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ABSTRACT
Numerous works have shown the versatility of deterministic con-
strained Cramér-Rao bound for estimation performance analysis
and design of a system of measurements. Indeed, most of factors
impacting the asymptotic estimation performance of the parameters
of interest can be taken into account via equality constraints. In
this communication, we introduce a new constrained Cramér-Rao-
like bound for observations where the probability density function
(p.d.f.) parameterized by unknown deterministic parameters results
from the marginalization of a joint p.d.f. depending on random
variables as well. In this setting, it is now possible to consider ran-
dom equality constraints, i.e., equality constraints on the unknown
deterministic parameters depending on the random parameters,
which can not be addressed with the usual constrained Cramér-
Rao bound. The usefulness of the proposed bound is illustrated by
way of a coupled canonical polyadic model with linear constraints
applied to the hyperspectral super-resolution problem.

Index Terms— Mean Squared Error, Deterministic parameters,
Constrained Cramér-Rao bound, Random equality constraints

I. INTRODUCTION
As introduced in [1, p53], a model of the general determinis-

tic estimation problem has the following four components: 1) a
parameter space Θd ⊂ RP , 2) an observation space X ⊂ RM ,
3) a probabilistic mapping from parameter vector space Θd to
observation space X , that is the probability law p (x;θ) that
governs the effect of a parameter vector value θ ∈ Θd on the
observation x ∈ X and, 4) an estimation rule, that is the mapping of
the observation space X into vector parameter estimates θ̂ , θ̂ (x).
If a closed-form expression of p (x;θ) is available, the estimation
problem at hand is so-called a ”standard” deterministic estimation
problem [2]. In this setting, minimal performance bounds on the
mean square error (MSE) matrix of θ̂ allow for calculation of the
best performance that can be achieved, when estimating parameters
of a signal corrupted by noise. Historically the first MSE lower
bound (LB) for deterministic parameters to be derived was the
Cramér-Rao bound (CRB), which was introduced to investigate
fundamental limits of a parameter estimation problem or to assess
the relative performance of a specific estimator (efficiency) [3]–
[5]. It has since become the most popular LB due to its simplicity
of calculation for various problems (see [6, §8.4] and [7, Part III])
but suffers from some drawbacks. Indeed, CRBs are asymptotically
tight only (high signal-to-noise ratio (SNR) and/or large number of
snapshots) and cannot predict the so-called threshold (i.e. large er-
rors) on estimator MSE in non-linear estimation problems [8]–[11].
Therefore, provided that one keeps in mind the CRB limitations,
that is, to become an overly optimistic LB when the observation
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conditions degrade (low SNR and/or low number of snapshots), the
CRB is still a LB of great interest for system analysis and design
in the asymptotic region.

Moreover, in many applications, the definition, in part or totally,
of the parameter space Θd results from deterministic (non random)
equality constraints, as mentioned in the seminal paper [12]. Since
then, numerous works [13]–[17] have been devoted to extend the
results introduced in [12]: 1) by providing a general reparame-
terization inequality and the equivalence between parameterization
change and equality constraints; 2) by studying the CRB modified
by constraints either required by the model or required to solve
identifiability issues; 3) by investigating the use of parameters
constraints from a different perspective: the value of side (a priori)
information on estimation performance. All these works have
shown the versatility of constrained Cramér-Rao bound (CCRB)
for estimation performance analysis and design of a system of
measurement, as highlighted in [18].

However, in many estimation problems [1], [19]–[21], the
probabilistic mapping mentioned above results from a two-step
probabilistic mechanism involving an additional random vector
θr , θr ∈ Θr ⊂ RPr , that is i) θ → θr , ii) (θ,θr) → x,
leading to a compound probability distribution: p (x,θr;θ) =
p (x|θr;θ) p (θr;θ). In this setting, some equality constraints
on the unknown deterministic parameter vector θ may depend
on the random parameter vector θr , leading to random equality
constraints, a case which can not be tackled with the standard form
of the CCRB. It is therefore the aim of this paper to derive a CR-
like bound able to take into account random equality constraints,
that is a randomly constrained CRB (RCCRB).

The usefulness of the RCCRB is illustrated by way of a coupled
canonical polyadic (CP) model with linear constraints applied to
the hyperspectral super-resolution problem (HSR). This problem
consists in fusing a multispectral data cube (MSI), which has a good
spatial resolution but few spectral bands, and a hyperspectral data
cube (HSI), whose spatial resolution is lower than that of the MSI.
The aim of the HSR problem is to recover a super-resolution image
(SRI), which possesses both good spatial and spectral resolutions.
This problem lies in the framework of multimodal data fusion [25]
between heterogeneous datasets.

II. CRBS WITH RANDOM EQUALITY CONSTRAINTS
II-A. Background on standard CRBs

In standard deterministic estimation problems [2], the MSE
matrix of θ̂ is a Gram matrix (general form of the square of
a norm) [17] defined on the vector space of square integrable
functions and, therefore, all known standard LBs on the MSE can be
formulated as the solution of a norm minimization problem under
linear constraints (LCs) [9], [10]. This formulation of LBs does not
only provides a straightforward understanding of the hypotheses
associated with the different LBs [9], [10], but it also allows to
obtain a unique formulation of each LB in terms of a unique set
of linear constraints. When the lower bound is the CRB, the set of



linear constraints involved reduces to a set of derivative constraints
[17]. Indeed, the CRB is the lowest bound on the MSE of unbiased
estimators, since it is derived from the weakest formulation of
unbiasedness, i.e. local unbiasedness,

Ex;θ+dθ

[
θ̂
]

= θ + dθ + o (‖dθ‖) , (1a)

where o (.) stands for the small oh notation, which means that,
up to the first order and in the neighborhood of θ, θ̂ remains an
unbiased estimator of θ independently of a - small - variation of the
parameters. Interestingly, (1a) can be rewritten in terms of Taylor
expansion of each side, and the uniqueness of Taylor expansion
imposes that the following LCs

Ex;θ

[
θ̂ − θ

]
= 0, Ex;θ

[
(θ̂ − θ)

∂ ln p (x;θ)

∂θT

]
= I, (1b)

must be statisfied by any locally unbiased estimator. Then the CRB
is easily obtained by using the following well known lemma on
the minimization of a Gram matrix (with respect to the Löwner
ordering [22, §7.7]) under LCs. Let U be an Euclidean vector space
on the field of real numbers R which has a scalar product 〈 · | · 〉.
Let C = (c1, . . . , cK) be a family of K linearly independent
vectors and U = (u1, . . . ,uP ) a family of P vectors. Then

VTG(C)−1V =min
U
{G(U)} s.t. 〈up | ck〉 = Vk,p, (2)

where G(W) denotes the Gram matrix associated to the family
of N vectors W = (w1, . . . ,wN ) defined as Gn,n′(W) =

〈wn′ | wn〉, 1 ≤ n, n′ ≤ N . Indeed by defining U = θ̂ − θ
and C = (1, ∂ ln p(x;θ)

∂θT
), and by considering the scalar product

〈f (x) | g (x)〉 = Ex;θ [f (x) g (x)], lemma (2) can be applied with
V = [ 0 I ] (1b) and leads to

Ex;θ

[
(θ̂ − θ)(θ̂ − θ)T

]
≥ CRB (θ) = F (θ)−1 , (3a)

F (θ) = Ex;θ

[
∂ ln p (x;θ)

∂θ

∂ ln p (x;θ)

∂θT

]
, (3b)

where F (θ) is the Fisher information matrix (FIM). Last, it has
been shown in [17] that the CRB (3a) is also obtained if (1b) is
reduced to

Ex;θ

[
(θ̂ − θ)

∂ ln p (x;θ)

∂θT

]
= I. (4)

II-B. Random Equality Constraints
Actually, in many estimation problems [1], [19]–[21], the

probabilistic mapping mentioned above results from a two steps
probabilistic mechanism involving an additional random vector
θr , θr ∈ Θr ⊂ RPr , that is i) θ → θr ∼ p (θr;θ),
ii) (θ,θr) → x ∼ p (x|θr;θ), and leading to a compound
probability distribution:

p (x,θr;θ) = p (x|θr;θ) p (θr;θ) , (5a)
p (x;θ) =

∫
Θr

p (x,θr;θ) dθr, (5b)

where p (x|θr;θ) is the conditional p.d.f. of x given θr , and
p (θr;θ) is the prior p.d.f., parameterized by θ. If only an integral
form of p (x;θ) (5b) is available, the estimation problem at hand is
so-called a ”non-standard” estimation problem [2]. In this setting,

Ex;θ

[
(θ̂ − θ)(θ̂ − θ)T

]
= Eθr ;θ

[
Ex|θr ;θ

[
(θ̂ − θ)(θ̂ − θ)T

]]
(6)

which allows to consider the addition of K non redundant equal-
ity constraints on the unknown deterministic parameter vector θ
depending on the random parameter vector θr , that is

fθr (θ) = 0, fθr (θ) ∈ RK , 1 ≤ K ≤ P − 1, (7)

where the matrix ∂fθr (θ)

∂θT
∈ RK×P has full row rank (K), which

defines K random equality constraints.

II-C. CRBs with Random Equality Constraints
Since the set of K equality constraints (7) Cθr ⊂ Θd is

conditioned on the value of θr , it seems sensible to first look
for a CR-like bound conditioned on θr , taking into account both
local unbiasedness and equality constraints (7). Conditionally to θr ,
that is with respect to p (x|θr;θ), local unbiasedness regarding the
parameter vector θ reads

Ex|θr ;θ+dθ

[
θ̂
]

= θ + dθ + oθr (‖dθ‖) ,

and leads (similarly to (1a) and (4)) to the LCs

Ex|θr ;θ

[(
θ̂ − θ

) ∂ ln p (x|θr;θ)

∂θT

]
dθ = Idθ. (8)

Moreover, if θ and θ+ dθ are constrained to belong to Cθr , thus,
with some manipulation [17], when ‖dθ‖ → 0,{

fθr (θ) = 0
∂fθr (θ)

∂θT
dθ = 0

⇔
{

0 = fθr (θ)
dθ = Uθr

(θ) dλ

where Uθr
(θ) ∈ RP×(P−K) is a basis of ker

(
∂fθr (θ)

∂θT

)
and

dλ ∈ RP−K . Therefore, conditionally to θr , a locally unbi-
ased estimate of θ is now required to be locally unbiased only
on Cθr , what means that LCs (8) must be satisfied only when
dθ = Uθr

(θ) dλ where ‖dλ‖ → 0, which yields the LCs

Ex|θr ;θ

[
(θ̂ − θ)

(
UT
θr

(θ)
∂ ln p (x|θr;θ)

∂θ

)T]
= Uθr

(θ) .

(9)
Additionally, another desirable property is that

Ex|θr+dθr ;θ

[
θ̂
]

= θ + o (‖dθr‖) , ∀θ ∈ Cθr , (10a)

which means that, up to the first order and in the neighborhood of
θr , θ̂ remains an unbiased estimator of θ ∈ Cθr independently of
a - small - variation of the parameter vector θr . Once again, (10a)
can be rewritten in terms of the following LCs

Ex|θr ;θ

[
(θ̂ − θ)

∂ ln p (x|θr;θ)

∂θTr

]
= 0. (10b)

Finally, conditionally to θr , a constrained CR-like bound fitted to
the problem at hand is the lower bound associated with the LCs Ex|θr ;θ

[
(θ̂ − θ)

(
UT
θr

(θ) ∂ ln p(x|θr ;θ)
∂θ

)T ]
= Uθr

(θ)

Ex|θr ;θ

[
(θ̂ − θ) ∂ ln p(x|θr ;θ)

∂θTr

]
= 0

(11)
that is, according to (2),

CCRBθr (θ) = (12a)

Uθr
(θ)
(
UT
θr

(θ) CRB−1
θr

(θ) Uθr
(θ)
)−1

UT
θr

(θ) ,

CRBθr (θ) = (12b)(
Fθr (θ)− FTθr (θr,θ) Fθr (θr)

−1 Fθr (θr,θ)
)−1

,

Fθr (θ) = Ex|θr ;θ

[
∂ ln p(x|θr ;θ)

∂θ
∂ ln p(x|θr ;θ)

∂θT

]
,

Fθr (θr) = Ex|θr ;θ

[
∂ ln p(x|θr ;θ)

∂θr

∂ ln p(x|θr ;θ)

∂θTr

]
,

Fθr (θr,θ) = Ex|θr ;θ

[
∂ ln p(x|θr ;θ)

∂θr

∂ ln p(x|θr ;θ)

∂θT

]
.



Finally, if θ̂ , θ̂ (x) is, conditionally to θr , a locally unbiased
estimated belonging to a subset Cθr of the parameter space defined
by K non redundant equality constraints depending on a random
parameter vector θr , then, according to (6), its MSE matrix is lower
bounded by the following randomly constrained CRB (RCCRB)

Ex|θ

[
(θ̂ − θ)(θ̂ − θ)T

]
≥ RCCRB (θ) ,

RCCRB (θ) = Eθr ;θ [CCRBθr (θ)] . (13)

II-D. Further considerations
Firstly, if no random constraints are taken into account, then

Uθr
(θ) = I and CCRBθr (θ) = CRBθr (θ) which coincides

with the tighter Non-Standard CRB (NSCRB (θ)) introduced in
[23] and lately generalized in [2, (54)]. Moreover, the LCs (11)
becomes equivalent to

Ex|θr+dθr ;θ+dθ

[
θ̂
]

= θ + dθ + o(‖(dθ; dθr)‖),

which is the definition of a locally strict-sense unbiased estimator
[24]. This is sensible, since, as shown in [2, §IV], Non-Standard
CRB are LBs on the ”non-standard” MLEs (NSMLEs) defined as

(θ̂r, θ̂) = arg max
θ∈Θd,θr∈Θr

{p (x|θr;θ)} , (14)

where θ̂ is, w.r.t. p (x|θr;θ) and under reasonably general con-
ditions, asymptotically uniformly strict-sense unbiased, Gaussian
distributed and efficient when the number of independent observa-
tions tends to infinity. Therefore, it seems likely that the method of
scoring with parameter constraints [16] applied to random equality
constraints (7) where θr is replaced with its NSMLE θ̂r , leads
to a constrained NSMLE asymptotically efficient with respect to
CCRBθr (θ) and hence to RCCRB (θ). A conjecture left for
future research. Secondly, in general,

CCRBθr (θ) > Uθr
(θ)
(
UT
θr

(θ) Fθr (θ) Uθr
(θ)
)−1

UT
θr

(θ)

which means that the RCCRB proposed (13) is tighter than the
expectation of the standard CCRB parameterized by θr (see (15)).
However, in the case where p (x,θr;θ) = p (x;θ) p (θr;θ), then

p (x|θr;θ) = p (x;θ)⇒ CRB−1
θr

(θ) = Fθr (θ) = F (θ) ,

where F (θ) is the standard FIM (3b), leading to

RCCRB (θ) =

Eθr ;θ

[
Uθr

(θ)
(
UT
θr

(θ) F (θ) Uθr
(θ)
)−1

UT
θr

(θ)

]
, (15)

which reduces to the standard CCRB

CCRB (θ) = U (θ)
(
UT (θ) F (θ) U (θ)

)−1

UT (θ) ,

if the K equality constraints (7) are non random.

III. APPLICATION TO THE HSR PROBLEM
Recently, tensor-based methods, using the inherent 3D nature of

the HSI, were proposed for solving the HSR problem [29], [30]. In
[29], the problem is reformulated as a coupled CP approximation,
assuming that the SRI itself admits a low-rank canonical polyadic
decomposition (CPD). An alternating least squares (ALS) algorithm
called Super-resolution TEnsor REconstruction (STEREO) was also
proposed. In hyperspectral imaging, each pixel of a data cube can
be seen as the spectral signature of the material present at this
specific location. Spectral signatures are of prime importance in
material identification or object detection in hyperspectral remote
sensing. In the HSR problem, if the acquisitions of the MSI and
HSI are not performed simultaneously, it may happen that the

illumination conditions vary [34]. In [26]–[28], derivation of the
CRB for uncoupled CP models have been provided. In [31], it was
proposed to explore the CCRB for complex tensors and partially
coupled CP decompositions with (possibly) non-linear couplings.
In this section we mainly follow [35], [36] in what concerns the
tensor notation. We use the symbol � and � for the Kronecker and
Khatri-Rao product, respectively. We use vec{·} for the standard
column-major vectorization of a tensor or a matrix. The operation
•p denotes contraction on the pth index of a tensor; for instance,
[A •1M ]ijk =

∑
`A`jkMi`. For the matrices A ∈ RI×N ,

B ∈ RJ×N , C ∈ RK×N , we will use [[A,B,C]] as a shorthand
notation for the CPD. For a tensor Y ∈ RI×J×K , its first unfolding
is denoted by Y (1) ∈ RJK×I . The notation ‖ · ‖F stands for the
Frobenius norm.

III-A. CP-based degradation model
We consider two tensors Y1 ∈ RIH×JH×K and Y2 ∈

RI×J×KM , denoting respectively an HSI and a MSI cube. While
I , IH , J and JH denote the size of the images in the spatial
dimensions, K and KM stand for the size of the data cubes in the
spectral dimensions. The spectral resolution of MSI is lower than
that of the HSI (KM � K), while its spatial resolution is higher
(I > IH , J > JH ). The acquired MSI and HSI usually represent
the same target, and Y1 and Y2 are viewed as two degraded
versions of a single super-resolution image (SRI) Y ∈ RI×J×K .
As in [29], we adopt the following degradation model as contraction
of the SRI: {

Y1 = Y •1 P •2Q+ E1,

Y2 = |α|Y •3R+ E2,
(16)

where P ∈ RIH×I , Q ∈ RJH×J and R ∈ RKM×K are known
degradation matrices1. The scalar parameter α is random real
variable following a given probability distribution, and stands for
the illumination coefficient between the HSI and MSI. We consider
the case where the first rows of P , Q and R are equal to the
first rows of the identity matrix. The entries of the noise terms
E1 ∼ N (0, σ2

1I), E2 ∼ N (0, σ2
2I) are independent and iden-

tically distributed (i.i.d.) real Gaussian variables with zero mean
and variance σ2

1I and σ2
2I , respectively. Under the assumption

that the SRI admits a low rank-N CPD, the degradation model
(16) becomes {

Y1 = [[A1,B1,C1]] + E1,

Y2 = [[A2,B2,C2]] + E2,
(17)

subject to A1 = PA2,B1 = QB2, and C2 = |α|RC1,

where A1 ∈ RIH×N , B1 ∈ RJH×N , C1 ∈ RK×N , A2 ∈ RI×N ,
B2 ∈ RJ×N , C2 ∈ RKM×N are the factor matrices of the CPD.
Thus, the SRI admits a CPD such that Y = [[A2,B2,C1]].

We wish to estimate the factor matrices of the CPD of Y1 and
Y2. Thus, we define the model parameters

ψ1 = vec{C1} ∈ RKN , φ1 =

[
vec{A1}
vec{B1}

]
∈ R(IH+JH )N ,

ψ2 = vec{C2} ∈ RKMN , φ2 =

[
vec{A2}
vec{B2}

]
∈ R(I+J)N ,

corresponding to the vectorization of the factor matrices for each
tensor. The choice to group Ai and Bi factors, separate from the
Ci (i = 1, 2) factor matrices is motivated by the fact that spatial
and spectral degradations never occur in the same tensor, according
to model (16). Thus, ψ2 and φ1 can be seen as degraded versions
of ψ1 and φ2 by the spectral and spatial degradation matrices,
respectively. In the problem at hand, θ =

[
ψT

1 φT
1 ψT

2 φT
2

]T
is the vector of unknown deterministic parameters to be estimated

1We suppose that the spatial degradation for the HSI is separable.



and α is a random parameter. Since E1 and E2 are i.i.d., the HSI
and MSI are distributed according tofY1;θ1,φ1

=
(
2πσ2

1

)−IHJHK
2 e

−
‖Y1−[[A1,B1,C1]]‖2F

2σ21

fY2;θ2,φ2
=
(
2πσ2

2

)−IJKM
2 e

−
‖Y2−[[A2,B2,C2]]‖2F

2σ22

(18)

III-B. Performance analysis
Here, we focus on the case where the CP models are both

identifiable. In fact, to solve the scaling indeterminacy of the
CPD [39], we need to fix the first rows of Ai, Bi (i = 1, 2)
to known values; here, we normalize the factors by setting the
first rows to ones. As a result, we define the parameters φ̃1 and
φ̃2, only composed of the unknown entries of φ1 (resp. φ2).
The matrices M1 ∈ R(IH+JH−2)N×(IH+JH )N and M2 ∈
R(I+J−2)N×(I+J)N are masks obtained by removing the 2N
entries corresponding to known entries of φ1 (resp. φ2) such
that φ̃1 = M1φ1 and φ̃2 = M2φ2. Thus, we can define the

deterministic parameter θ̃ =
[
ψT

1 φ̃
T

1 ψT
2 φ̃

T

2

]T
. We consider

the uncoupled CP model

X =

[
vec{Y1}
vec{Y2}

]
∼N (µ(θ̃),Σ), µ(θ̃) =

[
vec{[[A1,B1,C1]]}
vec{[[A2,B2,C2]]}

]
and Σ = Diag{σ2

1I, σ
2
2I}. The FIM on θ̃ in the uncoupled case

is given by the Slepian-Bangs formula [38]:

F (θ̃) =

[
∂µ(θ̃)

∂θ̃
T

]T
Σ−1

[
∂µ(θ̃)

∂θ̃
T

]
.

For a full derivation of the FIM, see [31, Section IV]. Following
model (17), we can define the equality constraints on θ̃ as

fα(θ̃) =


|α| (I �R)ψ1 −ψ2,

φ̃1 −M1

[
I �P 0

0 I �Q

]
MT

2︸ ︷︷ ︸
P

φ̃2. (19)

Taking the derivative of fα(θ̃) and setting it equal to zero yields

∂fα(θ̃)

∂θ̃
T

=

[
|α| (I �R) 0 −I 0

0 I 0 −P

]
.

The expression for RCCRB(θ̃) can then simply be obtained from
F (θ̃) and any basis Uα of ker

(
∂fα(θ̃)

∂θ̃
T

)
by plugging them into

(15). In this case, the standard MLE ̂̃θ = arg max
θ̃

{
p
(
X ; θ̃

)}
is

asymptotically locally strict-sense unbiased and verifies (13).

III-C. Simulations
In this section, we simulate the performance of the estimation

of θ under additive Gaussian noise in the uncoupled case and in
the constrained case with random equality constraints. We consider
that α ∼ N (0, σ2

α) is a real Gaussian variable. We compare the
MSE of the estimators to the bounds presented in Section III. For
basic tensor operations, we use TensorLab 3.0 [40]. The model
parameters are retrieved using MLE. In the uncoupled case, an ALS
algorithm [41] is used. The factor matrices are initialized randomly.
In the case where the factor matrices are linked through random
equality constraints, we use STEREO, the algorithm proposed in
[29], with a regularization parameter λ =

σ2
1

σ2
2

. The factor matrices
estimated by the uncoupled ALS algorithm are used as initialization
for the randomly constrained case to speed up the convergence of
STEREO. For the CP model to be identifiable, the scaling and

permutation ambiguities are corrected by setting the first rows of
the factors A1, B1, A2, B2 to ones and searching for the best
permutation of C2 with fixed C1. We consider that I = J = K =
15, IH = JH = 10, and KM = 9. The elements of all CP factors
are realizations of i.i.d. real standard Gaussian variables, and first
rows of A1,A2,B1,B2 are set to 1. The CP factor matrices are
fixed for all Monte-Carlo runs. The tensor rank for both HSI and
MSI is N = 3. The degradation matrices P ,Q,R are generated
from identity matrices by keeping only the first IH , JH ,KM rows,
respectively; this ensures that the matrices are full rank and that
the coupling constraints in (19) are linear. We consider different
values for σ2

α such that it varies from 2 to 2 · 10−3. The SNR
of Y1 varies from 5 to 60dB, while the SNR of Y2 is fixed to
20dB. For each value of σ2

α, we first compute CRBα(θ̃) and
CCRBα(θ̃) by averaging over 200 realizations of α. We then
compute RCCRB(θ̃) by averaging the conditional CCRB for all
values of σ2

α. We also evaluate the total MSE on the parameters for
each value of σ2

α by averaging the squared errors over 500 noise
realizations. In Fig. 1.a, we show the limitations of the deterministic
conditional CCRB. We plot the MSE given by uncoupled ALS and
STEREO, as well as the uncoupled CRB on a semi-logarithmic
scale. We also display CCRBα(θ̃) for two values of σ2

α: 2 and
2 · 10−3. Since the illumination coefficient α mostly impacts the
estimation of ψ2, we choose to display its performance bounds
separately and group ψ1, φ̃1 and φ̃2 together. We can see that the
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Fig. 1. Total MSE, CRB, conditional CCRB (1a) and RCCRB (1b)
for the estimation of real coupled CP models on a semi-log scale

MSE given by the uncoupled ALS algorithm reaches the uncoupled
CRB for all parameters. For ψ2, the MSE given by STEREO does
not fit any of the two conditional CCRB depicted. In particular, it is
slightly below CCRBα(ψ2) for σ2

α = 2 and above the conditional
CCRB for σ2

α = 2 ·10−3. For the other parameters, while the MSE
of STEREO fits the conditional CCRB for σ2

α = 2, it is slightly
below the second CCRB curve for a low SNR. This plot justifies the
introduction of the proposed bound. In Fig. 1.b, we plot the MSE,
the uncoupled CRB and the RCCRB on a semi-log scale. Here,
we can see that the MSE on ψ2 given by STEREO follows the
RCCRB with a small gap for a SNR on Y1 between 5 and 15dB,
and reached the bounds for high SNR. For the other parameters,
the MSE on STEREO reaches the proposed bound. These results
illustrate the usefulness of the RCCRB in this case.
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