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Abstract

This paper presents the modelling and the dynamic characterization of laminated compos-
ite plates and sandwich structures in terms of stiffness and damping. The developments
used in this paper are based on the analytical multilayer model of Guyader and Lesueur
(JSV, 1978). The model considers linear shear, membrane and bending effects in each
layer. The characteristics of the structure are determined by means of an equivalent thin
plate methodology. The first main novelty of this paper consists in adapting this methodol-
ogy for laminated plates (orthotropic multilayers with arbitrary orthotropic angle per layer).
An experimental validation of this adaptation is presented for a laminated composite plate.
Concerning the modelling of the structural loss factor, a space domain definition based on
the spatial attenuation of a plane wave is compared to an energetic method and an equiva-
lent definition based on the thin plate theory. The results show that the equivalent definition
overestimates the loss factor in high frequencies since the thin plate theory only considers
the flexural behaviour of the structure. On the contrary, the space domain definition (which
give similar results as compared to the energetic one for lightly damped structures) consid-
ers the frequency dependent variation of the dynamic behaviour of the structure by means
of the ratio between the group and phase velocities. The latter approach is considered to
be more correct. The second main novelty of this article is on the experimental validation
of this space domain definition. The structural loss factors of two sandwich structures are
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identified from measurements using modal, energetic and spatial methods. The results us-
ing the space domain definition are in very good agreement with the analytical predictions
and the estimations of the modal and energetic methods for both plates for a large frequency
band (up to 20 kHz), demonstrating the validity of the approach developed in this paper.

Key words: Sandwich panels; laminated composite structures; equivalent plate model;
flexural rigidities; structural loss factor; space and time domain estimations; experimental
validations

1 Introduction

Nowadays, complex materials are more and more used in transport and building
industries to combine a reduced weight with an increased stiffness. Among these
materials, multi-layered structures such as laminated composite plates stand out
because of their high stiffness and low mass.

In the literature, several analytical models exist to handle such structures. Using
these models, the structural parameters such as Young’s modulus and loss factor
of an equivalent anisotropic single layer plate can be identified as function of fre-
quency. Carrera [1] separates these models in two main groups.

The first group, the Equivalent Single Layer (ESL) models, describes the multi-
layer material by means of an equivalent mono-layer that resembles the dynamic
behaviour of the multilayer, for a given frequency, as good as possible. Obviously,
the material properties of the equivalent mono-layer are dependent upon frequency.
The model of Ross, Kerwin and Ungar [2], developed for a multilayer consisting
of three layers, fits perfectly within this group. In this model, a simplified energetic
approach is used with several assumptions (for example that the total dissipation
of energy is described by the shear deformation of the core). Two other papers of
Kerwin [3] and Ungar [4] follow the same approach. Ungar defines the loss factor
for each wave type in terms of strain energy. Nilsson and Nilsson [5] studied honey-
comb sandwich beams, taking into consideration bending, shear and rotation effects
in each layer. The Hamilton’s principle is applied to identify the different types of
wave propagating inside the beam. Backström and Nilsson [6] estimate the equiv-
alent loss factor of multilayered beams by identifying the bending wavenumber of
the structure with the one of an Euler-Bernouilli beam. Recently Nilsson et al. [7]
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studied the influence of length and boundary conditions on the apparent bending
stiffness of sandwich beams.

The second main group of Carrera is called Layer Wise (LW) models, where a dis-
placement field is defined for each layer. For example, the model of Ghinet and
Atalla [8], developed for laminated structures, considers a Reissner−Mindlin dis-
placement field for each layer. Equilibrium equations lead to the dispersion re-
lations of the plate. For the special case of a multilayer system consisting of three
layers, of which the core layer is relatively thick and soft, Ghinet adds a dilatational
motion along the core’s thickness to include the symmetric mode. Finite element
models were also developed such as the one of Shorter [9] for a multilayered struc-
ture with isotropic material properties. Shorter uses a one-dimensional mesh and
an eigenvalue problem is set up to identify the dispersion curves. In Ghinet’s and
Shorter’s papers, the loss factor is defined with the strain energy method. Manconi
and Mace [10] present a three-dimensional wave finite element method for pre-
dicting dispersion and dissipation of waves in viscoelastic laminated panels. They
describe several ways to define the loss factor: with the strain energy at a real pre-
scribed frequency or with an averaging as function of the direction if the material
is a laminated plate.

The model of Guyader and Lesueur [11] establishes also one kinematic for each
layer and has a number of kinematic variables independent of the number of layer.
These two aspects make such an analytical model faster than numerical (FEM) or
other analytical (Layer Wise) models and more accurate than Equivalent Single
Layer models. In another paper, Guyader and Cacciolati [12] used this model to
characterise the multilayer assuming that the structure exhibits the same behaviour
as a Love-Kirchhoff’s thin plate. Contrarily to ESL models, which look for equiv-
alent parameters that are constant in frequency, this equivalence is considered at
each frequency leading to equivalent parameters that depend on frequency.

Different experimental procedures exist for the characterisation of multilayer struc-
tures. At high frequencies, where modal analysis approaches become unpractical
because of the increased modal density [13], other techniques based on vibration
field analysis have demonstrated their efficiency, as detailed by Ege et al. [14].
Among them, the IWC (Inhomogeneous Wave Correlation) method stands out,
which is basically a wave fitting approach used by Berthaut [15] on ribbed pan-
els and by Cherif et al. [16] on honeycomb sandwich structures. The ISM (Image
Source Method), described by Cuenca et al. [17], estimates the vibration field of
polygonal plates with Green’s functions taking into account reflections on edges
with image sources. Roozen et al. [18] used this technique to fit measurements of
point-excited plate structures and identify material parameters. In a different way,
the CFAT (Corrected Force Analysis Technique) methodology [19], recently ex-
tended for laminated structures [20], estimates the equations of motion of a plate
with a finite difference scheme applied on the measurement field. Structural param-
eters are identified by measuring far from the source. Similarly, the VFM (Virtual
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Field Method) [21,22], the pressure is estimated with virtual displacement and cur-
vature fields. In another recent approach, Margerit et al. developed a promising
characterisation method using ESPRIT algorithm to extract complex wavevector
for 1D [23] and 2D [24] structures in wide frequency range.

This article deals with, on one part, the modelling of laminated plates, which can
be described as multilayers with oriented orthotropic layers, and, on the other part,
the modelling of structural damping. The manuscript is organized in 3 sections. In
a first section, we propose an adaptation of the ”equivalent thin plate” methodology
of Guyader and Cacciolati [12], initially developed for isotropic materials, for lam-
inated plates. An experimental validation of this adaptation, focused on the real part
of the stiffness, is conducted on a composite laminated panel. In a second section,
the modelling of the structural loss factor is discussed by means of a comparison
of three definitions using the results of the bibliography [6,8,9]. The first approach
is based on the spatial attenuation of a plane wave while the second one uses an
equivalent model based on the thin plate theory and the third one corresponds to
the Modal Strain Energy (MSE) method. In a third section, the structural loss fac-
tors of sandwich plates are experimentally estimated using the CFAT method with
the space domain and equivalent definitions. The results are compared to the pre-
dictions of the analytical model of Guyader et al. [11,12] and to the experimental
estimations of modal and energetic methods.

The principal novelties of this paper can be summarized as follows:

• Starting from the analytical model of Guyader and Lesueur [11] and Wood-
cock [25], the equations of motion are solved to obtain the dispersion relationship
of the laminated structure using a symbolic computation.
• The equivalent methodology of Guyader and Cacciolati [12] is adapted for lam-

inated structures by defining the equivalent thin plate with 5 flexural rigidities.
• The space domain definition of the structural loss factor is experimentally vali-

dated on sandwich plates by comparing the results with the ones of modal and
energetic methods for a large frequency band (up to 20 kHz).

2 Model

2.1 Hypothesis

The developments in this paper are based on the analytical model of Guyader and
Lesueur [11]. This simplified multilayer model describes the behaviour of each
layer with a Reissner-Mindlin displacement field. In addition to the flexural (W )
and membrane (ψ) motions, this kinematic considers a linear shear (φ) inside each
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layer. Although less influential in the low frequency range, the effect of this shear
can be significant on the prediction of the bending mode at higher frequencies.
In addition, the transverse displacement is supposed to be constant for all layers,
neglecting the deformation through the thickness. Continuity conditions between
layers lead to equations of motion which are independent of the number of layers. In
this way, the behaviour of the whole multilayer is defined by the kinematic variables
of one reference layer. An energetic aspect governed by Hamilton’s principle is
used to derive the equations of motion of the multilayer. A specific solution of this
equation leads to the dispersion curves of the plate.

2.2 Comparison with a finite element model

In order to illustrate the performances of the model, we compared its results in
terms of dispersion curves with the Spectral Finite Element Method (SFEM) used
by Shorter [9]. This comparison concerns the modelling of a sandwich panel com-
posed of three isotropic layers and is presented in Figure 1. The characteristics of
this sandwich are mentioned in Table 1.

h (mm) ρ (kg.m−3) E (GPa) ν (-)

Skins 0.6 2700 71 0.33

Core 15 48 0.03 0.2

Table 1
Characteristics of a sandwich panel simulated by Shorter with the SFEM.
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Fig. 1. Dispersion curves of the propagating modes of an isotropic sandwich panel predicted
by the SFEM [9] (yellow solid curves) and the model of Guyader and Lesueur (black dashed
curves).

The five dispersion curves identified by the analytical model are similar to the re-
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sults of the SFEM. They correspond to five propagating waves: flexural (a), mem-
brane (b) and shear (c) in the longitudinal direction as well as membrane (d) and
shear (e) in the transverse direction. As mentioned in section 2.1, the model of
Guyader and Lesueur assumes a constant transverse displacement in each layer,
neglecting the deformation through the thickness. Because of this, curve (f), cor-
responding to a symmetric wave propagating along the thickness of the multilayer
(the S0 mode of Lamb wave theory [26]), is not found by this model. In the case
of a three layers sandwich, Ghinet and Atalla [8] add a dilatational motion to the
core to describe this symmetric mode. This addition involves to use a Rayleigh-Ritz
method with hierarchical trigonometric form functions and implies a huge amount
of calculation time in comparison to the model presented in this paper.

2.3 Dispersion curves for laminated structures

Guyader and Lesueur [11] consider in their model orthotropic layers whose or-
thotropic axes are aligned with the main axes of the plate (θn = 0◦, 90◦). Their for-
mulation has been extended by Woodcock [25] for laminated plates (θn 6= 0◦, 90◦)
up to the Hamilton’s principle (Eq. (1)). Then, the first novelty of this paper is to
establish, from the work of Woodcock, the equations of motion and the analyti-
cal writing of the stiffness and mass matrices of this type of structure. The second
novelty concerning our model consists in giving the expression of the dispersion
relation using symbolic computation.

The Hamilton’s principle defines the action of the system during a time inter-
val [t0; t1] over a functional H integrated on the surface of the plate a× b:

H =
∫ t1

t0

∫ a/2

−a/2

∫ b/2

−b/2
(ek − ed)dxdydt, (1)

where both, ek the kinetic energy and ed the deformation energy, are given by Wood-
cock [25]. These energies respectively depend on 18 coefficients δi and 69 co-
efficients λi defined by the characteristics of the layers (see the appendices B.3
and B.4 of Loredo and Castel [27]). Thanks to the coupling relations of the model,
the Hamilton’s functional only depends on the five kinematic variables of the first
layer, described by the vector:

{W} =
{
W, ψ1

x, ϕ
1
x, ψ

1
y, ϕ

1
y

}T
. (2)

A minimization of the action of Hamilton’s functional by using the differential form
of Euler-Lagrange for each variables of {W} leads to a matrix expression of the
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equations of motion described by:(
[I]

∂2

∂t2
+ [J ]

)
{W} = {0}, (3)

where [I] (respectively [J ]), defined in the appendix, contains all the coefficients
δi (respectively λi) expressed in the equation of ek (respectively ed).

As proposed by Guyader and Cacciolati [12] or by Ghinet and Atalla [8], the equa-
tion of motion can be solved using a plane wave propagating in a direction with
an angle θ relative to the reference coordinate system and described by a harmonic
motion with angular frequency ω and a wave number k(θ, ω):

{W} = {W}e−jk[x cos(θ)+y sin(θ)]ejωt, (4)

where {W} corresponds to the complex amplitude of {W}.

This specific solution (4), inserted into the equation of motion (3), leads to the
system: (

[K]− ω2[M]
)
{W} = {0}, (5)

with [K] the stiffness matrix associated to the deformation energy:

[K] =



k4l1 jk3l2 jk3l3 jk3l4 jk3l5

−jk3l2 k2l6 k2l7 k2l8 k2l9

−jk3l3 k2l7 k2l10 + l37 k2l11 k2l12 + l69

−jk3l4 k2l8 k2l11 k2l13 k2l14

−jk3l5 k2l9 k2l12 + l69 k2l14 k2l15 + l38


, (6)

and [M] the mass matrix associated to the kinetic energy:

[M] =



k2d1 + d8 jkd2 jkd3 jkd4 jkd5

−jkd2 d6 d7 0 d9

−jkd3 d7 d10 d11 d12

−jkd4 0 d11 d13 d14

−jkd5 d9 d12 d14 d15


. (7)

The coefficients li and di are given in the appendix.
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Non trivial solutions of Eq. 5 are obtained for:

det
(
[K]− ω2[M]

)
= 0. (8)

This determinant is solved using the symbolic toolbox of the software program
Matlab from The MathWorks, Inc., Massachusetts, USA. The results of this sym-
bolic computation are available as a supplementary material of the paper in the
form of a Matlab script. The determinant corresponds to a 6th order polynomial in
k2 meaning that the model can identify the dispersion curves of up to six differ-
ent wave types if we consider positive values of k only. Five of them have been
illustrated on the example presented in section 2.2. The sixth root correspond to
an evanescent wave which is not studied in this paper since we are interested in
propagating waves.

2.4 Equivalent thin plate

As stated in the introduction, Guyader and Cacciolati [12] use an equivalent plate
to characterize the multilayer. This method determines, for a given frequency, the
complex flexural rigidityD of an equivalent single layer plate under Love-Kirchhoff
thin plate theory, in order to exhibit the same transverse displacement as the multi-
layer.

This equivalent methodology was initially set up for isotropic materials. Then, we
propose, as the third novelty of this paper, to adapt it for laminated panels. The
equation of motion of such a structure under Love-Kirchhoff’s theory is defined by
five flexural rigidities Dij:

D11
∂4W

∂x4
+D22

∂4W

∂y4
+D12

∂4W

∂x2∂y2
+D16

∂4W

∂x3∂y
+D26

∂4W

∂x∂y3
= −ρh∂

2W

∂t2
, (9)

where h is the total thickness of the multilayer and ρ represents the density of the
multilayer and is estimated by the equation:

ρ =

∑
n hnρn∑
n hn

. (10)

A specific solution of the Eq. (9), similar to the one of the multilayer (4), describes
the flexural propagating wave inside the plate with a wavenumber kf(θ, ω):

W = we−jkf[x cos(θ)+y sin(θ)]ejωt, (11)
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and leads to the dispersion relation:

k4f
(
D11c

4 +D22s
4 +D12c

2s2 +D16c
3s+D26cs

3
)

= ρhω2, (12)

with c = cos(θ) and s = sin(θ).

The equivalent methodology assumes that kf is equal to the flexural wavenumber
obtained as a root of Eq. (8). The equivalent parameters Dij can be identified by
applying Eq. (12) for i values (at least 5) of the angle θ equally spaced in the
interval [0, π[. Angles larger than 180◦ were not considered since the dispersion
relation (12) is π periodic. Then, for a given angular frequency ω, the following
matrix relation can be written:[

∆
]{
β
}

= ρhω2
{
κ
}
, (13)

with

[
∆
]

=


c41 s41 c21s

2
1 c31s1 c1s

3
1

...
...

...
...

...

c4i s4i c2i s
2
i c3i si cis

3
i

 ;

c1 = cos(θ1);

s1 = sin(θ1);

ci = cos(θi);

si = sin(θi);

{
κ
}

=



1

k4f (ω, θ1)
...

1

k4f (ω, θi)


;

{
β
}

=



D11(ω)

D22(ω)

D12(ω)

D16(ω)

D26(ω)


.

The flexural rigidities Dij are identified by means of a generalized inverse ap-
proach: {

β
}

= ρhω2
([

∆
]T[

∆
])−1 [

∆
]T{

κ
}
. (14)

By doing this approach for all frequencies, the 5 dynamic bending stiffness of the
equivalent plate can be obtained as function of frequency.

2.5 Experimental estimation of the equivalent rigidities of a laminated composite
plate

This section concerns the experimental validation of the equivalent methodology
for laminated plates.
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A carbon fiber composite plate, supplied by the company Hexcel (Dagneux, France)
is studied. The plate is composed of four layers with different orientations of the
fibers (60°/-60°/-60°/60°). This symmetric pile reveals that the plate is monoclinic
and is defined by 5 rigidities under Love-Kirchhoff’s theory. The dimensions of
the plates are 0.6 × 0.8 m2 with a total thickness of 0.748 mm and a density
of 1540 kg.m-3. The structure is excited by a shaker, using white noise from 1
to 10 kHz and its displacement field is measured by means of a scanning Laser
Doppler Vibrometer (Polytec, PSV-400) across the red area as indicated in Figure 2.
A measurement mesh of 55 × 57 points is used. The spacing between consecutive
points of the mesh in the x and y direction is ∆x = ∆y = 5.3 mm.

𝑥

𝑦

800 mm

600 mm

3
5

9
 m

m

348 mm

82 mm

Measured area Source

200 mm

181 mm

137 mm

Fig. 2. Experimental setup.

The wave fitting approach IWC [15,16,28] (Inhomogeneous Wave Correlation) is
used for the processing of the measured data. A correlation function, given by
Eq. (15), between the measured displacement field w and a plane wave Eq. (16)
is calculated, for a given angular frequency ω, as function of the propagating pa-
rameters (k, θ).

IWC(k, θ) =
|∑m

∑
n Cm,nwm,nσ∗

m,n(k, θ)|√∑
m

∑
n Cm,n|wm,n|2

∑
m

∑
n Cm,n|σm,n(k, θ)|2

, (15)

with:
σm,n(k, θ) = e−jk(xm cos(θ)+yn sin(θ)), (16)

where superscript * denotes the complex conjugate, xm, yn correspond to the posi-
tion of a point on the rectangular mesh, and C to the coherence between the input
signal and the measured vibration velocity field. The value of k that maximizes the
correlation function Eq. (15) is considered as the flexural wavenumber of the plate.
Then, the IWC method is run for each angular frequency ω and at different values
of propagating angle θ to identify the flexural wavenumber kf(θ, ω) as function of
these two parameters. The flexural rigidities of the plate are experimentally deter-
mined as function of frequency by applying the equivalent methodology described
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in section 2.4 from the measured flexural wavenumber kf(θ, ω).

As the virtual field (Eq. (16)) used in this fitting approach doesn’t consider the
reflected waves, foam was added to the edges of the plate (see Figure 2) to attenuate
theses reflections in order to increase the correlation factor (Eq. (15)).

In order to validate the extension of the equivalent methodology presented in sec-
tion 2.4, the multilayer has been simulated with the model. Several simulations has
been done for different values of the material parameters (only the Young moduli
Ex, Ey and the shear modulus Gxy) of the layers. Then, we selected the optimal
parameters that minimize the differences between the predicted rigidities of the
model and the ones estimated by IWC on the whole frequency band. These optimal
parameters are very closed to the ones of the manufacturer (see Table 2). The com-
parison of the experimental and analytical rigidities are presented in Figure 3. In
theory, the flexural rigidities depend on frequency according to the shearing of the
structure. As the studied composite plate is thin, the shearing effect and the vari-
ations of the rigidities are minor in this frequency range. Oscillations observed in
the low frequency range for experimental estimations are due to finite aperture ef-
fects of the Fourier analysis (related to the wavenumber resolution). The difficulty
of estimating the D16 coefficient, as compared to the others, may be due to the least
squares approach, that samples the curve kn(θ) with a regular step in θ. Considering
the shape of this curve, this might not be an optimal choice. For instance a regular
sampling in terms of arc length of the kn(θ) curve could have been an alternative,
better approach.

h ρ Ex Ey Gxy νxy

Parameters supplied
0.187 mm 1540 kg.m3 145 GPa 9.6 GPa 4.6 GPa 0.31by the manufacturer

Optimal
0.187 mm 1540 kg.m3 133 GPa 8.8 GPa 6.6 GPa 0.31parameters

Table 2
Material parameters of one layer of the composite plate. Data supplied by the manufacturer
and optimal parameters in order to minimize the difference between the prediction of the
model and the results of IWC.

We can also noticed, on the K-space representation of the flexural wavenumber, the
coupling effect between the flexural and torsional behaviour created by the specific
orientations of the layers of this plate (see Figure 4).

3 Analytical estimation of the structural loss factor

The estimation of the structural loss factor of multilayered structures can be per-
formed in various manners. In this section, three different approaches are pre-
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Fig. 4. K-space representation of the correlation factor of IWC applied on the measurements
of the laminated composite plate at f = 2 kHz (a), 5 kHz (b) and 8 kHz (c). Flexural
waveumber predicted by the model (black line).

sented: the first one exploits the space domain definition of the attenuation of a
plane wave, while the second one is based on an equivalent model defined by the
Love-Kirchhoff thin plate theory and the third one uses an energetic definition. The
results obtained by these three approaches can be rather different, and are compared
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with various numerical models from literature [6,8,9].

3.1 Space domain definition

The attenuation of a plane wave is naturally defined by a complex wavenumber,
whose imaginary part defines the spatial decay rate of the wave (using the ejωt

convention, see Eq. (4)):

∆x = 20log
(
eIm(k)

)
= 20Im(k)/ln(10) in dB/m. (17)

This definition is not directly related to the structural loss factor η, that governs the
decay rate in the time domain:

∆t = 20log
(
e−Im(ω)

)
= 20log

(
e−ηRe(ω)/2

)
= −10ηRe(ω)/ln(10) in dB/s. (18)

A link between space and time domain attenuations can however be established by
introducing the group velocity of the wave (that represents the velocity at which
the energy is conveyed), defined by Cg = ∂ω/∂k. The group velocity gives a rela-
tionship between space and time attenuations: ∆t = ∆xCg, which brings:

η = −2
Im(k)

Re(ω)
Cg = −2

Im(k)

Re(k)

Cg

Cφ
, (19)

where Cφ = Re(ω)/Re(k) is the phase velocity of the plane wave. This definition
of the structural loss factor, firstly given by Lyon and Dejong [29], and then used
by Berthaut [30] and Rak et al. [31], is valid for all type of structures and is not
based on any kind of equivalent model assumptions.

3.2 Equivalent definition

The structural loss factor can also be defined using an equivalent model. In this sec-
tion, we focus on the methodology described in section 2.4. The equivalent plate
is described by the Love-Kirchhoff’s theory governed by the dispersion relation
(Eq. 12). From this dispersion relation, it follows that the loss factor can be de-
scribed as function of the bending wavenumber kf [14,16,31,32] (using the ejωt

convention, see Eq. (11)):

ηeq = − Im(k4f )

Re(k4f )
. (20)
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This equivalent definition is based on the thin plate theory and is thus valid for thin
structures only. The theory assumes a constant ratio Cg/Cφ = 2 and the definition
of Lyon and DeJong (Eq. (19)) can be related to the equivalent loss factor (Eq. (20))
by the relation η = ηeq = −4 Im(kf)

Re(kf)
for lightly damped structures.

In general case, when the structure is complex, the dynamic behaviour is highly
modified with the frequency band considered. For example, for a sandwich plate,
the ratioCg/Cφ varies with frequency between values equal to 1 (pure shearing mo-
tion) and 2 (pure bending motion). Figure 5 presents this ratio and the loss factors
calculated (using the present model) from Eq. (20) and Eq. (19) for a sandwich plate
having the characteristics as given in Table 3 with different value of the thickness
of the core. For a thin core, the ratio is approximately equal to 2 for the whole fre-
quency band as the behaviour of the multilayer is dominated by the bending motion
(coherent with a dispersion relationship k4 = f(ω2)). Thus, the two definitions of
the loss factor are close. On the contrary for a thick core, the ratio tends to 1 when
the loss factor reaches his maximum. In this frequency domain, the behaviour of
the multilayer is dominated by the shearing of the core (coherent with a dispersion
relationship k2 = f(ω2)) and the equivalent loss factor is overestimated compared
to the one given by Eq. (19).

3.3 Energetic definition

The energetic approach described in this paper corresponds to the modal strain
energy (MSE) method. In this methodology, the dissipated power of the structure
for the ith propagating wave with a wavenumber ki is detailed by [29]:

Pdiss = 2Re
(
−jω{Wi}H

(
[Ki]− ω2[Mi]

)
{Wi}

)
, (21)

where [Ki] and [Mi] respectively correspond to the stiffness and mass matrices
related to the ith propagating wave and are calculated from [K] (Eq. 6) and [M]
(Eq. 7) with k = Re(ki).

The vector {Wi} corresponds to the amplitude of the displacement of the first layer
and is the solution of the following equation, which can be solved with an eigen-
value problem: (

[Ki]− ω2[Mi]
)
{Wi} = {0}. (22)

The structural loss factor is related to the dissipated power and the elastic energy E
of the system:

η =
Pdiss

2ωE
=

Im
(
{Wi}H ([Ki]− ω2[Mi]) {Wi}

)
Re ({Wi}H[Ki]{Wi})

, (23)
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(a) Thickness of the core: 0.1 mm
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(b) Thickness of the core: 100 mm
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Fig. 5. Velocity ratios and comparisons of the equivalent and apparent loss factors of a
sandwich plate with characteristics indicated in Table 3 for different value of the thickness
of the core. Left: ratio Cg

Cφ
, right: loss factor. See the legend of the figures for the line types

in the graphs.

with:
E = Re

(
{Wi}H[Ki]{Wi}

)
. (24)

Manconi [10] uses the same energetic definition of the loss factor without taking
into account the complex part of the mass matrix in the dissipated power. Shorter [9]
and Ghinet [8] assume that the damping of each layer is uniform and the total
dissipated power is a weighted sum of the dissipated power of each layer as detailed
by:

η =

∑N
n=1 ηn{Wi}H[Kni ]{Wi}
{Wi}H[Ki]{Wi}

, (25)

where [Kni ] corresponds to the stiffness matrix of layer n related to the ith propa-
gating wave and is calculated from [Ki] by considering only layer n. Contrarily to
Eq. (23), the matrices of Eq. (25) are calculated with undamped material param-
eters since the damping of each layer is defined by ηn. In the case of composite
laminated structures, where the damping of Young and shear modulus are not nec-
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essary related, this assumption is not adapted.

3.4 Comparison with Backström: case of a multilayered beam

In this section a comparison of the results of our model with the results from Back-
ström and Nilsson [6] is given, using the three definitions of the structural loss
factor given in the previous sections.

Backström and Nilsson present an analytical model of asymmetric sandwich beams.
The multilayered beam is compared to an Euler-Bernouilli beam and two different
definitions of the loss factor are established from this comparison. The first one
uses time-harmonic initial conditions, where the dissipation depends on space and
the frequency is specified and real. In this case, the flexural wavenumber is com-
plex and the definition of the equivalent loss factor is identical as the one presented
previously with Love-Kirchhoff plate theory (Eq.50 of [6])(see Figure 7a). On the
contrary, the second approach uses space-harmonic initial conditions, where the
dissipation depends on time and the wavenumber is specified and real. No equiva-
lent structure assumption is done here, and the damping is directly obtained solving
the general equation of motion for linear vibrations ([K]− ω2[M]){W} = 0 for a
complex angular frequency (for further details reader can refer to [33]). Hence, the
loss factor is simply defined as η = Im(ω2)

Re(ω2)
(Eq.21 of [6])(see Figure 7b).

h (mm) ρ (kg.m−3) E (GPa) G (GPa) η (-)

First skin 0.75 2700 70 − 0.001

Core 10.2 74 0.130 0.045 0.04

Second skin 2 2700 70 − 0.001

Table 3
Characteristics of the sandwich beam of Backström [6].

Backström illustrates the comparisons between these two definitions of the loss
factor for an aluminium/polymer/aluminium beam whose parameters are given in
Table 3. This three layer plate has been simulated using the present model as well.
Comparisons between our plate model and the finite beam model of Backstrom has
been realised in terms of equivalent flexural rigidities (see Figure 6) and loss factors
(see Figure 7). A classical value of 0.3 for Poisson ratios of the layers have been
used in the present plate model.

The differences between Backström’s results for the rigidity and the estimations
of the present model (see Figure 6) can arise from the fact that the present model
identifies the flexural rigidity of an equivalent plate and Backström’s model, the
one of an equivalent beam. Several factors can affect the results such as the Poisson
ratio of the equivalent plate or the length of the equivalent beam.
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Fig. 7. Comparison of ηeq (a) and η (b) estimated by Backström’s equivalent beam theory
and the present equivalent plate model for the sandwich with material characteristics given
in Table 3. The axes are the same for the two graphs. See the legend of the figures for the
line types in the graphs.

The frequency evolution of the loss factors estimated by the present model (see
Figure 7) are coherent with Backström’s results. Such frequency dependence of the
loss factor of sandwich structures has already been studied by Millithaler et al. [34]
or Ege et al. [14,35] for a viscoelastic core, and by Butaud et al. [36] for a Shape
Memory Polymer core. Whatever the method used, the loss factors reach a max-
imum at a certain frequency, depending on the structural dynamic parameters of
the layers. At the frequency of maximum equivalent damping, the deformation is
dominated by shear in the core. The amount of damping of the skins determines
the damping of the structure at low and high frequencies. The stiffness of the lay-
ers determine the frequency at which a maximum in the loss factor occurs. This
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frequency shifts as shown in Figure 7 are again caused by the differences in the
stiffness between the two models.

We can see in Figure 7 that the space domain (Eq. (19)), the energetic (Eq. (25))
and the time domain (η = Im(ω2)

Re(ω2)
) definitions give very similar results for this lightly

damped structure. Both models are also in good agreements using the equivalent
definition (Eq. (20)). As stated in section 3.2, this equivalent definition overesti-
mates the loss factor since the flexural behaviour of the structure is dominated by
the shearing of the core in the studied frequency band.

3.5 Comparison with Shorter: case of an isotropic multilayered plate

In a second validation of our model to determine the structural loss factor, results
are compared with the work of Shorter [9]. Shorter applied the energetic defini-
tion of the loss factor (Eq. (25)) with the SFEM on an automotive glass laminate
composed of sheets of glass separated with a layer of polyvinyl butyral (PVB). The
PVB has a frequency dependent shear modulus and loss factor, detailed in [9]. The
other parameters of the sandwich are mentioned in Table 4. Shorter has estimated
the loss factor of the flexural, membrane and shear mode of the structure.

h (mm) ρ (kg.m−3) E (GPa) ν (-) η (-)

Glass skins 4 2300 62 0.24 0

PVB 0.75 1000 see [9] 0.49 see [9]
Table 4
Characteristics of the automotive glass laminates used by Shorter.

Figure 8 compares the results of Shorter with the ones of the present model using
the space domain (Eq. (19)) and energetic (Eq. (25)) definitions. We can see that,
with the same definition of the loss factor (energetic), both models give similar
results for all three wave types. Some differences appear with the space domain
definition concerning the flexural mode (a) in low frequencies. As the damping of
the PVB is extremely high (> 50%) in this frequency band, these differences could
come from the assumptions of both definitions for high damped structures.

3.6 Comparison with Ghinet: case of an orthotropic multilayered plate

A last validation of the structural loss factor concerns a comparison with the Dis-
crete Laminate Model (DLM) of Ghinet et al. [8] for an orthotropic multilayer.
In their model, each layer is described with a displacement field governed by the
Reissner-Mindlin theory. In the special case of symmetric sandwich structures, a
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Fig. 8. Structural loss factor η of an automotive glass laminate for three wave types : flexu-
ral (a), membrane (b) and shear (c). Solid yellow curves: Eq. (25) with SFEM , black cross:
Eq. (25) with the present model, blue dashed curve: Eq. (19) with the present model.

dilatational motion is added along the thickness of the core to describe the sym-
metrical mode. From the DLM method, Ghinet et al. estimate the loss factor with
the energetic approach presented in section 3.3 (Eq. 25). The orthotropic laminates
create an angular dependency of the loss factor. To illustrate this, he studied a vis-
coelastic sandwich with orthotropic skins (see Table 5 for the characteristics).

Skins Core

h = 1.52 mm h = 0.127 mm

ρ = 1600 kg.m-3 ρ = 970 kg.m-3

Ex = 125 GPa; Ey = 12.5 GPa E = 2.1 MPa

Gxy = Gyz = 5.9 GPa; Gxz = 3 GPa G = 0.7 MPa

νxy = 0.4 ν = 0.499

η = 0.01 η = 0.5
Table 5
Material characteristics of the composite sandwich plate used by Ghinet et al. [8].

In Figure 9, the structural loss factor η as obtained with the present model (Eq. 19
and Eq. 25) is compared with Ghinet’s results for three propagation angles (0°, 45°,
90°) and an average from 0° to 90°. From these results, we can observe that the
orthotropy of the structure modifies the value and the position of the maximum of
damping as function of the angle. The present model, using the energetic approach
(Eq. 25), provides similar results as the ones of Ghinet except for θ =90°. This
difference can come from the assumption of constant transverse displacement in
our model. We can observe other differences between the results of Eq. 19 and
Eq. 25, which can also come from the assumption of the different definitions for
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high damped structures.

(a) θ = 0◦
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Fig. 9. Structural loss factor of a sandwich composite plate (Graphite-Epoxy skins and
viscoelastic core) for three propagation angles θ (0°,45°and 90°) and an average from 0° to
90°. Solid yellow curves: Eq. (25) with the DLM , black cross: Eq. (25) with the present
model, blue dashed curve: Eq. (19) with the present model.

4 Experimental estimations of the structural loss factor: validation of the
definitions

To validate the different approaches for the estimation of the loss factor, given in
Section 3, this section presents measurements of the structural loss factor using the
space domain and equivalent definitions for two constrained-layer damping sand-
wich plates. Analytical results will be presented as well.
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4.1 Three-layer plates

The sandwich plates under study are constituted of three homogeneous layers: two
metal face sheets and a polymer core. Two sets of hybrid composites are studied:
symmetrical steel/polymer/steel (called SPS) and nonsymmetrical steel/polymer/aluminium
(called SPA) rectangular plates of overall dimensions of 300 × 400 mm2. Layer
thicknesses and material properties of the individual layers are listed in Table 6.
The thicknesses correspond to average values determined using optical microscope
images of the two plates’ cross sections. The Young’s modulus and loss factor of
the polymer layer are estimated thanks to the extrapolations of DMA (Dynamic
Mechanical Analysis) measurements performed on sheets of the polymer layer
alone [14]. The density is determined by measuring and weighting large specimens.

SPS plate layer 1 (steel) layer 2 (polymer) layer 3 (steel)

Thickness h [m] 0.18× 10−3 0.69× 10−3 0.18× 10−3

Young’s modulus E [GPa] 210 0.35 210

Density ρ [kg.m−3] 7800 580 7800

Poisson’s ratio ν [-] 0.33 0.33 0.33

Loss factor η [-] 0.001 0.047 0.001

SPA plate layer 1 (steel) layer 2 (polymer) layer 3 (aluminum)

Thickness h [m] 0.3× 10−3 0.69× 10−3 0.13 × 10−3

Young’s modulus E [GPa] 210 0.35 69

Density ρ [kg.m−3] 7800 580 2700

Poisson’s ratio ν [-] 0.33 0.33 0.33

Loss factor η [-] 0.001 0.04 0.001
Table 6
Dimensions and material properties of the individual layers for the two constrained-layer
damping sandwich plates chosen for experimental damping characterisation.

4.2 Assessment procedures (theories and experimental setups)

Figure 10 sums up the experimentally identified loss factors together with analytical
predictions for both plates. Before discussing the results of these wide frequency
bands damping characterisations, we briefly present the experimental protocols and
assessment procedures below.
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Modal approaches.

a) Modal analysis (4). To begin, a modal analysis of the plate is performed in order
to estimate the first modal frequencies and loss factors. A pseudo-impulse force
is applied by means of a small impact hammer (P.C.B. Piezotronics 086E80) on a
rectangular mesh of 9×11 points spanning the whole 300×400 mm2 surface of the
plate. The mesh is regularly spaced, resulting in spacings between two consecutive
points of 37.5 mm along the width x and of 40 mm along the length y. Boundary
conditions are kept as close as possible to free-free, by suspending the plate from
one of its corner (with rubber bands passing through a tiny hole). The acceleration
is measured with a lightweight accelerometer (P.C.B. Piezotronics M353B18) fixed
on another corner of the plate. A multi-degree-of-freedom curve fitting method
(Rational Fraction Polynomial-Z) is used to estimate modal frequencies and loss
factors. For this ”low frequency” experimental methodology, modal loss factors
have been estimated up to 1 kHz.

b) High resolution modal analysis (ESPRIT methodology) (•). In order to identify
the loss factors of the multilayer plate at higher frequencies, a second approach
is used. It consists on a high-resolution modal analysis technique [13] based on
ESPRIT algorithm [37]. This high-resolution method assumes that the signal s(t)
is a sum of complex exponentials x(t) (the modal signal to be determined) and
white noise β(t). For exponentially damped sinusoids (the signal model considered
here), the rotational invariance property of the signal subspace (or modal subspace)
is used to estimate the modal parameters (see Roy et al. [37] for mathematical de-
velopments). Modal frequencies and modal damping factors are derived from the
complex poles (eigenvalues of the spectral matrix [13]). The experimental protocol
is similar to the previous item. The time signal s(t) analysed with ESPRIT algo-
rithm corresponds to an excitation made in the vicinity of the accelerometer near
one of the corner of the plate. Modal loss factors have been estimated up to 3 kHz.

Energetic approach.

Time decay rate estimation (�). Impulse responses used for ESPRIT are also pro-
cessed following a time decay rate estimation method. Signals are firstly filtered
through third octave band filters, then the decay rate of the squared envelope is es-
timated in dB/s using a linear regression. The loss factor for each frequency band
is then assessed using the following relation (see [16]):

η =
DR

27.3fc
, (26)

where DR is the estimated decay rate and fc the central frequency of the third octave
band. Using this third experimental methodology, loss factors have been estimated
up to 8 kHz.
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Space domain approach.

Displacement field analysis (×) and (×). An experimental procedure, similar to the
one presented in section 2.5, has been conducted on the SPS and SPA plates. In
these measurements, the position of the source was outside of the measured area.
In order to identify the complex material parameters of the structure, the inverse
method CFAT [19] has been applied on the measured displacement fields using
the filtering procedure of FAT [38] to attenuate noise sensibility on the results. As
stated in the introduction, CFAT describes the structure with a Love-Kirchhoff’s
thin plate and estimates its equation of motion with a finite difference scheme.
The complex rigidity and thus the complex flexural wavenumber of the plates have
been estimated with this method up to 20 kHz. The structural loss factor has been
identified from the estimated complex wavenumber using the equivalent (Eq. (20))
and space domain definition (Eq. (19))

For more details on the assessment procedures presented in this section the reader
may refer to Ege et al. [14]. Note that for impulse hammer measurements of the SPA
plate, no experimental mesh has been investigated for reason of time-efficiency;
the measurement has been done just at one corner of the plate with a relative low
sampling frequency, giving results up to 3 kHz with the ESPRIT method only.

4.3 Experimental and analytical comparisons. Discussion

Figure 10 compares the loss factors ηeq and η experimentally estimated by the CFAT
method and analytically predicted by our model with the results of the modal meth-
ods (modal analysis and ESPRIT) and energetic approach (reverberation time).
Concerning the loss factor identified by the CFAT method using Eq. (19), the ratio
Cg/Cφ is calculated from the analytical wavenumber given by our model. Another
strategy giving similar results would be to use a fitting polynomial curve on the
experimental wavenumber results.

We can see that the predictions of our model consistently follow the estimations of
CFAT for both plates. The results of the modal (blue triangles and dots) and ener-
getic (blue squares) methods follow particularly well the loss factor predicted by the
model (blue curves) and estimated by CFAT (blue crosses) using the space domain
definition with overlapping estimations in a large frequency domain, demonstrating
the validity of the approach developed in this paper. These observations are also in
agreement with the fact that the equivalent spatial definition (Eq. (20)) overesti-
mates the loss factor when the behaviour of the structure is highly modified with
the frequency band considered (for instance: shearing effects on the flexural mo-
tion). Note that the discrepancies in the low freq (for the first modes) could have
for origin the hanging system or accelerometer cable, leading to an overestimation
of the loss factor.
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(a) SPS plate
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(b) SPA plate
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Fig. 10. Structural loss factor of the SPS (a) and SPA (b) sandwich plates (characteristics
in Table 6). See the legend of the figures for the line types in the graphs and section 4.2 for
the experimental procedures.

Finally, these interesting experimental results, rarely addressed in literature, give a
new perspective on damping identification for complex structures. A direct mea-
surement of the complex wavenumber may be sufficient to obtain, using the space
domain definition of the loss factor, similar results as energetic or modal methods.
This wavenumber can be entirely estimated with spatial experimental methodolo-
gies like CFAT but also the ones based on Green’s functions for example.
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5 Conclusion

This paper is focused on the modelling and the characterisation of laminated mul-
tilayered plates and sandwich structures in terms of stiffness and damping. The de-
velopments are based on the analytical model of Guyader and Lesueur [11] which
considers bending, membrane and shearing effects in each layer. The first novelty
of this article consists in adapting the equivalent methodology of characterisation
used by Guyader and Cacciolati [12] for laminated structures. As a first step, the
dispersion relation of the system is setting up from the work of Woodcock [25]
using a symbolic computation given as a supplementary material in the form of
a Matlab script. As a second step, the equivalent characteristics of the laminated
structure are identified using a thin plate theory defined by 5 flexural rigidities. An
experimental validation of this adaptation is performed on a laminated composite
plate. The predictions of the analytical model give accurate results compared to the
measurements in terms of the bending wavenumber and rigidities.

The concept of equivalent plate provides a computationally more efficient way to
design numerically the dynamic response of multilayered structures. The present
model provides accurate results for vibro-acoustic studies with a fast computation
time as compared to numerical or other analytical models. In an industrial context,
an interesting application could be to substitute a 3D multi-layered plate in FEM
methods by a 2D homogeneous layer defined with dynamic equivalent parameters
given by the presented model. This last point can solve FEM issues where laminated
plates must be modelled with a thin mesh in the thickness especially in the high
frequency domain. Another perspective of this model could be to explore the high
frequency domain (above 20 kHz) and compare its results with more complete
model (such as Lamb wave) and experimental data (see for example the recent
work of Roozen et al. [39] up to 50 kHz). Other types of waves are excited in
this frequency domain and still remain difficult to identify. The optimisation of
multi-layered structures could be another application of the model, especially with
optimized damping properties for given frequency domains as it was presented in
section 3.

The equivalent thin plate theory can also be used in the modelling of the structural
loss factor. This equivalent definition is valid for thin structures in low frequencies
and overestimates the loss factor in high frequencies when the behaviour of the mul-
tilayer is dominated by the shearing of the core. On the contrary, the space domain
definition describes this effect by considering the ratio of the group and phase ve-
locities. This ratio can be extracted from the (measured or analytically computed)
natural wavenumber. For lightly damped structures, this second definition of the
loss factor gives similar results as the MSE approach based on the dissipated power
of the structure. The second novelty of the paper is an experimental validation of
the space domain definition. The structural loss factors of two sandwich plates are
identified from the estimations of the CFAT method [19] using this definition. The
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results are in good agreement with the loss factors that were analytically predicted
by our model and experimentally estimated by modal and energetic methods.

The space domain definition of the loss factor provides a new perspective on damp-
ing identification since the definition is not based on Love-Kirchhoff thin plate
theory. The loss factor is computed from the natural wavenumber of the structure
which can be easily estimated experimentally. The resulting loss factor estimate is
valid for thin and for thick plates. An interesting application could be to use this
definition and damping identification methodologies on other complex structures
like ribbed panels [28], periodic structures / meta-materials [40] or porous materi-
als.

Acknowledgments

This work was performed within the framework of the Labex CeLyA of Univer-
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Appendix

A. Expression of the kinetic matrix [I] used in the equations of motion (3)

[I] =



I1 −I2 −I3 −I4 −I5

I2 I6 I7 I8 I9

I3 I7 I10 I11 I12

I4 I8 I11 I13 I14

I5 I9 I12 I14 I15


,

with
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I1 = 2
[
δ13 − δ1 ∂2

∂x2
− δ7 ∂2

∂y2

]
,

I2 = δ5
∂
∂x
,

I3 = δ4
∂
∂x

+ δ16
∂
∂y
,

I4 = δ11
∂
∂y
,

I5 = δ15
∂
∂x

+ δ10
∂
∂y
,

I6 = 2δ3,

I7 = δ6,

I8 = 0,

I9 = δ18,

I10 = 2δ2,

I11 = δ17,

I12 = δ14,

I13 = 2δ9,

I14 = δ12,

I15 = 2δ8.

B. Expression of the deformation matrix [J] used in the equations of motion (3)

[J ] =



J1 −J2 −J3 −J4 −J5

J2 J6 J7 J8 J9

J3 J7 J10 J11 J12

J4 J8 J11 J13 J14

J5 J9 J12 J14 J15


,
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with

J1 = 2
[
λ1

∂4

∂x4
+ (λ13 + λ22)

∂4

∂x2∂y2
+ λ7

∂4

∂y4
+ λ39

∂4

∂x3∂y
+ λ54

∂4

∂x∂y3

]
,

J2 = −
[
λ5

∂3

∂x3
+ (λ19 + λ29)

∂3

∂x∂y2
+ (λ41 + λ45)

∂3

∂x2∂y
+ λ56

∂3

∂y3

]
,

J3 = −
[
λ4

∂3

∂x3
+ (λ16 + λ27)

∂3

∂x∂y2
+ (λ40 + λ42)

∂3

∂x2∂y
+ λ55

∂3

∂y3

]
,

J4 = −
[
λ49

∂3

∂x3
+ (λ60 + λ64)

∂3

∂x∂y2
+ (λ15 + λ30)

∂3

∂x2∂y
+ λ11

∂3

∂y3

]
,

J5 = −
[
λ48

∂3

∂x3
+ (λ57 + λ63)

∂3

∂x∂y2
+ (λ14 + λ28)

∂3

∂x2∂y
+ λ10

∂3

∂y3

]
,

J6 = −2
[
λ3

∂2

∂x2
+ λ25

∂2

∂y2
+ λ47

∂2

∂x∂y

]
,

J7 = −
[
λ6

∂2

∂x2
+ λ32

∂2

∂y2
+ (λ44 + λ46)

∂2

∂x∂y

]
,

J8 = −
[
λ53

∂2

∂x2
+ λ62

∂2

∂y2
+ (λ21 + λ36)

∂2

∂x∂y

]
,

J9 = −
[
λ52

∂2

∂x2
+ λ59

∂2

∂y2
+ (λ20 + λ34)

∂2

∂x∂y

]
,

J10 = −2
[
λ2

∂2

∂x2
+ λ23

∂2

∂y2
+ λ43

∂2

∂x∂y
− λ37

]
,

J11 = −
[
λ51

∂2

∂x2
+ λ61

∂2

∂y2
+ (λ18 + λ33)

∂2

∂x∂y

]
,

J12 = −
[
λ50

∂2

∂x2
+ λ58

∂2

∂y2
+ (λ17 + λ31)

∂2

∂x∂y
− λ69

]
,

J13 = −2
[
λ26

∂2

∂x2
+ λ9

∂2

∂y2
+ λ68

∂2

∂x∂y

]
,

J14 = −
[
λ35

∂2

∂x2
+ λ12

∂2

∂y2
+ (λ66 + λ67)

∂2

∂x∂y

]
,

J15 = −
[
λ24

∂2

∂x2
+ λ8

∂2

∂y2
+ λ65

∂2

∂x∂y
− λ38

]
.

C. Expression of the coefficients li and di used in the stiffness matrix [K] and mass
matrix [M] in Eq. (5)

l1 = 2(λ1c
4 + λ39c

3s+ (λ13 + λ22)c
2s2 + λ54cs

3 + λ7s
4),

l2 = λ5c
3 + (λ41 + λ45)c

2s+ (λ19 + λ29)cs
2 + λ56s

3,
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l3 = λ4c
3 + (λ16 + λ27)cs

2 + (λ40 + λ42)c
2s+ λ55s

3,

l4 = λ49c
3 + (λ60 + λ64)cs

2 + (λ15 + λ30)c
2s+ λ11s

3,

l5 = λ48c
3 + (λ57 + λ63)cs

2 + (λ14 + λ28)c
2s+ λ10s

3,

l6 = 2(λ3c
2 + λ25s

2 + λ47cs),

l7 = λ6c
2 + λ32s

2 + (λ44 + λ46)cs,

l8 = λ53c
2 + λ62s

2 + (λ21 + λ36)cs,

l9 = λ52c
2 + λ59s

2 + (λ20 + λ34)cs,

l10 = 2(λ2c
2 + λ23s

2 + λ43cs),

l11 = λ51c
2 + λ61s

2 + (λ18 + λ33)cs,

l12 = λ50c
2 + λ58s

2 + (λ17 + λ31)cs,

l13 = 2(λ26c
2 + λ9s

2 + λ68cs),

l14 = λ35c
2 + λ12s

2 + (λ66 + λ67)cs,

l15 = 2(λ24c
2 + λ8s

2 + λ65cs),

l37 = 2λ37,

l38 = 2λ38,

l69 = λ69,

d1 = 2ω2 (δ1c
2 + δ7s

2) ,

d2 = δ5c,

d3 = (δ4c+ δ16s) ,

d4 = δ11s,

d5 = (δ15c+ δ10s) ,

d6 = 2δ3,

d7 = δ6,
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d8 = 2δ13,

d9 = δ18,

d10 = 2δ2,

d11 = δ17,

d12 = δ14,

d13 = 2δ9,

d14 = δ12,

d15 = 2δ8,

with : c = cos(θ) and s = sin(θ).
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