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Abstract. Numerical validation enables one to improve the reliability of
numerical computations that rely upon floating-point operations through
obtaining trustful results. Discrete Stochastic Arithmetic (DSA) makes
it possible to validate the accuracy of floating-point computations using
random rounding. However, it may bring a large performance overhead
compared with the standard floating-point operations. In this article, we
show that with perturbed data it is possible to use standard floating-
point arithmetic instead of DSA for the purpose of numerical validation.
For instance, for codes including matrix multiplications, we can directly
utilize the matrix multiplication routine (GEMM) of level-3 BLAS that
is performed with standard floating-point arithmetic. Consequently, we
can achieve a significant performance improvement by avoiding the per-
formance overhead of DSA operations as well as by exploiting the speed
of highly-optimized BLAS implementations. Finally, we demonstrate the
performance gain using Intel MKL routines compared against the DSA
version of BLAS routines.

Keywords: BLAS, Discrete Stochastic Arithmetic (DSA), floating-point
arithmetic, numerical validation, rounding errors.

1 Introduction

Numerical simulations rely on finite precision arithmetic. It means that each el-
ementary operation (like addition or multiplication) is potentially subject to
rounding errors. The existence of rounding errors may cause a catastrophic
consequence when meaningless results are computed owing to their accumu-
lation, in particular in large-scale computation on supercomputers. In addition,
they accompany reproducibility issue: as floating-point computations are non-
associative, different results may be computed even with the same code and the
same input if the order of the computation is changed. As a consequence, it
makes it difficult for us to distinguish bugs from rounding errors in software de-
velopment. Therefore, we can see strong motivations for analyzing the numerical
quality of computed results. Moreover, the recent advances in mixed-precision



techniques with precision reduction [3,12], which intend to achieve better speed
as well as energy efficiency, assist the importance to understand the effect of
rounding errors.

Several approaches exist for addressing issues caused by rounding errors. The
backward error analysis [13,21] provides error bounds on the computed solutions
of linear problems. This approach is used for instance to verify the numerical
quality of solutions of linear systems in linear algebra libraries and in particu-
lar in the LAPACK library [2]. Interval arithmetic [1,16], that briefly consists
in performing floating-point operations on intervals instead of scalars, provides
guaranteed error bounds on computed results. However, a naive application of
interval arithmetic in a code may result in an overestimation of the errors. There-
fore, interval arithmetic is usually used together with a special algorithm for each
numerical method.

Numerical validation can also be performed with a probabilistic approach
based on several executions of the program to control. While interval arithmetic
ensures the number of correct digits, probabilistic methods estimate it. One
of the advantages of the probabilistic approach is that it is applicable for any
floating-point computations without any changes in the algorithms. This study
focuses on a probabilistic method for numerical validation, discrete stochastic
arithmetic (DSA), which estimates rounding errors using random rounding. DSA
is implemented in the CADNA library [6,15], which can control the numerical
quality of codes using half, single, double and/or quadruple precision, as well as in
the SAM library [11], which can be used in arbitrary precision codes. Other tools
rely on a probabilistic approach to control rounding errors: MCALIB [9], Verifi-
carlo [5], and Verrou [10]. While DSA is a synchronous method and requires three
executions of each operation, the other tools rely on an asynchronous approach
which requires more executions (at least 50 for MCALIB). Another advantage
of DSA is its ability to detect numerical instabilities during the execution.

In this article, we consider the common situation when the input data are
affected by rounding and/or measurement errors. We address, at the same time,
the problem of numerical quality of computed results, the performance overhead
of existing numerical validation methods as well as the development cost induced
by their application to HPC codes. Thus, we respond to these three challenging
issues with the following contributions.

– We study numerical validation in case of perturbed data in HPC codes on
examples of key Basic Linear Algebra Subprograms (BLAS) routines. These
routines often appear in HPC codes consuming significant part of their exe-
cution time.

– In case of perturbed data, we propose an alternative approach that uses
the standard floating-point arithmetic, instead of DSA, to perform efficient
computations and still obtain trustful results.

– This novel approach shows outstanding performance as well as simplify per-
formance optimization as we directly rely on existing user-implemented codes
or highly-optimized vendor-provided implementations. Hence, this approach
is suitable for high-performance computations.



The remaining part of this paper is organized as follows. Section 2 introduces
the principles of DSA and describes its implementations. Section 3 presents the
error induced by perturbed data. Section 4 proposes the utilization of the stan-
dard floating-point arithmetic in numerical validation. Then, we demonstrate
our approach on matrix-vector multiplication (GEMV) and matrix-matrix mul-
tiplication (GEMM) using Intel MKL compared against DSA with the reference
BLAS code: Section 5 is devoted to the accuracy comparison, while Section 6
presents the performance evaluation. Section 7 discusses the pros and cons of
the proposed approach. Finally, conclusions on this work are given in Section 8.

2 Discrete Stochastic Arithmetic (DSA)

2.1 DSA in a Nutshell

The CESTAC method [19] enables one to estimate the rounding error propaga-
tion which occurs with floating-point arithmetic. This probabilistic method uses
a random rounding mode: at each elementary operation, the result is rounded up
(towards −∞) or down (towards +∞) with the probability of 50 %. Hence, with
this random rounding mode, the same program run several times provides dif-
ferent results. Therefore, the computer’s deterministic arithmetic is replaced by
a stochastic arithmetic, where each arithmetic operation is performed N times
before the next one is executed. The CESTAC method supplies us with N sam-
ples R1, . . . , RN of the computed result R. The value of the computed result R is
then computed as the mean value of {Ri} and, if no overflow occurs, its number
of exact significant digits can be estimated as

CR = log
10

(√
N
∣∣R
∣∣

στβ

)
with R =

1

N

N∑

i=1

Ri, σ2 =
1

N − 1

N∑

i=1

(
Ri −R

)2
. (1)

τβ is the value of Student’s distribution for N − 1 degrees of freedom and a
confidence level 1 − β. In practice, β = 5% and N = 3. Therefore the number
of correct digits is estimated within a 1 − β = 95% confidence interval and
increasing the size of the sample does not significantly improve the quality of
the estimation. More details can be found in [4,19].

If both operands in a multiplication or the divisor in a division are not sig-
nificant, the validity of CR is compromised [4]. Therefore, the CESTAC method
requires, during the execution of the code, a dynamical control of multiplica-
tions and divisions, which is a so-called self-validation of the method. This self-
validation has led to the synchronous implementation of the method, i.e. to the
parallel computation of the N results Ri, and also to the concept of compu-
tational zero [18]. A computed result is a computational zero, denoted by @.0,
if ∀i, Ri = 0 or CR ≤ 0. This means that a computational zero is either a
mathematical zero or a number without any significance, i.e. numerical noise.
Relational operators that take into account rounding errors have been defined
as follows and called discrete stochastic relations [4]. Let X = (X1, ..., XN ) and



Y = (Y1, ..., YN ) be two results computed using the CESTAC method,

X = Y if and only if X − Y = @.0;

X > Y if and only if X > Y and X − Y 6= @.0;

X ≥ Y if and only if X ≥ Y or X − Y = @.0.

Discrete Stochastic Arithmetic (DSA) [19,20] is the joint use of the CESTAC
method, the concept of computational zero, and the discrete stochastic relations.

2.2 The CADNA library

CADNA5 [6,15] is a library which implements DSA in in C, C++, or Fortran
codes. New numerical types – the stochastic types – are provided by CADNA.
Thus, classic floating-point variables are replaced by the corresponding stochastic
variables, which are composed of three floating-point values and an integer to
store the accuracy. The library contains the definition of all arithmetic operations
and order relations for the stochastic types. The rounding error that affects any
stochastic variable can be estimated with the probability of 95%. Only the exact
significant digits of a stochastic variable are printed, or “@.0” for numerical noise.
Because all operators are redefined for stochastic variables, CADNA requires
only a few modifications in a program: essentially in the declarations of variables
and in input/output statements.

During the execution of the code, CADNA can detect numerical instabilities
that are usually due to numerical noise. When numerical instabilities are de-
tected, dedicated CADNA counters are incremented. At the end of the run, the
value of these counters together with appropriate warning messages are printed.
CADNA requires 4x memory storage compared to the original code. Its cost
in execution time depends on the code to control and on the instability detec-
tion level chosen by the user. If self-validation of DSA is activated, arithmetic
compute- and memory-bound benchmarks described in [6] run about 10 times
slower with CADNA.

3 Error induced by perturbed data

In the sequel, we assume to work with a binary floating-point arithmetic adhering
to IEEE 754 floating-point standard [14]. The relative rounding error unit is
denoted by u. For the IEEE 754 binary64 format (hereafter referred to as “double
precision”), we have u = 2−53 and for the binary32 format (hereafter referred to
as “single precision”) u = 2−24.

Let us consider a function f and let us denote by x its input data. Let y =

f(x). Let us denote by f̂ the numerical evaluation of f on a computer. Usually,

f̂ 6= f because of the finite precision of the computer arithmetic. Therefore, the

computed result is often not y, but ŷ = f̂(x). The forward error is the difference
between the exact solution y and the computed solution ŷ.

The backward analysis tries to seek for ∆x such that ŷ = f(x + ∆x). The
quantity ∆x is said to be the backward error associated with ŷ. It measures the
distance between the problem that is solved and the initial problem.

5 http://cadna.lip6.fr
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Let us denote by C the condition number of the problem. It is defined as

C := lim
ε→0+

sup
|∆x|≤ε

[ |f(x + ∆x) − f(x)|
|f(x)| /

|∆x|
|x|

]
. (2)

If the algorithm is backward-stable (i.e. the backward error is of the order
of the rounding unit u) then one has the following rule of thumb [13],

|f(x) − f̂(x)|/|f(x)| . Cu. (3)

If the input data is perturbed, i.e. the input data is not x but x̂ = x(1 + δ),

then, by definition of the condition number (2), one computes f̂(x̂) with

|f(x) − f̂(x̂)|/|f(x)| . C(u + |δ|). (4)

If |δ| ≫ u, then C|δ| ≫ Cu. In this case, the rounding error generated by f̂
is negligible w.r.t. C|δ|.

4 Combining DSA and standard floating-point arithmetic

In this section we show how numerical validation can be performed if standard
floating-point arithmetic is used instead of DSA operations. For the sake of
simplicity, in the sequel, we consider a BLAS routine that is executed in a code
controlled using DSA. However the approach described here is the same if several
computation routines are used continuously. We assume that the BLAS routine
is executed with input data affected by rounding errors and/or by measurement
errors. We compare the results provided by the CADNA routine and its classic
floating-point version.

Let us denote by D the input data of the BLAS routine. Note that BLAS is
divided intro three levels: BLAS-1 for scalar-vector and vector-vector operations;
BLAS-2 for matrix-vector computations; BLAS-3 for matrix operations. Thus,
D can correspond to few arrays: few vectors for BLAS-1 routines; a matrix and
few vectors for BLAS-2; few matrices for BLAS-3. Because the code uses the
CADNA library, D is composed of stochastic variables: each array element of
D is a triplet. Let us assume that the result of the BLAS routine is an array: a
matrix in the case of a matrix multiplication; a vector in the case of a matrix-
vector multiplication or scalar-/ and vector-vector operations. We describe, first,
the case when a CADNA routine is used, then our approach which consists in
replacing a call to the CADNA routine by three calls to a classic BLAS routine:

– On the one hand, the CADNA version of the BLAS routine is executed: every
arithmetic operation is performed three times with the random rounding
mode. The result R is a stochastic array. The associated execution flow is
represented in Figure 1 in the general case when one CADNA routine is used
or several CADNA routines are executed continuously.

– On the other hand, three input data D1, D2, D3 are created from the triplets
of the stochastic data D. This is followed by three executions of a classic
BLAS routine (a user or a vendor implementations) providing three results
R′

1
, R′

2
, R′

3
, each of them being a classic floating-point array. A stochastic
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Fig. 1: Execution flow with a call to CADNA routines.
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Fig. 2: Execution flow with three calls to classic BLAS routines.

array R′ is created from these three arrays R′
1
, R′

2
, R′

3
; this array R′ can

be used in the CADNA routines in the next parts of the code. Figure 2
illustrates the associated execution flow. In this approach, we can clearly
benefit from highly-optimized vendor routines to speed up the entire DSA
process.

Section 5 compares the accuracy of R and R′, while Section 6 presents the
performance comparison between the CADNA and pure BLAS routines.

5 Accuracy comparison

5.1 Experimental setup

In this section, we compare the accuracy of results provided by the CADNA
version and the classic version of BLAS routines for matrix (xGEMM) and
matrix-vector (xGEMV) multiplications. The numerical experiments have been
carried out with stochastic data randomly generated between −10E and +10E ,
where the choice of E depends on the test case. Each stochastic value x = {xi}
(i = 1, 2, 3) is initialized as x1 = x2 = x3 = α10e, where α is a random variable
uniformly distributed between −1 and 1 and e is an integer randomly generated
in {0, ..., E}. This initialization ensures the generation of data with different
orders of magnitude.

We assume that the input data is affected by measurement errors and/or
rounding errors due to previous computation. To simulate such errors, we use
the data st CADNA function that enables one to perturb a stochastic value with
a relative or an absolute error set by the user. In this paper, according to the
chosen error δ, each stochastic value x = {xi} (i = 1, 2, 3) is perturbed following
this equation:

x̂i = xi(1 + βiδ) for i = 1, 2 and x̂3 = x3, (5)

where βi is a random variable uniformly distributed between −1 and 1.

5.2 Matrix multiplication

We present here results obtained with the multiplication of square matrices of
size n = 500. In accordance with Section 4, we denote by R the stochastic



Table 1: Accuracy comparison of matrix multiplication.

(a) Double-precision

accuracy accuracy difference
δ of R between R and R′

mean min-max mean max
1.e-14 13.9 9-15 2.5e-2 2
1.e-13 12.8 8-15 5.8e-3 1
1.e-12 11.9 7-14 4.2e-4 1
1.e-11 10.9 6-13 2.4e-5 1

(b) Single-precision

accuracy accuracy difference
δ of R between R and R′

mean min-max mean max
1.e-6 5.6 1-7 2.3e-1 2
1.e-5 4.8 0-7 1.9e-2 2
1.e-4 3.7 0-6 2.8e-3 1
1.e-3 2.8 0-5 2.8e-4 1

matrix computed with the CADNA routine and by R′ the stochastic matrix
built from the three matrices computed with the classic floating-point routine.
In both cases, the accuracy of each element of the resulting matrix is estimated
by CADNA according to Eq. 1. For i = 1, . . . , n2, CADNA computes the number
of correct digits CRi (resp. CR′i) in the element Ri (resp. R′i) of the array R
(resp. R′). As a remark, superscripts are used here to avoid confusion with the
triplet composing a stochastic variable. Tables 1 reports:

– the relative data perturbation δ;
– the mean value, the minimum and the maximum of the accuracy of the n2

results that are computed by the CADNA routine;
– the mean value and the maximum of the difference between the accuracy

of the results obtained with the CADNA routine and the accuracy of those
computed with the classic routine. For i = 1, . . . , n2, this difference ∆i is
evaluated as ∆i = |CRi − CR′i |.

It has been observed that the minimum and the maximum accuracy are the same
with both approaches. Table 1 (a) presents results computed in double precision
with data randomly generated between −1020 and 1020, while Table 1 (b) shows
results computed in single precision with data randomly generated between −103

and 103. We recall that the best possible accuracy is 15 digits in double precision
and 7 digits in single precision.

As the order of magnitude of the perturbation δ increases, the mean accuracy
decreases by 1 digit. A low difference can be observed between the accuracy of
the results obtained with the CADNA routine and the accuracy of those com-
puted with the classic routine. The order of magnitude of the mean value of this
difference decreases as the order of magnitude of δ increases. If the perturbation
is sufficiently high (10−13 in double precision, 10−4 in single precision), maxi-
mum accuracy difference is 1 digit. As expected, a high perturbation in single
precision induces a low accuracy on the results: if δ = 10−3 the mean accuracy
is less than 3 digits.

5.3 Matrix-vector multiplication

The same accuracy comparison as in Section 5.2 is performed for the multi-
plication of a square matrix of size 1000 with a vector. On the one hand, the
matrix-vector multiplication is performed with a CADNA routine. On the other



Table 2: Accuracy comparison of matrix-vector multiplication.

(a) Double-precision

accuracy accuracy difference
δ of R between R and R′

mean min-max mean max
1.e-14 13.9 12-15 4.6e-2 1
1.e-13 12.7 11-14 7.0e-3 1
1.e-12 11.8 10-13 0 0
1.e-11 10.9 9-12 0 0

(b) Single-precision

accuracy accuracy difference
δ of R between R and R′

mean min-max mean max
1.e-6 5.5 3-7 3.2e-1 2
1.e-5 4.8 2-6 2.4e-2 1
1.e-4 3.7 1-5 7.0e-3 1
1.e-3 2.8 0-4 1.0e-3 1

hand, it is performed three times with a classic routine. Like in Section 5.2,
the minimum and the maximum accuracy are the same with both approaches.
Table 2 (a) presents results computed in double precision with data randomly
generated between −1020 and 1020, while Table 2 (b) represents results computed
in single precision with data randomly generated between −103 and 103.

Like in Section 5.2, as the order of magnitude of δ increases, the mean ac-
curacy decreases by 1 digit. The mean value of the accuracy difference remains
low and it decreases as the pertubation δ increases: in double precision, all the
results have the same accuracy if δ is greater than or equal to 10−12. Like in
Section 5.2, in single precision a high pertubation results in a poor accuracy.

6 Performance comparison

6.1 Experimental setup

The performances of the execution flows described in Figures 1 and 2 are com-
pared for different matrix sizes. Section 6.2 presents the performance obtained
for matrix multiplication and Section 6.3 for matrix-vector multiplication. In
both sections, we compare the execution time of a code using CADNA with that
of various implementations of our proposed approach: they perform three matrix
or matrix-vector multiplications and array copies. We analyze the performance
of :

– “CADNA”: a sequential code that performs with CADNA a naive matrix or
matrix-vector multiplication;

– “naive seq”: a sequential code that implements our approach (described in
Figure 2) using the same naive algorithm with classic floating-point arith-
metic;

– “naive OMP”: an implementation of our proposed approach that relies on
a naive algorithm with classic floating-point arithmetic parallelized using
OpenMP;

– “MKL seq”: an implementation of our proposed approach using a sequential
MKL BLAS routine;

– “MKL OMP”: an implementation of our proposed approach that relies on a
parallel MKL BLAS routine, which underneath uses OpenMP.

By “naive algorithm”, we mean a non-optimized algorithm based on nested loops.
In this section, we present the execution times of double precision codes. As a



remark, the same trends are observed in single precision. However, as mentioned
in Section 5, single precision may be not suitable for computation with perturbed
data because they induce low accuracy results.

Except with the CADNA routine, memory copies are required to split the
stochastic data into three classic floating-point data, and then to merge the three
classic floating-point resulting arrays into a stochastic array. As the stochastic
type in double precision is a structure consisting of three 64-bit floating-point
values and two 32-bit integer values (one for storing the accuracy and one for
memory alignment), it has 4 times memory footprint than the standard 64-bit
floating-point operation. The array copy corresponds to the conversion between
array-of-structures (the stochastic type) and structure-of-arrays (three standard
floating-point values).

The evaluation environment is as follows. The platform for performance mea-
surements is an Intel Core i7-8650U processor clocked at 1.9 GHz with 4 cores,
8 MB cache. The operating system is Linux Ubuntu 18.04.4. The codes are
compiled with gcc version 8.3.0 and optimized with the -O3 flag. We use the
-frounding-math option to disable transformations and optimizations that as-
sume default floating-point rounding behavior. The MKL version is 2019.5.281.
The CADNA version is cadnac-3.1.5 and for performance evaluation, instability
detection is deactivated. In parallel codes that rely on OpenMP, the number of
threads is set to 4.

6.2 Matrix multiplication (compute-bound)

Figure 3 presents the execution time of the different implementations as previ-
ously described. A log scale is used for the y-axis to improve the readability of
the obtained results. Figure 3 also shows the time spent in matrix multiplica-
tions and in array copies if the matrix size is 2000. We can observe that despite
the memory copies the codes using three classic matrix multiplications perform
better than the CADNA routine. Most of their total execution time is spent in
matrix multiplications. The performance ratio between the CADNA routine and
the sequential code that performs three naive matrix multiplications decreases
from 4 to 1.2 as the matrix size increases from 100 to 2000. For small matrices,
data fits in cache. However in the CADNA routine the matrix values are accessed
from a structure, while in the classic routine they are directly accessed as array
elements. For larger matrices, data does not fit in cache. Both in the CADNA
routine and in the classic one, the access to the matrix values is costful. The
performance ratio (e.g. 1.2 if the matrix size is 2000) is mainly explained by the
random rounding.

As expected, the OpenMP naive matrix multiplication provides better per-
formance than the sequential one. The MKL sequential matrix multiplication
performs even better. From a certain matrix size, the MKL parallel implementa-
tion using OpenMP outperforms all the other codes. In particular, if the matrix
size is 2000, we can notice a performance ratio of 294 between the CADNA
routine and the MKL OMP code that performs in parallel three matrix multi-
plications and array copies. Table 3 summarizes the speedup against CADNA
with our proposed method with MKL OMP. Herein, we also show another result
with n=5000 on 24 cores with dual-socket Intel Xeon Gold 6126 (2.6 GHz with
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Fig. 3: Execution time including matrix multiplications and array copies.

Table 3: Execution time (in seconds) of CADNA and the proposed method with
MKL OMP on a matrix multiplication.

(a) Core i7-8650U
(1.9 GHz, 4 cores), n=2000

CADNA Proposed w/ Speedup
MKL OMP

Comp 130 0.393 331x
Copy – 0.0495 –
Total 130 0.4425 294x

(b) Dual-socket Xeon Gold 6126
(2.6 GHz, 12 cores×2), n=5000

CADNA Proposed w/ Speedup
MKL OMP

Comp 2520 0.563 4476x
Copy – 0.0889 –
Total 2520 0.652 3865x

12 cores) with the MKL library 2019.1.144 (the codes were compiled with Intel
icpc 19.0.1.144). This table shows that the performance gain increases on large
scale and that the array copy cost becomes visible against the computation cost,
in particular on many-cores that can efficiently perform the computation.

6.3 Matrix-vector multiplication (memory-bound)

Figure 4 shows the execution time of the different implementations as previously
described. It can be observed that the matrix-vector multiplication with CADNA
performs better than the sequential codes which execute three floating-point
matrix-vector multiplications and array copies. In the sequential codes that use
classic floating-point arithmetic the main part of the execution time is spent
in array copies. If we consider computation time only, the performance ratio
between the CADNA routine and the code that performs three sequential matrix-
vector multiplications decreases from 4 to 3 as the matrix size increases from
100 to 10000. Like for matrix multiplication, accessing values from a structure is
more costful, especially for small problems. From a certain matrix size, thanks
to the parallel array copies, the OpenMP codes that use classic floating-point
arithmetic perform better than the CADNA code.

As a remark, we note that the array copy cost shown in this example is the
worst case, which is the situation when classic GEMV routines are used only once
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Fig. 4: Execution time including matrix-vector multiplications and array copies.

and the ratio between the memory reference in one array copy and that in the
routine is approximately 1. In this case, three matrix copies are performed before
and after the classic GEMV executions. If standard floating-point operations (or
classic BLAS routines) are continuously used, the array copy cost is arisen only
before and after them.

7 Discussion: pros and cons of the proposed approach

7.1 Pros: performance and applicability

The proposed approach includes two performance advantages and one regarding
the applicability as follows.

– The performance gain by avoiding DSA operations. On compute-bound op-
erations, the overhead caused by random rounding may be eliminated. On
memory-bound operations, in the cases we can ignore the array copy cost
(i.e. when we use classic routines continuously), the overhead of CADNA
decreases to 3 times.

– The possible performance gain by directly relying on existing optimized
codes. The demonstration on matrix-multiplication in Section 6.2 is a typical
example that gains high-performance from a vendor optimized library.

– Avoiding the translation of an existing code to the CADNA version for nu-
merical validation. Previously, when the target code included some portions
where CADNA could not be applied (for example, relying on external li-
braries or including some intrinsic instructions for optimization), we needed
to prepare an alternative code.

Those advantages can be more pronounced on many-core processors. While
CADNA supports OpenMP, the performance overhead can be larger than single-
thread due to the existence of some private sections [8]. CADNA for CUDA is
also available, but it is observed that the overhead (especially on compute-bound
operations) becomes higher than that on CPUs [7].



7.2 Cons: instability detection and accuracy

Instability detection With perturbed data, if a CADNA routine is replaced by
three calls to a classic routine, the result accuracy can still be correctly estimated
by CADNA. In particular, the user can be informed that the result is numerical
noise (i.e. no correct digit). However numerical instabilities are not detected if
a classic floating-point routine is used instead of a CADNA routine.

As an example, we consider the multiplication in double precision of two
matrices A and B of size 10. The first row of A is [1, 1, 1, 1, 1,−1,−1,−1,−1,−1]:
its first half is set to 1, while the second half is -1. The other lines of A are
randomly generated between −1020 and 1020, as described in Section 5.1. All
the elements of the matrix B are set to 1. Then A and B are perturbed with
a relative error δ = 10−12. We denote by C the matrix product obtained using
CADNA and by C ′ the matrix product computed by three calls to a classic
routine according to the execution flow described in Figure 2. In both resulting
matrices, each element of the first line is numerical noise and can be displayed by
CADNA as ”@.0”. Let us focus on the first element of C and C ′. The associated
triplets are:

C1,1 = {-1.1590728377086634e-13, C ′
1,1 = {-1.1790568521589528e-13,

+4.9227288911879442e-13, +4.9327208984079348e-13,

+0.0000000000000000e+00}, +0.0000000000000000e+00}.
Each triplet is composed of values that have no common digit. The differences

between C1,1 and C ′
1,1 are due to the random rounding mode of CADNA. One

advantage of the CADNA routine is the instability detection. Here, the user is
informed that 10 catastrophic cancellations occurred (i.e. subtractions of close
values affected by rounding errors).

Accuracy improvement CADNA may improve the accuracy of results thanks
to the detection of numerical noise. Such improvement is not possible if a CADNA
routine is replaced by three calls to a classic routine. As an example, let us con-
sider the linear system Ax = b with

A =









21 130 0 2.1
13 80 4.74 108 752
0 −0.4 3.9816 108 4.2
0 0 1.7 9 10−9









, b =









153.1
849.74
7.7816
2.6 10−8









.

Its exact solution is xexact =
(
1, 1, 10−8, 1

)T
.

A and b are pertubed with a relative error δ = 10−6. Then the linear system
is solved using Gaussian elimination with partial pivoting. The result x obtained
using CADNA and the result x′ computed by three calls to a classic routine are
displayed by CADNA as:

x =




0.100E+001
0.999E+000

0.999999E-008
0.999999E+000


 and x′ =




@.0
@.0
@.0

0.999999E+000


 .



The numerical quality of the first three elements of x is rather satisfactory,
whereas these elements are numerical noise in x′. Pivoting implies to choose at
several steps of Gaussian elimination a suitable value for the pivot that will be
used in subsequent computation. Among several matrix elements, the one having
the greatest absolute value is selected with a test such as: if (|Ai,j | > pmax).
During the Gaussian elimination, a matrix element is numerical noise: it has
no more correct digits. With CADNA this non-significant element in A is not
chosen as a pivot. Without CADNA, this element cannot be detected as non-
significant. As its absolute value is high, it is chosen as a pivot and numerical
noise is propagated in subsequent computation. With CADNA, the following list
of three numerical instabilities is provided:

1 UNSTABLE BRANCHING(S)

1 UNSTABLE INTRINSIC FUNCTION(S)

1 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

A catastrophic cancellation occurred and generated a non-significant element
used as an argument in the absolute value function. This numerical noise also
caused an unstable test for the pivot selection.

8 Conclusion

This paper proposed an alternative approach for numerical validation on per-
turbed data, which can rely on the standard floating-point arithmetic instead
of DSA operations. If the input data includes a perturbation with an order of
magnitude greater than the relative rounding error unit, we can replace the
DSA operations, which execute each floating-point operation three times with
random rounding, by three executions with the standard floating-point arith-
metic. It brings almost no accuracy difference in the results. This proposed
approach contributes a significant performance improvement, in particular on
compute-bound operations on many-core processors as it can directly rely on
existing user-implemented codes or even highly-optimized vendor libraries. On
the other hand, we loose the instability detection and the possibility of accuracy
improvement, which were available on our DSA implementation, CADNA. The
same conclusions would be valid with a parallel code using MPI for communica-
tion. CADNA enables one to control the numerical quality of HPC codes that
rely on MPI [17]. If in such a code computation-intensive routines are executed
with perturbed data, the CADNA-MPI routines can be replaced by optimized
floating-point MPI routines.
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