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Abstract

The electrical properties, resistivity and conductivity, inform on the dura-

bility of cement-based materials and can be used for monitoring and inspection

of concrete structures. The physical origin of these properties can be linked to

the dynamics of the pore solution. We propose a multiscale modeling approach

of the electrical conductivity and resistivity informed by the dynamics of ions

that enables the quantification of property variability across scales using Monte

Carlo Micromechanics (MCM) computations. As a source of variability, we con-

sider the pore solution composition, clinker composition and the uncertainty on

solid conductivity. The results are compared to experimental measurements on

various cement systems. The age-dependency of ionic diffusion, due to ion-ion

and ion-solvent collective effects, is crucial to model the evolution of electrical

conductivity. The main results show that Monte Carlo Micromechanics enables

the quantification of the variability and uncertainty across scales, since MCM

computations have provided estimates of the standard deviation of the electrical

conductivity and resistivity at the scales of cement paste, mortar and concrete.

Also, the results show that self-consistent scheme provides a good estimate of

the effective electrical conductivity of cement-pastes, capturing the transition

from a liquid to a solid matrix during cement hydration.
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Highlights

• Self-Consistent scheme captures the age-evolution of the electrical conduc-

tivity

• Micromechanics Monte Carlo enables variability quantification across scales

• The effects of pore solution variability on the resistivity up to the concrete

scale are quantified.

1. Introduction

Measurements of electrical conductivity (σ = 1/ρ, which is the reciprocal of

the electrical resistivity ρ) have been widely used for monitoring and inspection

of concrete structures, especially in the assessment of corrosion severity, car-

bonation evolution, quality control of concrete structures and cement hydration5

development [1, 2, 3], setting time and shrinkage [3, 4]. The electrical con-

ductivity informs on the inter-connectivity of pores in cement-based materials,

directly correlating with ionic diffusion and water permeability [5, 6]. The for-

mation factor F , defined as the ratio between the effective conductivity of the

material σ(t) and the conductivity of the pore phase (e.g. [7]), has been used as10

a key indicator of ion transport through cement-based materials [6, 8] and other

porous media [7]. The permeability of a porous media scales as 1/F : k ∝ l2c/F ,

where lc is a length scale associated with the pores. A rigorous link between

diffusion coefficients D, relaxation time T1 (that can be obtained from NMR ex-

periments), permeability k and the formation factor is given by [7]: k ≤ DT1/F .15

Cross-property relations between electrical conductivity and elastic properties

have also been identified [9, 10]. These aspects show that measurements of elec-

trical properties enable to assess important information related to durability

processes and the evolution of the porosity in cement-based materials.
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The electrical resistivity of concrete is known to vary over a wide range: 1020

to 106 Ω.m [2, 11]. Such variability is due to the dependence of the electrical

resistivity on the [2, 6]:

• Pore solution composition, which depends on the composition of the

binder (Portland cement and Supplementary Cementitious Materials (SCM)),

age, temperature, and service environment (e.g. marine exposure, chemi-25

cal alterations) [12, 13]. Molecular modeling shows that the composition

and dynamics of ions are directly related to the electrical conductivity of

the pore solutions [14].

• Moisture content or relative humidity (RH). The electrical con-

ductivity increases with the content of evaporable water in cement-based30

materials [6]. Although the diminution of the (internal) RH is accompa-

nied by an increase in the concentration of ions in the liquid phase within

the pores, only smaller pores remain saturated under RH decrease and the

inter-connectivity of pores with (liquid) aqueous solutions is jeopardized.

• Temperature. The electrical conductivity is reported to increase with35

the temperature. According to Polder et al. [2], the temperature depen-

dence of the electrical conductivity of the bulk pore solution differs from

the ones of cement paste and mortar. The resistivity is reported [2] to

increase approximately rT= 3 to 5 % per degree Celsius (i.e. ρ ∝ rTT ),

which means that the conductivity scales with σ ∝ sT
T with sT = 20 to40

33. The thermo-activation of the conductivity ( sTT ) can be modeled using

an Arrhenius factor [8].

• Pore structure. Christensen et al. [6] note that the electrical conductiv-

ity of cement-based materials is directly related to the pore volume fraction

and inter-connectivity, being a good estimation of the latter in evolving45

cement systems. This means that a potentially relevant, but still to be

quantified, contribution of the morphological aspects of the pore system

may exists in estimation of the conductivity or resistivity of cement-based
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materials.

Micromechanics techniques have been extensively used to establish composi-50

tion/(micro)structure/property correlations for heterogeneous materials. Mul-

tiscale studies of the electrical properties of cement-based materials have been

proposed using analytical [6, 15] and numerical [15, 16, 4] homogenization tools.

Numerical homogenization based on microstructural simulation [17, 18, 19, 16]

has also successfully applied to get insights on the structuration and to study55

the various properties of interest of cement-based materials. However, it is a

challenge to simulate an actual Representative Elementary Volume (REV), ac-

counting for the real size distribution of the heterogeneities in cement-based

materials. To illustrate, let us consider a typical cement particle size distri-

bution ranging from 0.1 to 100 µm (e.g. [20]). To analyze a representative60

numerical sample of a cement paste using, for example, finite elements method,

it would be necessary a REV on the order of a millimeter (ten-fold the size of

the larger heterogeneity) while the minimum element size would be on the order

of 0.1 µm. In a 3D simulation, the total number of degrees of freedom (DOF) on

the order of 1012 is prohibitive. A fallback solution often employed is to limit the65

range of heterogeneity size considered so that DOF does not exceed a few 107.

But in this case, it would be advisable to analyze several numerical samples to

get a relevant statistical description of the disordered material. Such numerical

homogenization approaches seem, therefore, not very well suited to investiga-

tions aiming at quantifying the variability of complex heterogeneous materials,70

which requires a large number of evaluations per scenario. The simplicity of

micromechanics-based computations enables to test several scenarios of interest

regarding the composition, uncertainty on phase properties and morphology of

phases (e.g. in terms of matrix/inclusions or polycrystalline morphologies, and

inclusion shape) of a composite.75

A complete characterization of the microstructure of cement-based materials

is a huge challenge. Even if one bases the analysis on microstructures experi-

mentally probed (for instance using tomography) on a given cement system and
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mix design, there is no guarantee that the same microstructure is representative

of other cement systems. In this context, the strategy that is often adopted in80

the framework of micromechanics is to start the analysis from the most basic

features that are shared by all cement systems: a multiscale microstructure that

can be approximated as a random heterogeneous material. The theory provides

tools enabling to take into account, often in an approximate way, the effects of

shape, inclusion orientation and distribution [21], allowing the quantification of85

the relative contribution of these microstructural features.

The randomness of physical properties and volume fraction of the different

constituents of composites (at the microscopic scale) are recognized as a crit-

ical factor leading to variability in the effective properties at the macroscopic

scale [22, 23]. The effects of various sources of variability presented on the ef-90

fective resistivity of cement-based materials have been studied by Lataste et al.

[24]. These authors also point out the variability related to concrete casting

and on-site versus laboratory measurements. A multiscale modeling approach

accounting for the variabilities at the material level is still to be proposed to

cement-based materials.95

In this work, we propose a multiscale modeling approach informed by the

dynamics of ions (at the molecular scale). Furthermore, we introduce an ana-

lytical homogenization approach in which probability distributions are used to

capture the variabilities related to the composition and property uncertainty

on the electrical properties of cement-based materials. The probability distri-100

butions associated with the variability of the electrical conductivity of the pore

solutions are used as input in micromechanics in order to upscale the electri-

cal conductivity and resistivity, and the respective the variability, across scales.

For validation, modeling results are compared to experimental measurements

on various cement systems. Our results represent an advance in the multiscale105

modeling of cement-based materials informed by the nanoscale and in reducing

the empirism of investigations based on the resistivity of concrete.

The article is organized as follows. First, the micromechanics schemes used

to model the conductivities are presented and we introduce the Monte Carlo
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Micromechanics (MCM) technique to estimate the variability in effective prop-110

erties in a multiscale framework. Then, we apply micromechanics theory to

upscale cement paste, ITZ, mortar and concrete conductivity and resistivity, as

well as the associated variability computed with MCM.

2. Micromechanics of the electrical properties

Micromechanics is the study of the mechanical, thermal, electromagnetic115

and mass transport behavior of the materials with a microstructure [25]. The

results of micromechanics can be used to upscale (i.e. to obtain the effective

properties of heterogeneous materials) or downscale (i.e. to obtain the specific

properties of a given constituent by inverse analysis).

2.1. Homogenization of the electrical conductivity120

The homogenization of the electrical conductivity is analogous to the ho-

mogenization of the thermal conductivity, dielectric permittivity, and diffusion

coefficient [9]. In this section, we recall three homogenization schemes - namely

Mori-Tanaka (MT), Self-Consistent (SC) and the Generalized Self-Consistent

(GSC) schemes - that have been extensively used (e.g.[26, 27, 28, 29, 30, 31, 32,125

33]) to estimate the effective properties of cement-based materials accounting

for the hierarchical microstructure of the material. With these homogenization

schemes, it is possible to account for the random nature of cement-based mate-

rials microstructure and interactions among the different phases (in a simplified

way). As will be presented in more detail, even complex phenomena related,130

for example, to the setting of cement and microstructure development can be

fairly well captured by the combination of these schemes, which make them

an ideal tool to model early-age property development. With analytical ho-

mogenization schemes, the estimations are computer inexpensive compared to

numerical homogenization based on finite element methods. In investigations135

coping with the variability of the materials, in which a large number of eval-

uations are needed, analytical homogenization arises as an ideal candidate to

evaluate effective properties.
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In a matrix/inclusion morphology, for a (N+1)-phase heterogeneous material

with N isotropic spherical inclusions randomly distributed in a representative140

elementary volume, the Mori-Tanaka (or Maxwell-Garnett) estimation of the

effective electrical conductivity σMT can be computed from [9]:

σMT − σ0
σMT + 2σ0

=

N∑
r=1

fr
σr − σ0
σr + 2σ0

(1)

where fr is the volume fraction of the phase r, and the subscript 0 denotes the

(isotropic) matrix phase.

For a two-phase material, Mori-Tanaka estimation corresponds to the Hashin-145

Shtrikman (HS) bounds, which are the tightest bounds that can be defined for a

two-phase composite. HS upper and lower bounds are obtained by interchang-

ing the subscripts in MT estimates. Assuming σ0 > σ1 the upper and the lower

HS bounds are, respectively [34]:

σHS+ = σ0 +
f1

1
σ1−σ0

+ f0
3σ0

(2)

σHS− = σ1 +
f0

1
σ0−σ1

+ f1
3σ1

(3)

Note that these results were derived for the effective magnetic permeability, but150

as originally stated by Hashin and Shtrikman [34], they also hold for the electric

conductivity, thermal conductivity, and diffusivity of composite materials due

to due to mathematical analogy.

In a polycrystalline-like morphology, for a N -phase heterogeneous materials

with N isotropic equiaxed inclusions randomly distributed in representative ele-155

mentary volume, the Self-Consistent (or Bruggeman) estimation of the effective

electrical conductivity σSC can be computed from the implicit formula [9]:

N∑
r=1

fr
σr − σSC

σr + 2σSC
= 0 (4)

where fr is the volume fraction of the phase r.
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Using the consistency condition
∑N
r fr = 1, for a two-phase material, the

SC estimation is explicit and given by:160

σSC2 =
1

4

(
SSC +

√
S2
SC + 8σ1σ2

)
(5)

with SSC = ((3f1 − 1)σ1 + (2− 3f1)σ2).

The presence of interphases (i.e. the volume in-between two phases - in

contrast with an ”interface”, which is a surface between two surfaces) can

be modeled with the Generalized Self-Consistent (GSC) scheme based on the

composite-sphere morphology. GSC scheme has been widely deployed to model165

the mechanical and transport properties of the ITZ [26, 35, 36, 37, 38]. The

GSC results for effective conductivities (thermal, electrical, diffusivities etc) is

the recursive equation (e.g. [39, 9]):

σGSCi = σi +
1− fi
1

σi−1−σi + fi
3σi

(6)

where σGSCi is the effective conductivity of a matrix/composite-sphere compos-

ite in which the composite-sphere is constituted of (i− 1) concentric coats and170

a core (associated here to subscript 0) embedded in a matrix (here, represented

by the subscript i). With simple manipulations, it is possible to show that this

form for a 2-phase material is equivalent to that of a 2-phase MT scheme.

2.2. Quantification of the variability and uncertainty using Monte Carlo Mi-

cromechanics (MCM)175

In order to quantify the effects of variability and uncertainty of phase con-

stituents at the macroscale response of the heterogeneous materials, we deploy

a strategy that we name Monte Carlo Micromechanics (MCM) hereafter. MCM

consists at computing the effective properties (in Eqs. 1 and 4, for instance)

assuming that the input (i.e. effective properties and volume fractions) are de-180

scribed by a probability density function (PDF). Similar approaches have been

proposed in the literature to quantify the variability and uncertainty of other

physical properties of composites [22] and biomaterials [40]. Note that, due to

8



the consistency condition
∑N
r=1 fr = 1, therefore only (N − 1) volume fractions

are independent variables. The PDF of the effective properties can be then185

computed by sampling the parameters of interest according to their respective

PDF and then evaluating the micromechanics estimations of the effective prop-

erties. The procedure is to be performed NMC times, with the convergence

(which scales as 1/
√
NMC) ensured by the sound statistical foundations of MC

methods.190

For a given continuous PDF f(X), the mean is given by µX = E[X] =∫
xf(x)dx, and the variance by s2X = E[(f(x) − µX)2] =

∫
x2f(x)dx − (µX)2.

In the following, we adopt the Log-Normal distribution (i.e. a distribution in

which the logarithm of a random variable is normally distributed):

f(x;µG, sG) =
1

xsX
√

2π
exp

[
− (lnx− µX)

2

2s2X

]
(7)

where µG and sG are, respectively, the mean and standard deviation of the195

random variable logarithm, to describe the PDF of the properties and volume

fractions. The Log-Normal distribution is an adequate choice of the PDF here

because it avoids negative (nonphysical) properties and volume fractions. To

avoid volume fractions exceeding 1, the volume fractions obtained in a given

trial can simply by renormalized. The mean and the standard deviation of the200

Log-Normal distribution are given, respectively, by µLN = exp
(
µG +

s2G
2

)
and

sLN =

√(
e(s

2
G) − 1

)
e(2µG+s2G).

In Appendix A, we discuss the convergence of MCM estimations and compare

them to analytical results obtained in the simplest case of a mixture rule.

2.3. Simplified modelling of the conductivity of the pore solution and variability205

We show in a recent study that the age-dependency of the electrical conduc-

tivity of the pore solution, for various cement systems, can be approximated by

the following empirical relation [41]:

σPS(w/c) =
1

w/c

(
4.560− 2.881e−t/0.975

)
(8)
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Figure 1: (a) Master curve obtained from averaging experimental conductivity provided in

Vollpracht et al. [13] database (value shown in the inset). (b) Standard deviation, computed

from the experimental data, as a function of the time.

for σ in S/m and t in days. This expression is consistent with experimental

data [13] and theoretical considerations based on the molecular hydrodynamics210

of the pore solutions[41, 14, 42]. This expression is plotted in Fig. 1 (a) and

compared to the averages of the normalized experimental data from Vollpracht

et al. [13] (shown in the inset). The standard deviation, computed from the

experimental data, is plotted as a function of the time in Fig. 1 (b).
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3. Results215

3.1. Cement, hydrates, pores and aggregates: evolution of volume fractions and

effective conductivity per phase

To obtain the evolution of the volume fractions of hydrates, we employ two

simplified models: Powers [43] and Tennis and Jennings [44] models. The details

of each model are presented in Appendix B. With Powers model, the volume220

fractions of clinker, hydrates, and capillary porosity, as well as chemical shrink-

age, are provided as a function of the degree of hydration, w/c ratio and mass

volume of water and cement. The hydrates are treated as a homogeneous phase.

Even if the pore solution is the main contributor to the electrical response of

cement-based materials, a precise quantification of the electrical properties of225

the hydrates can enhance the accuracy of the interpretation of resistivity results

(being the reciprocal of the conductivity, the lower values of conductivity impact

more the resistivity). Recently, it was shown that accounting for the partition

of hydrates in cement paste could lead to significant differences in the estimates

of effective elastic properties of cement paste [45]. In this context, Tennis and230

Jennings [44] model is convenient since it enables the computation (based on

simplified assumption regarding phase assemblage in CEM I systems) of the evo-

lution of each clinker mineral and gypsum fractions as well as the main hydrates

including high- and low-density C-S-H, CH, and the Al-bearing phases: ettrin-

gite (C6AS̄3H32 or AFt), monosulfoaluminate (C4AS̄H12 or AFm), hydrogarnet235

(C3(A,F )H6) and C4AH13, all in cement notation. The volume fraction of the

gel pores in C-S-H is also provided.

Figure 2 shows a comparison between the estimations of that can be ob-

tained with Powers, and Tennis and Jennings models. Further, we provide

MCM computations using as input the variability in clinker and gypsum frac-240

tions encountered in typical CEM I. The probability distribution functions of

the mass fraction of clinker and gypsum in CEM I composition as proposed in

ref. [45] based on Taylor [46] is shown in Fig. 2 (a). Using Tennis and Jennings

model, we show in Fig. 2 (b) the mean volume fractions of various phases in a
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cement system as a function of the w/c ratio for a degree of hydration of α of 0.8.245

A normal distribution was adopted but it can be shown that using a uniform

distribution lead only to slighter larger standard deviations in the volume frac-

tions [45] (a simple visual analysis of Fig. 2 (a) shows that with the variability

adopted for clinker mineral fractions remain in the domain of positive fractions)

. The comparison between the Powers and Tennis and Jennings estimates of250

hydrates, capillary porosity, and chemical shrinkage is presented in Fig. 2 (c)

for a degree of hydration of α of 0.8, which is a typical value associated with late

ages in cement-based materials. The volume fraction of hydrates obtained from

Powers model is slightly larger than the ones obtained with Tennis and Jennings

model. The inverse is observed in capillary porosity estimates. In both cases,255

the differences observed are not within the variability associated with CEM I

composition variability depicted by the error bars. Thus, if one assumes that

the electrolytes within the gel porosity also contribute to the electrical conduc-

tion, the total ”conductive” porosity is still larger when one adopts Tennis and

Jennings model.260

A possible issue with using a more detailed description of phases assemblage

in cement pastes is that the precise values of the properties of each phase may

not be known. On the other hand, non-porous solid phases are expected to

exhibit very low electrical conductivity (i.e. they can be treated effectively as

insulators). Clinker minerals, CH, and hydrogarnet do not present micropores265

(i.e. pores <2 nm according to the IUPAC) in their atomic structure whereas C-

S-H exhibits interlayer micropores and gel mesopores (i.e. pores ranging from

2 to 50 nm according to the IUPAC). The space in between the columns in

ettringite and the interlayer pores in AFm phases can be viewed as micropores;

the dynamics of water and sulfates are expected to the be slowed down by the270

high confinement as captured in molecular dynamics simulations [47] (similar

reasoning would apply to the other counter-anions as hydroxide and chloride

that can appear in AFm phases). In this context, C-S-H would be expected to

exhibit a non-zero electrical conductivity due, at least, to the mesopores whilst

the other hydrates could be treated as insulators.275
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Figure 2: (a) Probability distribution functions of the mass fraction of clinker and gypsum in

CEM I composition as proposed in ref. [45] based on Taylor [46]. (b) Mean volume fraction

of various phases in a cement system as a function of the w/c ratio obtained using Tennis

and Jennings model for a degree of hydration of α of 0.8 (a typical value associated with late

ages in cement-based materials). The volume fractions of all aluminum bearing phases (AFt,

AFm, hydrogarnet and C4AH13) are grouped. MCM computations using the PDF in (a)

were performed with NMC = 10000 to get the mean values, the error bars correspond to the

standard deviations. (c) Volumes fractions of hydrates, cement, capillary pores and chemical

shrinkage as obtained from Tennis and Jennings and from Powers models. The error bars

correspond to the standard deviations from MCM computations.
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With these arguments, we propose the representation of the multiscale hier-

archical microstructure of cement-based materials, from C-S-H up to concrete

scale, presented in Fig. 3. The length scales associated with each level give sup-

port to the separation of scales proposed (similar scale separation has also been

adopted in other studies dealing with the homogenization of various physical280

properties of cement-based materials [32, 48]). Four levels are considered :

• Level 0 - C-S-H LD : The effective properties of C-S-H LD are computed as-

suming that the electrolyte in gel pores exhibits an electrical conductivity

similar to that of capillary porosity. The effective electrical conductivity

of the C-S-H particle σC−S−H being a parameter to be defined. We adopt285

the polycrystal-like morphology corresponding to SC estimate to upscale

the electrical conductivity at this level. No specific steps are introduced to

take into account the densification processes of C-S-H. Experimental [49]

and theoretical [50, 51] evidences suggests a mechanism of densification

of C-S-H as hydration processes develop. Since the electrical conductivity290

of the C-S-H in its high and low density forms are at least one order of

magnitude lower (following the discussion in the next section) than the

conductivity of the pore solution, the effects of densification are not ex-

pected to be significant on the upscaling of the effective conductivity of

cement-based materials across scale. A discussion in the Appendix B.2295

shows however that in some conditions Tennis and Jennings [44] model

implies a densification of C-S-H.

• Level 1 - Cement Paste: The effective properties of the cement paste are

computed considering the capillary pores and C-S-H (HD with a conduc-

tivity σC−S−H and LD with a conductivity obtained from homogenization300

in level 0) as conductor phases and other hydrates, gypsum, and clinker as

insulator phases. Both matrix/inclusion and polycrystal-like morphologies

are tested in the following.

• Level 2 - Mortar : The effective properties of the mortar are obtained con-

sidering a matrix/inclusion morphology with the fine aggregate particles305
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Figure 3: Representation of the multiscale hierarchical microstructure of cement-based ma-

terials. In the application of the homogenization schemes, we approximate the shape of all

heterogeneities depicted by spherical inclusions (or equiaxed inclusions in the case of SC

scheme).

embedded in a cement paste matrix. We assume non-porous aggregates,

which behave effectively as insulators. For the sake of simplicity, we do

not consider the ITZ. See Appendix C for a throughout the discussion

on the role of ITZ in the electrical conductivity. In the absence of in-

formation on the particle size distribution of aggregates and on the ITZ310

characterization, neglecting the ITZ seems a reasonable assumption.

• Level 3 - Concrete: The effective properties of the concrete are obtained

considering a matrix/inclusion morphology with the coarse aggregates em-

bedded in a mortar matrix. Again, no ITZ is considered and non-porous

insulator aggregates are assumed.315

3.2. Effective electrical properties: from C-S-H particles up to cement paste

A first estimate of the effective electrical conductivity of the C-S-H particle

σC−S−H can be obtained from the diffusion coefficients. If one assumes that only

the pore solution contributes to the overall conductivity (i.e. the conductivities

of the other phases are 0), then Eq. 5 shows that the ratio between the effective320

conductivity and the conductivity of the pore solution σeff/σPS = 1
2 (3φ− 1) is
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a constant that depends only on the capillary porosity of the system. Nernst-

Einstein relation links the self-diffusion coefficient Di of a given ion species i

to the conductivity of the ion σi in the electrolytes in approximate manner

[52]: σi =
z2i ciF

2Di
RT , where ci is the ionic concentration, F and Rg are the325

Faraday and gas constants, respectively. This relation is known to overestimate

the conductivity of ionic solutions [53] but is a reasonable approximation for

pore solution in cement-based as discussed in details by us in ref. [41]. Indeed,

this relation has been successfully used to model pore solution in cement-based

materials [54, 15, 55]. Assuming Nernst-Einstein relation, in a system with330

homogeneous dynamics (i.e. Di = Dh for all ion i, as in the Case A in the

previous Part), one obtains σeff/σPS = Deff/DPS , where Deff is the effective

diffusion coefficient of the porous medium (which can also be obtained from SC

or MT schemes presented in section 2.1 but using the diffusion of each phase as

input instead of the conductivities) and DPS = Dh is the diffusion coefficient335

associated to the ionic species of the pore solution. In an attempt to estimate

the electrical conductivity of C-S-H from diffusion coefficients, various authors

obtained values of σC−S−H/σPS ranging from 0.0025 to 0.01 [56, 15, 57, 58].

It must be noted, however, that the underlying assumption of homogeneous

dynamics can be problematic in multi-component ionic solutions, as discussed340

in details in ref. [41], and is not sufficient to capture the age-dependency of

the conductivity of the pore solutions in cement-based materials. Furthermore,

adopting a constant σC−S−H/σPS(t) means that the electrical conductivity of

C-S-H σC−S−H is assumed to be time-dependent.

We assess the sensibility of the effective electrical conductivity of the cement345

paste with respect to C-S-H electrical conductivity σC−S−H in Fig. 4 as a func-

tion of the w/c, using Tennis and Jennings model to obtain the volume fractions

of phases and a first homogenization to upscale C-S-H LD conductivity (SC esti-

mate of a foam composed of solid particles and gel pores - Level 0 as discussed in

last section). We use as input in MCM computations the composition variability350

of clinker in Fig. 2(a) and NMC=104. Both SC and MT approaches to upscale

cement paste are considered. For the latter, we consider the cases in which
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Figure 4: Sensibility of the effective electrical conductivity of the cement paste to C-S-H

electrical conductivity: comparison between (a) SC, (b) MT with the C-S-H LD as matrix,

and (c) MT with the pore solution as matrix. We used the composition variability of clinker

in Fig. 2(a) as input in MCM computations with NMC=104. The inset in (a) zooms in the

range of w/c ratios typically observed in concretes. The legend in (c) applies to the three

figures. The inset in (b) gather the estimates using σC−S−H =10−10 S/m as input.

either C-S-H LD or the pore solution function are the hosting matrix (previous

studies on micromechanics of the cement paste also adopted C-S-H LD as the

matrix at cement paste level [48, 32, 59]). We used the composition variability355

of clinker in Fig. 2(a) as input in MCM computations with NMC=104. The

corresponding standard deviation of the effective electrical conductivity is also

shown. The inset in (a) zooms in the MT estimates having the C-S-H LD as

the matrix. With SC scheme and MT having the pore solution as matrix, the

effective conductivity σCP (w/c) of the cement paste at a given w/c converges to360

a finite value as σC−S−H → 0 (the curves corresponding to σC−S−H = 10−5 and

10−10 S/m are indistinguishable). With MT having the C-S-H LD as matrix,

σCP (w/c) tends to 0 as σC−S−H → 0. The MT estimates function as bounds

to the SC estimates as can be seen in the inset in Fig. 4 (b).

To get the effective conductivity of the solids σs accounting for the interac-365

tions among the various phases in the system, we use Eqs. 1 and 4 to rewrite the

effective properties of the multi-component system as a 2-phase system (solid

phase, denoted by the subscript s and a pore phase denoted by the subscript

PS). With SC estimate, σs can be obtained by solving the following equation
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as a function of the effective SC estimate of the electrical conductivity of the370

cement paste σSCCP :

fs
σs − σSCCP
σs + 2σSCCP

= fLD
σLD − σSCCP
σLD + 2σSCCP

− fHD
σC−S−H − σSCCP
σC−S−H + 2σSCCP

− fNC
2

(9)

where fs = fLD + fHD + fNC is total volume fraction of solids, σLD is the

electrical conductivity of C-S-H LD obtained by homogenization, fLD = fSolLD +

fGel is the total volume fraction of C-S-H LD (including the gel porosity fGel

and volume fraction of solid C-S-H LD fSolLD from Tennis and Jennings model),375

fHD is the volume fraction of C-S-H HD, fNC is the volume fraction of non-

conductive phases (anhydrates and hydrates other than C-S-H LD). When we

assumed that the electrical conductivity of C-S-H HD is σC−S−H = 0, we obtain:

σs =
2fLDσPSσ

SC
CP (fSolLD − 2fGel)

(fHD + fNC)(fSolLD − 2fGel)σPS − 4fLDfsσSCCP
(10)

Note that this solution depends on the effective conductivity of the paste σSCCP ,

which indicates that the interactions among the phases in the composite play a380

role in the effective conductivity of the solids. Similar reasoning can be applied

to get the MT estimates of σs. We have tested such MT estimates assuming

either the pore solution or the solids is the matrix and, in both cases, we ob-

tained (nonphysical) negative conductivities of the solids. This result suggests

that SC estimates are more adapted to upscale the electrical conductivity of385

cement pastes. MCM computations (with NMC=10000) were performed to get

the SC estimate of σs for three w/c (0.3, 0.4, 0.5) and various degree of hydra-

tion ( α ∈ [0, 1]). We used Eq. 9 (instead of Eq. 10) so that we could account

for a σC−S−H different from 0 (we adopted σC−S−H of 0, 0.01 and 0.1). When

all these scenarios are considered, the resulting mean of σMCM
s is 0.0246 S/m390

and a standard deviation of 0.0384 S/m. As expected the standard deviation

of the conductivity of the solids is much lower than that associated with the

pore solution. Since the standard deviation is on the order of the mean value, a

log-normal model of the distribution of σMCM
s could be used to avoid negative
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conductivities. The mean of the conductivity of the solids obtained with MCM395

is on the order of the values reported in the literature. Coverdale et al. [60],

based on numerical investigations, report the value σs = 0.01 S/m. Ma et al.

[58], using inverse analysis on cement pastes obtained the empirical expression

σEmp.s /σPS = 0.00357
(

1− 1
1+(2α)5.85

)
. Using the typical values of σPS pre-

sented in Fig. 1 (from 1 to 20 S/m), σEmp.s would range from 0 to 0.07 S/m,400

which falls in the range of variability of σMCM
s .

Our bottom-up estimates of σMCM
s and σPS(t) (from the master curve pre-

sented in Fig. 1), and the respective variabilities, can be now used as input in

MCM computations associated with Powers model.

Figure 5 shows our estimates compared to the experimental data from Chris-405

tensen et al. [6]. These authors report the effective electrical conductivity of a

cement paste with w/c = 0.4 (Fig. 5 (c)) and the capillary porosity of cement

pastes with w/c of 0.35 and 0.5 (Fig. 5 (b)). Here, we first estimate the evolu-

tion of the degree of hydration for the pastes with w/c of 0.35 and 0.5 from the

corresponding results of capillary porosity using Powers model (Appendix B.1).410

Then, we interpolate the results for a cement paste with w/c =0.4, as shown

in Fig. 5 (a), and compute the capillary porosity of this cement paste using

Powers model. The effective electrical conductivity of cement paste with w/c =

0.4 (Fig. 5 (c)) is computed according to the SC and MT estimates. Note that,

for a two-phase composite, HS upper and lower bounds are identical to the MT415

estimates using the pore solution as a matrix and using the solid as the matrix,

respectively. SC estimate yields result in a better agreement with experimental

data than MT estimates. The mean value of conductivity of solids of σMCM
s

is 0.0246 S/m yields estimates in reasonable agreement with the experimental

data. Additionally, using a least-squares procedure on the experimental data,420

we compute the effective conductivity of the solids σFits =0.027 S/m, which is

remarkably closer to σMCM
s . Furthermore, in order to obtain information re-

garding the bounds on σs, least-squares minimization was also performed for the

HS upper and lower bounds: we obtained a σs of 0 and 0.13 S/m, respectively.

In contrast with the conductivity of the pore solution, which is reported to425
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increase with time due to the augmentation of the concentration of mobile ions;

the conductivity of the cement paste is expected to decrease with time due to

cement hydration processes, which cause a reduction in the capillary porosity.

These tendencies are well captured by the SC estimate. The MT estimates

using the pore solution as a matrix yield reasonable results for the very early430

age when the liquid phase functions effectively as a matrix. Accordingly, the MT

estimates using the solid phase as a matrix yield reasonable results for late ages,

when the solid phase percolates and effectively functions as a matrix. Since no

matrix needs to be defined in SC estimations, the corresponding results perform

better in capturing the transition from a liquid to a solid matrix during cement435

hydration.

In this context, the formation factor F (t) can be written using the effective

conductivity of the material σ(t) and the (time-dependent) conductivity of the

pore solution σPS(t): F (t) = σ/σPS(t). For a two-phase micro- and macro-

isotropic heterogeneous material, the Self-Consistent formation factor FSC is440

given by:

FSC(t) =
1

4σPS

(
S′SC +

√
(S′SC)2 + 8σPSσs

)
(11)

where S′SC = (3φcap(σPS − σs)− σPS + 2σs), and the time dependencies of the

capillary porosity φcap(t) and of the electrical conductivity of the pore solution

are omitted for conciseness.

In the Fig. 5 (c), the experimental formation factor provided by Christensen445

et al. [6] for a cement paste with w/c =0.5 is compared with the SC estimates.

Again homogenization results provide a good estimation of the early-age devel-

opment of the effective electrical conductivity of cement paste.

We assess the sensibility of the standard deviation of the effective electrical

conductivity of the cement pastes with respect to the variability of the pore450

solution and solids conductivities in Fig. 6. Figure 6 (b) shows the standard

deviation of the effective electrical conductivity of the cement paste as a function

of (i) the standard deviation of the conductivity of the pore solution sPS for a
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Figure 5: (a) Degree of hydration as a function of the w/c estimated from the capillary porosity

in (b) using Powers model. (b) Capillary porosity from Christensen et al. [6] for w/c of 0.35

and 0.5; the capillary porosity for w/c = 0.4 was estimated using the corresponding degree

of hydration in (a) and Powers model. (c) Effective electrical conductivity of the cement

paste with w/c = 0.4 as provided by Christensen et al. [6] experiments and homogenization

results. SC estimates obtained with MCM (using as input a log-normally distributions for the

conductivities of the solids and pore solutions with σs=0.0246 S/m and a standard deviations

of 0.0384 S/m, and a standard deviation of the pore solution conductivity of 1 S/m) and

from least square fitting of the experimental data are shown; HS upper and lower bounds are

identical to the MT estimates using the pore solution as a matrix and using the solid as the

matrix, respectively. The results of conductivity of the pore solution using the master curve

presented in Fig. 1 are used in the homogenization. (d) Formation factor F = σ(t)/σPS(t) of

a cement paste with w/c = 0.5 as a function of the capillary porosity: comparison between

experimental [6] and model data (FSC(t)). The inset shows the effective electrical conductivity

of the cement paste with w/c = 0.5 and the associated standard deviation as computed with

MCM.
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Figure 6: (a) Standard deviation of the effective electrical conductivity of the cement paste

as a function of (i) the standard deviation of the conductivity of the pore solution sPS (with

ss=0.0346 S/m), kept constant), and (ii) the standard deviation of the conductivity of the

solids ss (with sPS =1 S/m, kept constant) for cement pastes at 1 day and with w/c ratio

of 0.3, 0.4 and 0.5. In all cases the electrical conductivity of the phases are assumed to be

log-normally distributed and NMC=5×106. (a) Probability Distribution Function (PDF) of

the effective electrical conductivity of the cement paste according to the standard deviation

of the conductivity of the pore solution sPS , assumed to be log-normally distributed, and a

constant standard deviation of the conductivity of the solid phase. Cement paste at 1 day

and with w/c =0.4.

constant ss=0.0384 S/m); and (ii) the standard deviation of the conductivity of

the solids ss for a constant sPS =1 S/m. The results are shown for cement pastes455

at 1 day with a w/c ratio of 0.3, 0.4 and 0.5. The standard deviation of the

cement paste grows faster with the standard deviations of the pore solution than

that with the standard deviations of the solids. In Fig. 6 (a), we compare the

distributions of the effective conductivity of the cement paste with w/c of 0.4 at

1 day according to three values of sPS and a constant standard deviation of the460

electrical conductivity of the solid phase (ss=0.0384 S/m). The distributions of

the effective conductivity keep the log-normal character of the conductivities of

the constituent phases, being broader as sPS increases.

Accounting for the non-spherical shapes of solid phases in cement-based ma-

terials have been considered as a relevant aspect by some authors upscaling the465
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mechanical properties of cement-based materials [30, 61, 62]. The effects of in-

clusion shape are expected to be more significant as the contrast of properties

increases [9]. It must be noted however that the main contributor to the electri-

cal conductivity of cement-based materials is the pore solution and the pore in

such materials are generally modeled as spheres in the framework of microme-470

chanics [30, 61, 62]. Accounting for non-spherical solid phase can affect the

estimations of the effective properties of the solids but the expected variations

must lies within 0 to σC−S−H =0.0246 S/m (the maximum conductivity found

in the porous solid phase, here C-S-H). In this context, we believe that introduc-

ing information on the shape of the solid phase will not contribute to increasing475

significantly the precision of homogenization estimations. Furthermore, input

on at least the aspect ratio distribution (and probably time-dependency) of each

phase present would be necessary for a homogenization modeling approach ac-

counting for inclusion shapes. The quantification of hydrates particle shapes is

challenging. Theoretical considerations suggest that in the case of C-S-H the480

particle aspect ratio is time-dependent [51] and larger clusters of C-S-H grains

tends to be more elongated [63]. On the other hand, experimental evidence

suggests spherical isotropic, fibrils and foils morphologies of C-S-H [64].

3.3. Upscaling the effective electrical properties and variability up to the concrete

scale485

The effective conductivity of the cement paste, mortar and concrete are

presented in Fig. 7 according to various w/c. We adopt a volume fraction of

40% of sand at the mortar scale and 40% of coarse aggregate at the concrete

scale. As expected, the conductivity at a given scale and time increases with the

w/c. Since the total volume of pores decreases at larger scales, the difference490

between the effective electrical conductivity of the materials with various w/c

decreases the larger are the scales. From the discussion on the transition from

a complex fluid to a solid from the last section (see Fig. 5), one may try to

correlated the time in which the time derivatives of the conductivity dσ/dt

conductivity begins to be negative to the setting time. Again, as expected, our495
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results indicates a setting time that increases with the w/c regardless of the

scale considered.

The electrical resistivity ρ = 1/σ at the three scales are also shown in Fig. 7.

As expected, the resistivity at a given scale and time increases with the decrease

of the w/c. The results at the concrete scale are in the same order as the exper-500

imental results reported in the literature (e.g. [65, 6, 66]. The non-monotonous

aspect of conductivity curves (with a maximum occurring within the first days)

has also been observed experimentally [66, 67]. From the functional analysis

of SC estimate (Eq. 4), it can be shown (see Appendix D) that a maximum

appears at the first hours and the exact time scales decreases with the ratio505

of the characteristic times associated with pore solution conductivity increase

and capillary porosity decrease. If the evolution of capillary porosity and the

age-dependency of pore solution conductivity have a similar characteristic time,

a maximum in the effective conductivity occurs approximately in the range of

0.1 to 0.5 days. This maximum is therefore not expected to be experimentally510

probed in most of the cases in which the pastes are tested after setting.

The PDF of the effective electrical conductivity and resistivity of the cement

paste, mortar and concrete for various w/c at 1 day are shown in Fig. 8. The

log-normal nature of the distribution is also observed in the effective properties.

Note that once the distribution of the electrical conductivity (resp. resistivity)515

is known, the distribution of the resistivity (resp. conductivity) can be com-

puted using the inverse distribution. Let X be a random variable with strictly

positive support, the PDF fY of the random variable Y = 1/X can be com-

puted from the PDF fX by (e.g. [68]): fY (y) = 1
y2 fX

(
1
y

)
. Fig. 9 shows that

the use of inverse distributions yields results in agreement with MCM estimates.520

Therefore, information on the statistical variability of one of these properties

can be easily used to get the variability of the reciprocal property.

Figure 10 shows the time dependence of the standard deviation of the electri-

cal conductivity and resistivity at the cement paste, mortar and concrete scales

for various w/c. Since we consider that the standard deviation of the pore so-525

lution conductivity is much larger than the standard deviation of the solids, a
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Figure 7: Effective electrical conductivity of (a) cement paste, (b) mortar and (c) concrete

scale as a function of the w/c. Effective resistivity of (d) cement paste, (e) mortar and (f)

concrete scale as a function of the w/c. We adopt sPS =1 S/m and ss =0.0384 S/m. The

volume fractions of sand at the mortar scale and of coarse aggregate at the concrete scale are

40%.
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Figure 8: (a) Probability Distribution Function (PDF) of the effective electrical conductivity

(at left) and resistivity (at right) at the cement paste, mortar and concrete scales for various

w/c at 1 day.
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Figure 9: Comparison between the PDF of the effective conductivity at the concrete scale

directly computed with MCM and the PDF obtained from the inverse distribution using the

results of (a) the resistivity and (b) the conductivity for w/c of 0.3 and 0.7 at 1 day.
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Figure 10: Evolution of the standard deviation of the electrical conductivity (at top) and

resistivity (bottom) at the cement paste, mortar and concrete scales for various w/c.

decrease in the effective standard deviations of both conductivity and resistiv-

ity with time is observed due to the decrease of the porosity for a given w/c.

This effect is more pronounced for lower w/c ratios. The larger the scale, the

smaller the variability of the conductivity. This result is expected since most of530

the variability considered here is associated with the pore phase, whose volume

fraction decreases relatively at larger scales. Inverse tendencies are observed in

the effective resistivities that increase with time (for a given w/c).

4. Conclusions

In this article, we propose a multiscale modeling approach of the electri-535

cal conductivity (and resistivity) of cement-based materials accounting for the

variability and age-dependency of the conductivity of the pore solutions. The

results obtained in this study are a contribution to a better understanding of

the physical origins of cement-based materials properties as well as the cross-

relations between transport and electrical properties. These results can be used540

to reduce the empirism of the interpretation of electrical properties (conductiv-
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ity or resistivity) measurements in concrete, especially in applications related

to durability and service life prediction of cement-based materials.

Our main conclusions are as follows:

• Monte Carlo micromechanics (MCM) enables the quantification of the545

variability and uncertainty across scales. The variability of the pore so-

lution conductivity is the main ingredient in controlling the variability of

the electrical conductivity and resistivity of cement-based materials. Us-

ing the inverse distribution, the probability distribution of the resistivity

can be linked to the variability of the conductivity. The standard devi-550

ation of both resistivity and conductivity decreases with time, and this

effect is more pronounced for lower w/c.

• Self-consistent scheme provides a good estimate of the effective electri-

cal conductivity of cement-pastes capturing the transition from a liquid

to a solid matrix during cement hydration. Using SC estimate in an in-555

verse analysis, we obtained an effective conductivity of the solid σMCM
s

of 0.0246 S/m and a standard deviation of 0.0384 S/m (for a log-normal

distribution). This value is larger than the value previously reported in

the literature [60] but still two to three orders of magnitude below the

conductivities of the pore solution, which means that the solid will ef-560

fectively function as an electrical insulator. The SC estimate utilized in

this work assumes a random microstructure composed of equiaxed het-

erogeneities and, therefore, does not take into account specific features

of the microstructure such as complex inclusion shape, orientation, and

distribution. The agreement of our results with experimental data sug-565

gests that these specific features are not significant (or, at least, not the

main contributors) to the effective electrical properties of cement-based

materials.

Perspectives of this study include the consideration of the saturation degree-

dependency, thermal activation of ion dynamics and conductivity of pore solu-570

tions in cement-based materials.
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Appendix A. Convergence of MCM and comparison with analytical

results

Figure 11 (a) shows the histograms of the effective conductivity of a two-

phase isotropic composite mimicking a cement paste obtained using MCM ac-

cording to various NMC . The matrix corresponds to the solid phase (with a580

conductivity of 0.1 S/m and a standard deviation of 0.01 S/m) and the inclu-

sions correspond to the pore phase with a conductivity of 10 S/m and standard

deviation of 1 S/m according. Both normal or log-normal distributions are con-

sidered. The mean and standard deviation of the effective conductivity converge

to the analytical value (in which no variability of properties phases is accounted585

for) for NMC exceeding approximately 104, as can be seen in Fig. 11 (b) and

(c). This observation is valid for effective conductivities obtained from both

normal or log-normal distributions of constituents’ properties. Similar results

are observed in computations when the solid is taken as the inclusions. To bet-

ter capture the (a smooth) PDF of the effective conductivities we adopt a NMC590

of 105.

The mean and the variance of a sum S of two independent random variables

(denoted by the subscripts 0 an 1) are given, respectively, by µS = µ0 + µ1

and s2S = s20 + s21. Using this property, we can easily compute the effective

conductivity of a two-phase composite using a mixture rule (i.e a weighted sum595

of the properties with respect to the volume fraction of the phases). We compare

MCM estimations with analytical results regarding a mixture rule in Fig. 12

for a two-phase isotropic composite (phase 0 has a conductivity of 0.1 S/m

and a standard deviation of 0.5 S/m, phase 1 has a conductivity of 10 S/m

and standard deviation of 1 S/m) with the properties of the constituents being600
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Table 1: List of Notations
ci molar concentration of ion i

Di self-diffusion coefficient of species of type i

D diffusion coefficient

Dh homogeneous self-diffusion coefficient

eITZ thickness of ITZ

f(X) continuous probability density function on random variable X

fSchulz(X) Schulz distribution of variable X

F formation factor [-]

FSC Self-Consistent estimate of the formation factor

F Faraday constant

fAgg volume fraction of the aggregates at mortar or concrete scales

fr volume fraction of phase r

k permeability

kB Boltzmann constant

lc length scale associated with the pores size

m parameter controlling the variance of Schulz distribution

NMC number of Monte Carlo trials in MCM

~PI ionic polarization

qi particle charge

Ragg radius of aggregate

Rg gas constant

~ri position vector of particle i

rT and sT coefficients of thermo-activation of the resistivity and conductivity, respectively

SSC = ((3f1 − 1)σ1 + (2 − 3f1)σ2), term in Eq. 5

sLN standard deviations of Log-Normal distribution

sPS standard deviations of electrical conductivity fo the pore solution

ss standard deviations of electrical conductivity of the solids

sX standard deviation of f(X)

t time

T temperature

T1 NMR relaxation time

V volume

VITZ and VMatrix volume of ITZ and volume of the matrix

X and Y random variable and its reciprocal (Y = 1/X)

w/c water-to-cement mass ratio

zi charge number of particle i

α degree of hydration

φcap and φ0cap capillary porosity and capillary porosity at t=0

ρc ρw mass volume of cement and water

µLN mean of Log-Normal distribution

µX mean of f(X)

ρ electrical resistivity

σ electrical conductivity

σAgg electrical conductivity of the aggregates

σ
Emp.
s empirical conductivity of solids from ref. [58]

σGSC
i

effective conductivity of a matrix/composite-sphere inclusion material

σHS+ and σHS− upper and lower Hashin-Shtrikman bounds of the conductivity

σMT Mori-Tanaka (or Maxwell-Garnett) estimation of the effective conductivity

σPS electrical conductivity of the pore solution

σs electrical conductivity of the solids at cement paste level

σSC Self-Consistent (or Bruggeman) estimation of the effective conductivity
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(a) (b)

(c)

NMC= 106

NMC= 105

NMC= 104

NMC= 103

NMC= 102

Figure 11: (a) Histograms of effective conductivity obtained using MCM according to various

NMC . We consider the MT estimations of a two-phase isotropic composite mimicking a

cement paste: matrix with a conductivity of 0.1 S/m and a standard deviation of 0.01 S/m,

inclusions with a conductivity of 10 S/m and standard deviation of 1 S/m according to either

normal or log-normal distributions. The volume fraction of the inclusions is 0.5. Convergence

of the (b) mean and (c) standard deviation of the effective conductivity as a function of the

Monte Carlo sample size NMC according to either normal or log-normal distributions of the

constituent phases.
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Figure 12: PDF of the effective conductivity obtained from a mixture rule: MCM estimations

(NMC=105) compared with analytical results (dashed gray curves) for various volume frac-

tions. We consider a two-phase isotropic composite: phase 0 has a conductivity of 0.1 S/m and

standard deviation of 0.5 S/m, phase 1 has a conductivity of 10 S/m and standard deviation

of 1 S/m. Properties of both are normally distributed. The volume fraction of each phase is

0.5.

normally distributed. The volume fraction of each phase is 0.5. A reasonable

agreement is observed between analytical and Monte Carlo results. Note that

Monte Carlo sampled moments are generally related to their (exact) ensemble

counterparts (even though it is known that they are not expected to coincide

(e.g. [69, 70]).605

Appendix B. Simplified hydration models

B.1 Powers model

With Powers model (when there is no filler), the volume fractions of the

clinker, capillary porosity (or ”water”), hydrates and chemical shrinkage (or

”air”) are provided, respectively [43, 71], as a function of the degree of hydration610

α by:

fClinker =
1− α

1 + w/cρClinkerρWater

=
20(1− α)

20 + 63w/c
≥ 0 (12)
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fWater =
(ρClinker/ρWater)(w/c− 0.42α)

1 + w/cρClinkerρWater

=
63(w/c− 0.42α)

20 + 63w/c
≥ 0 (13)

fHydrates =
1.42α(ρClinker/ρHydrates)

1 + w/cρClinkerρWater

=
43.15α

20 + 63w/c
(14)

fAir = 1− fClinker − fWater − fHydrates =
3.31α

20 + 63w/c
(15)

where ρClinker=3.15 g/cm3 is mass volume of clinker, ρWater=1 g/cm3 is mass

volume of water, and ρHydrates=2.073 g/cm3 is mass volume of hydrates [71].

B.2 Tennis and Jennings model

Tennis and Jennings [44] model is based on the stoichiometric equations:615

2C3S + 10.6H → C3.4 − S2 −H8 + 2.6CH (16)

2C2S + 8.6H → C3.4 − S2 −H8 + 0.6CH (17)

C3A+ 3CS̄H2 + 26H → C6AS̄3H32 (18)

2C3A+ C6AS̄3H32 + 4H → 3C4AS̄H12 (19)

C3A+ CH + 12H → C4AH13 (20)

C4AF + 2CH + 10H → 2C3(A,F )H6 (21)

With these relations and the molar volumes of the phases, one can readily com-

pute the volume fractions of the phases as a function of the degree of hydration

(or time with a kinetic model is provided). No phases bearing carbonates were

originally considered and was assumed that the only aluminum bearing phases
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are ettringite (C6AS̄3H32 or AFt), monosulfoaluminate (3C4AS̄H12 or AFm),620

hydrogarnet (2C3(A,F )H6) and C4AH13. Ettringite is assumed to be com-

pletely converted into monosulfoaluminate if water and C3A are available with

the progress of hydration processes. This model allows distinguishing between

gel pores, low-density (LD) and high-density (HD) C-S-H. The volume of HD

and LD C-S-H is given, respectively, by:625

VHD =
Mt − (MrMt)

ρHD
; VLD =

MrMt

ρLD
(22)

and the volume of gel pore is:

VGel Pores = VLD −
MrMt

ρHD
(23)

with ρHD and ρLD being the mass volume of HD and LD C-S-H, respectively;

Mt is the total mass of C-S-H computed from the stoichiometric relations above;

and, Mr = 3.017(w/c)α − 1.347α + 0.538 is the LD mass ratio with respect to

the Mt.630

Figure 13 shows the comparison between the repartitions of the volume frac-

tion of phases obtained with Tennis and Jennings (top) and for Powers’ (bottom)

models as a function of the degree of hydration for three w/c ratios. The av-

erage clinker composition based on Fig. 2(a) was used as input in Tennis and

Jennings model.635

The evolution of density of C-S-H can be estimated with a combinations of

Eqs. 22 and23 :

ρC−S−Hgel =
Mr(ρHD − ρLD) + rhoHDρLD

2Mr(ρHD − ρLD) + ρLD
(24)

with the values of ρHD and ρLD proposed by Tennis and Jennings, we observe

that ρC−S−Hgel increases with α but only for w/c < 0.45. In this work, no

specific steps are introduced to take into account the densification processes of C-640

S-H but, as shown by Eq. 24, Tennis and Jennings model implies a densification

of C-S-H at least approximately for w/c < 0.45.
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Figure 13: Comparison between the repartitions of the volume fraction of phases obtained

with Tennis and Jennings (top) and for Powers’ (bottom) models as a function of the degree

of hydration for three w/c ratios.

Appendix C. Influence of the ITZ in the effective electrical conduc-

tivity

C.1 Accounting for ITZ as an interphase with constant thickness645

The presence of ITZ is recognized to play a major role in the strength,

diffusive properties and thermal conductivities of cement-based materials [61,

62, 32, 72]. Generalized Self-Consistent (GSC) scheme has been widely deployed

to model ITZ [26, 35, 36, 37, 38]. This approach relies, however, in the definition

of coatings with a fixed volume fraction with respect to the core irrespective of650

the core diameter. This aspect is inconsistent with the assumption of an ITZ

with a single thickness for all sand aggregate particle sizes.

To overcome this problem, we propose here to use the concept of composite

inclusion, associated with the GSC scheme, to fix the thickness of ITZ for all

particle sizes in the system. The thickness of ITZ is denoted eITZ . For a particle655

with radius RAgg, the effective conductivity of the composite sphere constituted
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of a aggregate core embedded in a ITZ coating can be obtained applying Eq. 6:

σCITZ(RAgg) = σITZ +
3fAggσITZ(σAgg − σITZ)

(2σITZ + σAgg)
(

1− fAgg (σAgg−σITZ)
(2σITZ+σAgg)

) (25)

where σITZ and σAgg are the conductivity of the ITZ and aggregate particle,

respectively; and the term fAgg =
R3
Agg

(eITZ+RAgg)3
corresponds to the volume

fraction of the aggregate particle in the composite inclusion. A conceptually660

similar approach, in which a constant ITZ was accounted for according to the

Particle Size Distribution (PSD) of the aggregates, was developed by Garboczi

and Berryman [73] using the differential scheme. In their application, however,

the authors restrict the values of ITZ thickness to few microns, which is below

the value experimentally determined by Scrivener et al. [74]. Berryman and665

For a system with a polydisperse distribution of aggregates fAgg(RAgg),

the effective conductivity can be computed using the homogenization schemes

presented in the last section by discretizing fAgg(RAgg) in i bins and considering

each bin as a phase. The volume of interpenetrating ITZ can be computed from

the particle size distribution of the aggregates (fine or coarse) using Lu and670

Torquato results [75], as discussed by Garboczi and Bentz [76].

C.2 Application to the electrical conductivity of mortars

To assess the influence of ITZ, we study various aggregates particle size

distributions that can be found in typical mortar and concrete mix design. We

adopt the Schulz distribution:675

fSchulz(X) =
1

Γ (m+ 1)

(
m+ 1

〈X〉

)m+1

Xmexp

[
− (m+ 1)X

〈X〉

]
(26)

where m is a parameter controlling the variance (the variance of the Schulz dis-

tribution decreases with m, with m→∞ the distribution tends to the monodis-

perse case) and Γ is the gamma function (which is related to the generalization

of the factorial function). The nth moment of Schulz distribution is given by

〈Xn〉 = (m+n)!
m!

1
(m+1)n 〈X〉

n.680
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Figures 14(a) and (c) show the passing volume fraction of aggregates accord-

ing to a three average radius 〈RAgg〉 (a) and three variances (c) of aggregates

particle sizes (controlled through the parameterm of normalized Schulz distribu-

tion). For each aggregate size distribution, the corresponding volume fractions

of the ITZ (in terms of volume fraction of the matrix: VITZ/VMatrix) are shown685

in Figs. 14(b) or (d) as a function of ITZ thickness (in µm). The change of

one order of magnitude in the average radius 〈RAgg〉 impacts more significantly

the volume fractions of the ITZ than the change of one order of magnitude in

variance parameter m.

The effective electrical conductivities of the composite spheres according to690

various ITZ thickness eITZ as a function of the radius of the aggregate are shown

in Fig. 15.

Figure 16 shows the effective electrical conductivity of the mortar according

to the presence of the ITZ. Accounting for the ITZ becomes significant for

aggregate size distributions with an average radius inferior to 1 mm and for695

the thickness of the ITZ larger than 5 µm. Experimental evidence shows an

ITZ thickness in the range 15-20 µm [77]. Therefore, multiscale approaches

should ideally take into account the ITZ. However, the attempts to account

for ITZ in multiscale modeling must take into account the challenges related

to the delimitation of this interfacial zone as well as its composition. The700

determination of ITZ thickness is not trivial since this interphase exhibits a

porosity gradient [74, 37, 38] which make it difficult to place frontier between

the ITZ and the bulk cement paste. The gradative variation of porosity may be

accompanied by variations in hydrates content. For example, ITZ is reported

to present higher Portlandite contents than the bulk paste [74]. In addition, the705

extension of ITZ can be affected by a factor such as the curing age [78]. Another

source of uncertainty related to ITZ is the supplementary porosity contained in

this interphase [74, 72]. Curing and water-to-binder ratio are reported to impact

ITZ porosity [78]. Considering these uncertainties related to ITZ, in the absence

of information on the ITZ features, neglecting the ITZ seems a reasonable choice710

for the sake of simplicity.
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Figure 14: (a) Passing volume fraction of aggregates with three average radius 〈R〉 for constant

variance (m = 1). The inset shows the differential size distribution. (b) Volume of ITZ in

terms of volume fraction of the matrix (VITZ/VMatrix) for three different average radius

〈RAgg〉. (c) Passing volume fraction of aggregates for a constant 〈R〉 (=1 mm): effect of the

variance of aggregates particle sizes (controlled through the parameter m of normalized Schulz

distribution). (d) Volume of ITZ in terms of volume fraction of the matrix (VITZ/VMatrix)

according to the parameter m.
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Figure 15: Effective electrical conductivity of the composite spheres with a constant ITZ

thickness eITZ according to the radius of the aggregate.

Finally, it must be notes that the introduction of ITZ

Appendix D. Maximum in the effective electrical conductivity using

SC scheme

The SC estimate in Eq. 4 is analyzed to understand the origin of the max-715

imum observed in Fig. 7 at the very early-ages. In Figure 17(a), we com-

pute the effective electrical conductivity of a paste σSC obtained using as in-

put a conductivity of solids σs = 0.01 S/m and of pore solution σPS(t) =

(10(1−Exp[−t/τPS ]) S/m. The evolution of the capillary porosity is described

by φ = (0.5Exp[−t/τCapPor]). The kinetics of pore solution composition varia-720

tion is quantified via the characteristic time τPS . The kinetics of the capillary

porosity evolution is described by the characteristic time τCapPor. We observe

that the maximum appears in SC according to the ratio τPS/τCapPor. The age

in which the maximum occurs decreases with this ratio, as shown in Fig 17 (b),

being limited to ages below 1 day. The analysis of the master curve in Eq. 8725

(with a characteristic time of approximately 1 day) and typical evolution of cap-
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Figure 16: Effective electrical conductivity of the mortar plotted as a function of the ITZ

thickness for the aggregate distributions (a) with constant variance (m = 1) and three average

radius 〈RAgg〉, (b) for constant average radius (〈RAgg〉=1 mm) and three variances (controlled

through m parameter).

illary porosity in cement-based materials (with characteristic times on the order

of days), shows that the ratio τPS/τCapPor is on the order of 1 or below. Thus,

for most of the relevant applications in cement-based materials, the maximum

is expected to manifest in ages inferior to 1 day.730
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