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Abstract: The severity of human infection by one of the many Shiga toxin-producing Escherichia
coli (STEC) is determined by a number of factors: the bacterial genome, the capacity of human
societies to prevent foodborne epidemics, the medical condition of infected patients (in particular
their hydration status, often compromised by severe diarrhea), and by our capacity to devise new
therapeutic approaches, most specifically to combat the bacterial virulence factors, as opposed to our
current strategies that essentially aim to palliate organ deficiencies. The last major outbreak in 2011 in
Germany, which killed more than 50 people in Europe, was evidence that an effective treatment was
still lacking. Herein, we review the current knowledge of STEC virulence, how societies organize
the prevention of human disease, and how physicians treat (and, hopefully, will treat) its potentially
fatal complications. In particular, we focus on STEC-induced hemolytic and uremic syndrome (HUS),
where the intrusion of toxins inside endothelial cells results in massive cell death, activation of the
coagulation within capillaries, and eventually organ failure.

Keywords: Shiga toxin; Escherichia coli; hemolytic uremic syndrome; thrombotic microangiopathy

Key Contribution: We review here the current understanding of the mechanisms of virulence of Shiga
toxin-producing Escherichia coli; in particular how infection can lead to thrombotic microangiopathy
and acute kidney injury. A modern procedure for differential diagnosis is also provided.

1. Introduction

Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS) belongs
to the body of thrombotic microangiopathies [1], a heterogeneous group of diseases characterized by a
triad of features: thrombocytopenia, mechanical hemolytic anemia with schistocytosis, and ischemic
organ damage. It is caused by gastrointestinal infection by a Shiga toxin-producing E. coli (and
occasionally other pathogens) and is also called “typical” HUS, as opposed to “atypical” HUS, which
results from alternative complement pathway dysregulation, and “secondary” HUS, caused by various
co-existing conditions (see [2,3] and Figure 1).

Toxins 2020, 12, 67; doi:10.3390/toxins12020067 www.mdpi.com/journal/toxins

http://www.mdpi.com/journal/toxins
http://www.mdpi.com
https://orcid.org/0000-0002-5278-8966
http://dx.doi.org/10.3390/toxins12020067
http://www.mdpi.com/journal/toxins
https://www.mdpi.com/2072-6651/12/2/67?type=check_update&version=2


Toxins 2020, 12, 67 2 of 46

HUS

STEC

LEE +

ST +

AEEC

EHEC

aHUS

HELLP

TMAs

2ndary

HUS STEC-HUS
EPEC

TTP

O157

O26

O103

O145

O91

Other

NT (non
typable)

Figure 1. Nomenclature of thrombotic microangiopathies and pathogenic Escherichia coli, including
distribution of serotypes in reported cases in 2012–2014 in Europe. Abbreviations—TMAs: thrombotic
microangiopathies; HELLP: hemolysis, elevated liver enzymes and low platelets syndrome; TTP: thrombotic
thrombocytopenic purpura; HUS: hemolytic uremic syndrome; aHUS: atypical hemolytic uremic syndrome;
STEC-HUS: Shiga toxin Escherichia coli-associated hemolytic uremic syndrome; ST+: Shiga toxin-producing
bacteria; EHEC: enterohemorrhagic E. coli (represent STEC serotypes pathogenic to humans); LEE+: locus
of enterocyte effacement-expressing bacteria, E. coli expressing both ST and LEE genes (“typical STEC”);
AEEC: attaching and effacing E. coli; EPEC: enteropathogenic E. coli. The distribution of EHEC serotypes
corresponds to the reported cases in Europe between 2012 and 2014 [4].

1.1. Historical Perspective

Swiss pediatric hematologist Conrad von Gasser introduced in a paper published in 1955 the term
“hemolytic uremic syndrome” [5], but it was not until 1983 that Karmali and colleagues linked the
sporadic post-diarrheal HUS of hitherto unknown origin to a toxin produced by specific strains of
E. coli that they found in the stools of affected children. This toxin was toxic to Vero cells (a line of renal
epithelial cells isolated from the African green monkey), hence the name Verotoxin [6]. The same year,
Dr. O’Brien and colleagues purified a lethal toxin from the E. coli O157:H7 strain, which structurally
resembled that of Shigella dysenteriae type 1, and termed it Shiga toxin [7]. Both terms still apply to
describe the disease, which accounts for an estimated 2,801,000 acute illnesses annually and leads to
3890 cases of HUS [8]. The unprecedented German outbreak of 2011, which led to 3816 cases, including
845 HUS and 54 deaths caused by the emergence of hypervirulent O104:H4, recently acted as a grim
reminder of the potentially devastating consequences of STEC-HUS [9].

1.2. Purpose of the Review

In this review, we summarize epidemiology, pathophysiology, diagnostic, and treatment measures
of STEC-HUS. We emphasize key messages derived from recent outbreaks and advances in the
understanding of the pathogenesis that have uncovered potential avenues for future therapies.
Other Shiga toxin-producing bacteria (S. dysenteriae [10], S. flexneri [11,12], S. sonnei [13], and Citrobacter
freundii [14]) and neuraminidase-producing bacteria [15,16] (Clostridium perfringens and Streptococcus
pneumoniae), responsible for rare cases of enteropathic and non-enteropathic infection-induced HUS,
are described elsewhere and are beyond the scope of this review.
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2. Epidemiology and Microbiology

Since the first recorded outbreaks in 1983 [17,18], significant efforts have been made to understand
the epidemiology, microbiology and mode of transmission of Shiga toxin-producing E. coli. Such efforts
concretized in the creation of surveillance networks such as Foodnet in North America, the European
Center for Disease Prevention and Control (ECDC), or PulseNet, a global network dedicated to
laboratory-based surveillance for food-borne diseases in 85 countries [19].

2.1. The Infectious Agent

2.1.1. Nomenclature: Shiga Toxin, Vero Toxin-Producing, or Enterohemorrhagic E. coli

The term Shiga toxin-producing Escherichia coli (STEC) refers to an E. coli strain that acquired
the capacity to produce a Shiga toxin, through transfer of gene by means of a Shiga-toxin (Stx)
phage. However, not all STEC can infect humans, and only a subset of these are responsible for
human disease and belong to the pathovar called enterohemorrhagic E. coli (EHEC) [20]. Shiga toxins
are also commonly referred to as Verotoxins, a synonym which will not be used in this review.
Most EHEC harbor a chromosomal pathogenicity island called locus of enterocyte effacement (LEE),
encoding, in particular, a type III secretion system (T3SS), an adhesin called intimin, and its receptor
Tir. Intimin encoded by the eae gene allows for intimate attachment of the bacteria to the intestinal
epithelium causing characteristic attaching and effacing lesions and shared with enteropathogenic
E. coli (EPEC) strains. Enterohemorrhagic E. coli harboring LEE are referred to as typical EHEC and
those which do not as atypical EHEC. Atypical EHEC possess other adhesion factors such as the
STEC autoagglutinating adhesin (Saa) or the AggR transcriptional regulator, which is characteristic of
enteroaggregative E. coli (EAEC) and were present in the epidemic O104:H4 EHEC involved in the
German outbreak [21]. The presence of the intimin (eae) gene is associated with human disease and
evolution towards hemorrhagic colitis and HUS [22,23]. Several classifications of Shiga toxin-producing
E. coli have been proposed. Karmali et al. divided STEC into five seropathotypes (A through E)
according to their pathogenicity in humans [24], whereas Kobayashi et al. individualized eight clusters
based on virulence gene profiles [25]. Nomenclature of E. coli and thrombotic microangiopathies is
schematized in Figure 1.

2.1.2. Evolution of E. coli and Phage Acquisition of Stx Gene

Enterohemorrhagic E. coli constitutes a homogeneous pathotype but consists of various phylogenies
that have acquired virulence factors (VFs) independently [26]. For example, E. coli O157:H7 is believed
to have evolved in a series of steps from O55:H7, a recent ancestor of the enteropathogenic serotype
associated with infantile diarrhea [27,28]. Unlike S. dysenteriae type 1, the capacity of STEC to produce
Shiga toxins results from the integration of the genome encoded in various bacteriophages related
to phage lambda, called Stx phages [29], in a process known as transduction. These bacteriophages
can be cryptic during their lysogenic phase, duplicating with every subsequent cell division of its
host, or active and propagate from one receptive enterobacteria to another during their lytic phase [30].
A single STEC strain may carry up to six Shiga toxin-encoding genes [30–32]. Shiga toxin is under the
control of the phage’s late genetic circuitry and upstream of the lysis cassette. During the lysogenic
phase, the expression of most phage genes is inhibited. Certain triggers, in particular SOS-inducing
agents such as some antibiotics [33], have the potential to derepress the transcription of phage genes,
including Stx, hence switching cells from a lysogenic to lytic phase (induction) [34]. Stx is then released
in the extracellular milieu when phage-mediated bacterial lysis occurs [35].
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2.1.3. EHEC: Microbiological Characteristics of Classic O157:H7 and Emergent Non-O157 Serotypes

Hundreds of STEC serotypes have been described based on their somatic (O) and flagellar (H)
antigens, dozens of which are implicated in human diseases [25]. The first ever to be described was
O157:H7 and it remains the predominant serotype to this day, responsible for more than one million
cases of diarrhea and an estimated 2000 cases of STEC-HUS worldwide annually [8]. Classic O157:H7
E. coli lost its capacity to ferment sorbitol [36], contrary to most commensal and other pathogenic E. coli.
However, the existence of a sorbitol-fermenting, nonmotile strain has been identified and incriminated
in several outbreaks in central Europe. This strain displays enhanced virulence with a greater risk of
HUS (30%), requirement for dialysis, and higher case-fatality (11%) [37–40]. More recently, there is a
growing awareness that non-O157 serogroups can also cause severe diseases thanks to the increased
availability of immunoassay and molecular tools that allow their detection [41,42]. In northern America
and Europe, non-O157 serogroups are increasingly associated with post-STEC-HUS and since the 2010s
have even exceeded the number of O157:H7 infections [4,41,43]. Moreover, an unusual serogroup, O80,
is currently emerging in France [44–46] and Europe [47–49]. Several epidemiological and clinical features
differentiate O157 and non-O157 serogroups. As a whole, non-O157 serogroups are less associated
with outbreaks, are more strongly connected to international travel, and appear to be less prone to
elicit STEC-HUS (1% versus 11% risk of STEC-HUS, p < 0.001) [41,43,50]. Yet, non-O157 serogroups
represent a heterogeneous group, the O104:H4 epidemic serving as an example that these serotypes
may also have dreadful consequences [9]. The O104:H4 serotype stands out as one of the most virulent
strains responsible for HUS in history (Figure 2). During the German outbreak in 2011, 855 patients
suffered from O104:H4-associated STEC-HUS, and over 100 were admitted to intensive care units [51]
with more than 50 fatalities recorded [9]. From a microbiological point of view, the O104:H4 serotype
also displays unique features. First, despite glaring evidence of its noxious clinical impact, it lacked
the canonical VFs encoded in the locus of enterocyte effacement of other EHEC (see Section 3.1).
Second, genome-wide comparisons suggested that this strain derived from an enteroaggregative
E. coli, which acquired a prophage-encoding Shiga toxin 2 and a distinct set of additional virulence
and antibiotic-resistance factors via horizontal genetic exchange [52]. It thus combined pathogenic
features from enteroaggregative E. coli, the capacity to produce Shiga toxin, and an extended-spectrum
β-lactamase phenotype. The lack of previous immunity may have acted as an additional factor in the
severity of this outbreak. The O26:H11 serotype has emerged as the most common non-O157 serotype
causing human disease in Europe [4,53] and North America [42,43]. More specifically, a strain harboring
Stx2 accounted for approximately 50% of all Stx2a-harboring EHEC O26 strains isolated between
1996 and 2012 in Europe [54]. This serotype has been most commonly found among young children [53]
and does not differ from the O157 serotype in terms of severity of disease.
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diphtheria toxins, as well as the cholera toxin family, with which Shiga toxins seem to share a distant 
evolutionary relationship [59,60]. In addition to their ribosome-modifying properties, Shiga toxins 
exert various other cellular effects, detailed in Section 3.2. Shiga toxins exist as two immunologically 
distinct types, Stx1 and Stx2, that share the same structure and function but are not cross-neutralized 
with heterologous antibodies because of their only 50% homology and 10 subtypes (Stx1a, Stx1c, 
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the Stx2 type, Stx2a (formerly named Stx2), Stx2c, and Stx2dactivable [64] are associated with a higher 
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Figure 2. Proportional circles map of major outbreaks of enterohemorrhagic E. coli O157 and
non-O157 reported in the literature (1985–2017). Published reports of outbreaks including more
than 5 STEC-HUS cases are represented. The sizes of violet and red circles are proportional to the
numbers of cases of diarrhea (when available) and hemolytic uremic syndrome reported in each outbreak,
respectively, using perceptual scaling. Dashed circles represent outbreaks caused by non-O157 strains.

2.2. Shiga Toxins: Structure and Nomenclature

Shiga toxins are named after the Japanese microbiologist Kiyoshi Shiga who in 1898 described
the bacteria S. dysenteriae [55,56]. This bacterium produces a toxin structurally and antigenically
identical to E. coli-produced Stx1. Shiga toxins are an AB5 toxin type consisting of a monomeric,
enzymatically active A subunit non-covalently linked to a pentameric B subunit responsible for binding
to the glycosphingolipid globotriaosylceramide (Gb3, also known as CD77 or Pk blood group antigen),
a specific receptor on the cell surface [57]. Functionally, the Shiga toxins belong to the family of
ribosome-inactivating proteins [58]. This AB class of bacterial toxins also includes the pertussis and
diphtheria toxins, as well as the cholera toxin family, with which Shiga toxins seem to share a distant
evolutionary relationship [59,60]. In addition to their ribosome-modifying properties, Shiga toxins
exert various other cellular effects, detailed in Section 3.2. Shiga toxins exist as two immunologically
distinct types, Stx1 and Stx2, that share the same structure and function but are not cross-neutralized
with heterologous antibodies because of their only 50% homology and 10 subtypes (Stx1a, Stx1c,
Stx1d, and Stx2a to Stx2g). Each subtype is then divided into variants that differ from the prototype
by one or more amino acids [61]. This nomenclature reflects both the phylogeny and origin of the
toxin as well as its pathogenicity. For example, the presence of Stx2 is strongly associated with
hemorrhagic colitis and HUS compared to Stx1 or to the presence of both genes [22,23,62,63]. Within the
Stx2 type, Stx2a (formerly named Stx2), Stx2c, and Stx2dactivable [64] are associated with a higher
risk for human disease [22,65]. Conversely, Stx2e is mostly associated with pig edema disease [66],
and Stx2f was first isolated from the feces of feral pigeons [67] and, until recently, rarely reported in
human illness [68–71]. Occurrences of Stx2e or Stx2f in human disease are thought to be extremely
rare [72]. Nevertheless, Stx2f-producing EHEC infections are more common than expected [73–75].
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3. STEC-HUS as a Zoonosis: Reservoirs, Sources, and Modes of Transmission

The importance of cattle as the primary reservoir for STEC has been hypothesized since the first
outbreaks associated with undercooked hamburgers [17]. Occasionally, sheep [76] or goats [77] have
been reported as sources of outbreaks. Cattle are asymptomatic carriers of STEC: after internalization
in bovine epithelial cells, Shiga toxin is excluded from the endoplasmic reticulum and localizes to
lysosomes, where its cytotoxicity is abrogated [78]. Reported prevalence in farm and slaughterhouse
studies varies widely, but a recent meta-analysis yielded an estimated prevalence of E. coli O157:H7 in
North America of 10.68% (95% CI: 9.17%–12.28%) in fed beef, 4.65% (95% CI: 3.37%–6.10%) in adult
beef, and 1.79% (95% CI: 1.20%–2.48%) in adult dairy. In winter months, the prevalence was nearly
50% lower than that recorded in the summer months [79], consistent with the seasonality observed
in human infections [80]. Contamination by EHEC decreases during processing of the meat [81],
but some authors reported that salt at concentrations used for this process may in fact enhance Stx
production [82]. Among animals positive for STEC, the term “super-shedder” is applied to cattle that
shed concentrations of E. coli O157:H7 ≥ 104 colony-forming units/g feces. This population of animals,
which includes calves after weaning, could be responsible for the spread of the pathogen in the hide
and the environment and, therefore, represent potential targets for veterinary interventions such as
vaccination, bacteriophage therapy, probiotics, or dietary measures [83]. No difference was observed
between organic and conventional farms [84], but antibiotic growth promoters may contribute to the
expansion of STEC by triggering the bacterial SOS (see Individual Level in Section 6.1.2) response
system [85]. Transmission to humans may occur through various routes: consumption of meat and
dairy products (foodborne), contamination of crops or drinking water (waterborne) by animal waste,
or direct person to person transmission due to a very low infective dose [86]. Rarely, transmission from
cattle to farmer has been implicated [87]. The role of ground beef as a vehicle for STEC seems to be
decreasing, and recent outbreaks have been associated with raw milk products, spinach [88], municipal
drinking water [89], or fenugreek [90]. In a retrospective analysis of 350 outbreaks in the USA between
1982 and 2002, Rangel and colleagues found that 52% of outbreaks were foodborne (including 21%
for which ground beef was the transmission route), 14% resulted from person to person transmission,
and 6% from recreational water. The transmission route remained unknown after investigation in 21%
of outbreaks [91]. It is noteworthy that E. coli can survive for months in the environment, potentially
leading to the contamination of fresh produce [92].

3.1. Global Burden, Spatial and Temporal Distribution of STEC-HUS Cases

Hemorrhagic colitis and STEC-HUS represent serious health issues, although the global burden
remains unclear, chiefly because of the lack of diagnostic tools that are easy to use in routine and a
loose surveillance network in many countries. Nonetheless, it has been estimated that STEC accounts
for 2.8 million acute illnesses and 3890 HUS cases annually [8], with a slight decrease in its incidence
since 2000 [8,93]. The estimated cost of STEC-associated diseases could exceed US$400 million [94,95].
STEC-HUS is one of the most common diseases requiring emergency renal replacement therapy in
children [96] and is responsible for 2%–5% of mortality worldwide during the acute phase [97]. In global
terms, the incidence of STEC-associated diseases varies widely, mainly in relation to environmental and
agricultural factors such as stockbreeding, with Argentina having the highest prevalence worldwide:
12.2 cases per 100,000 children younger than 5 years old, approximately 10-fold higher than that
in other industrialized countries [8,98,99]. New Zealand reports an annual infection rate of 3.3 per
100,000 persons, whereas neighboring Australia only reports 0.4 cases per 100,000 persons [100].
Rural areas also tend to be more affected than urban ones [101,102], and cases occur predominantly
during summer months [99,103]. Incidence rates of HUS vary greatly depending on the age of the
patient and have peaked to 3.3 cases per 100,000 children-years in children aged 6 months to 2 years,
for example in France [80]. Contrary to common belief, most cases of STEC-HUS are sporadic [99,104],
and the incidence of STEC-HUS has been fairly steady since its recognition in the 1980s, with only a
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slight decrease after 2000 [8], despite public and industry efforts to reduce the risk of food and water
contamination [105].

3.2. Propensity to Develop STEC-HUS

Approximately 5%–10% of infected patients will develop STEC-HUS about a week after the onset
of digestive signs. The propensity to develop the disease varies according to microbiological and
individual characteristics, although the determinants of the disease are not fully elucidated. First, the risk
of HUS is greater for O157:H7 E. coli (≈10%) and Stx2v-harboring strains than for non-O157 serotypes
and Stx1-harboring strains (≈1%) [22,23,41,43,50,62,63]. Since the first documented outbreaks in the
1980s, the O157:H7 strain has genetically diversified and concurrently acquired enhanced virulence due
to bacteriophage-related insertions, deletions, and duplications [106]. Second, age is also an important
risk factor for HUS, with peak incidence below 5 years and above 65 years [99,103,107]. Gastric acidity
is an important barrier to ingested pathogens, and the use of anti-acid medications has been suggested
as a risk factor [93]. Behavioral and environmental factors such as eating undercooked meat, contact
with farm animals, and consumption of raw milk or well water have been described as risk factors in
case control studies [93]. Some authors also reported that female sex [108] and a higher socio-economic
status [109] are associated with a higher risk of developing STEC-related disease. Genetic factors,
like erythrocyte and serum Gb3 level [110,111] or presence of the platelet glycoprotein 1b alpha 145M
allele [112], could also influence the susceptibility to HUS.

4. Pathogenesis

EHEC ranks among the most dreaded enteric pathogens in temperate countries.
Following ingestion of contaminated food or water, EHEC displays a sophisticated molecular machinery
consisting of a dual strategy: colonization of the bowel and Shiga toxin production. Recent progress
in the understanding of HUS mechanisms has highlighted the role of the complement pathway in
endothelial damage and gone a long way in deciphering the intracellular trafficking of Shiga toxin.
However, most studies have focused on the O157:H7 serotype, and whether the mechanisms uncovered
in the setting of O157:H7 infections apply to non-O157 strains, or whether specific mechanisms
are involved, is speculative. Another shortcoming has long been the absence of a reliable animal
model. Briefly, until recently, murine models did not fully recapitulate the features of STEC-HUS as
a result of predominant expression of Gb3 on mouse tubular cells [113], as opposed to glomerular
endothelial cells in humans [114,115]. Previous mouse models also relied on the co-injection of
lipopolysaccharide (LPS) in order to boost cytotoxicity [116–120], thus obscuring the significance
of the results considering the uncertainty regarding the implication of LPS in this pathology in
humans. Indeed, even though the LPS-binding protein has been reported to be elevated in STEC-HUS
patients [121], the role of endotoxinemia has never been properly demonstrated, as opposed to
HUS resulting from Shigellosis [122]. More recently, new models have been created with refined
Stx2 injection strategies and without the need for LPS injections. These models exhibit a wider range
of the pathomechanisms expected in HUS [123]. Primate models have sometimes provided conflicting
results, as exemplified in Section 4.4 in complement pathway research.

4.1. Colonization of the Bowel: The Attaching and Effacing Phenotype

Prior to adhering to the enterocytes, EHEC must first penetrate the thick mucus layer that protects
the enterocytes. It accomplishes this by secreting the StcE metalloprotease, which reduces the inner
mucus layer, thus allowing EHEC to access the intestinal epithelium [124]. Like the enteropathogenic
pathovar [20], typical EHEC harbor the LEE [125], which includes the type 3 secretion system, a protein
appendage capable of translocating a wide repertoire of effector proteins into the cytoplasm of the
target cell in the distal ileum. Among these, the translocated intimin receptor (Tir), once injected
into the host cell, allows for the attachment of the bacterium. Once expressed on the surface of the
enterocyte it acts as the receptor for intimin (eae) and consolidates the attachment of E. coli to mucosal
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surfaces initiated by their flagella [126] and pili [127]. Stx plays a role in reinforcing E. coli adherence to
the epithelium by increasing the expression of nucleolin, another surface receptor for intimin [128].
Tir also links the extracellular bacterium to the cytoskeleton of the host cell via a Tir-cytoskeleton
coupling protein (Tccp, also known as EspF(U)), in the presence of a host protein insulin receptor
substrate protein of 53 kDa (IRSp53) [129], in a process termed “pedestal formation”. Tccp, in turn,
activates the actin nucleation-promoting factor WASP/N-WASP, enabling E. coli to literally seize control
of the eukaryotic cytoskeletal machinery [130,131]. However, EHEC are not tissue invasive and, if it
was not due to Shiga toxins, their pathological effect would be identical to enteropathogenic E. coli (i.e.,
invasion of the colon, disruption of tight junctions, and effacement of microvilli, resulting in watery
diarrhea) [20].

4.2. Shiga Toxin Production and Effect: Gb3 Fixation and Trafficking

After bacterial lysis, Shiga toxins are released into the intestinal lumen, and its B subunit binds
to its receptor globotriaosylceramide (Gb3) (see Section 2.2). Normal enterocytes (at variance with
colon cancer cells [132]) do not express Gb3. Thus, it is believed that Stx translocates across the
intestinal epithelium tight junction by binding to Gb3 expressed on Paneth cells, which are seated
in the deep crypts of the small intestine [133]. Stx does so either by paracellular transport during
neutrophil (PMN) transmigration, or by Gb3-independent transcytosis and macropinocytosis [134,135]
before being released into the bloodstream. The mechanisms governing the circulation of Stx from
the intestines to the target organs are still debated (reviewed in [136]). Some authors point to the
role of polymorphonuclear leucocytes as potential carriers [137,138], but these results have yet to be
replicated [139,140], and Stx possibly only binds to mature polymorphonuclear cells [141]. In any
case, the estimated half-life of Stx in serum is less than 5 min, as it rapidly diffuses to affected
tissues [142]. It is thus likely that by the time patients develop HUS, Stx has disappeared from the
serum [140,143]. Expression of Gb3 in humans is restricted to podocytes, microvascular endothelial
cells (the highest content being found on microvascular glomeruli) [144,145], platelets [146], germinal
center B lymphocytes [147], erythrocytes (where it constitutes the rare Pk antigen), and neurons [148].
The physiological role of this glycosphingolipid and the reasons behind its specific distribution in
human tissues are unknown. A Gb3 knock-out mouse model resulted in no apparent phenotype,
except for the loss of sensitivity to Shiga toxins [149]. In Gb3-positive cells, the Stx-Gb3 complex
induces membrane invagination [150] that facilitates endocytosis. Importantly, this initial process of
Stx endocytosis is highly dependent on the close connection of Gb3 and lipid rafts [151] stemming
from animal cell membranes. Indeed, lipid rafts contain caveolin where polymerization provides the
platform on which to form early endosomes. The mobilization of microtubular units bring into play both
clathrin-dependent [150,152] and clathrin-independent pathways [153,154]. Next, the Stx-Gb3 complex
is addressed from early endosomes to the endoplasmic reticulum though retrograde transport, making
it possible for Stx Gb3 to escape lysosomal degradation [155]. During transport [155], the catalytic A
subunit is cleaved by the protease furin into two fragments: A1 and A2. In the endoplasmic reticulum,
the disulfide bound between the two fragments is reduced [156], and the A1 fragment translocates
into the cytoplasm (anterograde transport) where it is free to exert its cytotoxic effects by removing an
adenine base at the N-glycosidic bond from the 28S rRNA of the 60S ribosome [157], thus inhibiting
protein synthesis leading to cell death [57,158]. The mechanism allowing Shiga toxins to bypass late
endosomes and lysosomes is only partially known, but is thought to involve cycling Golgi protein
GPP130, which is susceptible to degradation by physiological concentrations of manganese, yielding
hope for a future therapeutic application [159]. The pathophysiology of Shiga toxin trafficking and
intracellular action is schematized in Figure 3.
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triggering the ribotoxic and endoplasmic reticulum stress responses, which in turn paves the way for 
cell apoptosis through p38 mitogen-activated protein kinase (p38 MAPK) activation [160,161] and 
various apoptotic pathways depending on the infected cell type [162]. In addition to its ribotoxic 
effect, Shiga toxin activates multiple stress signaling and apoptotic pathways, and it is responsible 
for the production of inflammatory cytokines by target cells. On the cell surface of monocytes, Gb3 
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Figure 3. Intracellular trafficking and cytotoxicity of Shiga toxin. A simplified depiction of Shiga
toxin intracellular trafficking and mechanisms of toxicity. 1: Shiga toxins consist of a monomeric
enzymatically active A subunit, non-covalently linked to a pentameric B subunit. The B subunit binds
to the glycosphingolipid globotriaosylceramide (Gb3), present in lipid rafts on the surface of the target
cell. 2: Shiga toxin and its receptor are internalized (endocytosis), and Shiga toxin is activated through
cleavage of the A subunit into 2 fragments by the protease furin (represented by a blue crescent).
Disulfide bonds keep the 2 fragments together in the endosome. 3: Shiga toxin avoids the lysosomal
pathway and is directed towards the endoplasmic reticulum (retrograde transport) where the disulfide
bound is reduced. 4: The A1 subunit translocates into the cytoplasm (anterograde transport) where
it can exert its cytotoxic effects. 5: The processed A1 fragment cleaves one adenine residue from the
28S RNA of the 60S ribosomal subunit, thus inhibiting protein synthesis and triggering the ribotoxic
and endoplasmic reticulum stress responses. 6: In addition to its ribotoxic effect, Shiga toxin activates
multiple stress signaling and apoptotic pathways, and is responsible for the production of inflammatory
cytokines by target cells.

4.3. Mechanisms of Shiga Toxin Cytotoxicity

Inhibition of protein translation by ribotoxic stress is the prominent mechanism of Stx cytotoxicity
and a major gateway to apoptosis. The processed A1 fragment cleaves one adenine residue from
the 28S RNA of the 60S ribosomal subunit, thus inhibiting protein translation and triggering the
ribotoxic and endoplasmic reticulum stress responses, which in turn paves the way for cell apoptosis
through p38 mitogen-activated protein kinase (p38 MAPK) activation [160,161] and various apoptotic
pathways depending on the infected cell type [162]. In addition to its ribotoxic effect, Shiga toxin
activates multiple stress signaling and apoptotic pathways, and it is responsible for the production of
inflammatory cytokines by target cells. On the cell surface of monocytes, Gb3 surface expression is not
associated with lipid rafts, which means that Stx is routed towards the lysosomal pathway [163–165].
This results in the production of a high amount of TNF-α, GM-CSF, and IL-8 by monocytes in response
to Stx, enhancing endothelial dysfunction and organ damage in patients with HUS [166–169] along a
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ribotoxic-independent route [170]. Stx can also be found in Gb3-negative intestinal cells (probably
after internalization by macropinocytosis/transcytosis), where it can modulate the immune response
by inhibiting the PI3K/NF-κB pathway [171].

4.4. Activation of Complement Pathways: Culprit or Innocent Bystander?

By unraveling the role of alternative pathway dysregulation in atypical HUS [172–177],
investigators have initiated the use of eculizumab, a terminal C5 inhibitor, which is now established as a
mainstay in the management of patients with atypical HUS [178–182]. Evidence has also been garnered
suggesting the participation of an alternative pathway in STEC-HUS [183]. Plasma levels of Bb and
C5b-9, two complement pathway products [184], and C3-bearing microparticles from platelets and
monocytes [185,186], were found to be elevated in patients suffering from STEC-HUS. Both decreased
at recovery but were not associated with disease severity. Recent in vitro studies demonstrated that
Stx is capable of directly activating complement, in addition to its cytotoxic effects. Stx2 binds to
complement factor H and its regulators [187,188]. Furthermore, Stx2 induces the expression of P-selectin
on the human microvascular endothelial cell surface, which binds and activates C3 via the alternative
pathway, leading to thrombi formation in a murine model of STEC-HUS [189]. Recently, serological and
genetic complement alterations were reported in 28% of STEC-HUS children [190]. Nevertheless, these
intriguing results have been diminished by the inability to replicate the findings in nonhuman primate
models [191]. The absence of C4d or C5b9 by immunochemistry in biopsies from 11 patients during
the O104:H4 outbreak is also a source of concern [192]. Lastly, mice lacking the lectin-like domain of
thrombomodulin, an endothelial glycoprotein with anticoagulant, anti-inflammatory, and cytoprotective
properties, show higher glomerular C3 deposits and a higher mortality after intraperitoneal injection of
Stx2 + LPS [193], and a deficiency of this protein has been implied in rare cases of atypical HUS [194].
Although preliminary, these results could provide the rationale for the use of ART-123, a human
recombinant thrombomodulin tested in the setting of disseminated intravascular coagulation (without
improvement of all-cause mortality) [195] and acute exacerbations of idiopathic pulmonary fibrosis
(ongoing, NCT02739165), in STEC-HUS. Published results from three patients are encouraging [196].

4.5. Endothelial Damage: From Stx Cytotoxicity to Thrombotic Microangiopathy

Once released into the bloodstream, Stx reach target organs [197] and bind Gb3 on microvascular
endothelial cells. Differences in Gb3 expression distribution across various vascular beds are the
basis for differential organ susceptibility to Stx [144,198,199]. Vascular dysfunction is both a hallmark
of Shiga toxin pathophysiology and an early harbinger of negative clinical outcomes [200,201].
Damage to the vascular bed can broadly be categorized as (1) direct cytotoxicity to the endothelium;
(2) disturbance of the hemostatic pathway; (3) enhanced release of chemokines; and (4) alternative
pathway activation [198,201]. Shiga toxins induce a profound remodeling of the gene expression
repertoire of endothelial cells rather than prompting cell death, provided that vascular cells are
subjected to sublethal concentrations of Shiga toxin [199,202]. The net effect is that endothelial
cells adopt a prothrombogenic phenotype by expressing increased levels of tissue factor (TF) [203],
releasing augmented levels of von Willebrand factor [204,205], and activating platelets [206] via
the CXCR4/CXCR7/SDF-1 pathway [202]. In addition, Stx stimulates the expression of adhesion
molecules [207] and inflammatory chemokines [208], thereby potentiating the cytotoxity of Stx [209]
and promoting the adhesion of leucocytes to endothelial cells, which in turn exacerbate thrombosis
and tissue damage. At higher concentrations, Stx trigger endothelial apoptosis and cell detachment,
exposing the subendothelial bed rich with prothrombogenic tissue factor and collagen [209–211].
Finally, Stx elicits the formation of C3- and/or C9-coated microvesicles derived from platelets or red
blood cells [185,186,212]. Complement fraction C3a is believed to activate microvascular thrombosis
by mobilizing P-selectin on the surface of endothelial cells [189]. As a result, Stx-mediated changes in
the endothelial phenotype result in a prothrombogenic environment, demonstrated by higher median
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plasma concentrations of prothrombin fragments, tissue plasminogen activator (t-PA), and D-dimer in
children in whom STEC-HUS develops, compared to those with uncomplicated infection [200].

5. Diagnosis

5.1. Clinical Presentation

STEC-related diseases display a wide range of severity, from asymptomatic carriage to lethal
HUS. Rapid identification of symptoms compatible with EHEC infection is indispensable, both to
allow for appropriate patient care and for epidemic control. Yet, clinicians are often bewildered by the
misleading clinical presentations of STEC-HUS, especially in adults, and deceived by misconceptions
regarding the disease (Table 1), namely that it essentially occurs as part of large outbreaks and that
ground beef represents its main vector [213,214]. Importantly, most investigations have focused on the
clinical presentation in children. However, symptoms at presentation can differ greatly with age [215]
and, with the exception of a few large outbreaks that have been the subject of extensive study [9,216],
there is a dearth of data regarding the clinical presentation in adults.

Table 1. Common misconceptions about STEC-HUS.

STEC-HUS mainly occurs through large outbreaks

Despite sensational publications about large outbreaks, most STEC-HUS cases (≈75%) are actually sporadic,
judging by nationwide studies [99] and surveillance networks [104].

Ground beef is the cause of the majority of vehicle-born transmissions

Cattle are a major reservoir for E. coli. Ground beef was responsible for the first outbreaks reported [6,7] and
currently represents around 33% of cases [91].

E. coli is the only bacteria that produces Shiga toxin

Shigella dysenteriae type 1 produces a chromosomally encoded toxin almost identical to Stx1 [217]. In addition,
Stx phages can occasionally be found in other gram-negative bacteria (Citrobacter, Salmonella).

Community-acquired nonbloody diarrhea does not suggest investigation for STEC

If digestive symptoms are the rule in STEC infections, the proportion of bloody diarrhea can vary between
65%–80%, and is usually lower in non-O157 infections [41,218]. Investigations for STEC can be ordered for

community-acquired diarrheas irrespective of the presence of blood [219].

Complement is involved in the pathophysiology of atypical HUS, not STEC-HUS

Although the breakthrough discovery of alternative complement pathway dysregulation in aHUS is not
paralleled in STEC-HUS, recent publications highlighted a potential role in the pathophysiology of STEC-HUS

[183], providing hope for potential clinical applications.

HUS with a negative stool culture is probably atypical

Stool culture sensitivity is insufficient to exclude STEC-HUS. The diagnostic strategy must include both culture
and nonculture-based assays to detect Shiga toxins or the genes encoding it [219]. Additionally, by the time of

HUS, enterohemorrhagic E. coli is less likely to be found in stool cultures [220].

Antibiotics are detrimental during STEC infection

Antibiotics are not recommended for STEC infection. Nevertheless, an important distinction has to be made
between antibiotics capable of triggering bacterial SOS response and the release of Stx (fluoroquinolones,

B-lactams) and others (azithromycin, fosfomycin) which do not [33,221]. The potential beneficial effects of the
latter agents are currently being evaluated.

O157:H7 is responsible for the majority of STEC infections throughout the world

A shift in epidemiology occurred in the 2000s, and thanks to new diagnostic techniques, non-0157 serotypes
are now more commonly found than 0157:H7 in Europe and North America [41,50]. However, 0157:H7 is still

responsible for the majority of cases in Latin America [93].



Toxins 2020, 12, 67 12 of 46

5.2. From Colitis to HUS

The proportion of patients exposed to EHEC who will develop colitis (attack rate) varies
considerably, from 14% [222] to 33% [216], depending on individual (age) [99,103,107], immunological
factors, and strain characteristics [41]. The infective dose is probably very low, with less than one
E. coli O111 per 10 g of fermented sausage in the 1996 Australian outbreak [223] and a median 68
E. coli O157:H7 per hamburger patty in the 1993 outbreak in western USA [224]. After a median
incubation of 4 (1 to 10) d [225,226] following ingestion of the inoculum, patients usually present with
painful diarrhea and abdominal cramping. Vomiting (20%–30%) and fever (10%–40%) are less frequent,
the disease being usually limited to the colon and not prone to bacteremia. Bloody diarrhea only occurs
in a second stage, between one to five days after the onset of the symptoms [227]. Of note, bloody
diarrhea is not a defining feature of STEC-HUS and it may never occur in 20%–30% of patients [41,218].
Exceptionally, hemorrhagic colitis can be severe and necessitate bowel resection [228], or result in
rectal prolapse [229]. Patients infected with non-O157 EHEC usually have a milder disease severity,
and 95%–99% will heal spontaneously within seven days [230]. In contrast, the proportion of patients
whose course is complicated by HUS is approximately 10% for O157:H7 infection [41,91], and once again
hinges on the characteristics of both patient and strain (see Section 2.1.3). Timeframe and evolution
from colitis to STEC-HUS, along with the theoretical window for diagnostic tests, are depicted in
Figure 4.
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5.3. Clinical Predictors of Evolution Towards HUS

The lack of factors that reliably predict the occurrence of HUS is still a significant obstacle
for clinicians facing patients infected with EHEC. Discrepancies between studies can be explained
by inter alia strain variability, that is, a predictor identified during a specific outbreak may not
necessarily be relevant in other cases. Clinical predictors include dehydration [231,232], fever [233],
vomiting [221,234], visible blood in the stool, older [234] or younger age [235], and use of antimotility
agents in the first three days of illness [236]. The use of certain antibiotics could also be associated with
the development of STEC-HUS (see Individual Level in Section 6.1.2).

5.4. Renal Involvement

Acute kidney injury (AKI) in STEC-HUS patients ranges from asymptomatic urine sediment
abnormalities to severe renal failure and end-stage renal disease. Proteinuria is usually mild and has
been described in 30% of patients, combined with hematuria in 6.6% and leukocyturia in 26% [237].
Between 30% [221] and 61% [218,238] of STEC-HUS patients require renal replacement therapy (RRT)
during the course of the disease, with a mean duration of oliguria or RRT of 9–10 d [239,240], and 15%
of children develop hypertension [237,238]. In addition to blood urea nitrogen and creatinine levels,
neutrophil gelatinase-associated lipocalin (NGAL) could be a useful biomarker for the diagnosis of
acute kidney injury and in predicting the need for RRT [241].
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5.5. Extra-Renal Involvement

The kidney and the brain are the organs most vulnerable to STEC-HUS [242], but several
other organ involvements have been described and need to be considered when evaluating patients
with STEC-HUS.

5.5.1. Neurologic Involvement

Neurologic involvement is one of the most dreaded complications of STEC-HUS. It is responsible
for the majority of patient deaths [243] and is an important contributor to the morbidity of the disease.
Approximately 25% [238] of STEC-HUS patients develop neurologic symptoms after a median delay
of four days following the onset of HUS [244]. The two most common neurologic manifestations
are coma and seizures, but various focal defects, pyramidal or extrapyramidal syndromes have been
described [245–247]. During the O104:H4 outbreak, in which half of the patients developed neurologic
symptoms, epileptic seizures were seen in 20% and cognitive impairment or aphasia in 67.3% [244].
In addition, older patients are prone to psychiatric symptoms [248]. Fatal outcome is recorded in
around 20% of patients with neurologic involvement, and severe sequelae is observed in about 27% of
these patients [245,246]. Magnetic resonance imaging (MRI) and histopathological studies have pointed
out that basically every structure of the central nervous system can be affected, consistent with the
ubiquitous distribution of Gb3 in neurons [148], although astrogliosis and microgliosis are especially
prominent in the thalamus and the cortex [244]. Multiple resonance imaging with apparent diffusion
coefficient is almost always abnormal when patients present with neurologic symptoms, but these
early findings do not seem to reinforce clinical prediction nor to correlate with symptoms [249,250].
Lastly, neurologic complications often parallel renal failure and are exceedingly rare in the absence
of AKI. Neurologic symptoms as the unique manifestation of thrombotic microangiopathy should
prompt clinicians to consider the diagnosis of thrombotic thrombocytopenic purpura (TTP) rather
than STEC-HUS.

5.5.2. Cardiac Involvement

Although rarer, acute myocardial infarction is another potentially life-threatening complication of
STEC-HUS [251]. Its incidence has not been properly evaluated, and even though histologic lesions
have been identified in 30% of autopsied cases [252], clinical manifestations (cardiac ischemia, rhythm
disorders, cardiac arrest) seem to occur in less than 10% of STEC-HUS pediatric patients [253–255].
Pericardial involvement with cardiac tamponade has also been recorded [256].

5.5.3. STEC-HUS and Diabetes Mellitus

Biological pancreatitis, as well as elevated liver enzymes, occur in 20% of STEC-HUS patients [237]
but do not commonly result in organ failure. Nevertheless, around 3% of patients have hyperglycemia
during the acute phase [257], and survivors of STEC-HUS (but not uncomplicated EHEC infection)
have a significantly increased incidence of diabetes [258], possibly as a consequence of thrombosis of
vessels supplying the islets of Langerhans as evidenced in autopsy series. Diabetes may be transient,
yet the partial reduction in the stock of Langerhans islets may translate to the re-emergence of diabetes
after a variable delay [252,258,259].

5.6. Recurrence

STEC-HUS does not usually recur, and a second bout of the disease should lead to the suspicion
of alternative complement pathway dysregulation [260]. Patients develop antibodies that may, in part,
be protective [101], but in the case of repeated exposition to Stx, recurrence has been described [261,262],
for example with the atypical O80 serogroup [46].
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5.7. Unusual Invasive Infections

Unusual extra-intestinal infections such as bacteremia or deep abscesses have recently been
described for the emerging O80 serogroup EHEC, whereas EHEC is generally known to be a strictly
intestinal pathogen [45,46]. Other rare cases of bacteremia due to EHEC strains have been described,
in particular following urinary tract infections [263–267]. Nevertheless, for the O80 serogroup,
additional extra-intestinal VFs characteristic of the plasmid pS88 are consistently associated with
classical EHEC intestinal VF (eae, stx, ehxA). pS88 is a key determinant of extraintestinal E. coli (ExPEC)
virulence, involved in neonatal meningitis [268,269].

5.8. Paraclinical Signs

5.8.1. Thrombotic Microangiopathy

HUS is a type of thrombotic microangiopathy and is, therefore, defined by the triad of
Coombs-negative anemia with erythrocyte fragmentation (as seen on a peripheral blood smear by the
presence of schistocytes), thrombocytopenia, and ischemic organ failure [1]. Anemia is often severe and
sudden, requiring red blood cell transfusion in more than 80% of cases. Thrombocytopenia can also be
profound, with a reported mean nadir of 37 G/L [238], and the risk of platelet transfusion is discussed
in Section 6.2.4. Other features of hemolysis include elevated Lactate deshydrogenase (LDH) elevated
indirect bilirubin levels, and undetectable haptoglobin. The severity of thrombocytopenia does not
correlate with kidney injury or outcome, but median peak LDH levels are higher in patients requiring
RRT, and these patients require more red blood cell transfusions [270]. Along with the decrease in LDH,
the rise of the platelet count is one of the first signs signifying recovery from STEC-HUS, usually within
10 to 14 d after disease onset. At variance, anemia can persist for a longer period, in particular in the
presence of prolonged renal failure, and may necessitate the prescription of erythropoiesis stimulating
agents (ESA) to alleviate blood transfusion requirements [271,272].

5.8.2. Inflammatory Features and Coagulation Activation

STEC-HUS patients display inflammatory features with elevated leucocyte count (often more than
15 G/L [238,273]), C-reactive protein, and fibrinogen. Plasma concentrations of prothrombin, fragment
1+2 tissue plasminogen activator (t-PA) antigen, t-PA–plasminogen-activator inhibitor type 1 (PAI-1)
complex, and D-dimer are also elevated, providing further evidence of the disequilibrium between
enhanced thrombin generation and inhibited fibrinolysis. These prothrombotic coagulation markers
precede HUS and may, therefore, herald its occurrence [200].

5.8.3. Biological Predictors of Evolution Towards HUS

Along with clinical predictors (Section 5.3), the degree of systemic inflammation seems to correlate
with the evolution from colitis to STEC-HUS. In particular, higher leucocyte count [221,233,235,236]
and C-reactive protein level >1.2 mg/dL [233] are independent risk factors for STEC-HUS, consistent
with the role of cytokine production in the development of the disease. Proteinuria has also been
occasionally described as associated with the onset of STEC-HUS [235].

5.8.4. Histopathology

Renal biopsy is only performed in the context of STEC-HUS in the case of diagnostic uncertainty,
which makes its histopathological description rare and potentially biased. Nevertheless, STEC-HUS
patients seem to display unspecific features of thrombotic microangiopathy, such as glomerular
capillary thromboses with a widened subendothelial space, endothelial swelling, and congested
glomeruli. Necrosis of capillary walls, with luminal narrowing and thrombosis, is also characteristic.
Cortical infarcts can be seen in severe and fatal cases [115], and superimposed acute tubular damage is
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commonplace [192]. Immunochemistry for C1q, C3, C4d, or C5b-9 does not seem to detect complement
deposition in the glomeruli [192].

5.9. Microbiology

A prompt and accurate etiological diagnosis is needed in the face of a thrombotic microangiopathy
syndrome in order to tailor the initial treatment that is specific to each etiology [1]. Likewise, during a
diarrhea outbreak, rapid identification of EHEC allows for timely epidemiological investigations and
isolation measures that will prevent further spreading of the pathogen, as well as avoidance of antibiotic
therapy and antimotility agents in cases of STEC-related disease [214]. Early clinical and biological signs
do not easily permit the distinction of STEC-HUS from other thrombotic microangiopathy syndromes
or STEC-associated colitis from enteropathogenic agent colitis (see Section 4.4). Thus, the importance
of a rapid diagnosis relies on microbiological tools, first of all on detection of Shiga toxin by molecular
diagnosis or immunoassay. Isolation of a Shiga toxin-producing E. coli is also crucial for epidemiological
surveillance, such as within the PulseNet International network [274]. Therefore, current US guidelines
recommend plating stools from patients with acute community-acquired diarrhea on a selective medium,
in combination with an assay that detects the Shiga toxins or the genes encoding these toxins [219].
In addition, every patient presenting with a thrombotic microangiopathy syndrome, irrespective of the
presence of inaugural bloody diarrhea or neurologic symptoms, should be investigated for Shiga toxin
and STEC. A sequential two-step strategy with a non-culture assay, followed by culture for STEC in
the event of positive Shiga toxin, represent an unacceptable delay for the isolation of STEC strains.
Selective testing on the basis of a patient’s age or season of the year is also inappropriate, and it has
been shown that the prevalence of Stx was identical whether routine screening is implemented or
if the analysis is based on physician’s request [63]. In 2000, 68% of US clinical laboratories reported
routinely testing stool specimens for E. coli O157:H7 with stool culture, an immunoassay, or both [275].
Shedding of EHEC is transient, and its isolation is highly dependent on obtaining stool cultures or
rectal swabs within six days of onset of diarrhea [276], prior to any antibiotic therapy. The amount of
free fecal Shiga toxin is low, and the likelihood of identifying Shiga toxin decreases dramatically over
the time course of the disease [277]. Factors associated with success in identifying STEC in pediatric
post-diarrheal HUS include testing less than 4 d after onset of symptoms, patient age older than
12 months, cases related to an outbreak of STEC-HUS, patients presenting with bloody diarrhea during
the summer months, high leucocyte count, and moderate anemia [220].

5.9.1. Identification of EHEC: Culture and Characterization

E. coli O157:H7 lost its capacity to ferment sorbitol during its evolution [27]. Therefore, culture on
a sorbitol-containing selective medium, such as sorbitol–MacConkey agar (SMAC) [278], facilitates
identification of E. coli O157:H7, which appears colorless after incubation for 16 to 24 h. The addition of
cefixime tellurite (CT-SMAC) or bile salts can suppress the growth of irrelevant flora and increase the
sensitivity of the culture [279]. Other species can occasionally carry the O157 antigen, and confirmation
that the isolated colony consists of E. coli is warranted [280]. However, sorbitol fermenting O157 and
non-O157 strains go undetected on the McConkey agar medium. The use of a chromogenic medium
has recently been designed for detecting both O157 and non-O157 STEC from clinical samples [281].
Sorbitol fermenting O157 is a pathogen of great virulence and has been repeatedly incriminated in
deadly outbreaks across Europe [37,38,282]. This fact combined with the low yield of stool cultures
after four days [220,283,284] makes a strong case for the concurrent use of nonculture-based assays.

5.9.2. Identification of Shiga Toxin: Non-Culture Assays

The emergence of non-culture assays has facilitated the diagnosis of STEC-HUS and highlighted
the importance of non-O157 strains in the epidemiology of STEC-related diseases. Non-culture assays
are quicker and have the potential to detect all serotypes of EHEC potentially involved in STEC-related
diseases. Its main drawback is that the infective organism is not isolated, thus restricting the clinical
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relevance of the result and the potential for public health interventions. Another pitfall when relying
exclusively on assays detecting Shiga toxins is the potential loss of toxin production by EHEC during
the course of the infection, which significantly hampers the sensitivity of this technique in the later
stages of the disease [285,286].

Molecular Biology

Diagnosis relies on the detection and distinction of genes encoding Shiga toxins (stx1 and/or stx2)
by polymerase chain reaction (PCR) following stool enrichment to maximize the sensitivity. The results
are then available within 12 to 24 h. Depending on the primer used, PCR can also detect stx subtypes;
virulence-associated genes such as eae encoding for intimin, ehxA encoding enterohemolysin, and aggR
encoding for aggregative adherence fimbria I; or the specific O group of the pathogen [287]. All these
features may detect risk factors for HUS evolution. Multiplex PCR [288] and real-time PCR [254]
have been developed and allow an earlier diagnosis (less than 24 h) compared to traditional methods.
PCR found Stx in the stools of infected patients during a median of 20 d (1–256 d) after onset of
symptoms [63]. Early isolation and characterization of STEC strains enable epidemiological surveillance
and cluster detection by performing molecular analyses such as whole-genome sequencing [289].
The determination of serotype (O and H antigens), virulence genes (stx and their subtypes eae, ehxA, saa,
aggR and subA genes), acquired resistance genes, and multilocus sequence typing (MLST) are performed
using tools available at the Center for Genomic Epidemiology (https://cge.cbs.dtu.dk/services/) [290].
Phylogenetic analysis is performed by single nucleotide polymorphisms (SNPs), and a core genome
MLST (cgMLST) analysis is integrated into Enterobase [291]. These tools are crucial to rapidly detect
clusters of STEC strains and, thus, to identify outbreaks and take preventive measures.

Immunological Tests

Immunoassays (reviewed in [219,292]) are based on enzymatic, optical, magnetic,
or immunochromatographic tests to detect Shiga toxin 1, 2 or both. All necessitate overnight enrichment
in broth cultures. Comparisons of the diagnostic performances of the different immunoassays available
are currently lacking, but sensitivity is usually lower compared to PCR [284,293,294], and a negative
result in the presence of strong clinical suspicion of HUS requires confirmation using the PCR method.

Serodiagnosis

Serodiagnosis can be useful in cases where isolation of EHEC or Shiga toxin could not be performed,
or was negative despite strong clinical suspicion, but is barely made at present, except for a few
serotypes and with poor discriminative value. Detection of antibodies directed against LPS (O-groups)
seems to be of greatest diagnostic value: IgM appear soon after the infection and peak at day 9, whereas
IgG appear from day 8 [295] and persist several weeks after infection [296]. Repeated serology after
two to three weeks may demonstrate an increase in antibody titers. The combination of serology with
standard fecal diagnostic tests could be specifically useful when patients present late in the course of
the disease and at the time of HUS [283], or for epidemiological purposes [101]. Important caveats
remain about the possibility of cross-reactions with other bacterial strains belonging to different genera
(Salmonella, Yersinia, Citrobacter), with which E. coli O157 shares epitopes, and in the lack of sensitivity
for non-O157 serotypes.

5.10. Differential Diagnosis

At the early stage of acute bloody diarrhea, Shiga toxin-producing E. coli is hardly distinguishable
from other pathogens (Campylobacter, Salmonella, Yersinia, Shigella, Clostridium difficile, and other
pathogenic serovars of E. coli) and non-infectious causes (appendicitis, intussusception, colorectal
cancer, and ulcerative and ischemic colitis) based on the general clinical and biological criteria [297].
Fever is rare, compared to entero-invasive pathogens, and occurrence of diarrhea during hospitalization
and antibiotic therapy are atypical. Patient history should include recent travels and food consumption.

https://cge.cbs.dtu.dk/services/
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Computed tomography can help to rule out ischemic colitis in adults [298], but the added value
in acute bloody diarrhea is otherwise scant, and imaging studies are not required [299]. On the
contrary, prompt investigations for STEC and Shiga toxin in patients with community-acquired
diarrhea are mandatory. In the pediatric setting, STEC-HUS represents the vast majority of thrombotic
microangiopathy cases (>80%) [2], and additional biological testing, such as monitoring the protease
ADAMTS13 activity or complement investigations, are mostly decided depending on atypical clinical
presentation or after exclusion of STEC infection. In adults, the initial etiological approach should
be grounded in the patient’s clinical setting and existing conditions; bone marrow or solid organ
transplantation, drugs, HIV infection, malignant hypertension, or metastatic malignancy suggest a
secondary thrombotic microangiopathy syndrome. The next step consists of discriminating STEC-HUS
from atypical HUS, and TTP and represents a far greater challenge if only for the inconsistent presence
of hemorrhagic diarrhea that is found in a substantial proportion of patients with TTP and atypical
HUS [300]. Dysregulation of the alternative complement pathway, ADAMTS13 activity, and the
presence of Shiga toxin-producing E. coli should be examined in every patient, bearing in mind that
these investigations require delays irreconcilable with the necessity for prompt targeted therapies.
Most studies, to date, have focused on identifying features that differentiate TTP and HUS, on one
hand [301–304], or TTP with other thrombotic microangiopathies on the other [305]. TTP patients
typically display lower platelet counts, higher reticulocyte count, and lower creatinine and blood urea
nitrogen levels. The presence of antinuclear antibodies provides another clue for diagnosis. Clinical and
general biological features do not reliably distinguish STEC-related from atypical HUS [300]; therefore,
stool culture combined with an assay that detects Shiga toxins should be performed each time a patient
presents with thrombotic microangiopathy.

6. Treatment

STEC-HUS stands at the crossroads between veterinary medicine, public health, and acute care,
and this multidisciplinarity is reflected in its treatment, which implies veterinary and industrial
preventive measures, epidemiological interventions when an outbreak occurs, as well as hospital-based
and sometimes intensive care for STEC-HUS patients.

6.1. Prevention

6.1.1. Primary Prevention

Individual Level

Hygiene: Modifiable individual risk factors for contamination with a STEC include consumption
of raw beef, raw milk products, vegetables or sprouts [93], in particular for young children. Thus, proper
hand [306] and food hygiene [307] are the main preventive measures. Cooking thoroughly, pasteurizing,
or irradiating the food remove all EHEC, but supplementary precautions should be taken when visiting
farms or for individuals working in contact with ruminants.

Vaccination: Several vaccines directed against the E. coli O157 LPS antigen [308] or Stx
epitopes [309–312] have been validated in murine models and phase 2 studies, but none so far
has proven its efficiency in reducing the risk of EHEC infection in humans [313].

Farm and Industry Level

Prevention of animal carriage, reviewed in [314], can be categorized as follows: (1) Animal
vaccination, at variance with human vaccination, has proven its efficacy [315] in reducing the shedding
of E. coli O157. (2) Some dietary manipulations, including probiotics [316], especially Lactobacillus
acidophilus, and changing diet from grain to forage before slaughter [317] also decreases fecal E. coli in
cattle. (3) Lastly, farm practices can be improved by providing dry bedding, keeping animals in the
same herd groupings [318], and solarization of soil in feedlot pens [319].
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Slaughterhouse Hygiene and Meat Processing

The importance of slaughterhouse hygiene and meat processing cannot be highlighted enough,
considering a study published in 2000 reported a contamination by EHEC O157 in 87% of lots tested
pre-evisceration, 57% post-evisceration, and this proportion dropped to 17% after processing (including
antimicrobial treatment) [81]. The sanitary procedures implemented in slaughterhouses are, therefore,
of tremendous importance. Guidelines for safe food handling and processing are provided by the
United States Department of Agriculture Food Safety and Inspection Service [320].

6.1.2. Secondary Prevention

Community Level

Once an outbreak is recognized, in addition to measures described in Section 6.1.1, exclusion
from work or school and separation of pediatric patients from their siblings should be advised [321],
whilst hospitalization of confirmed cases is recommended [214]. Recommendations summarized in
the British guidelines [322] include identification of associated cases and vulnerable contacts and
source-specific control measures. Prompt notification to public health authorities and recognition of the
outbreak is of the utmost importance because it determines identification of the source. Outbreaks are
recognized two or three weeks after contamination, and trading networks are becoming increasingly
complex, which makes interviews and case control studies more challenging, as highlighted by the
O104:H4 outbreak in Germany [90].

Individual Level

Prevention measures also include interventions designed to impede the transition from colitis to
HUS in infected patients.

Antimicrobial agents in the setting of HUS have sparked an ongoing controversy [323]. They were
originally devised as a positive intervention to eliminate STEC, thereby diminishing Stx production
and the risk of HUS. It was also argued that antibiotics could reduce fecal carriage of STEC and,
thus, help to thwart the dissemination of the strain after early effective antimicrobial therapy for S.
dysenteriae type 1 infection in Bangladesh [324]. Case control studies [107,221] and one prospective
study [325] have dealt a blow to these arguments by connecting antibiotic therapy to the development
of HUS. The debate was further fueled by two Japanese studies that reported a preventive effect of
fosfomycin on the risk of STEC-HUS when given within the first three days of the illness [326,327].
Furthermore, during the O104:H4 outbreak, treatment with azithromycin was associated with a lower
frequency of long-term STEC carriage in one center [328], and aggressive antibiotic treatment with
ciprofloxacin and meropenem shortened STEC excretion in another center [329]. Treatment with
azithromycin is currently being evaluated in a French clinical trial (ZITHROSHU, NCT02336516).
Two meta-analyses [330,331] were performed to address this issue and concluded that antibiotics neither
decreased nor increased the likelihood of STEC-HUS. However, a more recent meta-analysis [332] found
that the association between antibiotic treatment and the risk of STEC-HUS did exist, provided studies
at high risk for bias were excluded (12 out of 17). The single randomized trial designed to address this
issue also found no significant effect of trimethoprim-sulfamethoxazole on progression of symptoms,
fecal pathogen excretion, or the incidence of HUS, although its methodology has been called into
question [333]. The explanation for these conflicting results lies, in great part, in the class-specific ability
of certain antibiotics to induce phage replication and Shiga toxin release. Bacterial SOS response genes
are expressed together with Stx phage genes, and fluoroquinolones, trimethoprim-sulfamethoxazole,
and ß-lactams, which are SOS-inducing antimicrobial agents, are associated with Stx2 expression in vitro,
whereas fosfomycin, rifampicin, gentamicin, doxycycline, erythromycin [33], and rifaximin [334] are
not. In vivo models replicated these results with enhanced free fecal Shiga toxin and lethality in mouse
or gnotobiotic piglet models of STEC-HUS treated with ciprofloxacin, and no effect of treatment was
found with fosfomycin or azithromycin, respectively [335,336]. The response of E. coli O157 isolates
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to subinhibitory concentrations of antibiotics could also be dependent on the nature of the strain
involved [337]. Clinical studies that segregated the role of specific antibiotic classes have demonstrated
that ß-lactams [338], metronidazole, and trimethoprim-sulfamethoxazole [221] were associated with the
most significant risk for HUS, whereas azithromycin [221] and aminoglycosides were protective against
HUS development [338]. These results led some authors to advocate the use of antibiotic treatment
with protein and cell wall synthesis inhibitors for STEC-HUS patients in specific situations [339].
Japanese guidelines for STEC-HUS and the French Haut Comité de Santé Publique (HCSP) [340] do
not provide a definitive statement on the effectiveness of antibiotics in preventing HUS, but they
consider treating asymptomatic carriers to prevent shedding of the pathogen [341]. In contrast, British
guidelines [342] and the Infectious Disease Society of America (IDSA) caution against the use of
antibiotics [343]. At any rate, their use should be weighed against the risk of aggravating the patient’s
course through the induction of bacterial SOS response and Shiga toxin release and the potential
toxicity in case of renal failure of dehydration. Despite evidence that antibiotics can aggravate the
course of STEC-HUS, adult patients still receive unwarranted antimicrobial treatment in more than
half of the cases, fluoroquinolones ranking as the most prescribed class. These results underscore the
need for greater awareness among clinicians [344].

A small prospective cohort study showed in 2005 that the amount of sodium infused was associated
with protection against developing oligoanuric HUS [231]. Since then, evidence has accumulated,
and a recent meta-analysis demonstrated that a hematocrit value ≤ 23% was associated with an odds
of 2.38 of developing oligoanuric renal failure [345]. Even though the risk of developing HUS was
not assessed as an outcome variable per se, this potentially makes intravenous fluid expansion the
first effective individual measure to prevent STEC-HUS and improve prognosis, and it represents a
paradigm shift since, until recently, fluid restriction was the mainstay of treatment [346]. The hypothetic
mechanisms of volume expansion consist in improving renal perfusion, counteracting the consequences
of thrombi formation, avoiding ischemic organ damage, and maintaining tubular flow. Protocols are
not well-established; most studies used isotonic saline, and the volume of intravenous fluid infused
should be based on clinical assessment of intravascular volume in order to avoid fluid overload.
Echocardiography or invasive hemodynamic monitoring in intensive care patients has not been
evaluated in this context but may be of help in the hands of experienced clinicians. Monitoring of fluid
intake and excreta is warranted.

During the O104:H4 outbreak, one center proposed daily intestinal lavage with polyethylene
glycol (PEG) as a prevention for HUS in EHEC-infected patients, and they found this strategy to be
efficient [347], but this finding remains to be validated on a wider scale.

6.2. Supportive Therapy

Supportive therapy is the cornerstone of the treatment of STEC-HUS patients once the disease
is established, and it is mainly responsible for the improved prognosis in recent years [105].
Hospitalization is mandatory, preferably in specialized centers, and intensive care is often required [51].
Unspecific preventive and dialytic management of AKI will not be addressed in this review, and the
reader is referred to the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines [348],
but specific measures, most of them relying on low grade evidence, are detailed below.

6.2.1. Volume, Electrolytic Balance, and Nutrition

In addition to its protective effect on the development of oligoanuric renal failure in STEC-infected
children (see Individual Level in Section 6.1.2), intravenous fluid expansion up to, and including,
the day of STEC-HUS diagnosis has also proven to lessen the need for renal replacement therapy
(RRT) (OR = 0.26, 95% CI 0.11–0.60) and reduce central nervous system-associated complications
(OR = 0.26, 95% CI 0.07–0.91), as dehydration has been associated with mortality (OR = 5.13, 95%
CI 1.50–17.57) [345]. Early volume expansion is therefore mandatory, but when AKI is established,
it should be balanced against the risk of fluid overload. Nutrition, administered parenterally if
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necessary, is of special importance in toddlers and children [349], but its benefit may be extended to
acutely ill patients of all ages [350].

6.2.2. Blood Pressure Control

Hypertension is common in STEC-HUS patients, occurring in 15% of children [238], and is believed
to result from fluid overload or renin–angiotensin system activation. No trial has ever compared
the impact of assigning different blood pressure targets in STEC-HUS specifically, and thrombotic
microangiopathies in general, but hypertension is a well-established contributor to thrombotic
microangiopathy lesions [351] and could also partly account for the occurrence of posterior reversible
encephalopathy syndrome (PRES) [352]. It should, therefore, be managed with appropriate medication,
such as calcium receptor blockers or diuretics in the case of fluid overload. Angiotensin-converting
enzyme inhibitors may be used, preferably after the acute phase [353].

6.2.3. Renal Replacement Therapy (RRT)

Half of STEC-HUS patients will require RRT. If hemodialysis is the preferred renal replacement
modality in adult patients, children are frequently treated with acute peritoneal dialysis. The choice of
the method and its indication rely on centers’ protocols and general guidelines [348], and it has not
been evaluated on a larger scale. In case of severe thrombocytopenia, regional citrate anticoagulation
is advised [354,355].

6.2.4. Transfusion

Packed red blood cell transfusion is required in most STEC-HUS patients [218].
Importantly, restrictive thresholds of 7 g/dL, advocated in the recent American Association of
Blood Banks (AABB) guidelines, do not apply to patients with severe thrombocytopenia [356],
and indications rely on individual patient characteristics and symptoms. Concerns regarding platelet
transfusion in STEC-HUS are driven by the hypothetical fear that, by furnishing the cells needed
for extensive microthrombi, platelet transfusion may exacerbate the disease. This concept is partly
corroborated by data derived from other platelet-consumptive disorders such as heparin-induced
thrombocytopenia [357] and TTP [358,359]. However, the risk has not been substantiated by two
series of 77 pediatric STEC-HUS patients [360] and 44 adults [361]. Hemorrhagic complications are
a rare event during the course of STEC-HUS, as highlighted by the fact that peritoneal and central
venous catheter placement and removal can be accomplished safely in most cases without platelet
transfusion [362]. Caution is advised, and indications should be restricted to active bleeding and
invasive surgical procedures. In addition, allo-immunization may be an issue in patients with severe
renal impairment who may need renal transplantation.

6.2.5. Detrimental Effect of Antimotility Agents

Use of antimotility agents has been associated with an excess risk of HUS development in children
infected with EHEC [236,247,363] and, in accordance with the 2014 recommendations of the European
Society for Pediatric Gastroenterology for acute gastroenteritis [364], should therefore be discouraged.
In spite of these recommendations, 21% of children and 43% of adults received antimotility agents
during the course of the disease [344].

6.3. Specific Therapies

Over 30 years after the description of Shiga toxins and Shiga toxin E. coli-associated HUS [6],
the quest for a specific treatment remains elusive, despite major achievements in the understanding of
the pathophysiology of the disease.
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6.3.1. Plasma Exchange and Immunoadsorption

Soon after the original description of STEC-HUS, randomized trials tried to evaluate the indication
of plasma exchange, based on the rationale that therapeutic plasma exchange could remove the toxin or
circulating factors that damage the endothelium [365,366] and its efficacy in TTP [367]. These studies
yielded contradictory results. The procedure was later evaluated in adults during the Lanarkshire
outbreak [368] and in the O104:H4 epidemic, again yielding conflicting results. A small cohort
study (n = 5) showed recovery of a normal neurological status in each patient at day 7 with early
plasma exchange [369]. In another noncontrolled study performed on 12 severe cases, the initiation
of immunoadsorption seemed to correlate with a favorable course of the neurological symptoms,
prompting authors to envisage neurological complications in STEC-HUS as antibody-mediated [370].
However, a more methodologically sound case control study did not confirm the benefit of plasma
exchange [329]. Pending randomized trials, the American Society for Apheresis and the Japanese
Study Group for Hemolytic Uremic Syndrome both suggest the use of plasma therapy in a selected
subgroup of STEC-HUS adult patients with severe neurological involvement [341,371] (weak and not
graded recommendations, respectively).

6.3.2. Complement Blockade Therapy

The first report of three STEC-HUS children treated with the humanized monoclonal antibody
medication eculizumab was published in May 2011 and showed dramatic improvement in neurological
status and discontinuation of dialysis after the first infusion [372]. Only a few days after this publication,
the O104:H4 outbreak provided an unprecedented basis for clinical investigation, and many patients
were treated with complement blockade therapy. If the analysis of the German registry [373] did
not support the use of eculizumab in adult STEC-HUS cases, early treatment was associated with
a rapid and efficient recovery in French patients [374] and children with central nervous system
involvement [375]. Based on the conflicting results of these uncontrolled studies, a randomized
multicenter controlled trial is currently under way (ECULISHU, NCT02205541).

6.3.3. Gb3 Receptor Analogues, Shiga Toxin-Binding Agents, and Monoclonal Antibodies

Multiple efforts have been made to develop an agent that can bind and neutralize the Shiga
toxin and thereby protect the endothelium. To date, this seemingly enticing prospect has failed to
find its way in the modern armamentarium against STEC-HUS. Oral receptor analogues have been
devised in a bid to bind the Shiga toxin before it translocates into the bloodstream and to entrap
it in the gut. Several have been developed and tested in mice models [376–378], but so far only
one has reached the clinical trial stage. SYNSORB Pk is an oral Shiga toxin binding agent that has
been tested in an ambitious multicenter randomized trial including 150 children [273], which was
prematurely stopped for futility after an interim analysis. The rapid development of endothelial
insult following contact with Shiga toxins combined with its disappearance from patient stools and
bloodstream by the time HUS develops [140,143] probably hinders the usefulness of such a strategy.
Injectable Shiga toxin competitive inhibitors have also been developed in order to neutralize Shiga
toxins once they cross the mucosal barrier. Named SUPER TWIG [379], STARFISH [380], PC7-30 [381],
TF-1 [382], or DAISY [383], they have yet to translate into clinical applications, partly because of
their synthetic complexity. Using a similar rationale, Paton et al. designed a recombinant bacterium
expressing a Shiga toxin receptor mimic on its surface capable of adsorbing and neutralizing Shiga
toxins, thus protecting mice from an otherwise lethal dose of STEC [384]. To date, this innovative
approach has not been tested in humans, and its application to a piglet model failed to prove any
clinical effect [385]. Monoclonal antibodies represent a powerful tool in modern biochemistry and
drug development. Urtoxazumab is a humanized monoclonal antibody directed against Shiga toxin 2,
which proved its efficacy in a gnotobiotic piglet model [386] and its tolerance in a phase 1 study in
2010 [387]. A randomized placebo-controlled study was conducted at the same time, but the results
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are still awaiting publication. Shigamabs® comprises two chimeric monoclonal antibodies against
Stx1 and Stx2. Its development was stopped after phase 1 [388] (phase 2 NCT01252199, unpublished).
Several other monoclonal antibodies are under scrutiny, including single-chain antibodies [389,390],
but they may face the same issue: a narrow time window for meaningful intervention because of the
fleeting presence of circulating Shiga toxins.

6.3.4. Manganese

Mukhopadhyay reported in 2012 that the widely available metal manganese was capable of
blocking endosome-to-Golgi trafficking of Shiga toxins by targeting the cycling Golgi protein GPP130,
thus causing its degradation in lysosomes [159]. Furthermore, mice perfused with manganese became
completely resistant to a lethal Shiga toxin challenge. Even though the results have not been replicated
by another team [391], and caution is advised regarding its potential neurological toxicity, manganese
deserves further clinical evaluation owing to its low cost.

6.3.5. Other Abandoned Therapies

Steroids [392] and antithrombotic therapies [393–395] have been abandoned due to the lack of
proven benefit and the risk for secondary infection or bleeding, respectively.

7. Prognosis

Despite the relatively low lethality of pediatric STEC-HUS, which has fallen below 3% in recent
years [105,218,346,396], EHEC remains a public health threat, as mortality can rise to 15%–33% in adult
and fragile populations [107,108,215,397], and long-term sequelae have been increasingly described,
affecting about one-third of patients [398].

7.1. Renal Sequelae

The kidneys bear the brunt of most of the long-term sequelae. According to a meta-analysis
published in 2003 (including studies up to 2001), 12% of STEC-HUS patients included died or had
end-stage renal disease, and 25% of patients had a glomerular filtration rate < 80 mL/min/1.73 m2,
hypertension, or proteinuria after a mean 4.4 years of follow-up [399]. Prognosis seems to have
improved, and a more recent study has recorded a lowered incidence of 1.4% of the patients receiving
long-term RRT or transplantation. Nine percent had a glomerular filtration rate < 80 mL/min/1.73 m2

after a 5-year follow-up [240]. Compared with age-matched controls, this could represent an
average decrease of 10 mL/min/1.73 m2 [400]. Mild renal abnormalities, namely proteinuria and
hypertension, are described in 19% and 9% of the patients [240]. These are of particular concern,
as they may contribute to chronic kidney disease and renal failure decades after the initial insult in
otherwise healthy children, and they may have been underestimated in studies with only short
and intermediate follow-up. Three years after the O104:H4 outbreak, chronic kidney disease,
hypertension, and proteinuria were present in 4%, 19%, and 28% of the patients included in the
German Pediatric HUS Registry, respectively [401]. In adults, chronic kidney disease, de novo
hypertension, and proteinuria were observed in 47%, 25%, and 27% of the patients included in a
single-center study [402]. The pathophysiology of chronic kidney disease after STEC-HUS is believed
to be connected to the burden of hyperfiltration affecting the reduced pool of functional nephrons
(rather than recurrence or persistence of the microangiopathic process) and progressive scarring [403].
This view is consistent with the development of focal segmental glomerulosclerosis and hyalinosis,
which has been described [404]. This outcome is not specific to STEC-HUS, as the risk of chronic
kidney disease following any given cause of AKI is increased in adult patients [405]. At any rate, these
results stress the need for a long-term follow-up of STEC-HUS patients for a minimum of 5 years,
including in cases of apparent full recovery [237,240]. For patients with renal sequelae after STEC-HUS,
a low-sodium diet, early restriction of protein intake, and angiotensin-converting enzyme inhibitors
in the event of hypertension or proteinuria seem to slow down the progression of chronic kidney
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disease [406,407]. If end-stage renal disease develops, renal transplantation in STEC-HUS patients
appears to be safe, and the previously described recurrences after transplantation may have been linked
to unrecognized complement mutations [408]. Two retrospective studies performed in Argentina,
where STEC-HUS represent 15% of the causes leading to terminal renal failure in children who received
transplantation [403], found excellent survival of patients and grafts, without evidence of recurrence
in any patient [409,410]. As progression to end-stage renal disease is a rare event in the course of
STEC-HUS, and given the risk of recurrence of atypical HUS [411], it seems reasonable to screen
patients for complement mutations before renal transplantation.

7.2. Extra-Renal Sequelae

Next to renal sequelae, the most feared long-term complications after STEC-HUS are related
to the central nervous system. Even if intellectual performance does not seem to be impaired in
children [412], subtle neuromotor impairment has been described in most of them, independently
of acute central nervous system involvement [413]. Neuropsychological symptoms, including
fatigue, headache, and attention deficits, were present in 70% of adult patients 19 months after
the O104:H4 outbreak [414]. Gastrointestinal complications, such as colonic stricture [415], are rare after
the acute phase. Recurrence of diabetes warrants long-term screening of STEC-HUS survivors [258].

7.3. Predicting the Risk of Long-Term Sequelae

If 70% of EHEC-infected patients will fully recover, identification of the ones at risk for fatal
outcome or long-term sequelae is of critical importance. Risk factors for death include young or old
age [107], dehydration [243], elevated white blood cell count [243], and, perhaps most importantly,
the presence of neurological symptoms [243,246]. Need and duration of dialysis are seemingly the most
reliable predictors of poor renal outcome, and the occurrence of chronic sequelae increases stepwise
with the duration of anuria [237,239,416–418]; an approximate 5% increase in the odds of renal sequelae
with each supplementary day in dialysis has been reported [240]. Likewise, patients suffering from
anuria for longer than 10 d are particularly vulnerable since normal renal function will not return in
more than half of them. Higher leucocyte count and presence of hypertension may also be associated
with poorer renal outcomes [112,240,418]. Extra-renal manifestations have sometimes been associated
with a poorer long-term prognosis, probably as a reflection of the severity of the microangiopathic
process [419]. Lastly, genetic factors also likely influence the course of the disease, and the 1166C allele
of the angiotensin II type 1 receptor was found to have a significant protective effect [112]. Patients with
normal renal function, normal blood pressure, and no proteinuria one year after the acute stage had an
excellent prognosis, without occurrence of renal sequelae during further long-term follow-up [399].

8. Conclusions

In conclusion, Shiga toxin-associated HUS remains a global health concern. Our review emphasizes
that data regarding adult patients are limited, and this scarcity probably prevents prompt recognition
and implementation of the best standard of care for these patients. The emergence of new and more
virulent pathogens such as the O104:H4 strain reminds us that, despite major improvements in the
understanding of the pathophysiology and the encouraging results in preclinical models and ongoing
clinical trials, a specific treatment is still absent, and concerns about sequelae make scientific and
clinical research into this pathology a public health priority.
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