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Introduction

Simulating the behavior of gene regulatory networks is a formidable task for several reasons. At this level of description, only a few molecules (maybe dozens or hundreds) of each species involved in the regulation process is present, and this fact limits the possibility of considering the process as deterministic, as is done very often in most chemical applications. Here, the concept of con-centration of the species does not make sense [START_REF] Hasty | Computational studies of gene regulatory networks: in numero molecular biology[END_REF][START_REF] Sreenath | Modelling the dynamics of signalling pathways[END_REF]. On the contrary, under some weak hypotheses the system can be considered as Markovian, and can be consequently modeled by the so-called Chemical Master Equation (CME) [START_REF] Munsky | The finite state projection algorithm for the solution of the chemical master equation[END_REF], which is in fact no more than a set of ordinary differential equations stating the conservation of the probability distribution function -pdf -P in time: 

∑

Where p(z,t | z 0 , t 0 ) represents the probability of being at a state in which there are a number of molecules of each species stored in the vector z at time t when we started from a state z 0 at time t 0 . a j represents the propensity (i.e., the probability) of reaction j to occur, while v j represents the change in the number of molecules of each species if reaction j takes place. This change is given, of course, by the stoichiometry of the reaction at hand. What is challenging, however, in this set of equations is that they are de-fined in a state space which possesses as many dimensions as the number of different species involved in the regulatory network. Under this framework, if we consider N different species, present at a number n of copies, the number of different possible states of the system is n N . This number can take the astronomical value of 10 6000 if we consider some types of proteins, for instance [START_REF] Munsky | The finite state projection algorithm for the solution of the chemical master equation[END_REF]. This phenomenon is known as the curse of dimensionality in many branches of science.

To overcome this diffculty, most of the authors employ Monte Carlo-like algorithms (the so-called stochastic simulation algorithm, SSA [START_REF] Munsky | The finite state projection algorithm for the solution of the chemical master equation[END_REF][START_REF] Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF][START_REF] Gillespie | Approximate accelerated stochastic simulation of chemically reacting systems[END_REF].

However, Monte Carlo techniques need for as many as possible individual realizations of the problem, leading to excessive time consuming simulations, together with great variance in the results. cases is a valuable tool for pre-analysis. As soon as the main tendencies are obtained using the fast closure-based simulations, by performing a lot of simulations, all them very fast, finer analysis can be performed by solving the CME in a few selected scenarios of special interest extracted from the previous fast closure-based simulations.

Separated representations involved in the Proper Generalized Decomposition described below allow circumventing the issues related

Proper generalized decomposition for alleviating the curse of dimensionality

Dealing with the problem of the curse of dimensionality in a very different context, the authors presented in a previous work a technique that is now known under the name of Proper Generalized Decomposition (PGD) based on the use of separated representations [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids[END_REF][START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations[END_REF]. Essentially, to avoid the exponentially growing complexity of the problem with the number of state space dimensions, the method approximates the variable of interest, say u, as a finite sum of separable functions:
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The reason for this particular choice motivated the method itself that is conceived as a greedy algorithm that computes one sum at a time and one product at a time, within a fixed-point, alternating directions algorithm. This leads to a sequence of one-dimensional (lowdimensional, in general) problems, one for each function F i j that can be solved using your favorite technique (finite elements, finite volumes, finite differences, colocation, ...).

If M nodes are used to discretize each coordinate, the total number of PGD unknowns is N×M×D instead of the M D degrees of freedom involved in standard mesh-based discretization's. Moreover, all numerical experiments carried out to date with the PGD show that the number of terms N required to obtain an accurate solution is not a function of the problem dimension D, but it rather depends on the regularity and separability of the exact solution as well as on the solution constructor itself. The PGD thus avoids the exponential complexity with respect to the problem dimension.

A PGD approach to gene regulatory networks simulation

The PGD approach to the problem of effciently simulating gene regulatory networks begins by assuming that the probability of being at a particular state z at time t can be approximated as a finite sum of separable functions, i.e.,
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Where, as mentioned before, the variables zi represent the number of molecules of species i present at a given time instant. This particular choice of the form of the basis functions allows for an important reduction in the number of degrees of freedom of the problem, N × nnod × (D + 1) instead of (n nod ) D , where D is the number of dimensions of the state space and nnod the number of degrees of freedom of each one-dimensional grid established for each spatial dimension. For this to be useful, one has to assume that the probability is negligible outside some interval, and therefore substitute the infinite domain by a subdomain [0,….,m-1] D , m being the chosen limit number of molecules for any species in the simulation. A similar assumption is behind other methods in the literature, such as the Finite State Projection algorithm, for instance [START_REF] Munsky | The finite state projection algorithm for the solution of the chemical master equation[END_REF].

Another important point to be highlighted is the presence of a function depending solely on time, F t j (t). This means that the algorithm is not incremental. Instead, it solves for the whole time history of the chemical species at each iteration of the method. If one then assumes that n terms of the sum given by equation (3) are already known,
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and look for the n + 1-th term, by substituting Equation ( 4) into the CME, Equation (1) gives a non-linear problem in 1
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+ that is solved by means of a fixed-point, alternating directions algorithm [START_REF] Ammar | Reduction of the Chemical Master Equation for gene regulatory networks using Proper Generalized Decompositions[END_REF][START_REF] Chinesta | Kinetic theory modeling and efficient numerical simulation of gene regulatory networks based on qualitative descriptions[END_REF].

The separated representation just considered does not involve any assumption. Any solution defined in a high-dimensional space can be written, if it is regular enough, in a separated form if the number of terms in the finite sum decomposition is high enough. A polynomial of any order is no more than a sum of functional products, each depending on a different coordinate. Thus, solutions can be approximated with the desired accuracy by using a separated representation and an adequate constructor as the one described above.

Moments-based descriptions

Even if the use of separated representations allows circumventing the curse of dimensionality the computational cost remains considerable. This fact motivated in many other disciplines the replacement of the pdf by some of its moments [START_REF] Gillespie | Moment-closure approximations for mass-action models[END_REF][START_REF] Gupta | A scalable computational framework for establishing long-term behavior of stochastic reaction networks[END_REF][START_REF] Andreychenko | Reconstruction of multimodal distributions for hybrid moment-based chemical kinetics[END_REF][START_REF] Hasenauer | Method of conditional moments (MCM) for the Chemical Master Equation: a unified framework for the method of moments and hybrid stochastic-deterministic models[END_REF], since many times the last suffice for having a view rich enough on the dynamics of the systems. The use of moment-based description was of major interest in different areas of statistical mechanics and it is being the more and more considered as an alternative to the discretization of the CME.

A moment represents the expected value of a random variable, z, raised to a certain power. An "expectation" is a specifically defined function in statistics, E [ (z)] = (z) (z) (z)
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when in continuous spaces or Σf(z)P(z) in discrete spaces. In general, we can talk about the i th moment as:
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A probability distribution is uniquely defined by its full set of moments. Having access to these moments could eliminate the need to solve for the full distribution, depending on what information would be considered important. A special function, called the Moment Generating Function, is specifically in-tended for this purpose: 
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we can see the moments emerging from this function, the i-th moment associated with the i-th power of θ:
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The following equations will be used extensively in the following derivation, so it will be useful to define them now:
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From the Chemical Master Equation to moments based descriptions

Since we will be uniquely considering the structure of the Chemical Master Equation, we would like to derive a general version of the Moment Generating Function which can be used for any system. The CME for l reactions with stoichiometric change vl is:
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As we will see later on, the kind of rate laws associated with the system dramatically impact the complexity of the overall problem. We begin with the simplest case of kinetic mass action laws, following the derivation from Gillespie [START_REF] Gillespie | Moment-closure approximations for mass-action models[END_REF]. However, we would eventually like to take rational rate laws, such as Hill functions, as is seen in Milner et al. [START_REF] Milner | Moment closure approximations for stochastic kinetic models with rational rate laws[END_REF]. An example of a mass action rate law is

2 1 1 1 1 1 , , ( 1) 
(z) , 2 2 
2 l i l i i z Z a Z Z c a λ λ λ - = = - = ∑
where the law can be rewritten as a sum of coefficients c l,i and variables a l,i . This expanded, polynomial form will be exploited in our derivation.

Since we would like to talk about moments of the CME rather than probabilities, our first priority is to write this equation in terms of M, rather than in terms of P. We multiply both sides by e θz and sum over all possible values of z:
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that taking into account the previous definitions results
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Now, we can take the second definition of

M i i θ ∂ ∂
and expand

1 (v )
e θ into its Taylor series. Notice that the summation now begins at j=i. When j < i, the index will be out of bounds and not correspond to any physical state
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Remember that the initial goal was to isolate the coefficients of θ n in order to obtain the nth moments:

1 , 0 (t) M( ,t) 1 ( )! ! j i j l i l i j i z v c t j i k µ θ θ θ - ∞ ∞ = = ∂   = -   ∂ -   ∑∑ ∑ ∑ 2 2 3 1 2 , ( ) ( ) ..... ..... 0! 1! 2! 1! 2! 3! i i i l l l l i l i v v v c µ µ θ µ θ θ θ + +    = + + + + + +       ∑∑ 2 2 1 , .... 0! 1! 0! 2! 1! 1! i l i l i l l i l i v v v c µ µ µ θ θ +       + + +             ∑∑ , (n k) 1 1 !(n )! n n l i i l i j i k c k k θ µ ∞ + - = = - ∑∑ ∑ ∑
Our next step will be isolate just the coefficients of θ in order to achieve a form in which we are creating ODE's of µ rather than M (θ,t). Since
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We will have to multiply both sides by n! in order to isolate µ. Thus, it finally results
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Closures

It is easy to note from the previous expression [START_REF] Gillespie | Moment-closure approximations for mass-action models[END_REF] that the equation that governs the time evolution of the moments up to a certain order implies, in general, higher order moments, and then, before solving all them, higher order moments must be written as a combination of those involved in the considered time evolution equations. These relations have in most of cases an approximate character and are known as closure relations [START_REF] Andreychenko | Reconstruction of multimodal distributions for hybrid moment-based chemical kinetics[END_REF][START_REF] Kroger | Consistent closure schemes for statistical models of anisotropic fluids[END_REF]. Before describing the technique that we are following for defining such closures for a given system, we introduce some notation.

When considering multicomponent systems involving D components, the state becomes a vector Z T = (Z 1 ,Z 2 ,……,Z D ) as previously discussed. Now the first moment also becomes a vector µ 1 of size D, defined by As soon as the alpha parameters are empirically fitted, the CME is substituted by the two ordinary differential equations governing the time evolution of µ 1 (t) and µ 2 (t), when considering the solution of the same systems for any other initial condition or slightly different kinetic rates.

Numerical Results

Lotka model

First, we consider the so-called Lotka model. This model consists of: First, we solve the CME with the Case 1 conditions. The probability distribution function at 6 different times is depicted in Figure 1. Now from the pdf T P (z,t), z (#X, # ) Y = and t = [0,10], we compute the three first moments µ 1 (t), µ 2 (t), and µ 3 (t), respectively from Equations (9-11) that will be considered as reference moment solutions. The parameters alpha involved in the empirical closure relation [START_REF] Hegland | A solver for the stochastic master equation applied to gene regulatory networks[END_REF] are then determined. In the present case, and taking into account the symmetries, µ 1 , is of size two, µ 2 , has three independent components and µ 3 , four. Figure 2 shows the different independent components of µ 1 , and µ 2 . Figure 3 compares the reference third moment with the one 

Exclusive switch 5D model

We consider a gene regulatory network called exclusive switch. It describes the dynamics of two genes with an overlapping promoter region, and the corresponding proteins X 1 and X 2 . Both X 1 and X 2 are produced if no transcription factor is bound to the promoter region.

However if a molecule of type X 1 (X 2 ) is bound to the promotor then it inhibits the expression of the other protein i.e., molecules of type X 2 (X 1 ) cannot be produced. Only one molecule can be bound to the promotor region at a time which gives three possibilities for the state of the promoter region (free, X 1 bound, X 2 bound). The model is infinite in two dimensions (X 1 and X 2 ) and the reactions are given by:

1 5 5 1 X X X λ  → + 2 5 5 2 X X X λ  → + 3 1 X 0 λ  → 4 2 X 0 λ  → 5 1 5 3 X X X λ +  → 6 2 5 4 X X X λ +  → 7 3 5 1 X X X λ  → + 8 4 5 2 X X X λ  → + 9 3 3 1 X X X λ  → + 10 4 4 2 X X X λ → +
where (λ 1 ,λ 2 ,…..λ 10 ) = (2,5,0.005,0.005,0.005,0.002,0.02,0.02,2,5). The initial conditions are such that only one DNA molecule is present in the system while the molecular counts for the rest of the species are First, we solve the CME. The probability distribution function at 6 different times is depicted in Figure 6. Now from the pdf P(z,t) = (#X 1 ,….#X 2 ) and t = [0,60], we compute the three first moments µ 1 (t), µ 2 (t), and µ 3 (t), respectively from Equations (9-11) that will be considered as reference moment solutions. The parameters alpha involved in the empirical closure relation [START_REF] Hegland | A solver for the stochastic master equation applied to gene regulatory networks[END_REF] are = (50,100,0,0,1) that produces at time t=10 the pdf depicted in Figure 9. Now, the equations governing the time evolution of the different components of µ 1 and µ 2 are integrated in time by considering the closure relation just identified fitted. In order to check the accuracy of those solutions we solve again the CME and compute the reference moments from the resulting probability distribution function. Figure 10 compares the moment-based and the pdf-based moments, proving that the moment approach based on the use of an empirical closure produces a quite reasonable agreement.

The toggle

Mutually repressing gene pair, or gene toggle, can be found in biological systems as discussed in Hegland et al. [START_REF] Hegland | A solver for the stochastic master equation applied to gene regulatory networks[END_REF]. As in their example, here we focus on protein dynamics, and more particularly in the toggle-switch network. The reactions consist of:

1 2 1 2 X X X λ  → + 2 1 X 0 λ  → 3 1 1 2 X X X λ  → + 4 2 X 0 λ  →
and the following polynomial properties are considered:

1 1 2 1 2 a (X ,X ) = (A-X ) λ 2 1 2 2 1 a (X ,X ) = X ) λ 3 1 2 3 1 a (X ,X ) = (A-X ) λ 4 1 2 4 1 a (X ,X ) = (X )
λ Now, we consider the initial condition 0 0 1 2 (#X , #X ) =(90,50) as well as the parameters λ 1 =1, λ 2 =5, λ 3 =1 and λ 4 =10, and solve the associated chemical master equation for calculating the joint probability distribution function P (z,t). Now from the pdf P(z,t), z T = (#X 1 , #X 2 ) and t = [0,1], we compute the three first moments µ 1 (t), µ 2 (t), and µ 3 (t) respectively from Equations (9-11) that will be considered as reference moment solutions. The parameters alpha involved in the empirical closure relation [START_REF] Hegland | A solver for the stochastic master equation applied to gene regulatory networks[END_REF] are then determined. Figures 111213compare respectively the different independent components of µ 1 , µ 2 , and µ 3 calculated from chemical master equation solution and 

Conclusions

In this work we revisited the modeling of regulatory networks Deterministic solutions of the CME were performed by using the separated representation involved in the PGD, allowing circumventing the so-called curse of dimensionality. In order to improve the computational efficiency a moment-based description is derived, however such description involves higher order moments that must be described from the ones of lower order. In that sense we proposed a simplest closure relation, of empirical nature, that can be fitted numerically from the probability distribution function, the last coming from the PGD solution of the CME. As soon as the closure relation is fitted, it can be used for solving similar problems to the one that served to identify the closure relation.
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 1 Figure 1: Probability distribution function P (z,t) at different times: (a) t=0.2, (b) t=3, (c) t=7, (d) t=8, (e) t =9 and (f) t=10.

Figure 2 :

 2 Figure 2: Time evolution of the components of µ1 (left) and µ2 (right).

Figure 4 :

 4 Figure 4: Time evolution of the components of µ 1 (left) and µ 2 (right) obtained from the moment-based description.

Figure 3 :

 3 Figure 3: Time evolution of the third order moment µ 3 (t): reference components (continuous line) versus closure-based approximation (broken line).

Figure 5 :

 5 Figure 5: Components of µ 1 (left) and µ 2 (right), computed from the pdf-based description (top) and the moment-based description (bottom).

Figure 6 :

 6 Figure 6: Probability distribution function P (z; t) at different times: (a) t = 3, (b) t = 7, (c) t = 12, (d) t = 19, (e) t = 30 and (f) t = 60.

Figure 7 :

 7 Figure 7: Time evolution of the components of µ 1 (left) and µ 2 (right).

Figure 8 :

 8 Figure 8: Time evolution of the third order moment µ 3 (t).

Figure 9 :

 9 Figure 9: probability distribution function at time t = 10.

Figure 10 :

 10 Figure 10: Components of µ 1 (left) and µ 2 (right), computed from the pdf based description (top) and the moment-based description (bottom).

Figure 11 :

 11 Figure 11: Time evolution of the components of µ 1 calculated from the CME solution (left) and from the closure-based description (right).

Figure 12 :

 12 Figure 12: Time evolution of the components of µ 2 calculated from the CME solution (left) and from the closure-based description (right).

Figure 13 :

 13 Figure 13: Time evolution of the components of µ 3 calculated from the CME solution (left) and from the closure-based description (right).

Figure 14 :

 14 Figure 14: Time evolution of the components of µ 1 calculated from the CME solution (left) and from the closure-based description (right).

Figure 15 :

 15 Figure 15: Time evolution of the components of µ 2 calculated from the CME solution (left) and from the closure-based description (right).

Figure 16 :

 16 Figure 16: Time evolution of the components of µ 3 calculated from the CME solution (left) and from the closure-based description (right).
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The second order moment µ 2 results a D×D matrix In what follows and without loss of generality, we consider reactions involving linear propensities. Thus, when considering the equations governing the time evolution of the first two moments µ 1 (t) and µ 2 (t) the third order moment µ 3 (t) remains in these equations, and it need to be expressed from both lower moments.

The simplest closure writes:

Thus, the third order closure relation [START_REF] Hegland | A solver for the stochastic master equation applied to gene regulatory networks[END_REF] involves 6 coefficients to be determined. For this purpose, and for a given system, we solve the CME by using the PGD in order to circumvent the curse of dimensionality and then evaluate the third order moment according to Equation ( 11) and then we choose the alpha parameters in Hegland et al. [START_REF] Hegland | A solver for the stochastic master equation applied to gene regulatory networks[END_REF] to provide the best fitting (in a least squares sense). 
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