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Abstract

Usual tomographic reconstruction methods start by filtering projections before backpro-
jecting the data. In some cases, inverting the filtering and the backprojection steps can
be useful to preserve spatial information. In this paper, an intermediate between a filter-
backproject and a backproject-filter approach is proposed, based on the extension of the usual
ramp filter to two dimensions. To this end, an expression for a band-limited 2D version of
the ramp filter is derived. We have tested this filter on simulated X-ray CT projections of
a Shepp-Logan phantom and on proton CT list-mode data. We accurately reconstructed
the X-ray CT and the proton CT data, although the reconstruction can be slightly noisier
than a standard filtered backprojection in some cases. A slight improvement of the spatial
resolution of proton CT images reconstructed with this 2D filter has been observed.

1 INTRODUCTION

The filtered backprojection (FBP) is the reference algorithm to reconstruct tomographic data.
It consists in (1) filtering the projections with a 1D ramp filter and (2) backprojecting the re-
sult in the image domain. An alternative method, the backproject-filter or backproject-first
(BPF), starts with the backprojection before filtering in the 2D image domain. BPF approaches
can be useful when dealing with certain modalities to avoid resampling. For example, in pro-
ton CT (pCT) (Figure 1 center), starting by backprojecting the protons along their non-linear
paths could improve spatial resolution, compared with binning the list-mode data into projec-
tions (Zeng, 2007; Poludniowski et al., 2014; Rit et al., 2015). Similarly, time-of-flight information
of positron emission tomography (PET) can be accounted for in the image domain (Watson, 2007)
(Figure 1 right). Our objective is to develop such an approach by extending the usual 1D ramp
filter in 2D. BPF methods usually rely on 2D radial filters (Zeng et al., 1994; Poludniowski et al.,
2014). However, the backprojected image has an infinite support which is problematic during
convolution since the backprojection matrix must have a finite size. The truncation will cause an
offset in the reconstructed values. This effect can be minimized by using a very large backpro-
jection matrix. Another possible backproject-first approach is based on the Hilbert transform
inversion (Noo et al., 2004; Zeng, 2007; Rit et al., 2015), and involves a differentiation step.

In this paper, the idea is to (1) smear each projection in the image space, (2) filter the
smeared projection with a 2D version of the 1D ramp filter and (3) integrate over all projection
angles. A similar 2D version of the ramp filter has been proposed by Watson (2007) in the
context of time-of-flight positron emission tomography (TOF PET), although the filter was
sampled directly in the frequency domain causing sampling artifacts. A variation of this filter,
also proposed by Watson (2007) and called CRG-CW (Convolved Ramp and Gaussian with
Confidence Weighting), has been used for TOF direct reconstruction (Kao, 2008; Guo et al.,
2011; Conti et al., 2013; Kao et al., 2010). Similarly to what is done for the 1D ramp filter, we
sample the filter in the spatial domain to avoid sampling artifacts. We start by defining the 2D
ramp filter in the case of parallel X-ray CT (xCT), derive its expression in the spatial domain,
before applying this method to simulated xCT and pCT data. Although the main applications



2 METHODS

Figure 1: Parallel xCT geometry (left), pCT single tracking setup (middle), and TOF PET setup
(right).

in mind for this method are pCT and TOF PET, the filter is mathematically demonstrated in
a conventional xCT setting to avoid technicalities specific to proton/PET imaging. It is then
applied to proton CT simulations.

2 METHODS

2.1 Parallel FBP and 1D ramp filter

An image f(x1, x2), with (x1, x2) the spatial coordinates, can be reconstructed from its parallel
projections

pφ(s1) =

∫
R
f(s1θ + s2θ

⊥) ds2, (1)

where s1 is the distance of the projection line from the center, s2 is the position along the
projection line, θ = (cosφ, sinφ) and θ⊥ = (− sinφ, cosφ) (see Figure 1). Using a filtered
backprojection method, the image is reconstructed by

f(x1, x2) =

∫ π

0
p̃φ(x1 cosφ+ x2 sinφ) dφ, (2)

where

p̃φ(s1) =

∫
R
Pφ(σ1)|σ1|ei2πσ1s1 dσ1, (3)

with Pφ(σ1) defined as the Fourier transform (FT) of pφ(s1).
In practice, the filtered projections p̃φ(s1) are obtained using a band-limited version of the

1D ramp filter. A common choice proposed by Bracewell et al. (1967) and Ramachandran et al.
(1971) is

H(σ1) =

{
|σ1| if −W < σ1 < W

0 otherwise,
(4)

withW the Nyquist frequency defined asW = 1/2τ with τ the sampling period of the projections
pφ. Directly discretizing this expression to filter the projections in the frequency domain would
cause an underestimation of the entire reconstructed values, because of the zero value attributed
to the zero frequency bin (Kak et al., 1988; Crawford, 1991). In order to avoid this issue, the
impulse response of the filter is calculated by taking its inverse Fourier transform

h(s1) =

∫
R
H(σ1)e

i2πσ1s1 dσ1 =
1

2τ2
sinc

(2πs1
2τ

)
− 1

4τ2
sinc2

(πs1
2τ

)
(5)
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2.2 From the 1D ramp filter to a 2D directional ramp filter 2 METHODS

and subsequently discretized by replacing s1 = nτ , which yields

h[n] =


1

4τ2
, if n = 0

0, if n even
−1

n2π2τ2
, if n odd,

(6)

as was proposed by Ramachandran et al. (1971). The discrete Fourier transform (DFT) of
this impulse response does not have a zero value at its zero frequency and allows an accurate
reconstruction of the image values (Kak et al., 1988). Equation 6 is used to compute the 1D
ramp filter used for FBP.

2.2 From the 1D ramp filter to a 2D directional ramp filter

From Equation 2, we see that the projections are filtered then smeared in the image space using
the variable change s1 = x1 cosφ+x2 sinφ. We want to apply a 2D version of the ramp filter on
the already smeared projections, i.e. do the variable change before filtering.

We recall that (σ1, σ2) are the Fourier variables corresponding to (s1, s2) in the spatial domain.
We introduce the dirac δ function, using the property

∫
R δ(σ2)e

i2πσ2s2 dσ2 = 1, in Equation 3

p̃φ(s1) =

∫
R

∫
R
δ(σ2)Pφ(σ1)|σ1|ei2π(σ1s1+σ2s2) dσ1 dσ2 (7)

and, given the expression of the Fourier transform Pφ(σ1) and the fact that formally
δ(σ2) =

∫
R e
−i2πσ2s2 ds2, note that

δ(σ2)Pφ(σ1) =

∫
R

∫
R
pφ(s1)e

−i2π(σ1s1+σ2s2) ds1 ds2. (8)

We use the following vector notations for s1 = x · θ, s2 = x · θ⊥ and the corresponding
Fourier variables σ1 = ξ · θ and σ2 = ξ · θ⊥, where x = (x1, x2) and ξ = (ξ1, ξ2). We also
define bφ : R2 → R, the backprojection of one projection, as

bφ(x) = pφ(x · θ) (9)

and Bφ(ξ) its Fourier transform. We call bφ(x) a smeared projection. Using these definitions,
we note that Equation 8 is the expression of the Fourier transform of bφ(x), and Equation 7
becomes

b̃φ(x) =

∫
R2

Bφ(ξ)|ξ · θ|ei2πξ·x dξ, (10)

and the image can then be reconstructed from

f(x) =

∫ π

0
b̃φ(x) dφ. (11)

This equation allows reconstructing the image in three steps

(1) Smear each projection in the image space, i.e. compute a 2D image bφ(x) for each projection
angle;

(2) Filter each 2D image bφ(x) with the corresponding 2D filter |ξ · θ| to obtain b̃φ(x);

(3) Sum b̃φ(x) over all angles φ.
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Note that this 2D version of the ramp filter depends on φ, hence the name directional ramp
(DR) filter. By definition, the backprojection operation consists in smearing each projection in
the image space, i.e. interpolating bφ(x) from pφ(s1) using bφ(x) = pφ(x · θ) and summing over
all projection angles, i.e.

∫ π
0 bφ(x)dφ . In the proposed method, we separate these two steps

of the backprojection: steps (1) and (3) correspond to the backprojection and step (2) to the
filtering. This method resembles a BPF approach since we start by smearing the projections
in the image space, however the angular sum to compute the backprojected image is the last
step as in an FBP. The usual 2D cone filter used in BPF methods is ‖ξ‖, and it is applied after
the full backprojection since it is not direction dependent, unlike the DR filter which must be
used before the angular sum as it depends on the projection angle. A similar filter to the 2D
DR, called transverse ramp, has been used to reconstruct TOF PET data (Watson, 2007). It
was directly sampled in the frequency domain, causing sampling artifacts due to the zero values
along the line ξ · θ = 0. We choose to calculate the filter’s impulse response as in the 1D case to
avoid such artifacts.

2.3 Impulse response of the 2D directional ramp filter

A band-limited version of the 2D DR filter is given by

Hφ(ξ) =

{
|ξ · θ| if | ξ1 |, | ξ2 |< W

0 otherwise.
(12)

The corresponding kernel in the direct space is obtained by taking the inverse Fourier trans-
form of this directional filter:

hφ(x) =

∫
R2

Hφ(ξ)e
i2πξ·x dξ. (13)

For φ ∈ [−π/4, π/4], the integral can be split into two parts,

hφ(x1, x2) =

∫ W

−W

[ ∫ −ξ2 tanφ
−W

−(ξ1 cosφ+ ξ2 sinφ)e
i2π(ξ1x1+ξ2x2) dξ1

+

∫ W

−ξ2 tanφ
(ξ1 cosφ+ ξ2 sinφ)e

i2π(ξ1x1+ξ2x2) dξ1

]
dξ2, (14)

knowing that ξ ·θ is negative below the line given by ξ1 = −ξ2 tanφ and positive above it. These
integrals lead to

hφ(x1, x2) =
(
− x2 cosφ sinc

(π(x1 tanφ− x2)
τ

)
− x1 sinφ cos

(πx1
τ

)
cos
(πx2
τ

)
+ (x1 sinφ+ x2 cosφ) sinc

(πx2
τ

)
cos
(πx1
τ

)) 1

2τ(πx1)2x2
+

cosφ

2τ3
sinc

(πx1
τ

)
sinc

(πx2
τ

)
.

(15)

The discretized impulse response, with x1 = mτ and x2 = nτ , is given by

hφ[m,n] =



1

2π2τ3

(− cosφ

m2
sinc(π(m tanφ− n))− cos(πn) cos(πm)

sinφ

nm

)
if m,n 6= 0

sin2 φ

2π2n2τ3 cosφ
cos(πn) if m = 0, n 6= 0

cosφ

2π2m2τ3
(cos(πm)− sinc(πm tanφ)) if m 6= 0, n = 0

2 cos2 φ+ 1

12τ3 cosφ
if m = 0, n = 0.

(16)
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2.4 Size of the backprojection region 2 METHODS

Figure 2: Smeared projection for angle φ = 0 (left) and φ = −π/4 (right). The blue circle is
the field of view and the orange square is the reconstruction region. The shaded areas represent
the regions where the image is truncated along θ. The green square is the region needed to
accurately filter the smeared projection for all angles. For φ = 0, the data inside the orange
square is sufficient for accurate reconstruction inside the FOV, while a larger region is needed
for oblique angles, with the largest area being for φ = π/4 + kπ/2.

The expressions for m and/or n equal to zero are found by setting x1 and/or x2 to
zero in Equation 14. The expression can be extended to angles φ /∈ [−π/4, π/4] using
hφ+π[m,n] = −hφ[m,n] and hφ+π/2[m,n] = h−φ[n,m]. Note that setting φ = 0 in Equation 16
gives the expression of the 1D ramp filter multiplied by 1/τ on the line n = 0, and zero elsewhere.
It should also be noted that the impulse response of the filter (Equation 15) has infinite support,
such that sampling the filter in the frequency domain would always result in aliasing artifacts
according to the sampling theorem (Crawford, 1991).

2.4 Size of the backprojection region

In order for the 2D filtered smeared projections to be equivalent to the 1D filtered projections,
we need non-truncated images bφ(x) along θ inside the field of view (FOV) (Figure 2). We do
not need the full projections outside the FOV since the DR filter tends to a dirac along θ⊥ in
the direct space (since it is constant in the Fourier space). By taking a backprojection region
(region where the projections will be smeared) of the same size as the reconstruction region, part
of the data near the borders will be truncated for angles φ 6= kπ/2, k ∈ Z. In order to keep
the full projections inside a circular FOV for all angles, one should set M =

√
2N , where the

backprojection region is M ×M and the reconstruction region is N ×N .

2.5 Simulations

We generated parallel ray projections of the 2D Shepp Logan phantom (Shepp et al., 1974)
using RTK (Rit et al., 2014) in order to test the filter. 804 projections were acquired over a
180 degree range, with a detector of 512 pixels. The phantom was reconstructed using grids of
512× 512 pixels and 1024× 1024 pixels. Poisson noise was applied to the idealized projections,
using an initial fluence of 107 protons per detector pixel, and weighting the line integrals with
0.01879 mm−1, the linear attenuation coefficient of water at 75 keV, to work with physical
attenuation values.

A proton CT simulation was performed using the Monte Carlo platform GATE (Jan et al.,
2011). The setup is detailed in Rit et al. (2013). A fan beam proton source was simulated,
and the list-mode data was binned into parallel geometry images bφ(x) using the same binning
as in Rit et al. (2015). The non-linearity of proton trajectories was taken into account by
estimating each proton’s most likely path (Schulte et al., 2008). We used a spiral phantom,
consisting of a disk of water with aluminum inserts (Figure 5). The spatial resolution of each
insert was obtained by extracting profiles across the insert edges and determining the frequency
corresponding to 10% of the peak value of the modulation transfer functiion (MTF) of these
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3 RESULTS

Figure 3: Top : Pseudo-continuous impulse response of the 2D DR filter for φ = 0 (left) and
φ = π/3 (right). The discrete samples are overlayed as black dots. Bottom : Fourier transform
of the discrete impulse response.

profiles. The reconstruction using the DR filter was compared with the algorithm presented
in Rit et al. (2013) which generalizes the FBP to non-linear paths.

3 RESULTS

Figure 3 shows the “pseudo-continuous" filter, i.e. the oversampled filter calculated from the
continuous impulse response (Equation 15) by setting x1 = mτ ′ and x2 = nτ ′ with τ ′ � τ . It is
interesting to observe that, after discretization, for the case φ = 0 (left), the samples outside the
central horizontal line lie exactly on the zero crossings. For the case φ = π/3 (right), the filter
is not zero outside the filtering line n = m tanφ. The DFT of the filters looks like the usual 1D
ramp filter duplicated along the direction θ⊥.

The reconstructions of the Shepp-Logan phantom using different parameters are shown in
Figure 4. The reconstructed values using the filter sampled in the frequency domain are under-
estimated. The bias is constant and is equal to −0.17. The rest of the reconstructions are very
similar, although some artifacts are visible near the outer edges of the phantom in the case of
the non-apodized DR filter for idealized projections. This is confirmed on the difference maps,
where the DR reconstructed image is slightly noisier for idealized projections, although this is
only visible with a tight color scale ([−0.01, 0.01]). Using an oversampled backprojection (but
keeping the same sampling for the projections) reduces the noise, and apodizing the filter with
a Hamming window completely suppresses the artifacts. The reconstructions from noisy projec-
tions show the DR filter performs as well as the 1D ramp filter, and that the previous artifacts
are hidden by noise.

The reconstructions of proton CT data are shown in Figure 5. There is no visible difference
between the image reconstructed with an FBP and with the DR filter. The spatial resolution
fMTF10% as a function of each bead’s distance to the center of the phantom is represented. The
difference between the resolution for the FBP and the DR algorithms reaches 0.8 lp/mm for the
outermost bead.
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FBP DR (freq samp) DR (spatial samp) DR oversampled DR + Hamming

1.00

1.05

−0.01

0.00

0.01

1.00

1.05

−0.01

0.00

0.01

Figure 4: Shepp-Logan phantom reconstructed using, from left to right, an FBP, the DR filter
sampled in the frequency and spatial domain, the oversampled DR filter (N=1024, in spatial
domain), and the filter apodized with a Hamming window. The first two rows correspond to
the results (reconstruction and difference with reference) for idealised projections and the two
bottom rows to the results for noisy projections.

4 DISCUSSION

Our results show that the 2D DR filter, sampled in the spatial domain, allows accurate reconstruc-
tion of xCT and pCT data, although some artifacts are apparent in the case of reconstructions
from noiseless xCT projections. We know that, in the direct space, the DR filter should look
like a dirac in the direction θ⊥ for the 2D convolution to be equivalent to the 1D one. However,
apodizing the filter with a square window in Equation 12 results in a convolution with a 2D sinc
function, which explains the shape of the filter in Figure 3. While the discretized filter is a dirac
for angles φ = kπ/2, k ∈ Z, since all samples outside the central line are zero, this is not the
case for other angles, meaning there will be interferences from other lines during convolution.
In Fourier space, this translates in a discontinuity of the FT at the Nyquist frequency. This is
visible in Figure 3 where the DFT of the DR filter for φ = π/3 has very thin black lines on its
bottom left corner. This could explain the remaining artifacts visible in Figure 4. A similar issue
with the continuity of the FT was reported by Schöndube et al. (2010), where the authors define
a 2D inverse Hilbert transform. The image reconstructed using this filter suffered from ring
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4 DISCUSSION

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

RSP

(a) (b)

Figure 5: (a) Proton CT reconstructions of the relative stopping power (RSP) map of the spiral
phantom using an FBP (left) and the DR filter (right). (b) Spatial resolution of the inserts in the
spiral phantom. The shaded areas correspond to ±3σ where σ is the uncertainty on the spatial
resolution.

artifacts. One of the proposed solutions is to apodize the filter in the Fourier space using a Ham-
ming window to deal with the discontinuity. Our results show that the apodization effectively
suppresses artifacts, although it also causes a slight loss of spatial resolution. An alternative is
to increase the sampling of the backprojected image (Schöndube et al., 2010), which also reduces
the noise as seen in Figure 4. Since the artifacts are related to the sampling of the 2D DR filter,
taking more samples i.e. increasing the filter’s band limit, will make the reconstruction less
noisy. However, this artifact is not visible when using projections with a realistic level of noise.
As was observed for the 1D ramp filter by Crawford (1991) and Kak et al. (1988), sampling in
the frequency domain will cause aliasing artifacts (an underestimation in the spatial domain)
due to the infinite support of the impulse response.

In the case of simple line integrals, such as in xCT, using the 2D DR filter should give the
same result as a standard FBP but is computationally less effective. The DR filter could rather
be used with modalities such as proton CT or TOF PET, where the projections are respectively
integrals along non-linear paths due to multiple Coulomb scattering or integrals along weighted
lines due to time resolution of the detector. In xCT, the projections are constant along the
direction θ⊥, therefore using 1D projections and the 1D ramp filter makes sense. Both pCT and
TOF PET add a new dimension, the depth of the proton or the time-of-flight, such that the
smeared projections vary along θ⊥ (see Figure 1). Filtering the 2D smeared projections bφ(x)
requires either rotating each image so that its samples are aligned with the 1D filter, then perform
a line-by-line filtering; or using a directional 2D ramp filter. The DR filter could present some
notable advantages in this case: as in BPF methods, the filtering is done in the image space so
that we avoid rotations that can cause a loss of spatial resolution; at the same time, unlike other
BPF approaches, there is no bias due to the truncation of the backprojection region which does
not need to be approximated using very large matrices (2 to 4 times the reconstruction region
in Poludniowski et al. (2014) versus

√
2-times). A drawback is that the DR filter is different for

each projection angle, but it can be pre-computed for a given image grid and set of projection
angles. Our results for proton CT data (Figure 5) have confirmed that the DR filter can improve
spatial resolution compared with an FBP algorithm. This improvement was observed only for
inserts close to the edge of the spiral phantom because at the center of the object, the image is
too blurry due to Coulomb scattering to see any enhancement of spatial resolution.

While this method is theoretically demonstrated for parallel geometries only, the acquisitions
can be done in another setup as long as the data is rebinned into parallel geometry, which is
straightforward for list-mode pCT data, as was done for our own pCT simulations. It may be

8



5 CONCLUSION

possible to derive an expression for the ramp filter in the case of fan beam data, for example,
however, this might prove to be more difficult as the transform from the sinogram domain to the
image domain is not a simple rotation as for parallel data.

Another possible use of the DR filter is for 3D parallel projections in xCT, when the detector
is rotated by an in-plane angle. The projections would need to be realigned with the image grid
before filtering. To avoid this interpolation, the 2D DR filter, computed for the in-plane angle
direction, could be used on each 2D projection before backprojection.

5 CONCLUSION

We have proposed a 2D version of the ramp filter and applied it to simulated xCT and pCT data.
This method starts by the smearing of each projection in the image space, then the direction-
dependent filtering, and finally the angular sum. The filter allows an accurate reconstruction
and can be used to avoid an interpolation which would degrade spatial resolution.
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