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Abstract—Smart manufacturing is a part of the fourth
industry revolution (Industry 4.0), which offers promising
perspectives for high reliability, availability, maintainability, and
safety production process. Indeed, smart monitoring methods,
that are implemented in this kind of manufacturing process,
allow efficient tracking of a system degradation in real time
through appropriate sensors. Then, the sensor data are analyzed
and processed to extract effective health indicators for fault
detection, diagnostic and prognostics.

This paper aims to develop a practical methodology for con-
structing a new health indicator based on heterogeneous sensor
measurements to efficiently monitor system states. The proposed
methodology is applied to extract the health indicator of a robot
cutting tool (i.e. end-flat mill). This indicator is then used to
diagnose the different fault types of the tool by an adaptive
neuro-fuzzy inference system model.

Index Terms—Smart manufacturing, smart monitoring, industry
4.0, health indicator construction, signal processing, tool condition
monitoring.

I. INTRODUCTION

Industry 4.0 is the evolution from automatic systems

to cyber-physical systems (CPS) that are fully integrated,

automated and optimized [4]. This evolution makes industrial

systems more complex and consequently leads to numerous

challenges for Prognostics and Health Management (PHM).

Indeed, the traditional degradation modeling methods, which

are based on the analysis of physical characteristics and

system dynamic behaviors, become unfeasible for complex

systems. To cope with this complexity, data-driven health

monitoring approaches have been developed. They use sensor

data to track the system degradation without prior knowledge

of the physical nature of the system. The performance of

these methods strictly depends on signal processing and

health indicator construction techniques.

Considering signal processing methods to construct health

indicators, the available studies can be classified into three

groups: time, frequency, and time-frequency domain.

In time domain, statistical features (root mean square (RMS),

standard deviation (STD), skewness (SKEW), variance

(VAR), kurtosis (KUR), crest factor (CF), shape factor (SF),

etc.) are extracted from the raw signals to monitor the asset

degradation process [2]. These features are widely used

due to their easy implementation and their relation with the

system’s anomalies [5]. However, these techniques are not

viable for noisy signals. They could require preprocessing

tasks to enhance the manipulated raw signals before the

construction of the health indicators.

The frequency domain analysis allows visualizing the

frequency amplitudes by decomposing the signal into a

number of discrete frequencies/spectrum of continuous

frequencies. For example, the fast Fourier transform (FFT)

is used to observe the harmonic frequency amplitudes

characterizing faults in planetary gearboxes [9]. This method

is easy to implement and detect faults that can be represented

by characteristic frequencies (e.g. bearings and gears).

However, these frequencies cannot be generalized to all

systems.

Finally, the time-frequency domain methods use both time

and frequency analysis to construct the health indicator.

They are good candidates for non-stationary signals. The

most effective techniques used in the literature are the short

Fourier transform (SFT), Wigner-Ville distribution (WVD),

wavelet transform (WT), and Hilbert Huang transform (HHT)

[7] to extract the useful information of the system state.

These approaches combine the advantages of the time domain

analysis and the spectrum content in the frequency analysis

to reduce the uncertainties and false alarms.

Although the traditional features in time, frequency, and

time-frequency domain are widely proposed in numerous

studies of the literature, the robustness of these indicators was

not verified under different operating conditions. In addition,

to our humble knowledge, the existing works in the literature

do not investigate the health indicator performance with

different signal types. This paper aims to fill this literature

gap. It proposes a new health indicator that is constructed

by a combination of different features in order to efficiently

characterize different system states. The robustness and

performance of the proposed health indicator are tested on

different sensor measurements, and also on various operating



conditions.

The remainder of this paper is structured as follows: Section II

presents the global methodology used for the system’s health

assessment and details the main steps to construct the health

indicator. In section III, the performance of the proposed health

indicator is highlighted through numerous experimental tests

carried out on a robot cutting tool. Finally, the conclusion and

perspectives of this work will be presented in section IV.

II. METHODOLOGY FOR SYSTEM HEALTH ASSESSMENT

This section aims to present the main steps to monitor and

asses the health state of a given system. The methodology goes

from system analysis to fault detection and diagnostics [1, 2]

as shown in Fig. 1.
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Fig. 1: General overview of the proposed methodology.

First, it is necessary to analyze the system to identify the

critical components leading to the system failure [2]. Once

the critical components are identified, it is important to

define the appropriate physical parameters to be observed and

the instrumentation of the sensors to track the component

degradation process. The data recorded will then be injected

into signal processing algorithms to extract relevant features

and build health indicators. Finally, the health indicators will

be used to create a model for fault detection and diagnostics

(FDD) of the studied system.

Among the system health assessment process, this paper

focuses on the health indicator construction step. The

developed health indicator is a combination of different

features, that are extracted from both time and frequency

domains. Its performance is verified on different operating

conditions and also on various signal types. In details, the

current (ia, ib, ic), the vibration (acca, accb, accc), the force

(Fa, Fb, Fc) and the torque signals (Ta, Tb, Tc) are used to

illustrate the health indicator effectiveness. The main steps of

the proposed methodology are presented hereafter.

1) Load and split every measured signal into Ne ob-

servations of length L: This step, illustrated in Fig. 2,

allows reducing the data size for signal processing and

takes only the relevant features. It splits the signals into

Ne segments denoted yijh of length L, where i and j
characterize the signal types (current, vibration, force and

torque) and the axes (ia, ib, ic, acca, accb, accc, Fa,

Fb, Fc, Ta, Tb, Tc) respectively with h representing the

segmented signal samples (h ∈ [1...Ne]).
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Fig. 2: Sampling signals of different measurements.

2) Signal processing: Considering Fig. 3, each signal seg-

ment is divided by the max value of the segment spec-

trum, max(FFT(yijh)). This step is inspired by the results

obtained in [6]. It allows limiting features dispersion

caused by load variations and then separating the classes

that represent different load levels of the operating mode.

 

 

Fig. 3: Time and frequency domain analysis.

3) Feature extraction from every signal window yijh:

This step aims to extract the statistical features from the

splitting signals to construct the health indicator (HI). Its

expression is denoted by the following equation:

HI =
(

KUR (yijh)× VAR (Yij)
2
)

(1)

The KUR and VAR are respectively the kurtosis and the

variance values. The kurtosis measures the segmented

signal flattening, which indicates the impulsive property

of the signal by the centered moment of order 4 of the

segmented signal yijh [8]. It reduces signal’s noises due



to the sensor measurement. The variance measures the

dispersion of the signal Yij [8].

KUR =
1

ne

∑ne
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(
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VAR =
1

Ne

∑Ne

n=1

(

Yij − Yij

)2

(3)

where ¯yijh and Ȳij are respectively the mean values of

the segmented signal and the total signal.

4) Construction of health indicators: The obtained results

by (1) are used to construct the health indicators to

detect the system’s anomalies and also to classify the

different system’s states. Note that the use of one

sensor measurement, for example only the phase a of

the current, is not sufficient to detect different fault

types. The combination of several health indicators

obtained from sensor measurements, for example, all

the three phases of the current, is necessary to clearly

separate different system’s states. The health indicator

presentation is therefore changed from one dimension

to three dimension space. In detail, the obtained vector

from each signal is used to build the health indicator

matrix as illustrated hereafter.

indiijh =
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III. CASE STUDY

This section presents the case study used to highlight the

performance of the proposed health indicator. The test bench

is a six-axis robot used for machining an aluminum blank,

see Fig. 4. This robot is composed of six servo-drive motors

to control the robot-arms positions. At the sixth axis of the

robot, a tool is placed for machining the workpiece. The

machining tool contains the unit (flat-end mill) that is the most

critical component in the machining processes. To assess the

component’s health state, current, vibration, force, and torque

measurements are the most suitable parameters to monitor this

kind of process. First, the subsection (III-A) describes the

experimental process. Then, the subsection (III-B) verifies the

performance and robustness of the proposed health indicator

on different operating conditions. Finally, the fault diagnostics

results are presented in the subsection (III-C).

A. Test bench description

The overall scheme of the test bench is presented in Fig.

4. It is installed at METALLICADOUR, a resource and

technology transfer center in the south-west of France.

In detail, a three-phase synchronous motor drives a cutting

tool. This latter is used for machining aluminum blanks by 4

level steps of 5 mm as marked in green color in Fig. 4. Note

that the cutting tool contains three cutting edges. In the case

study, four components are used to achieve the experimental

tests. The first one represents a new tool. The second, third and

fourth tools represent different degraded states. These states

are respectively the first, the second cutting tool defect, and

the broken tooth state, see Fig. 5.
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Fig. 5: Illustration of different tool experiences.

Concerning the machining process, the manufacturing of an

aluminum blank is investigated. This object is a small part

used in aircraft. The machining parameters, which correspond

to two different operating conditions (i.e two cutting depth

level) of the machining process, are summarized in table I.

Regarding the data acquisition part, firstly, three-axis force

and torque sensors are placed at the sixth axis of the robot.

Secondly, the three axes vibration sensors are placed as near

as possible to the cutting tool. Finally, the three-phase current

sensors are placed at the output of the inverter of the ma-

chining tool. The sensor data are then recorded by a National

Instrument software (Labview) with a sampling frequency of

25.6 kHz and a duration of 40 seconds. These data are saved

in csv files of 5 seconds of data in each file.

TABLE I: Machining parameters for experimental tests.

Cutting depth Feed rate Speed Health state

(mm) (mm/mn) (rpm) HS

5 1890 14000 Healthy

5 1890 14000 Faulty 1

5 1890 14000 Faulty 2

5 1890 14000 Faulty 3

10 1890 14000 Healthy

10 1890 14000 Faulty 1

10 1890 14000 Faulty 2

10 1890 14000 Faulty 3

B. Investigation of the proposed methodology performance

In this subsection, the performance of the proposed health

indicator is highlighted when compared with the classical ones

proposed in the literature, such as (STD and KUR). The results

are shown in Fig. 6.
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Fig. 4: Overall scheme of the test bench.
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a) Health indicator construction using STD value.
 

Current signals Vibration signals 

Force signals Torque signals 

b) Health indicator construction using KUR value.

Fig. 6: Health indicators construction with traditional features.

Fig. 6 shows clearly that the traditional features (STD and

KUR) proposed in the literature presents a large dispersion of

the observations in the same group. Thus, one can conclude

that when using these traditional features, different system

health states cannot be detected. Next, the performance of the

proposed health indicator is then proved when considering

all signal types: the current, the vibration, the force, and the

torque signals. First, the proposed HI is used to diagnose

different states of the cutting tool that works in the first

operating mode (5 mm, 1890 mm/mn, 14000 tr/mn).

 

a) Three-phase current indicators.
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Fig. 7: Health indicators construction for TCM in first oper-

ating condition: 5 mm, 1890 mm/mn, 14000 tr/mn.

From Fig. 7, it can be seen that the proposed methodology

allows clearly separating different health states of the cut-

ting tool, regardless of the signal type. In addition, another

operating mode (10 mm, 1890 mm/mn, 14000 tr/mn) is

investigated to highlight the HI performance.

 

a) Three-phase current indicators.

   

b) Three-axes vibration indicators.

 

c) Three-axes force indicators.

 

d) Three-axes torque signals

Fig. 8: Health indicators construction for TCM in first oper-

ating condition: 10 mm, 1890 mm/mn, 14000 tr/mn.

Fig. 8 shows also a negligible dispersion of health indicator

observations within a group and a large distance separation be-

tween different groups representing the tools health states.This

proposed methodology offers a promising way for assessing

the system’s health, e.g. when using the current sensors, which

are not expensive and are easy to mount on the machine

without perturbing the machining process.

C. Fault classification

In this section, to verify the fault detection and diagnostics

performance, the constructed health indicators matrix is

divided into two sets: training (50%) and testing sets (50%).

In this application, the number of considered system’s states

is equal to 4 denoted by s, where s = 1 represents the

healthy state and the rest of the values correspond to three

fault types. The training set is used to train an ANFIS model

[3] to classify tool’s states.

The classification results obtained by ANFIS are verified by

considering two operating conditions, see table I. It can be

seen that, in all cases, the accuracy score given by the ANFIS

classifier is 100%.

TABLE II: Accuracy score (%) using ANFIS at different oper-

ating modes. 2 operating modes: C1 (5 mm, 1890 mm/mn,

14000 tr/mn), C2 (10 mm, 1890 mm/mn, 14000 tr/mn).

Case C1 C2

ANFIS 100 100



IV. CONCLUSION

In this paper, a new health indicator has been presented

for a system’s health assessment. This HI is a combination of

statistical features extracted from the time and the frequency

domains. Then, the proposed HI is fed into the ANFIS

model to classify the different health states of the monitored

system. The methodology performance was highlighted when

investigating a machining robot test bench, where the studied

system was a cutting tool (end flat mill), that is used for

milling an aluminum workpiece. The experiment tests were

performed in different operating conditions and monitored

by different parameters (current, vibration, force, and torque

signals) in three-dimensional space. The obtained results

highlighted the robustness of the proposed health indicator

regardless of the system operating modes and of the signal

types.

As a perspective of this work, the proposed health indicator

will be applied in different complex systems with various oper-

ating conditions to investigate its robustness and effectiveness.
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