Christophe Clavier
email: christophe.clavier@unilim.fr

Julien Francq
email: julien.francq@airbus.com

Antoine Wurcker
email: antoine.wurcker@xlim.fr

Study of a Parity Check Based Fault-Detection Countermeasure for the AES Key Schedule

Keywords: side-channel analysis, fault attacks, parity check countermeasure, AES key schedule

come L'archive ouverte pluridisciplinaire

Introduction

Beside Side Channel Analysis (SCA) originally revealed by Kocher in 1996 [START_REF] Paul | Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems[END_REF] and later improved in different ways [START_REF] Paul | Differential Power Analysis[END_REF][START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF][START_REF] Gierlichs | Mutual Information Analysis[END_REF], Differential Fault Analysis (DFA) introduced in 1997 [START_REF] Biham | Differential Fault Analysis of Secret Key Cryptosystems[END_REF][START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract)[END_REF] is another powerful means to jeopardize implementations of embedded cryptography. In DFA an attacker provokes faults during the execution of a cryptographic algorithm in order to extract information about the secret by analyzing the differential effect on the outputs.

The Advanced Encryption Standard (AES) is the current symmetric encryption standard since it has been adopted by the NIST 3 in 2001 [START_REF]Advanced Encryption Standard (AES). Federal Information Processing Standard #197[END_REF]. First DFA applied on AES [START_REF] Dusart | Differential Fault Analysis on AES[END_REF][START_REF] Giraud | DFA on AES[END_REF][START_REF] Piret | A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD[END_REF] essentially consisted in modifying the value of a state byte near the end of the encryption path (typically in the 8 th round of AES-128). In another type of DFA on AES the attacker injects a fault during the key schedule while the expanded key is computed on-the-fly.

Fault attacks on the AES key schedule were first introduced by Giraud [START_REF] Giraud | DFA on AES[END_REF] where random byte faults are injected on K 9 , K 8 and M 8 (the state after the 8 th round). If the locations are correctly chosen, 31 faulty ciphertexts are required and 2 16 candidates are remaining at the end of the process (a brute-force is then feasible to deduce the key). Later Chen et al. [START_REF] Chen | Differential Fault Analysis on AES Key Schedule and Some Countermeasures[END_REF] also use random byte fault injections at chosen locations but only on K 9 and K 8 . Here, 22 faulty ciphertexts are needed to retrieve the key, where 2 24 candidates are remaining. In [START_REF] Peacham | DFA against AES Key Expansion[END_REF] Peacham et al. need to inject random word faults on chosen locations on only K 9 . Only 12 faulty ciphertexts are required, and at the end of the fault process, there is only one candidate left (the key is then retrieved without uncertainty). In [START_REF] Takahashi | DFA Mechanism on the AES Key Schedule[END_REF] Takahashi et al. propose a powerful DFA where only two faults on a random word (column) of K 8 are required and where a brute-force can be used to retrieve the correct key among 2 40 candidates. This number can be decreased if the attacker can induce four faults instead of two, and then, the number of candidates can be decreased up to 2 16 . A more powerful DFA on the key schedule has been presented by Kim et al. [START_REF] Hee | New Differential Fault Analysis on AES Key Schedule: Two Faults Are Enough[END_REF]. Like in [START_REF] Takahashi | DFA Mechanism on the AES Key Schedule[END_REF] only two faults are required but on three bytes of K 9 and with a computation complexity of only 2 32 . Moreover, four faults lead to the key without uncertainty. Finally, the ultimate goal of a DFA on AES key schedule requiring only a single faulty ciphertext has been reached by Ali et al. [START_REF] Ali | A Differential Fault Analysis on AES Key Schedule Using Single Fault[END_REF]. They exploit a fault that must be injected in the first column of K 8 and only 2 8 key candidates remain to be exhausted.

Very few attacks in literature are considering higher versions of AES key schedule: AES-192 and AES-256. In [START_REF] Floissac | From AES-128 to AES-192 and AES-256, How to Adapt Differential Fault Analysis Attacks on Key Expansion[END_REF] Floissac et al. manage to adapt [START_REF] Hee | New Differential Fault Analysis on AES Key Schedule: Two Faults Are Enough[END_REF] to these two sizes with 16 faulty ciphertexts. This attack has been improved to around 4 faulty ciphertexts by Kim in [START_REF] Hee | Improved Differential Fault Analysis on AES Key Schedule[END_REF].

In [START_REF] Chen | Differential Fault Analysis on AES Key Schedule and Some Countermeasures[END_REF] Chen et al. propose a DFA on AES key schedule that improves the original attack of Giraud [START_REF] Giraud | DFA on AES[END_REF]. Interestingly, they also provide a parity check based countermeasure supposed to protect implementations from their own attack. The Chen et al.'s paper is cited more than hundred times including at least [START_REF] Takahashi | DFA Mechanism on the AES Key Schedule[END_REF][START_REF] Behnam Ghavami | An EDA Tool for Implementation of Low Power and Secure Crypto-Chips[END_REF] where authors recommends this countermeasure as protection against fault injections. As far as the authors know, this countermeasure has not been investigated for the 192 and 256 bits versions of the AES. Furthermore, no security proof has been provided by the authors. This implies that this flawed countermeasure may have been actually implemented. The motivations of this paper are threefold: extend -and evaluate this extension -Chen et al.'s countermeasure to the AES-192 and 256, assess the real security of the initial method of Chen et al. and correct its flaws by providing right parity formulae.

Chen et al.'s countermeasure and the notations used in this paper are introduced in Sect. 2. We then provide a study of the countermeasure security in Sect. 3. Finally we propose corrections, optimizations and an evaluation of the cost for this countermeasure in Sect. 4 and conclude the paper in the last section.

Notations and Background

Notations

Throughout this paper we use the following notations that apply for all 128-, 192-and 256-bit versions of the AES:

-K r the r th 128-bit round key with r = 0, . . . , 10|12|14 -K r,i the i th byte of K r with i = 0, . . . , 15 w i the i th 4-byte column of the expanded key with i = 0, . . . , 43|51|59 w i,j the j th byte of w i with j = 0, . . . , 3 -RW the operation RotWord -SW the operation SubWord -RC the operation Rcon We also denote by N i and N i the 4-byte non-linear vectors defined as:

AES-128 N i = Rcon(SubWord(RotWord(w 4 * i-1))) with i = 1, . . . , 10 AES-192 N i = Rcon(SubWord(RotWord(w 6 * i-1))) with i = 1, . . . , 8 AES-256 N i = Rcon(SubWord(RotWord(w 8 * i-1))) with i = 1, . . . , 7 N i = SubWord(w 8 * i+3) with i = 1, . . . , 6

AES Key Schedule

We now give a brief description of AES key schedule for all key sizes. We refer the reader to the NIST standard [START_REF]Advanced Encryption Standard (AES). Federal Information Processing Standard #197[END_REF] for more detailed information. The 128-bit key schedule uses a 128-bit ciphering key as a 4 × 4 byte matrix and successively derives new 4-byte columns by combining the previous column and the column at the same place in previous matrix as can be seen in Fig. 1. For the first column of each matrix a prior transformation is applied on the previous column which is constituted by RotWord (RW) that vertically rotates the column, SubWord (SW) that replaces every byte by its image through the AES S-Box and Rcon (RC) that XOR-es the column with a round-dependent constant. The other columns combination is simply a XOR operation. Eleven 128-bit round keys K 0 to K 10 are generated. The 192-bit key schedule uses a 192-bit ciphering key as a 4 × 6 byte matrix and generates thirteen 128-bit round keys K 0 to K 12 by a similar process as for the 128bit version as can be seen in Fig. 2. Each column is obtained by XOR-ing the previous column with the column at the same position in previous matrix. Here also, there is a prior transformation that applies when computing the first column of each matrix. All 4 × 6 matrices contain one 128-bit round key and a half. One can remark that the two last columns of the last matrix do not need to be computed. The 256-bit key schedule uses a 256-bit ciphering key as a 4 × 8 byte matrix and also generates fifteen 128-bit round keys K 0 to K 14 by a similar process than for other AES versions as can be seen in Fig. 3. One can note a difference though, which is an extra non-linear transformation that applies when computing each fifth column of a matrix by application of a SubWord step on the previous column before XOR-ing it. All 4 × 8 matrix contain two 128-bit round keys. One can remark that the four last columns of the last matrix do not need to be computed.

W0 W1 W2 W3 K 0 W4 W5 W6 W7 K 1 W8 W9 W10 W11 K 2 RC SW RW ⊕ ⊕ ⊕ ⊕ RC SW RW ⊕ ⊕ ⊕ ⊕ W40 W41 W42 W43 K 10 RC SW RW ⊕ ⊕ ⊕ ⊕
W0 W1 W2 W3 W4 W5 K 0 K 1 W6 W7 W8 W9 W10 W11 K 2 K 1 RC SW RW ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ W48 W49 W50 W51 K 12 RC SW RW ⊕ ⊕ ⊕ ⊕
W0 W1 W2 W3 W4 W5 W6 W7 K 0 K 1 W8 W9 W10 W11 W12 W13 W14 W15 K 2 K 3 RC SW RW ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ SW W56 W57 W58 W59 K 14 RC SW RW ⊕ ⊕ ⊕ ⊕
Fig. 3. The AES-256 key schedule.

Chen and Yen's Countermeasure

As DFA on AES also concerns the key schedule, countermeasures are required for this process. In order to protect from such attacks, countermeasure like duplication (computing the key schedule twice and compare the results) or parity checking can be implemented. Chen et al.'s countermeasure is a parity check based countermeasure which detects byte fault injections, and consists in:

(i) separating the linear part and the non-linear part of the key schedule, (ii) storing -or preferably accumulating -the values of the non-linear 4-byte vectors during round keys derivation, (iii) checking that the last round key verifies particular relations involving the first round key and the non-linear vectors. The separation of the linear and non-linear parts is illustrated on Fig. 4 that describes the countermeasure applied on 128-bit AES key schedule. The non-linear process induced by the SubWord and the Rcon steps generates ten 4-byte vectors N 1 to N 10 that are stored for future usage. During the computation of K i the vector N i is obtained by successively applying RotWord, SubWord and Rcon operations on the last column of previous key:

W0 W1 W2 W3 K 0 W4 W5 W6 W7 K 1 W8 W9 W10 W11 K 2 RC SW RW N1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ RC SW RW N2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ W36 W37 W38 W39 K 9 W40 W41 W42 W43 K 10 RC SW RW N9 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ RC SW RW N10 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
N i = RC(SW (RW (w 4 * i-1)))
The linear part consists in cumulatively XOR-ing columns of the previous matrix. Finally the new key columns are obtained by XOR-ing columns of the linear part with the column N i of the non-linear part. Here are the equations for K i columns:

w 4 * i+0 = N i ⊕ w 4 * (i-1)
w 4 * i+1 = N i ⊕ w 4 * (i-1) ⊕w 4 * (i-1)+1 w 4 * i+2 = N i ⊕    w 4 * (i-1) ⊕w 4 * (i-1)+1 ⊕w 4 * (i-1)+2 w 4 * i+3 = N i ⊕        w 4 * (i-1) ⊕w 4 * (i-1)+1 ⊕w 4 * (i-1)+2 ⊕w 4 * (i-1)+3
Chen et al. base their countermeasure on the fact that storing the N i values allows to check parity relations between the first and the last key. They propose the following equations to check columns and rows parity.

for every row i = 0, . . . , 3 the following equation holds:

K 10,i ⊕ K 10,4+i ⊕ K 10,8+i ⊕ K 10,12+i = K 0,8+i ⊕ K 0,12+i ⊕ N 3,i ⊕ N 7,i (1)
for the last column of the last key the following equation holds:

3 i=0 K 10,12+i = 3 i=0 (K 0,4+i ⊕ K 0,12+i ⊕ N 2,i ⊕ N 6,i ⊕ N 10,i) (2)
A method is given in order to get other columns equations and authors claim that row checks are able to detect any fault induced into K 8 to K 10 .

3 Study of the Countermeasure

Deriving Equations

Chen et al. obtain their equations by computing from the first to the last key. They do not give equations for AES-192 nor AES-256. We detail hereafter a generalization allowing to derive equations from the last key to the first one so that it can be adapted for all AES key sizes. All the processes are illustrated on Fig. 5, 7 and 9. Equations for AES-128 First of all we have to point out some relations inherited from AES-128 key schedule construction for all rounds r = 1, . . . , 10:

w 4 * r = w 4 * (r-1) ⊕ N r (3)
w 4 * r+1 = w 4 * (r-1)+1 ⊕ w 4 * r (4)
w 4 * r+2 = w 4 * (r-1)+2 ⊕ w 4 * r+1 (5)
w 4 * r+3 = w 4 * (r-1)+3 ⊕ w 4 * r+2 (6)
Equation (3) shows the relation that exists between the first column of a key, the first column of the previous key and a non-linear vector. Equations (4) to [START_REF] Chen | Differential Fault Analysis on AES Key Schedule and Some Countermeasures[END_REF] show the relation that exists between others columns of a key, the corresponding column of the previous key and the previous column.

For the first column of the last key w 40 we combine together all round equations of type [START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract)[END_REF]. After simplification it remains:

w 40 = w 0 ⊕ 10 i=1 N i (7)
For the second column of the last key w 41 we combine together all round equations of type (4). After simplification it still remains ten first columns residues that we combine pairwise -by using equations of type (3) -to obtain five non-linear vectors:

w 41 = w 1 ⊕ 5 i=1 N i * 2 (8)
A similar process is applied for the two last columns w 42 and w 43 of the last key. After simplification and combination using Equations (3) to (6) as depicted on Fig. 5 we obtain relations between only the first key, the last key and non-linear vectors:

w 42 = w 2 ⊕ w 0 ⊕ 2 i=0 (N 1+4 * i ⊕ N 2+4 * i) (9)
w 43 = w 3 ⊕ w 1 ⊕ N 2 ⊕ N 6 ⊕ N 10 (10)
Note that Chen et al. have already found Equations (7) to [START_REF] Behnam Ghavami | An EDA Tool for Implementation of Low Power and Secure Crypto-Chips[END_REF]. The method described here aims at simplifying the derivation of these equations and presents the advantage to be straightforwardly applicable for other key sizes.

Equations for AES-192

The AES-192 key schedule is very similar to the AES-128 one.

The main difference is that it involves 6-column matrices to generate 13 round keys in only 8 steps producing non-linear vectors N 1 to N 8 . The countermeasure is illustrated on Fig. 6. The method to derive equations for AES-128 can still be applied to relate last key columns to first key ones. Equations (3) to (6) become: Step by step description and resulting equations are given in Fig. 7.

W0 W1 W2 W3 W4 W5 K 0 K 1 W6 W7 W8 W9 W10 W11 K 2 K 1 RC SW RW N1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ W42 W43 W44 W45 W46 W47 K 11 RC SW RW N7 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ W48 W49 W50 W51 K 12 RC SW RW N8 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
w 6 * i = w 6 * (i-1) ⊕ N i (11)
w 6 * i+1 = w 6 * (i-1)+1 ⊕ w 6 * i (12
)
w 6 * i+2 = w 6 * (i-1)+2 ⊕ w 6 * i+1 (13)
w 6 * i+3 = w 6 * (i-1)+3 ⊕ w 6 * i+2 (14)

Equations for AES-256

The AES-256 key schedule is different from the two other versions. There are 7 steps in key schedule that generate 15 round keys using two different non-linear transformations at each step. The computation of each 8-column matrix involves two types of non-linear vectors: N 1 to N 7 for the first half of each matrix, and N 1 to N 6 for the second half (except for the last key). The countermeasure is illustrated on Fig. 8. Here also we can apply the same method as for other key sizes to derive equations that relate last key columns to first key ones: One can remark that these equations are independent from {N i } i=1..6 non-linear vectors because the last round key is made of only the first 4 columns of the last matrix.

W0 W1 W2 W3 W4 W5 W6 W7 K 0 K 1 W8 W9 W10 W11 W12 W13 W14 W15 K 2 K 3 RC SW RW N1 SW N 1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ W56 W57 W58 W59
w 8 * i = w 8 * (i-1) ⊕ N i (15
)
w 8 * i+1 = w 8 * (i-1)+1 ⊕ w 8 * i (16)
w 8 * i+2 = w 8 * (i-1)+2 ⊕ w 8 * i+1 (17)
w 8 * i+3 = w 8 * (i-1)+3 ⊕ w 8 * i+2 (18)
Step by step description and resulting equations are given in Fig. 9.

Countermeasure Behavior Facing Faults

We point out that every term of previously obtained equations are 4-byte columns. We can thus decompose them into four equations that put in relation bytes from the last key, bytes from the first key and bytes from non-linear vectors. For every key size, we thus have 16 so-called atomic equations, one per last key byte.

Chen et al. propose to check parity of rows by using equations obtained by XOR-ing the four atomic equations from a same row (cf. Equation (1)). They claim that "The row parity check can detect the fault induced on the eighth to tenth round keys.". We will show that it is partially false. Indeed this rows parity check protects from the attack described in their paper where byte faults must occur in the last column of K 9 and the two last columns of K 8 . But it does not detect every fault injection. They also evoke that a column parity check can be done by using some equations obtained by XOR-ing four atomic equations from a same column (cf. Equation (2)).

In order to evaluate Chen et al. countermeasure we performed simulations that provoke byte fault injections at every location of the expanded key and test if the differentials that propagate to the last key are detected or not by the different equations. For the sake of completeness, we also simulated fault injections into the countermeasure registers, namely the linear and the non-linear parts.

Remark that a fault induced into the ciphering key K 0 is never detected. This is because it is equivalent to encrypt with another key and thus with a fully valid expanded key. In the following sections we only consider byte faults occurring on round keys from K 1 onward.

Analysis of AES-128 Countermeasure

Fault Propagation Due to a lack of diffusion the fault propagation in AES key schedule is tightly related to the location of the fault, as described by Clavier et al. in [START_REF] Clavier | Simple Power Analysis on AES Key Expansion Revisited[END_REF]. Thus when the location of the fault is known the positions of bytes hit by fault propagation are also known. Furthermore we can predict separately the fault propagation pattern on the linear part and that on the non-linear part, whose superposition gives the propagation pattern on the expanded key.

The countermeasure principle lies in accumulating non-linear vectors during process, in order to verify that combined with last key K 10 they fit with first key K 0 and then try to detect a differential inserted by fault.

Note that this method can only detect a small part of a differential propagation. Indeed, the progressive accumulation of non-linear vectors during the key calculation process makes that some differentials propagate simultaneously on both expanded key and non-linear vectors. As a result, only the propagation of the original differential on the linear part can be detected by checking parity equations. This is illustrated on the example given on Fig. 10. An original differential δ 1 is induced by a fault occurring on K 4,4 4 . This differential propagates on the linear part according to a pattern specific to the fault location. Only this propagation will be noticeable by the countermeasure whose parity check equations do not involve the linear steps. This is due to the fact that other propagated differentials through non-linear steps simplify as they appear twice in the equations, both in the last key and in non-linear vectors. A differential δ 2 is created when δ 1 passes from the last column of K 5 through the nonlinear process to create N 6 so we can not relate it to δ 1 without knowing key bytes values. New differentials are created each time a differential passes into a non-linear step, while the linear steps propagate differentials that remain unchanged. At the end the last key contains many differentials, but columns C 0 to C 3 (see Figure 10), that are the non-linear vectors combinations used in countermeasure equations, also contain almost the same differential pattern. When combining the last key and the non-linear accumulators C i the only differentials that remain are the two occurrences of δ 1 propagated through the linear part.

We can make some remarks about the propagation of the original differential through linear steps. As one can see, the following properties are verified by δ 1 on Fig. 10: 1. As the linear process only consists in XOR-ing columns together, the original differential always stays on the same row -e.g. δ 1 never leaves the first row. 2. For each matrix computation, the linear step always consists in accumulating columns from the first one to the last one of the matrix. As a consequence, the original differential never appears earlier in a matrix than in the previous ones -e.g. δ 1 injected into a second column of a matrix will never appear in any first column. 3. For a similar reason than for the previous property, the original differential that has been injected in some column of a matrix will always appear in the same column of subsequent matrices, and the appearance pattern is cyclic for the next columns. As an example, δ 1 injected into a second column will always be present in the second column of each subsequent matrix and have a cyclic appearance of period 4 keys, restarting in K 8 the same sequence.

Rows Parity Check Our simulations show that 64 out of the 160 key bytes positions5 of K 1 to K 10 produce differential propagations that are not detected by the rows parity check method proposed by Chen et al. We previously remarked that only the original differential can possibly propagate up to the parity check equation without cancellation. We also noticed that this propagation always stays on the same row. As a consequence, the countermeasure which consists in checking whether the XOR of all four bytes of a same row is null or not does not detect faults on positions that produce an even number of occurrences of the original differential in a same row of the last key. This is illustrated on Fig. 10 where δ 1 occurs twice on the same row in the detectable square on the right. Only the positions that produce an odd number of occurrences are safe.

Columns Parity Check Contrarily to the rows parity check, our simulations show that the columns parity check detects any single byte fault that occurs on a byte of any K 1 to K 10 . This observation matches with the theory since any single byte fault creates detectable differentials that are on the same row, and there is at least one occurrence of the original differential on every matrix following the one at which the fault occurred (c.f. the third remark above). As only the injection row may contain active differentials that are detectable, checking the parity by XOR-ing all bytes of a column always detects the fault at least in the column of injection.

The last part of this analysis, that was not evaluated by Chen et al., is about injections of faults into countermeasure registers We observed that faults injected into the linear part are always detected while some are not for the non-linear part. Both phenomenons can be explained by the construction of this countermeasure that checks a differential between the key obtained and the non-linear part. On the first hand, a differential into the linear part propagates into the keys and not directly into the non-linear part, so that it is always detected. On the other hand a fault injected into non-linear part may propagate, under certain circumstances, by the same way into keys and non-linear part leading to a nondetection at the end of the process. More precisely, this non-detection effect is produced when the fault is injected in a non linear vector before it is used into the key calculation. By this way, both non-linear vector and round key are infected leading to the same infection on both sides of parity equations (see Figure 11). If the non-linear vector has been used without error at least one time, the fault is detected because only a part of the round key is infected, leading to a different infection on the respective parts of parity equations (see Figure 12). As this undesirable effect is dependant to the fact that the error must infect all columns of the round key under injection, it can be simply avoided by re-computing each N i vector during K i calculation after that at least one column was already calculated. For example the Table 1 details the difference between the computation of K 1 with (right) and without (left) recalculation of N 1 vector after two column calculations. We could have chosen to recalculate N 1 before w 5 or w 7 instead of w 6 .

L = w0 L = w0 w4 = N1 ⊕ L w4 = N1 ⊕ L L = L ⊕ w1 L = L ⊕ w1 w5 = N1 ⊕ L w5 = N1 ⊕ L L = L ⊕ w2 L = L ⊕ w2 N1= T (w3) w6 = N1 ⊕ L w6 = N1 ⊕ L L = L ⊕ w3 L = L ⊕ w3 w7 = N1 ⊕ L w7 = N1 ⊕ L T (X) = RC(SW (RW (X)))

Analysis of AES-192 and AES-256 Countermeasure

The study realized on AES-128 in Sect. 3.3 is still valid concerning the role of non-linear and linear parts for AES-192 and AES-256.

Interestingly our simulations for these key sizes show that there are faults that are not detected by the columns parity check. Precisely, for AES-192 (resp. AES-256) any fault occurring on one of the 2 (resp. 4) last columns of a matrix is not detected. This is explained by the second remark above which states that differentials on the linear part never propagate in previous matrix columns. They can only propagate to the right, never to the left. Since the proposed countermeasure checks parity only on the first 4 columns of the last matrix which do contain the last round key (c.f. Fig. 6 and8), faults occurring on one of the 2 (resp. 4) last columns of a matrix are not detected.

4 Corrections, Optimizations, Cost Evaluation and General Discussions The problem of columns parity check non-detection detailed in Sect. 3.4 can be corrected by checking the whole last matrix values instead of only the last key. As the last columns of last matrix are not calculated we propose instead to perform extra parity checks on the 2 (resp. 4) last columns of the penultimate matrix.

Here are given the 2 extra equations for AES-192. They have been obtained by using the same method than in Sect. 3.1:

w 46 = w 3 ⊕ w 4 ⊕ 7 i=4 N i w 47 = w 4 ⊕ w 5 ⊕ N 5 ⊕ N 7
Here are the 4 extra equations for AES-256. Note that in those equations N i are involved instead of N i :

w 52 = w 4 ⊕ 6 i=1 N i w 54 = w 4 ⊕ w 6 ⊕ N 1 ⊕ N 2 ⊕ N 5 ⊕ N 6 w 53 = w 5 ⊕ 3 i=1 N 2 * i w 55 = w 5 ⊕ w 7 ⊕ N 2 ⊕ N 6
Those equations were integrated into our simulator which validated the detection for any byte fault injected into K 1 to K 12 (resp. K 14).

Optimization for the Byte Fault Model

We showed that the columns parity check detects every single byte fault6 propagation, even on AES-192 and AES-256 if the proposed correction (extra parity equations) is applied. As an optimization we recommend to use only columns parity check and not rows parity check in order to do only 4 (resp. 6 or 8) tests instead of 8 (resp. 10 or 12) ones. In that configuration defender can also reduce the countermeasure cost by accumulating in memory the 8-bit XOR of the 4 bytes of the non-linear vectors instead of the 32-bit vector itself, dividing by 4 the memory requirement.

Adaptation to the Multi-Byte Fault Model

While the columns parity check is able to detect every single byte fault injection, it may not detect a multi-byte fault. It is notably the case if the XOR of differentials in the injection column is equal to 0. Although such fault effect can be difficult to produce, it is still possible to protect from it by using atomic parity check equations instead of columns parity check. We remind that the atomic equations are obtained by the decomposition of 4-byte columns equations into four 1-byte equations. i.e. four atomic equations are combined to create one column parity check equation. Checking atomic equations requires 16 (resp. 24 or 32) checks but avoids non-detection in cases of differential compensations.

Cost Evaluation

We have implemented three AES-128 countermeasures in 8-bit software in order to compare their respective extra costs with respect to a non protected implementation. The results are summarized in Table 2 which also provides the extra costs between the countermeasures.

First we implement the classic doubling countermeasure that executes the whole7 key schedule twice and checks the equality of the two obtained keys. We then implement two corrected versions of Chen et al.'s countermeasure, the one with atomic equations checking and the one -that we call compressed -that refers to the reduced memory version detailed in Section 4.2. We compiled with the tool avr-gcc for an 8-bit AVR microcontroller (ATmega328) without optimization option. The size evaluation is realized using avr-size and the time evaluation is done using oscilloscope measurement of executions.

The results show that those three versions are more or less close in term of extra costs. Depending on the device used and the implementation choices Chen et al.'s countermeasure -strengthened by our corrections -may be a good candidate as countermeasure.

Remark on Chen and Yen Proposition

Chen et al. are wrong saying that the rows parity check covers every positions of K 8 , K 9 and K 10 , but they are right when they claim that it can protect from their attack. Indeed, their attack requires to inject faults only in the last column of K 9 and the two last ones of K 8 , which are positions covered by the rows parity check. If the defender is satisfied by the rows parity check coverage -which we consider risky -, then Chen et al.'s proposition reduces the computational cost of the countermeasure because Equation (1) involves only 2 non-linear vectors (for AES-128) to accumulate in memory instead of 24 ones for Equation (7) to [START_REF] Behnam Ghavami | An EDA Tool for Implementation of Low Power and Secure Crypto-Chips[END_REF] of the columns parity check.

Sensitivity to Double Faults

While we do not provide any proof, we have the intuition that the parity checking countermeasure may provide more resistance then the doubling countermeasure against double fault injections attacks. The idea behind this intuition is that the doubling countermeasure seems particularly vulnerable when the attacker can produce the same fault effect twice8 .

On the contrary, it does not appear obvious why the parity check based countermeasure would be more vulnerable to such same-repeated-faults than to any other type of double fault. We let the study of the comparative vulnerability of both countermeasures as an open problem.

Conclusion

In this paper we deeply study the AES key schedule fault detection countermeasure proposed by Chen et al. that has been cited as countermeasure but never evaluated, implying a risk that may have been implemented with flaws. We provide a generalization of their approach and give a constructive method to obtain parity equations for all columns and for every key sizes, where the original paper only recommends rows parity check (which is flawed) and only for AES-128. We analyze the underlying reasons why and when the countermeasure works or do not work. In particular, we have evaluated the original proposal and showed that it is not as good as expected by the authors as it is far from covering every byte fault positions. We point out detection holes of the straightforward application of the countermeasure to AES-192 and AES-256, and provide extra parity equations to fix this problem. We also suggest optimizations that reduce the memory and computational costs of the countermeasure, and propose an adaptation to a more general fault model.

Fig. 1 .

 1 Fig. 1. The AES-128 key schedule.

Fig. 2 .

 2 Fig. 2. The AES-192 key schedule.

Fig. 4 .

 4 Fig. 4. Illustration of countermeasure on AES-128 key schedule.

w40 = w36⊕N 10 w36 = w32⊕N 9 w32 = w28⊕N 8 w28 = w24⊕N 7 w24 = w20⊕N 6 w20 = w16⊕N 5 w16 = w12⊕N 4 w12w22 = w18⊕w 21 w18 = w14⊕w 17 w14 = w10⊕w 13 w10 2 i=0(w19 = w15⊕w 18 w15 = w11⊕w 14 w11=

 1098765421171321814 w8 = w0 ⊕ N1 ⊕ N2 w42 = w2 ⊕ w0 ⊕ N1+4 * i ⊕ N2+4 * i) w43 = w39⊕w 42 w39 = w35⊕w 38 w35 = w31⊕w 34 w31 = w27⊕w 30 w27 = w23⊕w 26 w23 = w19⊕w 22 w1 ⊕ N2 w43 = w3 ⊕ w1 ⊕ N2 ⊕ N6 ⊕ N10

Fig. 5 .

 5 Fig. 5. Method to obtain equations between last key and first key for AES-128.

Fig. 6 .

 6 Fig. 6. Illustration of countermeasure on AES-192 key schedule.

w48 = w42⊕N 8 w42 = w36⊕N 7 w36 = w30⊕N 6 w30 = w24⊕N 5 w24 = w18⊕N 4 w18 = w12⊕N 3 w12 8 i=1w21 = w15⊕w 20 w15

 876543820 = w6 ⊕N2 w6 = w0 ⊕N1 w48 = w0 ⊕ Ni w49 = w43⊕w 48 w43 = w37⊕w 42 w37 = w31⊕w 36 w31 = w25⊕w 30 w25 = w19⊕w 24 w19 = w13⊕w 18 w13 = w7 ⊕w12 w7 = w1 ⊕w6 w50 = w2 ⊕ N3 ⊕ N4 ⊕ N7 ⊕ N8 w51 = w45⊕w 50 w45 = w39⊕w 44 w39 = w33⊕w 38 w33 = w27⊕w 32 w27 = w21⊕w 26

Fig. 7 .

 7 Fig. 7. Method to obtain equations between last key and first key for AES-192.

Fig. 8 .

 8 Fig. 8. Illustration of countermeasure on AES-256 key schedule.

w56 = w48⊕N 7 w48 = w40⊕N 6 w40 = w32⊕N 5 w32 = w24⊕N 4 w24 = w16⊕N 3 w16Fig. 9 .

 765439 Fig. 9. Method to obtain equations between last key and first key for AES-256.

2 i=0(Fig. 10 .

 210 Fig.10. Differential propagation from injection in K4,4 illustrating that Equations (7) to[START_REF] Behnam Ghavami | An EDA Tool for Implementation of Low Power and Secure Crypto-Chips[END_REF] can detect only original differential δ1 propagated by the linear part.

Fig. 11 .

 11 Fig.11. Injection of differential δ1 into non-linear vector N9 before it was used into K9 calculation leading to an undetectability of the fault by the parity checks.

Fig. 12 .

 12 Fig. 12. Injection of differential δ1 into non-linear vector N9 after two proper K9 columns calculation leading to a detectability of the fault by the parity checks.

4. 1

 1 Correction for AES-192 and AES-256

Table 1 .

 1 Successive operations of calculation of K1 vectors with (right) and without (left) recalculation of N1

	Ni re-computation
	No	Yes
	N1= T (w3) N1= T (w3)

Table 2 .

 2 Results of software extra costs of three secured implementations with respect to two reference implementations

		Countermeasures (CM)
			Chen et al.
		Doubling	Compressed
	Reference	Yes	No
	Without size +86% +71% +96%
	CM	time +111% +155% +179%
	Doubling	size time +0% +0%	-8% +21% +32% +5%

We voluntarily choose a fault injection in middle rounds of the key schedule, even if it may not be exploitable by an attacker, in order to explicit more clearly the propagation and compensation phenomenons.

More details about the patterns of non-detection are provided in Appendix. A.

Except possibly faults on K0. Notice however that in the case were the fault occurs while reading K from NVM to RAM the parity equations still detect the fault if the checksum computation involves bytes from original K (in NVM) instead of bytes of read K0 (in RAM).

We choose to implement a doubling of the whole key schedule in order to be able to detect the same area of injection than the corrected countermeasure of Chen et al.

This is true for the encryption-encryption version, but may not but true for the encryption-decryption version.

Acknowledgments

Simulations presented in this paper have been partly performed on the CALI computing cluster of university of Limoges, funded by the Limousin region, XLIM, IPAM and GEIST institutes, as well as the university of Limoges. This work is part of ICT COST ACTION IC1204 TRUDEVICE (Trustworthy Manufacturing and Utilization of Secure Devices).

A Remarkable Patterns in Propagation

We describe how patterns can be inferred from the propagation of an original differential through AES-128 key schedule. Fig. 13 shows an example of propagation of four differentials, one per column (the differential propagation pattern does not depend on the row).

Remark that the fault propagation patterns have a period that depends on the injection column. First and second columns show a period of 4 round keys while the third column shows a period of 2 keys, and the fourth column a period of 1 key.

We have surrounded in red the row segments that contain an even number of differentials. They are not detected by the rows parity check if the last key lies at these positions. In order to derive the 16 columns (i.e. 64 bytes) that are concerned by non-detection of faults, we write, for each injection column, equations that relate the round r of the fault injection, the offset of the non-detection segment, and the period: