
HAL Id: hal-02486939
https://hal.science/hal-02486939

Submitted on 21 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of a Parity Check Based Fault-Detection
Countermeasure for the AES Key Schedule

Christophe Clavier, Julien Francq, Antoine Wurcker

To cite this version:
Christophe Clavier, Julien Francq, Antoine Wurcker. Study of a Parity Check Based Fault-Detection
Countermeasure for the AES Key Schedule. [Research Report] 2015/877, IACR Cryptology ePrint
Archive. 2015. �hal-02486939�

https://hal.science/hal-02486939
https://hal.archives-ouvertes.fr

Study of a Parity Check Based Fault-Detection
Countermeasure for the AES Key Schedule

Christophe Clavier1, Julien Francq2, and Antoine Wurcker1

1 Université de Limoges, XLIM-CNRS
Limoges, France

christophe.clavier@unilim.fr

antoine.wurcker@xlim.fr
2 Airbus Defence & Space - Cybersecurity

Élancourt, France
julien.francq@airbus.com

Abstract. In this paper we study a parity check based countermeasure proposed by Chen
et al. that thwarts their attack by detecting byte fault injection during the AES key schedule
process.
We provide a generalization of their approach that allows to derive parity equations for every
AES sizes not given by the authors. We analyze why Chen et al. countermeasure does not
properly works. Doing so we are able to extend the coverage of the fault detection to the
full expanded key. Finally we suggest optimizations that reduce memory and computation
costs, and propose an adaptation to a more general fault model.

Keywords: side-channel analysis, fault attacks, parity check countermeasure, AES key
schedule

1 Introduction

Beside Side Channel Analysis (SCA) originally revealed by Kocher in 1996 [15] and later
improved in different ways [16, 5, 11], Differential Fault Analysis (DFA) introduced in
1997 [2, 3] is another powerful means to jeopardize implementations of embedded cryp-
tography. In DFA an attacker provokes faults during the execution of a cryptographic
algorithm in order to extract information about the secret by analyzing the differential
effect on the outputs.

The Advanced Encryption Standard (AES) is the current symmetric encryption stan-
dard since it has been adopted by the NIST3 in 2001 [17]. First DFA applied on AES [8,
12, 19] essentially consisted in modifying the value of a state byte near the end of the
encryption path (typically in the 8th round of AES-128). In another type of DFA on AES
the attacker injects a fault during the key schedule while the expanded key is computed
on-the-fly.

Fault attacks on the AES key schedule were first introduced by Giraud [12] where
random byte faults are injected on K9, K8 and M8 (the state after the 8th round). If the
locations are correctly chosen, 31 faulty ciphertexts are required and 216 candidates are
remaining at the end of the process (a brute-force is then feasible to deduce the key). Later
Chen et al. [6] also use random byte fault injections at chosen locations but only on K9 and
K8. Here, 22 faulty ciphertexts are needed to retrieve the key, where 224 candidates are
remaining. In [18] Peacham et al. need to inject random word faults on chosen locations on
only K9. Only 12 faulty ciphertexts are required, and at the end of the fault process, there
is only one candidate left (the key is then retrieved without uncertainty). In [20] Takahashi
et al. propose a powerful DFA where only two faults on a random word (column) of K8

3 National Institute of Standards and Technology

are required and where a brute-force can be used to retrieve the correct key among 240

candidates. This number can be decreased if the attacker can induce four faults instead
of two, and then, the number of candidates can be decreased up to 216. A more powerful
DFA on the key schedule has been presented by Kim et al. [14]. Like in [20] only two
faults are required but on three bytes of K9 and with a computation complexity of only
232. Moreover, four faults lead to the key without uncertainty. Finally, the ultimate goal
of a DFA on AES key schedule requiring only a single faulty ciphertext has been reached
by Ali et al. [1]. They exploit a fault that must be injected in the first column of K8 and
only 28 key candidates remain to be exhausted.

Very few attacks in literature are considering higher versions of AES key schedule:
AES-192 and AES-256. In [9] Floissac et al. manage to adapt [14] to these two sizes with
16 faulty ciphertexts. This attack has been improved to around 4 faulty ciphertexts by
Kim in [13].

In [6] Chen et al. propose a DFA on AES key schedule that improves the original
attack of Giraud [12]. Interestingly, they also provide a parity check based countermeasure
supposed to protect implementations from their own attack. The Chen et al.’s paper is
cited more than hundred times including at least [20, 10] where authors recommends this
countermeasure as protection against fault injections. As far as the authors know, this
countermeasure has not been investigated for the 192 and 256 bits versions of the AES.
Furthermore, no security proof has been provided by the authors. This implies that this
flawed countermeasure may have been actually implemented. The motivations of this paper
are threefold: extend – and evaluate this extension – Chen et al.’s countermeasure to the
AES-192 and 256, assess the real security of the initial method of Chen et al. and correct
its flaws by providing right parity formulae.

Chen et al.’s countermeasure and the notations used in this paper are introduced in
Sect. 2. We then provide a study of the countermeasure security in Sect. 3. Finally we
propose corrections, optimizations and an evaluation of the cost for this countermeasure
in Sect. 4 and conclude the paper in the last section.

2 Notations and Background

2.1 Notations

Throughout this paper we use the following notations that apply for all 128-, 192- and
256-bit versions of the AES:

– Kr the rth 128-bit round key with r = 0, . . . , 10|12|14
– Kr,i the ith byte of Kr with i = 0, . . . , 15
– wi the ith 4-byte column of the expanded key with i = 0, . . . , 43|51|59
– wi,j the jth byte of wi with j = 0, . . . , 3
– RW the operation RotWord

– SW the operation SubWord

– RC the operation Rcon

We also denote by Ni and N ′i the 4-byte non-linear vectors defined as:

AES-128 Ni = Rcon(SubWord(RotWord(w4∗i−1))) with i = 1, . . . , 10

AES-192 Ni = Rcon(SubWord(RotWord(w6∗i−1))) with i = 1, . . . , 8

AES-256 Ni = Rcon(SubWord(RotWord(w8∗i−1))) with i = 1, . . . , 7
N ′i = SubWord(w8∗i+3) with i = 1, . . . , 6

2.2 AES Key Schedule

We now give a brief description of AES key schedule for all key sizes. We refer the reader
to the NIST standard [17] for more detailed information.

The 128-bit key schedule uses a 128-bit ciphering key as a 4 × 4 byte matrix and
successively derives new 4-byte columns by combining the previous column and the column
at the same place in previous matrix as can be seen in Fig. 1. For the first column of each
matrix a prior transformation is applied on the previous column which is constituted by
RotWord (RW) that vertically rotates the column, SubWord (SW) that replaces every byte
by its image through the AES S-Box and Rcon (RC) that XOR-es the column with a
round-dependent constant. The other columns combination is simply a XOR operation.
Eleven 128-bit round keys K0 to K10 are generated.

W0 W1 W2 W3

K0

W4 W5 W6 W7

K1

W8 W9 W10 W11

K2

RC

SW

RW

⊕
⊕
⊕
⊕

RC

SW

RW

⊕
⊕
⊕
⊕

W40 W41 W42 W43

K10

RC

SW

RW

⊕
⊕
⊕
⊕

Fig. 1. The AES-128 key schedule.

The 192-bit key schedule uses a 192-bit ciphering key as a 4 × 6 byte matrix and
generates thirteen 128-bit round keys K0 to K12 by a similar process as for the 128-
bit version as can be seen in Fig. 2. Each column is obtained by XOR-ing the previous
column with the column at the same position in previous matrix. Here also, there is a
prior transformation that applies when computing the first column of each matrix. All
4×6 matrices contain one 128-bit round key and a half. One can remark that the two last
columns of the last matrix do not need to be computed.

W0 W1 W2 W3 W4 W5

K0 K1

W6 W7 W8 W9 W10 W11

K2K1

RC

SW

RW

⊕
⊕
⊕
⊕
⊕
⊕

W48 W49 W50 W51

K12

RC

SW

RW

⊕
⊕
⊕
⊕

Fig. 2. The AES-192 key schedule.

The 256-bit key schedule uses a 256-bit ciphering key as a 4× 8 byte matrix and also
generates fifteen 128-bit round keys K0 to K14 by a similar process than for other AES
versions as can be seen in Fig. 3. One can note a difference though, which is an extra
non-linear transformation that applies when computing each fifth column of a matrix by
application of a SubWord step on the previous column before XOR-ing it. All 4× 8 matrix

contain two 128-bit round keys. One can remark that the four last columns of the last
matrix do not need to be computed.

W0 W1 W2 W3 W4 W5 W6 W7

K0 K1

W8 W9 W10 W11 W12 W13 W14 W15

K2 K3

RC

SW

RW

⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕

SW

W56 W57 W58 W59

K14

RC

SW

RW

⊕
⊕
⊕
⊕

Fig. 3. The AES-256 key schedule.

2.3 Chen and Yen’s Countermeasure

As DFA on AES also concerns the key schedule, countermeasures are required for this
process. In order to protect from such attacks, countermeasure like duplication (computing
the key schedule twice and compare the results) or parity checking can be implemented.

Chen et al.’s countermeasure is a parity check based countermeasure which detects
byte fault injections, and consists in:

(i) separating the linear part and the non-linear part of the key schedule,
(ii) storing – or preferably accumulating – the values of the non-linear 4-byte vectors

during round keys derivation,
(iii) checking that the last round key verifies particular relations involving the first round

key and the non-linear vectors.

W0 W1 W2 W3

K0

W4 W5 W6 W7

K1

W8 W9 W10 W11

K2

RC

SW

RW

N1

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

RC

SW

RW

N2

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

W36 W37 W38 W39

K9

W40 W41 W42 W43

K10

RC

SW

RW

N9

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

RC

SW

RW

N10

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

non
linear
part

Keys

linear
part

. . .

. . .

. . .

Fig. 4. Illustration of countermeasure on AES-128 key schedule.

The separation of the linear and non-linear parts is illustrated on Fig. 4 that describes
the countermeasure applied on 128-bit AES key schedule. The non-linear process induced

by the SubWord and the Rcon steps generates ten 4-byte vectors N1 to N10 that are stored
for future usage. During the computation of Ki the vector Ni is obtained by successively
applying RotWord, SubWord and Rcon operations on the last column of previous key:

Ni = RC(SW (RW (w4∗i−1)))

The linear part consists in cumulatively XOR-ing columns of the previous matrix.

Finally the new key columns are obtained by XOR-ing columns of the linear part with
the column Ni of the non-linear part. Here are the equations for Ki columns:

w4∗i+0 = Ni ⊕
{

w4∗(i−1)

w4∗i+1 = Ni ⊕
{

w4∗(i−1)
⊕w4∗(i−1)+1

w4∗i+2 = Ni ⊕


w4∗(i−1)
⊕w4∗(i−1)+1

⊕w4∗(i−1)+2

w4∗i+3 = Ni ⊕


w4∗(i−1)
⊕w4∗(i−1)+1

⊕w4∗(i−1)+2

⊕w4∗(i−1)+3

Chen et al. base their countermeasure on the fact that storing the Ni values allows
to check parity relations between the first and the last key. They propose the following
equations to check columns and rows parity.

– for every row i = 0, . . . , 3 the following equation holds:

K10,i ⊕K10,4+i ⊕K10,8+i ⊕K10,12+i

= K0,8+i ⊕K0,12+i ⊕N3,i ⊕N7,i
(1)

– for the last column of the last key the following equation holds:

3⊕
i=0

K10,12+i =
3⊕

i=0

(K0,4+i ⊕K0,12+i ⊕N2,i ⊕N6,i ⊕N10,i) (2)

A method is given in order to get other columns equations and authors claim that row
checks are able to detect any fault induced into K8 to K10.

3 Study of the Countermeasure

3.1 Deriving Equations

Chen et al. obtain their equations by computing from the first to the last key. They do not
give equations for AES-192 nor AES-256. We detail hereafter a generalization allowing to
derive equations from the last key to the first one so that it can be adapted for all AES
key sizes. All the processes are illustrated on Fig. 5, 7 and 9.

w40 = w36⊕N10

w36 = w32⊕N9

w32 = w28⊕N8

w28 = w24⊕N7

w24 = w20⊕N6

w20 = w16⊕N5

w16 = w12⊕N4

w12 = w8 ⊕N3

w8 = w4 ⊕N2

w4 = w0 ⊕N1

w40 = w0 ⊕
10⊕
i=1

Ni

w41 = w37⊕w40

w37 = w33⊕w36

w33 = w29⊕w32

w29 = w25⊕w28

w25 = w21⊕w24

w21 = w17⊕w20

w17 = w13⊕w16

w13 = w9 ⊕w12

w9 = w5 ⊕w8

w5 = w1 ⊕w4

}
N10

}
N8

}
N6

}
N4

}
N2

w41 = w1 ⊕
5⊕

i=1

N2∗i

w42 = w38⊕w41

w38 = w34⊕w37

w34 = w30⊕w33

w30 = w26⊕w29

w26 = w22⊕w25

w22 = w18⊕w21

w18 = w14⊕w17

w14 = w10⊕w13

w10 = w6 ⊕w9

w6 = w2 ⊕w5

}
w40

}
w32

}
w24

}
w16

}
N9 ⊕N10

}
N5 ⊕N6

}
w8 = w0 ⊕N1 ⊕N2

w42 = w2 ⊕ w0 ⊕
2⊕

i=0

(N1+4∗i ⊕N2+4∗i)

w43 = w39⊕w42

w39 = w35⊕w38

w35 = w31⊕w34

w31 = w27⊕w30

w27 = w23⊕w26

w23 = w19⊕w22

w19 = w15⊕w18

w15 = w11⊕w14

w11 = w7 ⊕w10

w7 = w3 ⊕w6

}
w41

}
w33

}
w25

}
w17

}
w9

}w40

⊕
w36

= N10

}w24

⊕
w20

= N6

= w1 ⊕N2

w43 = w3 ⊕ w1 ⊕N2 ⊕N6 ⊕N10

Fig. 5. Method to obtain equations between last key and first key for AES-128.

Equations for AES-128 First of all we have to point out some relations inherited from
AES-128 key schedule construction for all rounds r = 1, . . . , 10:

w4∗r = w4∗(r−1) ⊕Nr (3)

w4∗r+1 = w4∗(r−1)+1 ⊕ w4∗r (4)

w4∗r+2 = w4∗(r−1)+2 ⊕ w4∗r+1 (5)

w4∗r+3 = w4∗(r−1)+3 ⊕ w4∗r+2 (6)

Equation (3) shows the relation that exists between the first column of a key, the first
column of the previous key and a non-linear vector. Equations (4) to (6) show the relation
that exists between others columns of a key, the corresponding column of the previous key
and the previous column.

For the first column of the last key w40 we combine together all round equations of
type (3). After simplification it remains:

w40 = w0 ⊕
10⊕
i=1

Ni (7)

For the second column of the last key w41 we combine together all round equations of
type (4). After simplification it still remains ten first columns residues that we combine
pairwise – by using equations of type (3) – to obtain five non-linear vectors:

w41 = w1 ⊕
5⊕

i=1

Ni∗2 (8)

A similar process is applied for the two last columns w42 and w43 of the last key. After
simplification and combination using Equations (3) to (6) as depicted on Fig. 5 we obtain
relations between only the first key, the last key and non-linear vectors:

w42 = w2 ⊕ w0 ⊕
2⊕

i=0

(N1+4∗i ⊕N2+4∗i) (9)

w43 = w3 ⊕ w1 ⊕N2 ⊕N6 ⊕N10 (10)

Note that Chen et al. have already found Equations (7) to (10). The method described
here aims at simplifying the derivation of these equations and presents the advantage to
be straightforwardly applicable for other key sizes.

Equations for AES-192 The AES-192 key schedule is very similar to the AES-128 one.
The main difference is that it involves 6-column matrices to generate 13 round keys in
only 8 steps producing non-linear vectors N1 to N8. The countermeasure is illustrated on
Fig. 6.

W0 W1 W2 W3 W4 W5

K0 K1

W6 W7 W8 W9 W10 W11

K2K1

RC

SW

RW

N1

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

W42 W43 W44 W45 W46 W47

K11

RC

SW

RW

N7

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

W48 W49 W50 W51

K12

RC

SW

RW

N8

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

non
linear
part

Keys

linear
part

. . .

. . .

. . .

Fig. 6. Illustration of countermeasure on AES-192 key schedule.

The method to derive equations for AES-128 can still be applied to relate last key
columns to first key ones. Equations (3) to (6) become:

w6∗i = w6∗(i−1) ⊕Ni (11)

w6∗i+1 = w6∗(i−1)+1 ⊕ w6∗i (12)

w6∗i+2 = w6∗(i−1)+2 ⊕ w6∗i+1 (13)

w6∗i+3 = w6∗(i−1)+3 ⊕ w6∗i+2 (14)

w48 = w42⊕N8

w42 = w36⊕N7

w36 = w30⊕N6

w30 = w24⊕N5

w24 = w18⊕N4

w18 = w12⊕N3

w12 = w6 ⊕N2

w6 = w0 ⊕N1

w48 = w0 ⊕
8⊕

i=1

Ni

w49 = w43⊕w48

w43 = w37⊕w42

w37 = w31⊕w36

w31 = w25⊕w30

w25 = w19⊕w24

w19 = w13⊕w18

w13 = w7 ⊕w12

w7 = w1 ⊕w6

}
N8

}
N6

}
N4

}
N2

w49 = w1 ⊕
4⊕

i=1

N2∗i

w50 = w44⊕w49

w44 = w38⊕w43

w38 = w32⊕w37

w32 = w26⊕w31

w26 = w20⊕w25

w20 = w14⊕w19

w14 = w8 ⊕w13

w8 = w2 ⊕w7

}
w48

}
w36

}
w24

}
w12

}
N7 ⊕N8

}
N3 ⊕N4

w50 = w2 ⊕N3 ⊕N4 ⊕N7 ⊕N8

w51 = w45⊕w50

w45 = w39⊕w44

w39 = w33⊕w38

w33 = w27⊕w32

w27 = w21⊕w26

w21 = w15⊕w20

w15 = w9 ⊕w14

w9 = w3 ⊕w8

}
w49

}
w37

}
w25

}
w13

}w48

⊕
w42

= N8

}w24

⊕
w18

= N4

w51 = w3 ⊕N4 ⊕N8

Fig. 7. Method to obtain equations between last key and first key for AES-192.

Step by step description and resulting equations are given in Fig. 7.

Equations for AES-256 The AES-256 key schedule is different from the two other
versions. There are 7 steps in key schedule that generate 15 round keys using two different
non-linear transformations at each step. The computation of each 8-column matrix involves
two types of non-linear vectors: N1 to N7 for the first half of each matrix, and N ′1 to N ′6
for the second half (except for the last key). The countermeasure is illustrated on Fig. 8.

W0 W1 W2 W3 W4 W5 W6 W7

K0 K1

W8 W9 W10 W11 W12 W13 W14 W15

K2 K3

RC

SW

RW

N1 SW N ′1

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

W56 W57 W58 W59

K14

RC

SW

RW

N7

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

non
linear
part

Keys

linear
part

. . .

. . .

. . .

Fig. 8. Illustration of countermeasure on AES-256 key schedule.

Here also we can apply the same method as for other key sizes to derive equations that
relate last key columns to first key ones:

w8∗i = w8∗(i−1) ⊕Ni (15)

w8∗i+1 = w8∗(i−1)+1 ⊕ w8∗i (16)

w8∗i+2 = w8∗(i−1)+2 ⊕ w8∗i+1 (17)

w8∗i+3 = w8∗(i−1)+3 ⊕ w8∗i+2 (18)

w56 = w48⊕N7

w48 = w40⊕N6

w40 = w32⊕N5

w32 = w24⊕N4

w24 = w16⊕N3

w16 = w8 ⊕N2

w8 = w0 ⊕N1

w56 = w0 ⊕
7⊕

i=1

Ni

w57 = w49⊕w56

w49 = w41⊕w48

w41 = w33⊕w40

w33 = w25⊕w32

w25 = w17⊕w24

w17 = w9 ⊕w16

w9 = w1 ⊕w8

}
N7

}
N5

}
N3

}w0 ⊕N1

w57 = w1⊕w0 ⊕
3⊕

i=0

N1+2∗i

w58 = w50⊕w57

w50 = w42⊕w49

w42 = w34⊕w41

w34 = w26⊕w33

w26 = w18⊕w25

w18 = w10⊕w17

w10 = w2 ⊕w9

}
w56

}
w40

}
w24

}w1 ⊕ w8

}
N6 ⊕N7

}
N2⊕N3

w58 = w2⊕w1⊕N2⊕N3⊕N6⊕N7

w59 = w51⊕w58

w51 = w43⊕w50

w43 = w35⊕w42

w35 = w27⊕w34

w27 = w19⊕w26

w19 = w11⊕w18

w11 = w3 ⊕w10

}
w57

}
w41

}
w25

}w2 ⊕ w9

}w56

⊕
w48

= N7

}w24

⊕
w16

= N3

w59 = w3 ⊕ w2 ⊕N3 ⊕N7

Fig. 9. Method to obtain equations between last key and first key for AES-256.

One can remark that these equations are independent from {N ′i}i=1..6 non-linear vec-
tors because the last round key is made of only the first 4 columns of the last matrix. Step
by step description and resulting equations are given in Fig. 9.

3.2 Countermeasure Behavior Facing Faults

We point out that every term of previously obtained equations are 4-byte columns. We
can thus decompose them into four equations that put in relation bytes from the last key,
bytes from the first key and bytes from non-linear vectors. For every key size, we thus
have 16 so-called atomic equations, one per last key byte.

Chen et al. propose to check parity of rows by using equations obtained by XOR-ing
the four atomic equations from a same row (cf. Equation (1)). They claim that ”The
row parity check can detect the fault induced on the eighth to tenth round keys.”. We
will show that it is partially false. Indeed this rows parity check protects from the attack

described in their paper where byte faults must occur in the last column of K9 and the
two last columns of K8. But it does not detect every fault injection. They also evoke that
a column parity check can be done by using some equations obtained by XOR-ing four
atomic equations from a same column (cf. Equation (2)).

In order to evaluate Chen et al. countermeasure we performed simulations that provoke
byte fault injections at every location of the expanded key and test if the differentials that
propagate to the last key are detected or not by the different equations. For the sake of
completeness, we also simulated fault injections into the countermeasure registers, namely
the linear and the non-linear parts.

Remark that a fault induced into the ciphering key K0 is never detected. This is
because it is equivalent to encrypt with another key and thus with a fully valid expanded
key. In the following sections we only consider byte faults occurring on round keys from
K1 onward.

3.3 Analysis of AES-128 Countermeasure

Fault Propagation Due to a lack of diffusion the fault propagation in AES key schedule
is tightly related to the location of the fault, as described by Clavier et al. in [7]. Thus
when the location of the fault is known the positions of bytes hit by fault propagation
are also known. Furthermore we can predict separately the fault propagation pattern on
the linear part and that on the non-linear part, whose superposition gives the propagation
pattern on the expanded key.

The countermeasure principle lies in accumulating non-linear vectors during process,
in order to verify that combined with last key K10 they fit with first key K0 and then try
to detect a differential inserted by fault.

Note that this method can only detect a small part of a differential propagation. Indeed,
the progressive accumulation of non-linear vectors during the key calculation process makes
that some differentials propagate simultaneously on both expanded key and non-linear
vectors. As a result, only the propagation of the original differential on the linear part can
be detected by checking parity equations.

This is illustrated on the example given on Fig. 10. An original differential δ1 is induced
by a fault occurring on K4,4

4. This differential propagates on the linear part according
to a pattern specific to the fault location. Only this propagation will be noticeable by
the countermeasure whose parity check equations do not involve the linear steps. This
is due to the fact that other propagated differentials through non-linear steps simplify
as they appear twice in the equations, both in the last key and in non-linear vectors. A
differential δ2 is created when δ1 passes from the last column of K5 through the non-
linear process to create N6 so we can not relate it to δ1 without knowing key bytes values.
New differentials are created each time a differential passes into a non-linear step, while
the linear steps propagate differentials that remain unchanged. At the end the last key
contains many differentials, but columns C0 to C3 (see Figure 10), that are the non-linear
vectors combinations used in countermeasure equations, also contain almost the same
differential pattern. When combining the last key and the non-linear accumulators Ci the
only differentials that remain are the two occurrences of δ1 propagated through the linear
part.

We can make some remarks about the propagation of the original differential through
linear steps. As one can see, the following properties are verified by δ1 on Fig. 10:

4 We voluntarily choose a fault injection in middle rounds of the key schedule, even if it may not be
exploitable by an attacker, in order to explicit more clearly the propagation and compensation phe-
nomenons.

K4 K5 K6 K7 K8 K9 K10

δ1 δ1 δ1 δ1 δ1 δ1

δ2 δ2 δ2 δ2

δ1 δ1

δ4 δ4 δ4 δ4

δ23 δ3 δ23 δ3

δ1

δ6 δ6 δ6 δ6

δ45 δ5 δ45 δ5

δ23 δ2 δ3

δ8 δ18 δ18 δ18

δ67 δ7 δ67 δ7

δ45 δ4 δ5

δ23 δ3

δ8Aδ1Aδ8Aδ1A

δ67 δ6 δ7

δ45 δ5

δ239δ29 δ29 δ29

Linear Part

δ1 δ1 δ1 δ1 δ1 δ1 δ1

δ2 δ2

δ1

δ4 δ4

δ23 δ2 δ3

δ1 δ1 δ1

δ6 δ6

δ45 δ4 δ5

δ23 δ3

δ8 δ1 δ8 δ1

δ67 δ6 δ7

δ45 δ5

δ23 δ2 δ2 δ2

N4 N5 N6 N7 N8 N9 N10

δ2 δ3

δ4 δ5

δ6 δ7

δ8

δ9

δA

⇒

⊕

C0 C1 C2 C3

δ8A δA δ8A δA

δ67 δ6 δ7

δ45 δ5

δ239δ29 δ29 δ29

δ1 δ1

C0 =
10⊕
i=1

Ni C1 =
5⊕

i=1

Ni∗2 C2 =
2⊕

i=0

(N1+4∗i ⊕N2+4∗i) C3 = N2 ⊕N6 ⊕N10

δij means δi ⊕ δj
δijk means δij ⊕ δk

Detectable

Fig. 10. Differential propagation from injection in K4,4 illustrating that Equations (7) to (10) can detect
only original differential δ1 propagated by the linear part.

1. As the linear process only consists in XOR-ing columns together, the original differen-
tial always stays on the same row – e.g. δ1 never leaves the first row.

2. For each matrix computation, the linear step always consists in accumulating columns
from the first one to the last one of the matrix. As a consequence, the original differen-
tial never appears earlier in a matrix than in the previous ones – e.g. δ1 injected into
a second column of a matrix will never appear in any first column.

3. For a similar reason than for the previous property, the original differential that has
been injected in some column of a matrix will always appear in the same column of
subsequent matrices, and the appearance pattern is cyclic for the next columns. As an
example, δ1 injected into a second column will always be present in the second column
of each subsequent matrix and have a cyclic appearance of period 4 keys, restarting in
K8 the same sequence.

Rows Parity Check Our simulations show that 64 out of the 160 key bytes positions5

of K1 to K10 produce differential propagations that are not detected by the rows parity
check method proposed by Chen et al. We previously remarked that only the original
differential can possibly propagate up to the parity check equation without cancellation.
We also noticed that this propagation always stays on the same row. As a consequence,
the countermeasure which consists in checking whether the XOR of all four bytes of a
same row is null or not does not detect faults on positions that produce an even number
of occurrences of the original differential in a same row of the last key. This is illustrated
on Fig. 10 where δ1 occurs twice on the same row in the detectable square on the right.
Only the positions that produce an odd number of occurrences are safe.

Columns Parity Check Contrarily to the rows parity check, our simulations show that
the columns parity check detects any single byte fault that occurs on a byte of any K1 to
K10.

This observation matches with the theory since any single byte fault creates detectable
differentials that are on the same row, and there is at least one occurrence of the orig-
inal differential on every matrix following the one at which the fault occurred (c.f. the
third remark above). As only the injection row may contain active differentials that are

5 More details about the patterns of non-detection are provided in Appendix. A.

detectable, checking the parity by XOR-ing all bytes of a column always detects the fault
at least in the column of injection.

The last part of this analysis, that was not evaluated by Chen et al., is about injections
of faults into countermeasure registers We observed that faults injected into the linear part
are always detected while some are not for the non-linear part. Both phenomenons can be
explained by the construction of this countermeasure that checks a differential between
the key obtained and the non-linear part. On the first hand, a differential into the linear
part propagates into the keys and not directly into the non-linear part, so that it is always
detected. On the other hand a fault injected into non-linear part may propagate, under
certain circumstances, by the same way into keys and non-linear part leading to a non-
detection at the end of the process. More precisely, this non-detection effect is produced
when the fault is injected in a non linear vector before it is used into the key calculation. By
this way, both non-linear vector and round key are infected leading to the same infection
on both sides of parity equations (see Figure 11). If the non-linear vector has been used
without error at least one time, the fault is detected because only a part of the round key
is infected, leading to a different infection on the respective parts of parity equations (see
Figure 12). As this undesirable effect is dependant to the fact that the error must infect all
columns of the round key under injection, it can be simply avoided by re-computing each
Ni vector during Ki calculation after that at least one column was already calculated. For
example the Table 1 details the difference between the computation of K1 with (right)
and without (left) recalculation of N1 vector after two column calculations. We could have
chosen to recalculate N1 before w5 or w7 instead of w6.

Table 1. Successive operations of calculation of K1 vectors with (right) and without (left) recalculation
of N1

Ni re-computation

No Yes

N1= T (w3) N1= T (w3)
L = w0 L = w0

w4= N1⊕L w4= N1⊕L
L = L⊕w1 L = L⊕w1

w5= N1⊕L w5= N1⊕L
L = L⊕w2 L = L⊕w2

N1= T (w3)
w6= N1⊕L w6= N1⊕L
L = L⊕w3 L = L⊕w3

w7= N1⊕L w7= N1⊕L
T (X) = RC(SW (RW (X)))

3.4 Analysis of AES-192 and AES-256 Countermeasure

The study realized on AES-128 in Sect. 3.3 is still valid concerning the role of non-linear
and linear parts for AES-192 and AES-256.

Interestingly our simulations for these key sizes show that there are faults that are
not detected by the columns parity check. Precisely, for AES-192 (resp. AES-256) any
fault occurring on one of the 2 (resp. 4) last columns of a matrix is not detected. This is
explained by the second remark above which states that differentials on the linear part
never propagate in previous matrix columns. They can only propagate to the right, never

K9 K10

δ1 δ1 δ1 δ1

δ2 δ2 δ2 δ2

δ1 δ1

Linear Part

δ1 δ1

N9 N10

δ1

δ2

⇒

⊕

C0 C1 C2 C3

δ2 δ2 δ2 δ2

δ1 δ1

Detectable

. . .

. . .

. . .

Fig. 11. Injection of differential δ1 into non-linear vector N9 before it was used into K9 calculation leading
to an undetectability of the fault by the parity checks.

K9 K10

δ1 δ1

δ2 δ2 δ2 δ2

δ1

Linear Part

δ1

N9 N10N ′9

δ1

δ2

⇒

⊕

C0 C1 C2 C3

δ2 δ2 δ2 δ2

δ1 δ1

δ1

Detectable

. . .

. . .

. . .

Fig. 12. Injection of differential δ1 into non-linear vector N9 after two proper K9 columns calculation
leading to a detectability of the fault by the parity checks.

to the left. Since the proposed countermeasure checks parity only on the first 4 columns
of the last matrix which do contain the last round key (c.f. Fig. 6 and 8), faults occurring
on one of the 2 (resp. 4) last columns of a matrix are not detected.

4 Corrections, Optimizations, Cost Evaluation and General Discussions

4.1 Correction for AES-192 and AES-256

The problem of columns parity check non-detection detailed in Sect. 3.4 can be corrected
by checking the whole last matrix values instead of only the last key. As the last columns
of last matrix are not calculated we propose instead to perform extra parity checks on the
2 (resp. 4) last columns of the penultimate matrix.

Here are given the 2 extra equations for AES-192. They have been obtained by using
the same method than in Sect. 3.1:

w46 = w3 ⊕ w4 ⊕
7⊕

i=4

Ni w47 = w4 ⊕ w5 ⊕N5 ⊕N7

Here are the 4 extra equations for AES-256. Note that in those equations N ′i are involved
instead of Ni:

w52 = w4 ⊕
6⊕

i=1

N ′i w54 = w4 ⊕ w6 ⊕N ′1 ⊕N ′2 ⊕N ′5 ⊕N ′6

w53 = w5 ⊕
3⊕

i=1

N ′2∗i w55 = w5 ⊕ w7 ⊕N ′2 ⊕N ′6

Those equations were integrated into our simulator which validated the detection for
any byte fault injected into K1 to K12 (resp. K14).

4.2 Optimization for the Byte Fault Model

We showed that the columns parity check detects every single byte fault6 propagation, even
on AES-192 and AES-256 if the proposed correction (extra parity equations) is applied.
As an optimization we recommend to use only columns parity check and not rows parity
check in order to do only 4 (resp. 6 or 8) tests instead of 8 (resp. 10 or 12) ones. In
that configuration defender can also reduce the countermeasure cost by accumulating in
memory the 8-bit XOR of the 4 bytes of the non-linear vectors instead of the 32-bit vector
itself, dividing by 4 the memory requirement.

4.3 Adaptation to the Multi-Byte Fault Model

While the columns parity check is able to detect every single byte fault injection, it may
not detect a multi-byte fault. It is notably the case if the XOR of differentials in the
injection column is equal to 0. Although such fault effect can be difficult to produce, it is
still possible to protect from it by using atomic parity check equations instead of columns
parity check. We remind that the atomic equations are obtained by the decomposition
of 4-byte columns equations into four 1-byte equations. i.e. four atomic equations are
combined to create one column parity check equation. Checking atomic equations requires
16 (resp. 24 or 32) checks but avoids non-detection in cases of differential compensations.

6 Except possibly faults on K0. Notice however that in the case were the fault occurs while reading K
from NVM to RAM the parity equations still detect the fault if the checksum computation involves
bytes from original K (in NVM) instead of bytes of read K0 (in RAM).

4.4 Cost Evaluation

We have implemented three AES-128 countermeasures in 8-bit software in order to com-
pare their respective extra costs with respect to a non protected implementation. The
results are summarized in Table 2 which also provides the extra costs between the coun-
termeasures.

First we implement the classic doubling countermeasure that executes the whole7 key
schedule twice and checks the equality of the two obtained keys. We then implement
two corrected versions of Chen et al.’s countermeasure, the one with atomic equations
checking and the one – that we call compressed – that refers to the reduced memory
version detailed in Section 4.2. We compiled with the tool avr-gcc for an 8-bit AVR micro-
controller (ATmega328) without optimization option. The size evaluation is realized using
avr-size and the time evaluation is done using oscilloscope measurement of executions.

The results show that those three versions are more or less close in term of extra costs.
Depending on the device used and the implementation choices Chen et al.’s countermeasure
– strengthened by our corrections – may be a good candidate as countermeasure.

Table 2. Results of software extra costs of three secured implementations with respect to two reference
implementations

Countermeasures (CM)
Chen et al.

Doubling Compressed
Reference Yes No

Without size +86% +71% +96%
CM time +111% +155% +179%

Doubling
size +0% -8% +5%
time +0% +21% +32%

4.5 Remark on Chen and Yen Proposition

Chen et al. are wrong saying that the rows parity check covers every positions of K8,
K9 and K10, but they are right when they claim that it can protect from their attack.
Indeed, their attack requires to inject faults only in the last column of K9 and the two
last ones of K8, which are positions covered by the rows parity check. If the defender is
satisfied by the rows parity check coverage – which we consider risky –, then Chen et al.’s
proposition reduces the computational cost of the countermeasure because Equation (1)
involves only 2 non-linear vectors (for AES-128) to accumulate in memory instead of 24
ones for Equation (7) to (10) of the columns parity check.

4.6 Sensitivity to Double Faults

While we do not provide any proof, we have the intuition that the parity checking coun-
termeasure may provide more resistance then the doubling countermeasure against double
fault injections attacks. The idea behind this intuition is that the doubling countermeasure
seems particularly vulnerable when the attacker can produce the same fault effect twice8.

7 We choose to implement a doubling of the whole key schedule in order to be able to detect the same
area of injection than the corrected countermeasure of Chen et al.

8 This is true for the encryption-encryption version, but may not but true for the encryption-decryption
version.

On the contrary, it does not appear obvious why the parity check based countermeasure
would be more vulnerable to such same-repeated-faults than to any other type of double
fault. We let the study of the comparative vulnerability of both countermeasures as an
open problem.

5 Conclusion

In this paper we deeply study the AES key schedule fault detection countermeasure pro-
posed by Chen et al. that has been cited as countermeasure but never evaluated, implying
a risk that may have been implemented with flaws. We provide a generalization of their
approach and give a constructive method to obtain parity equations for all columns and
for every key sizes, where the original paper only recommends rows parity check (which is
flawed) and only for AES-128. We analyze the underlying reasons why and when the coun-
termeasure works or do not work. In particular, we have evaluated the original proposal
and showed that it is not as good as expected by the authors as it is far from covering
every byte fault positions. We point out detection holes of the straightforward application
of the countermeasure to AES-192 and AES-256, and provide extra parity equations to fix
this problem. We also suggest optimizations that reduce the memory and computational
costs of the countermeasure, and propose an adaptation to a more general fault model.

Acknowledgments

Simulations presented in this paper have been partly performed on the CALI computing
cluster of university of Limoges, funded by the Limousin region, XLIM, IPAM and GEIST
institutes, as well as the university of Limoges.

This work is part of ICT COST ACTION IC1204 TRUDEVICE (Trustworthy Manu-
facturing and Utilization of Secure Devices).

References

1. Subidh Ali and Debdeep Mukhopadhyay. A Differential Fault Analysis on AES Key Schedule Using
Single Fault. In Breveglieri et al. [4], pages 35–42.

2. Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In Burton S.
Kaliski, Jr, editor, Advances in Cryptology – CRYPTO ’97, volume 1294 of Lecture Notes in Computer
Science, pages 513–525. Springer-Verlag, 1997.

3. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance of Checking Crypto-
graphic Protocols for Faults (Extended Abstract). In Walter Fumy, editor, Advances in Cryptology –
EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages 37–51. Springer-Verlag,
1997.

4. Luca Breveglieri, Sylvain Guilley, Israel Koren, David Naccache, and Junko Takahashi, editors. 2011
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC ’11, Tokyo, Japan, September
29, 2011, Proceedings. IEEE Computer Society Press, 2011.

5. Éric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis with a Leakage Model.
In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware and Embedded Systems
– CHES ’04, volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer-Verlag, 2004.

6. Chien-Ning Chen and Sung-Ming Yen. Differential Fault Analysis on AES Key Schedule and Some
Countermeasures. In Reihaneh Safavi-Naini and Jennifer Seberry, editors, Information Security and
Privacy, 8th Australasian Conference, ACISP ’03, volume 2727 of Lecture Notes in Computer Science,
pages 118–129. Springer-Verlag, 2003.

7. Christophe Clavier, Damien Marion, and Antoine Wurcker. Simple Power Analysis on AES Key
Expansion Revisited. In Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware and
Embedded Systems – CHES ’14, volume 8731 of Lecture Notes in Computer Science, pages 279–297.
Springer, 2014.

8. Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential Fault Analysis on AES. In Jianying
Zhou, Moti Yung, and Yongfei Han, editors, Applied Cryptography and Network Security – ACNS ’03,
volume 2846 of Lecture Notes in Computer Science, pages 293–306. Springer-Verlag, 2003.

9. Noémie Floissac and Yann L’Hyver. From AES-128 to AES-192 and AES-256, How to Adapt Differ-
ential Fault Analysis Attacks on Key Expansion. In Breveglieri et al. [4], pages 43–53.

10. Behnam Ghavami, Hossein Pedram, and Mehrdad Najibi. An EDA Tool for Implementation of Low
Power and Secure Crypto-Chips. Computers & Electrical Engineering, 35(2):244–257, 2009.

11. Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual Information Analysis. In
Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded Systems –
CHES ’08, volume 5154 of Lecture Notes in Computer Science, pages 426–442. Springer, 2008.

12. Christophe Giraud. DFA on AES. In Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors,
AES 4 Conference, volume 3373 of Lecture Notes in Computer Science, pages 27–41. Springer-Verlag,
2004.

13. Chong Hee Kim. Improved Differential Fault Analysis on AES Key Schedule. IEEE Transactions on
Information Forensics and Security, 7:41–50, 2012.

14. Chong Hee Kim and Jean-Jacques Quisquater. New Differential Fault Analysis on AES Key Schedule:
Two Faults Are Enough. In Gilles Grimaud and François-Xavier Standaert, editors, Smart Card
Research and Advanced Application – CARDIS ’08, volume 5189 of Lecture Notes in Computer Science,
pages 48–60. Springer, 2008.

15. Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems.
In Neal Koblitz, editor, Advances in Cryptology – CRYPTO ’96, volume 1109 of Lecture Notes in
Computer Science, pages 104–113. Springer-Verlag, 1996.

16. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Michael J. Wiener,
editor, Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science,
pages 388–397. Springer-Verlag, 1999.

17. National Institute of Standards and Technology. Advanced Encryption Standard (AES). Federal
Information Processing Standard #197, 2001.

18. David Peacham and Byron Thomas. DFA against AES Key Expansion. CHES ’06 Rump Session,
2006.

19. Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Technique against SPN Struc-
tures, with Application to the AES and KHAZAD. In Colin D. Walter, Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems – CHES ’03, volume 2779 of Lecture
Notes in Computer Science, pages 77–88. Springer-Verlag, 2003.

20. Junko Takahashi, Toshinori Fukunaga, and Kimihiro Yamakoshi. DFA Mechanism on the AES Key
Schedule. In Luca Breveglieri, Shay Gueron, Israel Koren, David Naccache, and Jean-Pierre Seifert,
editors, Fault Diagnosis and Tolerance in Cryptography – FDTC ’07, pages 62–74. IEEE Computer
Society Press, 2007.

21. Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential Fault Analysis of the Advanced
Encryption Standard Using a Single Fault. In Claudio Agostino Ardagna and Jianying Zhou, editors,
Workshop on Information Security Theory and Practice – WISTP ’11, volume 6633 of Lecture Notes
in Computer Science, pages 224–233. Springer, 2011.

A Remarkable Patterns in Propagation

Ki+0 Ki+1 Ki+2 Ki+3 Ki+4

.

δ1

δ2

δ3

δ4

δ1 δ1 δ1 δ1

δ2 δ2 δ2

δ3 δ3

δ4

δ1 δ1

δ2 δ2

δ3

δ4

δ1 δ1

δ2 δ2

δ3 δ3

δ4

δ1

δ2

δ3

δ4
Period(δ4) = 1 key

Period(δ3) = 2 keys

Period(δ2) = 4 keys

Period(δ1) = 4 keys

Fig. 13. The 4 differential propagation patterns depending on the injection column.

We describe how patterns can be inferred from the propagation of an original differ-
ential through AES-128 key schedule. Fig. 13 shows an example of propagation of four
differentials, one per column (the differential propagation pattern does not depend on the
row).

Remark that the fault propagation patterns have a period that depends on the injection
column. First and second columns show a period of 4 round keys while the third column
shows a period of 2 keys, and the fourth column a period of 1 key.

We have surrounded in red the row segments that contain an even number of differen-
tials. They are not detected by the rows parity check if the last key lies at these positions.
In order to derive the 16 columns (i.e. 64 bytes) that are concerned by non-detection of
faults, we write, for each injection column, equations that relate the round r of the fault
injection, the offset of the non-detection segment, and the period:

Fault injection in a 1st column:

(r + 1) ≡ 10 (mod 4) ⇒ r ∈ {1, 5, 9}
(r + 2) ≡ 10 (mod 4) ⇒ r ∈ {4, 8}
(r + 3) ≡ 10 (mod 4) ⇒ r ∈ {3, 7}

Fault injection in a 2nd column:

(r + 2) ≡ 10 (mod 4) ⇒ r ∈ {4, 8}
(r + 3) ≡ 10 (mod 4) ⇒ r ∈ {3, 7}

Fault injection in a 3rd column:

(r + 1) ≡ 10 (mod 2) ⇒ r ∈ {1, 3, 5, 7, 9}

Fault injection in a 4th column:
no non-detection

