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I. INTRODUCTION

Industry 4.0 is the evolution from automatic systems to cyber-physical systems (CPS) that are fully integrated, automated and optimized [START_REF] Lasi | Industry 4.0[END_REF]. This evolution makes industrial systems more complex and consequently leads to numerous challenges for Prognostics and Health Management (PHM). Indeed, the traditional degradation modeling methods, which are based on the analysis of physical characteristics and system dynamic behaviors, become unfeasible for complex systems. To cope with this complexity, data-driven health monitoring approaches have been developed. They use sensor data to track the system degradation without prior knowledge of the physical nature of the system. The performance of these methods strictly depends on signal processing and health indicator construction techniques.

Considering signal processing methods to construct health indicators, the available studies can be classified into three groups: time, frequency, and time-frequency domain.

In time domain, statistical features (root mean square (RMS), standard deviation (STD), skewness (SKEW), variance (VAR), kurtosis (KUR), crest factor (CF), shape factor (SF), etc.) are extracted from the raw signals to monitor the asset degradation process [START_REF] Gouriveau | From Prognostics and Health Systems Management to Predictive Maintenance 1: Monitoring and Prognostics[END_REF]. These features are widely used due to their easy implementation and their relation with the system's anomalies [START_REF] Nguyen | Analysis and comparison of multiple features for fault detection and prognostic in ball bearings[END_REF]. However, these techniques are not viable for noisy signals. They could require preprocessing tasks to enhance the manipulated raw signals before the construction of the health indicators.

The frequency domain analysis allows visualizing the frequency amplitudes by decomposing the signal into a number of discrete frequencies/spectrum of continuous frequencies. For example, the fast Fourier transform (FFT) is used to observe the harmonic frequency amplitudes characterizing faults in planetary gearboxes [START_REF] Zhang | Stator Current Analysis From Electrical Machines Using Resonance Residual Technique to Detect Faults in Planetary Gearboxes[END_REF]. This method is easy to implement and detect faults that can be represented by characteristic frequencies (e.g. bearings and gears). However, these frequencies cannot be generalized to all systems.

Finally, the time-frequency domain methods use both time and frequency analysis to construct the health indicator. They are good candidates for non-stationary signals. The most effective techniques used in the literature are the short Fourier transform (SFT), Wigner-Ville distribution (WVD), wavelet transform (WT), and Hilbert Huang transform (HHT) [START_REF] Soualhi | Early detection of bearing faults by the hilbert-huang transform[END_REF] to extract the useful information of the system state. These approaches combine the advantages of the time domain analysis and the spectrum content in the frequency analysis to reduce the uncertainties and false alarms.

Although the traditional features in time, frequency, and time-frequency domain are widely proposed in numerous studies of the literature, the robustness of these indicators was not verified under different operating conditions. In addition, to our humble knowledge, the existing works in the literature do not investigate the health indicator performance with different signal types. This paper aims to fill this literature gap. It proposes a new health indicator that is constructed by a combination of different features in order to efficiently characterize different system states. The robustness and performance of the proposed health indicator are tested on different sensor measurements, and also on various operating conditions.

The remainder of this paper is structured as follows: Section II presents the global methodology used for the system's health assessment and details the main steps to construct the health indicator. In section III, the performance of the proposed health indicator is highlighted through numerous experimental tests carried out on a robot cutting tool. Finally, the conclusion and perspectives of this work will be presented in section IV.

II. METHODOLOGY FOR SYSTEM HEALTH ASSESSMENT

This section aims to present the main steps to monitor and asses the health state of a given system. The methodology goes from system analysis to fault detection and diagnostics [START_REF] Atamuradov | Prognostics and health management for maintenance practitioners-review, implementation and tools evaluation[END_REF][START_REF] Gouriveau | From Prognostics and Health Systems Management to Predictive Maintenance 1: Monitoring and Prognostics[END_REF] as shown in Fig. 1.
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Fig. 1: General overview of the proposed methodology.

First, it is necessary to analyze the system to identify the critical components leading to the system failure [START_REF] Gouriveau | From Prognostics and Health Systems Management to Predictive Maintenance 1: Monitoring and Prognostics[END_REF]. Once the critical components are identified, it is important to define the appropriate physical parameters to be observed and the instrumentation of the sensors to track the component degradation process. The data recorded will then be injected into signal processing algorithms to extract relevant features and build health indicators. Finally, the health indicators will be used to create a model for fault detection and diagnostics (FDD) of the studied system.

Among the system health assessment process, this paper focuses on the health indicator construction step. The developed health indicator is a combination of different features, that are extracted from both time and frequency domains. Its performance is verified on different operating conditions and also on various signal types. In details, the current (i a , i b , i c ), the vibration (acc a , acc b , acc c ), the force (F a , F b , F c ) and the torque signals (T a , T b , T c ) are used to illustrate the health indicator effectiveness. The main steps of the proposed methodology are presented hereafter. 2) Signal processing: Considering Fig. 3, each signal segment is divided by the max value of the segment spectrum, max(FFT(y ijh )). This step is inspired by the results obtained in [START_REF] Ondel | Fault detection and diagnosis in a set inverter-induction machine through multidimensional membership function and pattern recognition[END_REF]. It allows limiting features dispersion caused by load variations and then separating the classes that represent different load levels of the operating mode.

Fig. 3: Time and frequency domain analysis.

3) Feature extraction from every signal window y ijh : This step aims to extract the statistical features from the splitting signals to construct the health indicator (HI). Its expression is denoted by the following equation:

HI = KUR (y ijh ) × VAR (Y ij ) 2 (1) 
The KUR and VAR are respectively the kurtosis and the variance values. The kurtosis measures the segmented signal flattening, which indicates the impulsive property of the signal by the centered moment of order 4 of the segmented signal y ijh [START_REF] Soualhi | Data fusion for fault severity estimation of ball bearings[END_REF]. It reduces signal's noises due to the sensor measurement. The variance measures the dispersion of the signal Y ij [START_REF] Soualhi | Data fusion for fault severity estimation of ball bearings[END_REF].
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VAR = 1 N e N e n=1 Y ij -Y ij 2 (3) 
where ȳ ijh and Ȳij are respectively the mean values of the segmented signal and the total signal.

4) Construction of health indicators:

The obtained results by ( 1) are used to construct the health indicators to detect the system's anomalies and also to classify the different system's states. Note that the use of one sensor measurement, for example only the phase a of the current, is not sufficient to detect different fault types. The combination of several health indicators obtained from sensor measurements, for example, all the three phases of the current, is necessary to clearly separate different system's states. The health indicator presentation is therefore changed from one dimension to three dimension space. In detail, the obtained vector from each signal is used to build the health indicator matrix as illustrated hereafter.
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III. CASE STUDY

This section presents the case study used to highlight the performance of the proposed health indicator. The test bench is a six-axis robot used for machining an aluminum blank, see Fig. 4. This robot is composed of six servo-drive motors to control the robot-arms positions. At the sixth axis of the robot, a tool is placed for machining the workpiece. The machining tool contains the unit (flat-end mill) that is the most critical component in the machining processes. To assess the component's health state, current, vibration, force, and torque measurements are the most suitable parameters to monitor this kind of process. First, the subsection (III-A) describes the experimental process. Then, the subsection (III-B) verifies the performance and robustness of the proposed health indicator on different operating conditions. Finally, the fault diagnostics results are presented in the subsection (III-C).

A. Test bench description

The overall scheme of the test bench is presented in Fig. 4. It is installed at METALLICADOUR, a resource and technology transfer center in the south-west of France.

In detail, a three-phase synchronous motor drives a cutting tool. This latter is used for machining aluminum blanks by 4 level steps of 5 mm as marked in green color in Fig. 4. Note that the cutting tool contains three cutting edges. In the case study, four components are used to achieve the experimental tests. The first one represents a new tool. The second, third and fourth tools represent different degraded states. These are respectively the first, the second cutting tool defect, and the broken tooth state, see Fig. 5.
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Fig. 5: Illustration of different tool experiences.

Concerning the machining process, the manufacturing of an aluminum blank is investigated. This object is a small part used in aircraft. The machining parameters, which correspond to two different operating conditions (i.e two cutting depth level) of the machining process, are summarized in table I.

Regarding the data acquisition part, firstly, three-axis force and torque sensors are placed at the sixth axis of the robot. Secondly, the three axes vibration sensors are placed as near as possible to the cutting tool. Finally, the three-phase current sensors are placed at the output of the inverter of the machining tool. The sensor data are then recorded by a National Instrument software (Labview) with a sampling frequency of 25.6 kHz and a duration of 40 seconds. These data are saved in csv files of 5 seconds of data in each file. 

B. Investigation of the proposed methodology performance

In this subsection, the performance of the proposed health indicator is highlighted when compared with the classical ones proposed in the literature, such as (STD and KUR). The results are shown in Fig. 6. Fig. 8 shows also a negligible dispersion of health indicator observations within a group and a large distance separation between different groups representing the tools health states.This proposed methodology offers a promising way for assessing the system's health, e.g. when using the current sensors, which are not expensive and are easy to mount on the machine without perturbing the machining process.

C. Fault classification

In this section, to verify the fault detection and diagnostics performance, the constructed health indicators matrix is divided into two sets: training (50%) and testing sets (50%). In this application, the number of considered system's states is equal to 4 denoted by s, where s = 1 represents the healthy state and the rest of the values correspond to three fault types. The training set is used to train an ANFIS model [START_REF] Jang | Anfis: adaptive-network-based fuzzy inference system[END_REF] to classify tool's states.

The classification results obtained by ANFIS are verified by considering two operating conditions, see table I. It can be seen that, in all cases, the accuracy score given by the ANFIS classifier is 100%.

TABLE II: Accuracy score (%) using ANFIS at different operating modes. 2 operating modes: C1 (5 mm, 1890 mm/mn, 14000 tr/mn), C2 (10 mm, 1890 mm/mn, 14000 tr/mn).

Case

C1 C2 ANFIS 100 100

IV. CONCLUSION

In this paper, a new health indicator has been presented for a system's health assessment. This HI is a combination of statistical features extracted from the time and the frequency domains. Then, the proposed HI is fed into the ANFIS model to classify the different health states of the monitored system. The methodology performance was highlighted when investigating a machining robot test bench, where the studied system was a cutting tool (end flat mill), that is used for milling an aluminum workpiece. The experiment tests were performed in different operating conditions and monitored by different parameters (current, vibration, force, and torque signals) in three-dimensional space. The obtained results highlighted the robustness of the proposed health indicator regardless of the system operating modes and of the signal types.

As a perspective of this work, the proposed health indicator will be applied in different complex systems with various operating conditions to investigate its robustness and effectiveness.
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 1 Load and split every measured signal into N e observations of length L: This step, illustrated in Fig.2, allows reducing the data size for signal processing and takes only the relevant features. It splits the signals into N e segments denoted y ijh of length L, where i and j characterize the signal types (current, vibration, force and torque) and the axes (i a , i b , i c , acc a , acc b , acc c , F a , F b , F c , T a , T b , T c ) respectively with h representing the segmented signal samples (h ∈ [1...N e]).
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 2 Fig. 2: Sampling signals of different measurements.
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 6 Fig. 6: Health indicators construction with traditional features.
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 6 Fig.6shows clearly that the traditional features (STD and KUR) proposed in the literature presents a large dispersion of the observations in the same group. Thus, one can conclude that when using these traditional features, different system health states cannot be detected. Next, the performance of the proposed health indicator is then proved when considering all signal types: the current, the vibration, the force, and the torque signals. First, the proposed HI is used to diagnose different states of the cutting tool that works in the first operating mode (5 mm, 1890 mm/mn, 14000 tr/mn).
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 78 Fig. 7: Health indicators construction for TCM in first operating condition: 5 mm, 1890 mm/mn, 14000 tr/mn.From Fig.7, it can be seen that the proposed methodology allows clearly separating different health states of the cutting tool, regardless of the signal type. In addition, another operating mode (10 mm, 1890 mm/mn, 14000 tr/mn) is investigated to highlight the HI performance.

TABLE I :

 I Machining parameters for experimental tests.

	Cutting depth Feed rate Speed Health state
	(mm)	(mm/mn) (rpm)	HS
	5	1890	14000	Healthy
	5	1890	14000	Faulty 1
	5	1890	14000	Faulty 2
	5	1890	14000	Faulty 3
	10	1890	14000	Healthy
	10	1890	14000	Faulty 1
	10	1890	14000	Faulty 2
	10	1890	14000	Faulty 3
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