐸 ⊢ 𝑔
. Assume 𝑃 ∈ R↓

𝑒∗ ,
®𝑃 ∈

R↓
𝐸
and 𝑤 (𝑃, ®𝑃) ∉ R𝑔. According to the definition of

R𝑒∗ we can distinguish two cases:

• if 𝑃 = [], we take 𝑣 = 𝑤0 with ®𝑃 as witness:

𝑤 (𝑃, ®𝑃) ⇝ 𝑤0(®𝑃)

• or 𝑃 = 𝑋 :: 𝑄 , and we take 𝑣 = 𝑤1 with 𝑋,𝑄, ®𝑃 as

witness:

𝑤 (𝑃, ®𝑃) ⇝ 𝑤1(𝑋,𝑄, ®𝑃)

We have |𝑃 | = |𝑄 | + 1 in this case, so that we satisfy

the condition 2/ for 𝑖 = 1 and 𝑗 = 0. (this is the only

place where this condition is not void)

The condition 1/ is straightforward to check in all cases. □

E.3 Alternative termination proof in the affine case
We assume a regular and affine proof 𝜋 in this section. We

let 𝑉 ,𝑊 range over finite antichains of addresses (w.r.t. the

prefix ordering ⊑).
A program 𝑃 is coherent if the sequence of addresses it

contains forms an antichain, which we denote by V(𝑃).

Lemma E.3. If 𝑃 is coherent and 𝑃 ⇝ 𝑃 ′ then 𝑃 ′ is coherent
and every address in V(𝑃 ′) is either already in V(𝑃), or an
immediate successor of some address in V(𝑃).

22

Cyclic proofs, system T, and the power of contraction

The run of a program 𝑃 is the sequence of addresses or

pairs of addresses corresponding to the redexes fired during

the (potentially infinite) leftmost innermost reduction of 𝑃 .

Recall that irreducible programs of type 𝑒∗ are lists of pro-
grams of type 𝑒 (by Lem. 6.2). The weight of such a program

is the length of this list.

Theorem E.4 (Weak normalisation in affine proofs). For
every coherent program 𝑃 , there exists 𝑃 ′ with 𝑃 ↓ 𝑃 ′.

Proof. We prove that the run of 𝑃 is finite. By Lem. E.3, the

subset of addresses appearing in this run forms a forest

rooted in 𝑉 (𝑃), and every address appears at most once.

Suppose by contradiction that the run is infinite. By weak

König’s Lemma one can extract an infinite branch of 𝜋 which

is contained in the run. By validity, this branch must contain

a thread along a star formula 𝑓 ∗ which is infinitely often

principal. By analysis of the reduction rules, and thanks to

the innermost strategy, we find an infinite sequence of ir-

reducible programs of type 𝑓 ∗ whose weights are strictly

decreasing, which is impossible. □

Note that the above argument requires an innermost re-

duction strategy so that we can compute weights and get a

contradiction. It also breaks with contraction: in this case

a given address may appear repeatedly in a run, so that a

potential infinite run could stay below a finite prefix of 𝜋 .

The above proof exploits weak König’s lemma to extract

an infinite branch and use the validity criterion. Unfortu-

nately, it cannot be formalised in WKL0 as it stands: the run
of 𝑃 , seen as a collection of addresses, is only recursively

enumerable (until we discover that it is in fact finite). Thus

we cannot define the corresponding set in RCA0, where set-

comprehension is restricted to provably recursive formulas.

This prevents us from calling weak König’s lemma in WKL0.
In contrast to RCA0,WKL0 has the ability to define non-

recursive sets (e.g., an infinite branch of the Kleene tree).

Nevertheless, we do not see how to use weak König’s lemma

to turn the run of 𝑃 into a set in WKL0 before we know it is

actually finite.

23

	Abstract
	1 Introduction
	2 System C and its semantics
	2.1 Regular expressions as types
	2.2 Non-wellfounded proofs
	2.3 Computational interpretation of system C
	2.4 Weakening and contraction
	2.5 Functions on natural numbers

	3 Extended, resource-tracking system T
	4 From affine C to affine T (using)
	4.1 Proofs with backpointers
	4.2 Idempotent normal form
	4.3 Ranked proofs
	4.4 Affine translation

	5 Subsystems of second-order arithmetic
	5.1 Some `second-order' theories of arithmetic
	5.2 Provably total computable functions
	5.3 Reverse mathematics of cyclic proof checking

	6 Small steps reduction semantics for C
	6.1 Weak normalisation in ACA0
	6.2 Weak normalisation in RCA0

	7 Conclusions and future work
	References
	A Additional details for Sect. 2
	A.1 Return value of a computation
	A.2 Weakening and contraction
	A.3 Minimisation operator

	B Additional details for Sect. 3
	B.1 Encoding of classical system T
	B.2 Complete list for Def. 3.1
	B.3 From system T to system C

	C Proofs and details for Sect. 4
	C.1 Proof of Prop. 4.3
	C.2 Proof of Prop. 4.4
	C.3 Validity of proofs in ranked normal form
	C.4 Why the ranked approach cannot be adapted with contractions
	C.5 Typing derivations for the affine C to affine T translation

	D Additional details on subsystems of second-order arithmetic
	D.1 Definition of RCA0
	D.2 Definition of WKL0
	D.3 Extraction and certification
	D.4 Büchi automata algorithms in RCA0

	E Additional details for Sect. 6
	E.1 Reduction
	E.2 Reducible programs (ACA0)
	E.3 Alternative termination proof in the affine case

