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MASTER EQUATION FOR THE FINITE STATE SPACE PLANNING

PROBLEM

CHARLES BERTUCCI 1, JEAN-MICHEL LASRY 2, PIERRE-LOUIS LIONS2,3

Abstract. We present results of existence, regularity and uniqueness of solutions of
the master equation associated with the mean field planning problem in the finite state
space case, in the presence of a common noise. The results hold under monotonicity
assumptions, which are used crucially in the different proofs of the paper. We also
make a link with the trajectories induced by the solution of the master equation and
start a discussion on the case of boundary conditions.
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Introduction

This paper is concerned with the study of the mean field games planning problem in
finite state space, in the presence of a common noise. The cases of a continuous state
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2 :Université Paris-Dauphine, PSL Research University,UMR 7534, CEREMADE, 75016 Paris, France
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space and of generalized optimal transport in the presence of a common noise shall be
treated in a future work.

General introduction. The planning problem is a mathematical formulation of a
model in which an infinite number of non-atomic and identical players face a time de-
pendent game in which the final distribution of players is constrained. It can be seen
as a sort of mean field game (MFG for short). We present briefly the MFG theory for
a better understanding of the planning problem. MFG are games in which an infinite
number of small agents face a differential game in which the costs paid by the players
only depends on aggregate quantities. In [8], the last two authors gave a precise mathe-
matical framework to study such games. The main advantage of the game with infinite
players in comparison to a N players game, for N large, is that Nash equilibria of the
game can often be computed by solving a system of partial differential equations (PDE
for short) with low dimensionality. When the noises affecting the players are indepen-
dent and when the state space is continuous, a typical form taken by this system is the
following

(1)


(i)− ∂tu− ν∆u+H(x,∇u,m) = 0 in (0, T )× Rd;

(ii)∂tm− ν∆m− div(DpH(x,∇u,m)m) = 0 in (0, T )× Rd;

m(0) = m0;u(T ) = G(m(T )) in Rd.

In (1), u denotes the value function of a generic player over the state space (0, T )×Rd, m
the density of the players, H(x, p, z) is the Hamiltonian associated to the game and ν ≥ 0
is a parameter describing the intensity of the noise. The density m0 is the initial repar-
tition of players and G is a function describing the final cost paid by the players. The
interpretation of such a system, is that, under an anticipation for the density of players
m, the problem of the players can be resumed by the Hamilton-Jacobi-Bellman equation
(i). On the other hand, if all the players have the value function u, and play accordingly,
the evolution of their density m is given by the Fokker-Planck equation (ii). A solu-
tion (u,m) of the coupled system (1) is thus interpreted as a Nash equilibria of the MFG.

In several practical applications, the notion of a final cost for the players is not relevant
and the players behave as if the final density of players is constrained. The latter con-
straint is of course non-classical and raises different modeling problems. The most serious
one being that the final constraint on the distribution of players cannot be imposed on
those players, which, because they are non-atomic, cannot affect the distribution. For-
mally, the planning problem addresses the previous issue as follows : there are strong
incentives in the cost functions of the players to induce a behavior which is consistent
with the constraint. That is the players have strong incentives to ”do their best” to help
the final density to respect this (sort of) constraint.

The planning problem originates from the work of the last two authors and was first
presented in the lectures of the third author at Collège de France [9]. When the noises
affecting the players are independent and when the state space is continuous, a system of
PDE has been established in [9] to characterize the equilibria of the planning problem.
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The typical form of this system is

(2)


−∂tu− ν∆u+H(x,∇u,m) = 0 in (0, T )× Rd;

∂tm− ν∆m− div(DpH(x,∇u,m)m) = 0 in (0, T )× Rd;

m(0) = m1;m(T ) = m2 in Rd.

This system is almost the same as (1) except for the fact that the final constraint on
u has been replaced by a final constraint on m. A subclass of the planning problem
of the utmost importance is of course the optimal transport problem. The analogy is
almost transparent when comparing (2) with the so-called Benamou-Brenier formulation
of the optimal transport problem [3]. Let us comment on the fact that from a modeling
point of view, the main difference between the mean field planning problem and optimal
transport is that optimal transport is associated to a centralized optimization problem,
whereas the mean field planning problem deals with a game in which non-atomic players,
or infinitesimal masses, are supposed to have a behavior which results from individual
decisions.

The system (2) has now been quite extensively studied, especially by analogy with his
mean field game (MFG for short) counterpart. The point of view being to impose the
terminal condition

(3) u(T ) =
1

ε
(m(T )−m2) in Rd

instead of the condition m(T ) = m2, and to let ε goes to 0. The first results on (2)
dates back from [9] and concern either the deterministic case ν = 0 or the quadratic one
H(x, p, z) = |p|2 − f(z). Later on, a more general case has been studied in [11] with
the notion of weak solutions. Numerical methods for this type of systems have been
presented in [1]. More recently, the works [6, 10] studied (2) in the potential case. In
the so-called potential approach, (2) is interpreted as the optimality conditions of an
infinite dimensional optimal control problem. As the aim of this paper is to study the
case of a common noise, we cannot generalize the approach which consists in looking at
a forward-backward system similar to (2), instead we have to study the master equation
associated to the planning problem.

The master equation approach. In this paper we study a different setting than
the one we just mentioned. We study the master equation associated to the planning
problem, and we place ourselves in the finite state space case in which the study of the
master equation is less difficult and less technical than in the continuous case. We shall
address the continuous state space case in a future work.

The study of the master equation is necessary for MFG (and thus for the planning
problem) when the noise affecting the players is not i.i.d. In such a situation, the ap-
proach of a forward-backward system such as (1) fails as the evolution of m cannot be
captured by a deterministic PDE like (ii). The idea of the master equation is to consider
a value function for the players as a function of both their personal state and the density
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of the other players. The master equation is then the PDE satisfied by this value func-
tion. Let us note that for such a value function to be well defined, several assumptions
on the game have to made (we do not detail them here).

In the setting of a finite state space, a typical form taken by the master equation with
d states in the MFG context is :

(4)

{
∂tU + (F (x, U) · ∇x)U + λ(U − (DT )∗U(Tx)) = G(x, U) in (0,∞)× Rd;

U(0, x) = U0(x) in Rd;

where, to simplify notations time has been reversed, F and G are mappings from R2d

onto Rd which describes respectively the evolution of the distribution of players and
the costs paid by the players, T is a mapping from Rd into itself which describes the
common noise and λ ≥ 0 describes the intensity of the common noise. The solution
U = (U i)1≤i≤d : R+×Rd → Rd is the value function of the players, meaning that U i(t, x)
is the value for a generic player in state i when the distribution of players in the d states
is given by x ∈ Rd and there remains a time interval of length t in the game.

In this paper we want to analyse the solution of (4) in the context of the planning
problem. Thus the initial condition in (4) has to be replaced with an appropriate char-
acterization. We shall replace the initial condition by a suitable penalization, by analogy
with (3), and then pass to the limit in this penalization. We shall show that this ap-
proach leads to the construction of the value function of the players in the planning
problem. We expect a very singular behavior for the solution of the planning problem’s
master equation at t = 0 and we show in this paper how to characterize precisely this
singularity.

Let us also mention that in the classical MFG setting, i.e. when there is no blow-up
at the time t = 0, the system (4) has been studied. Since its introduction by the last two
authors, their results of well-posedness in the case λ = 0 have been presented in [9]. The
case of common noise, i.e. λ > 0, has been treated in [5]. Let us also note that other
types of noise have been studied in [2], which contrary to the noise we study here, do
not propagate monotonicity but yield some kind of ellipticity for the master equation.

Structure of the paper. The rest of the paper is structured as follows. In section 1
we prove some key estimates which allow us to pass to the limit in a penalized master
equation. In section 2 we show that we can characterize the solution of the master
equation associated to the planning problem by using the Yosida’s regularization when
this master equation is posed on Rd. In section 3 we show that the techniques of section
2 can be adapted to a case in which the master equation is posed on a subdomain of Rd.

1. Notations and preliminary results

1.1. Notations. We begin with some notations and definitions.

• We shall use the notations | · | for the norm of vectors and ‖ · ‖ for the norm of
operators.
• The identity of applications is denoted Id and the identity of matrices I.
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• An application A from an Hilbert space (H, 〈, 〉) into itself is α-monotone (α ≥ 0)
if for all x, y ∈ H

〈A(x)−A(y), x− y〉 ≥ α〈x− y, x− y〉.

• An application A is simply called monotone if the previous inequality holds with
α = 0.
• For any element x of an Hilbert space H, Ax denotes the multivalued operator

whose domain is {x} and such that A(x) = H.
• The Yosida approximation SδA of parameter δ of a monotone operator A is

defined by

SδA = A ◦ (Id+ δA)−1.

1.2. Preliminary results. The first result we present in this section is a result of
existence of solutions of (4). This result is fairly simple, once some a priori estimates
has been established as was already mentioned in [9]. However, as the question of
existence is central in this paper, we wish to state and prove a specific result for the sake
of completeness.

Proposition 1. Assume that

• F , G and U0 are Lipschitz applications.
• (G,F ) : R2d → R2d and U0 : Rd → Rd are monotone.
• either (G,F ) is α monotone in its first variable and U0 is α monotone or (G,F )

is α monotone in its second variable for some α > 0.
• either λ = 0 or T is an affine application.

Then, there exists a function U defined on R+ × Rd, solution of (4) almost everywhere
which is monotone and Lipschitz in the x variable, and locally Lipschitz in (t, x).

Remark 1. In fact, the following argument yields existence of a solution of (4) in
a more precise sense : the one of monotone solutions introduced in [4]. Under the
assumptions of the Proposition, uniqueness of a monotone solution holds. We refer
to the aforementioned paper for more details on monotone solutions of MFG master
equations.

Proof. We present a proof by regularization to obtain existence of solutions. We add the
elliptic term −ε∆ in all the lines of the system (4) and we then pass to the limit ε→ 0.
The passage to the limit ε→ 0 is justified with an a priori estimate.

Under the standing assumptions, for any tf > 0, there exists C > 0 depending only
on G,F, λ, T and U0, such that for any ε > 0, for any smooth solution U of
(5){

∂tU − ε∆U + (F (x, U) · ∇x)U + λ(U − (DT )∗U(Tx)) = G(x, U) in (0, tf )× Rd;

U(0, x) = U0(x) in Rd;

the following holds

(6) ∀t ≤ tf , ∀x ∈ Rd, ‖DxU(t, x)‖ ≤ C.

This results is a direct generalization of the estimates established in [9, 5] which is ob-
tained by remarking that adding the term −ε∆ leaves the proof of the result unchanged.
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For a fixed ε > 0, existence of a solution of (5) is classical and we do not present it
in full details but sketch a strategy of proof. Let us insist that, because of the presence
of the Laplacian, existence of such solutions is somehow classical (especially because the
non linearities have a linear growth). From chapter VII, paragraph 7 in [7], we know
that there exists solutions of (5) when the space domain is any bounded smooth open
set instead of Rd (with appropriate boundary conditions). It is fairly easy to check that,
using the proof of the estimate (6) in [5], we can show that it is also satisfied by the
solutions of (5) in a bounded domain. Then, by considering a sequence of increasing
domains (with respect to the inclusion), which tend to cover Rd, we obtain the existence
of a solution of (5) in the whole space.

We now want to show some compactness on the sequence (Uε)ε>0 of solutions of (5).
The gradient estimate (6) of course holds and we only need to prove some estimate
on the time derivative of the solutions. We first show that for all ε > 0 there exists
C1 > 0, η > 0 such that for t sufficiently small, for all x ∈ Rd

|Uε(t, x)− U0(x)| ≤ C1t(1 + |x|) + η.

We begin by showing the previous inequality component by component. Let us assume
that such an inequality does not hold. Then for any C1 > 0, η > 0, there exists t0 >
0, x0 ∈ Rd, i ∈ {1; ...; d} with t0 sufficiently small such that

U iε(t0, x0) = U i0(x) + C1t0(1 + |x0|) + η;

∂tU
i
ε(t0, x0) ≥ C1(1 + |x0|);

∇xU iε(t0, x0) = ∇xU i0(x0) + C1t0;

−∆U iε(t0, x0) ≥ 0.

Thus evaluating (5) at (t0, x0) we deduce

C1(1 + |x0|) ≤ δ(1 + |x0|+ |Uε(t0, x0)|)
for some δ > 0 which depends only on F,G, λ, T and the constant C from (6), in
particular it does not depend on η or C1. From which we easily deduce that there exists
C1 > 0, such that for all η > 0,

|Uε(t, x)− U0(x)| ≤ C1t(1 + |x|) + η.

From which we deduce that it is also true for η = 0. Therefore we obtain

|∂tUε(0, x)| ≤ C1(1 + |x|).
From this we deduce that the sequence (Uε)ε>0 is locally Lipschitz in [0,∞) × Rd, uni-
formly in ε. From this uniform continuity and Ascoli-Arzela Theorem, we know that
along a subsequence, (Uε)ε>0 converges uniformly toward a locally Lipschitz function U ,
solution of (4), which satisfies (6). �

We now state a regularizing result associated to the structure of the system we are
studying. To our knowledge, this is the first result of this type on such a master equation.

Theorem 1. Let U be a solution of (4). Assume that

• U0 and (G,F ) are monotone.
• F and G are globally Lipschitz.
• (G,F ) is α monotone in its second argument for some α > 0.
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• T is affine.

Then there exists a constant C > 0 (independent of U0) such that for all t ≤ 1

(7) ‖DxU(t)‖ ≤ C

t
.

Remark 2. Let us insist on the fact that no assumption is made on the regularity of
U0 = U(0).

Proof. This proof starts by following the same argument as in [9, 5]. We note T = S+ e
with S a linear map. We take two functions β : R+ → R+ and γ : R+ → R+ to be defined
later on and we introduce the auxiliary function Zβ,γ defined by

Zβ(t, x, ξ) = 〈ξ,∇xW (t, x, ξ)〉 − β(t)|∇xW (t, x, ξ)|2 + γ(t)|ξ|2;

where W is defined by

W (t, x, ξ) = 〈U(t, x), ξ〉.

The chain rule yields that Zβ,γ satisfies the PDE :
(8)
∂tZβ,γ + 〈F (x,∇ξW ),∇xZβ,γ〉+ 〈DpF (x,∇ξW )∇ξZβ,γ ,∇xW 〉 − 〈DpG(x,∇ξW )∇ξZβ,γ , ξ〉
+ λ(Zβ,γ − Zβ,γ(t, Tx, Tξ − e))
= 〈DxG(x,∇ξW )ξ, ξ〉 − 〈DpG(x,∇ξW )∇xW, ξ〉 − 〈DxF (x,∇ξW )∇xW, ξ〉
+ 〈DpF (x,∇ξW )∇xW,∇xW 〉
− 2β〈DxG(x,∇ξW )ξ,∇xW 〉+ 2β〈DxF (x,∇ξW )∇xW,∇xW 〉

+ βλ

(
|∇xW |2 − 2〈∇xW (t, Tx, Tξ − e), S∇xW 〉+ |∇xW (t, Tx, Tξ − e)|2

)
− d

dt
β|∇xW |2 + 2γ(〈DpF (x,∇ξW )ξ,∇xW 〉 − 〈DpG(x,∇ξW )ξ, ξ〉)

+
d

dt
γ|ξ|2 + λγ(|ξ|2 − |Tξ − e|2).

Using the monotonicity assumption on (G,F ) and the Lipschitz assumptions, we deduce
(9)
∂tZβ,γ + 〈F (x,∇ξW ),∇xZβ,γ〉+ 〈DpF (x,∇ξW )∇ξZβ,γ ,∇xW 〉 − 〈DpG(x,∇ξW )∇ξZβ,γ , ξ〉
+ λ(Zβ,γ − Zβ,γ(t, Tx, Sξ))

≥ α|∇xW |2 − β‖DxG‖ · |ξ|2 − β‖DxG‖ · |∇xW |2 − 2β‖DxF (∇ξW )‖ · |∇xW |2

+ βλ(|∇xW |2 − |S∇xW |2)− d

dt
β|∇xW |2 − γ(‖DpF‖ − 2‖DpG‖)|ξ|2

− γ‖DpF‖ · |∇xW |2 +
d

dt
γ|ξ|2 + λγ(|ξ|2 − |Sξ|2).

The right hand side of the previous equation is positive if γ and β satisfy

(10)

{
α− β[‖DxG‖+ 2‖DxF‖ − λ(1− ‖S‖2)]− d

dtβ − γ‖DpF‖ ≥ 0;
d
dtγ + γ[λ(1− ‖S‖2)− ‖DpF‖ − 2‖DpG‖]− β‖DxG‖ ≥ 0.
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Let us now define β and γ with

(11)

{
β(t) = α

2 t;

γ(t) = ‖DxG‖αt2.

Let us now observe that there exists tf > 0 such that if β and γ are defined by (11),
then (10) holds for all time t ≤ tf . Let us now remark that at t = 0, Zβ,γ satisfies

Zβ,γ(t, x, ξ) = 〈ξ,DxU0ξ〉 ≥ 0;

from the monotonicity assumption we made on U0. Thus we deduce from Lemma 3 in
appendix of [5], that Zβ,γ stays positive for all time t ≤ tf . From this we deduce that
for all t ≤ tf , ξ 6= 0 :

β(t)
|∇xW |2

|ξ|2
≤ γ(t) +

|∇xW |
|ξ|

.

Hence we obtain
|∇xW |
|ξ|

≤
√

1 + 4β(t)γ(t)

β(t)
;

from which we derive

‖DxU(t)‖ ≤
√

1 + 4β(t)γ(t)

β(t)
.

The result then easily follows. �

2. Planning problem master equation in Rd

2.1. Statement of the problem. In this section we show that, under some assump-
tions, the sequence (Uε)ε>0 of solutions of

(12)

{
∂tU + (F (x, U) · ∇x)U + λ(U − (DT )∗U(Tx)) = G(x, U) in (0, tf )× Rd;

U(0, x) = 1
ε (x− x0) in Rd;

converges toward a function U , which can be interpreted as the value function of a generic
player for the mean field planning problem described by F,G, λ and T and constrained
in x0 at the final time. Before presenting the proof of this result, let us recall briefly the
interpretation in terms of modeling of the master equation. In this model, as already
mentioned, U represents the value function of the players. In the case λ = 0, given this
value function, the discrete density of players x is assumed to evolve through the term
F . This means that a particular density starting from x1 at time t1 evolves according
to (time has been reversed) :

(13)

{
d
dtx(t) = F (x(t), U(t, x(t))) for 0 ≤ t ≤ t1;

x(t1) = x1.

The evolution of the value function of the players is given by the function G and the
terminal cost is U(0, ·), this means that it satisfies

(14)

{
d
dtU(t, x(t)) = G(x(t), U(t, x(t))) for 0 ≤ t ≤ t1;

U(0, x(0)) = 1
ε (x(0)− x0).
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The main idea of the penalization term is that it induces sufficient incentives so that the
final density x(0) shall be close to x0.

In the case λ > 0, we model a situation in which at random times given by a poisson
process of intensity λ, all the population is affected by the transformation T , we refer to
[5] for more details on this type of noise.

2.2. Properties of the Yosida approximation. In this section, we present an ar-
gument which explains how we can pass to the limit in (12). Namely we show some
compactness on the sequence of Yosida approximations of the solution of the penalized
problem. Let us mention that the use of the Yosida approximation may seem arbi-
trary but the definition of solution that we give in the next section does not involve the
choice of this approximation. Also let us mention that we could have avoided the use of
Yosida approximations and worked only with the regularizing result established in the
first section but we believe the present approach is more instructive.

From Proposition 1, we know that (Uε)ε>0 is a well defined sequence of locally Lipschitz
functions which are monotone in space for all time. For any ε > 0, δ > 0, we define
Vε,δ = SδUε, the Yosida regularization of Uε of parameter δ > 0. Equivalently, we could
have defined Vδ,ε by Vδ,ε(t, x) = Wε,t(s, x)|s=δ where W is the solution of

(15)

{
∂sWε,t +Wε,t · ∇xWε,t = 0;

Wε,t(0, x) = Uε(t, x).

We present the PDE satisfied by Vδ,ε in the following result.

Proposition 2. For any δ > 0, ε > 0, Vδ,ε is a solution of
(16)
∂tV+F ((Id− δV ), V ) · ∇xV =(

G((Id− δV ), V )− λ
[
V − T ∗ ◦ V ◦ (Id− δV )−1 ◦ T ◦ (Id− δV )

])
(I − δDxV );

V (0, x) = 1
δ+ε(x− x0).

Proof. This claim easily follows from the chain rule together with the fact that Id+δUε =
(Id− δVδ,ε)−1.

By the definition of Vδ,ε, the following holds

(17) Uε(t, x) = Vδ,ε(t, x+ δUε(t, x)).

For general fields F and H, if a function U solves

(18) ∂tU + (F · ∇x)U = H,

then its Yosida approximation Vδ solves

(19) ∂tVδ(t, x+δU(t, x))+((F +δH)(x, U(t, x)) ·∇x)Vδ(t, x+δU(t, x)) = H(x, U(t, x)),

Applying this relation to the equation (12) yields the required result. �

Looking at the the system (16), it is easy to imagine how we can pass to the limit
ε→ 0 at the level of the Yosida approximation. We explain this passage to the limit in
the next result.
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Proposition 3. For any δ > 0, the sequence (Vδ,ε)ε>0 converges locally uniformly toward
a function Vδ, solution of
(20)
∂tV+F ((Id− δV ), V ) · ∇xV =(

G((Id− δV ), V )− λ
[
V − T ∗ ◦ V ◦ (Id− δV )−1 ◦ T ◦ (Id− δV )

])
(I − δDxV );

V (0, x) = 1
δ (x− x0).

The function Vδ is such that (Id− δVδ(t))−1 is well defined for t > 0.

Proof. First, let us note that from basic properties of the Yosida approximation, the
following holds for any δ > 0, ε > 0 and t > 0:

‖DxVδ,ε‖ ≤
1

δ
.

In the case λ = 0, this estimate is enough to gain compactness on the sequence (Vδ,ε)ε>0

using equation (16).
Let us now turn to the case λ > 0. From Theorem 1, we know that (Id−δVδ,ε(t))−1 =

Id + δUε(t) is Ct−1 Lipschitz for some constant C > 0 and time t ≤ tf where tf is
independent of δ and ε. On the other hand, it is easy to check that Id − δVδ,ε(t) is
Cε(ε+ δ)−1t Lipschitz for time t ≤ tf where tf does not depend on ε. Furthermore, the
right hand side of (16) stays bounded uniformly near (t, x) = (0, x0). Thus from the fact
that Vδ,ε satisfies (16), we deduce compactness on the sequence (Vδ,ε)ε>0. Extracting
a subsequence if necessary, we note Vδ the limit of (Vδ,ε)ε>0. The fact that ((Id −
δVδ,ε(t))

−1)ε>0 converges toward (Id − δVδ(t))−1 for t > 0 is a simple exercise that we
leave to the interested reader.

�

2.3. The limit master equation. The previous result characterizes the behavior of
the Yosida approximation of the solution of the master equation, in particular it gives
information on the behavior of the solution near {t = 0}. This leads us to the following
definition, that we comment below.

Definition 1. A solution of the master equation associated to the planning problem
characterized by F,G, λ, T, x0 is a function U : (0, T )× Rd → Rd solution of

(21) ∂tU + (F (x, U) · ∇x)U + λ(U − (DT )∗U(Tx)) = G(x, U) in (0,∞)× Rd;

such that (U(t))t≥0 converges toward Ax0 in the sense of graphs as t tends to 0.

Let us recall that a sequence of multivalued operators (An)n∈N converges toward a
multivalued operator A in the sense of graphs if for any sequence (xn, yn)n∈N which
converges toward (x, y) ∈ H2 such that yn ∈ An(xn) for all n ≥ 0, the property y ∈ A(x)
holds. We do not comment on the fact that U is a solution of (21) in (0,∞)×Rd. Let us
note that the initial condition we impose is rather weak, but, as we shall see in Theorem
3, it is sufficient to establish uniqueness. In some sense, this condition is strong enough
to capture the idea that trajectories of finite cost induced by the solution of the problem
necessary start from x0. Moreover let us note that the convergence in the sense of graphs
is natural to be expected as the sequence of initial conditions in the penalized problem
converges in the sense of graphs toward Ax0 .

We now present a result of existence and one of uniqueness for such solutions.
10



Theorem 2. Under the assumptions of Theorem 1, there exists a solution U of the
planning problem master equation in the sense of definition 1.

Proof. We consider the sequence (Uε)ε>0 of solutions of (12) and for some δ > 0, (Vδ,ε)ε>0

the corresponding Yosida approximations. Thanks to Proposition 3, extracting a sub-
sequence if necessary, (Vδ,ε)ε>0 converges toward a function V such as in Proposition 3.
We define the function U by

(22) U(t, x) = V (t, (Id− δV (t, ·))−1(x)); t > 0;x ∈ Rd.

The fact that U solves the PDE for t > 0 is a simple consequence of the chain rule.
Let us now analyse the behavior of U near t = 0. Let us take a real sequence (tn)n≥0

converging toward 0 and two converging sequences of Rd (xn)n≥0 and (yn)n≥0 such that
for all n ≥ 0 yn = U(tn, xn). Let us define for all n ≥ 0, zn = (Id− δV (tn, ·))−1(xn). By
definition of U , we deduce that (V (tn, zn))n≥0 = (yn)n≥0 and thus that it is a converging
sequence. Hence, (zn)n≥0 = (xn + δV (tn, zn))n≥0 is also a converging sequence. From
the behavior of V near t = 0, we deduce finally that (xn)n≥0 converges toward x0. Thus
(U(t))t≥0 converges toward Ax0 in the sense of graphs as t tends to 0. �

Theorem 3. Under the assumptions of Theorem 1, there is a unique U solution of
the planning problem master equation in the sense of definition 1 with smooth Yosida
approximations for small times. Moreover, U is the limit of the sequence (Uε)ε>0 of
solutions of (12).

Proof. Denote by U1 and U2 two solutions of the problem. The main argument of this
proof consists in showing that the real function W defined for all t > 0, x, y ∈ Rd by

(23) W (t, x, y) = 〈U1(t, x)− U2(t, y), x− y〉

is positive on (0,∞)× R2d. This function satisfies

(24) ∂tW+F (x, U1)·∇xW+F (y, U2)·∇yW+λ(W−W (t, Tx, Tξ)) ≥ 0 on (0,∞)×R2d.

From the convergence of U1 and U2 toward Ax0 as t tends to 0, and the fact that U1 and
U2 solves the master equation for t > 0, we can prove that for all x, y ∈ Rd,

(25) lim inf
t→0

W (t, x, y) ≥ 0.

Indeed, let us consider δ > 0 and let us write V1 = SδU1 and V2 = SδU2 and let us define

(26) W̃ (t, x, y) := 〈V1(t, x)− V2(t, y), x− y − δ(V1(t, x)− V2(t, y))〉,

which satisfies for all t > 0, x, y ∈ R

(27) W (t, x, y) = W̃ (t, x+ δU1(t, x), y + δU2(t, y)).

The function W̃ is well defined up to t = 0 and satisfies W̃ |t=0 = 0 and ∂tW̃ |t=0 ≥ 0
on R2d. This fact is easily obtained from the fact that (20) simplifies at t = 0. From
the convergence of U1 and U2 toward Ax0 in the sense of graphs, we obtain that for all
x, y ∈ Rd

(28) lim
t→0

W̃ (t, x, y) = 0.

From this we deduce that (25) holds.
11



Thus we obtain from a maximum principle result (see Lemma 3 in appendix of [5])
that W ≥ 0 everywhere. This yields that U = V . The proof of the previous result
guarantees that this solution is the limit of the solutions of the penalized problems. �

Remark 3. The assumption on the smoothness of the Yosida approximations does not
seem to be necessary as the convergence in the sense of graphs for monotone operators
yields the convergence everywhere of their Yosida approximations. However, we maintain
this assumption to avoid technical difficulties, arising from the regularity of U . Moreover,
let us mention that in a situation without such regularity, an approach similar to [4]
seems to work, although it is outside the scope of this paper.

2.4. Links with the induced trajectories. In this section, we indicate why the tra-
jectories induced by the solution U of the master equation of the planning problem
converge toward the constrained point x0. This convergence, explained in the next re-
sult, is a consequence of the behavior of U near t = 0 and of the monotonicity of F and
G. We focus on the deterministic case (i.e. λ = 0) to avoid some technicalities which
are due to the particular choice of noise we made, however the same type of approach
can be developed in the stochastic case.

Proposition 4. Let U be a solution of the problem in the sense of definition 1 and
assume that F and G are globally Lipschitz and that λ = 0, then for any x1 ∈ Rd and
t1 > 0, the trajectory (x(t))0<t≤t1 defined (backwardly) by

(29)

{
d
dtx(t) = F (x(t), U(t, x(t)));

x(t1) = x1;

is such that x(t) converges toward x0 as t goes to 0.

Proof. Let us remark that because of the assumption we made, (29) defines a continuous
path (x(t))0<t≤t1 in Rd. Note that the following holds :

(30)

{
d
dtU(t, x(t)) = G(x(t), U(t, x(t)));

U(t1, x(t1)) = U(t1, x1).

Thus (x(t), U(t, x(t)))0<t≤t1 is the unique solution of an ordinary differential equation of
the form ẏ = f(y) for some Lipschitz function f . Hence, we deduce that (x(t), U(t, x(t)))
is uniformly bounded for 0 < t ≤ t1. From the convergence of U(t) toward Ax0 as t tends
to 0, in the sense of graphs, we deduce that

(31) x(t)→t→0 x0.

�

3. A comment on the case of a restricted domain

In this section, we briefly discuss how the idea developed in the previous section can
be extended to situations involving bounded domains. We indicate an example in which
the behavior of the solution of the planing problem is clear but we do not present a
thorough study of all the different possible structures. Many different behaviors can be
expected and more cases shall be treated in a future work.
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3.1. Main differences with the previous case. The typical form of a master equa-
tion in a domain Ω ⊂ Rd is

(32) ∂tU + (F (x, U) · ∇x)U + λ(U − (DT )∗U(Tx)) = G(x, U) in (0,∞)× Ω;

without boundary conditions on the boundary of the domain ∂Ω. We refer to [4] for
precise results on such equations, in particular in the MFG setting the fact that this
equation behaves nicely is a rather simple extension of similar results in the whole space.

Let us mention that, when ∂Ω is smooth, a natural (necessary) condition for (32) to
be well-posed when equipped with an initial condition is

(33) 〈F (x, p), n(x)〉 ≤ 0;x ∈ ∂Ω; p ∈ Rd;

where n(x) is the unit normal vector to ∂Ω at x. The relation (33) is of course an
obstacle to some uniform monotonicity assumption on F in its second variable.

3.2. The half space case with vanishing conditions. In this section, we investigate
the case in which : Ω = {x1 > 0} and F1, the first component of F vanishes linearly
near 0. More precisely, we assume that for x1 ≤ 1, the following holds

(34) F1(x, p) = x1F̃1(x, p);

where F̃1 is such that F̃ = (F̃1, F2, ..., Fd) satisfies the assumption of the first part.
For the sake of simplicity, we work in the case T (x) = (x1, T

′(x2, .., xd)) with T ′ ∈
L(Rd−1,Rd−1).

To sum up, the problem we are interested in is finding a function U : (0,∞)×Ω→ Rd

such that U is a solution of

(35) ∂tU + (F (x, U) · ∇x)U + λ(U − (DT )∗U(Tx)) = G(x, U) in (0,∞)× {x1 > 0};

and (U(t))t>0 converges toward Ax0 |Ω in the sense of graphs, under the assumption (34).
Now, let us note that the function V : (0,∞)× Rd → Rd defined by

(36) V (t, y1, y2, ..., yd) =

{
U(t, ey1−1, y2, ..., yd) if y1 < 1;

U(t, y) else;

satisfies a master equation of the type presented in section 2. Thus everything we did
above applies immediately. Let us mention that in this case, we obtain form (36) and the
behavior of V that the solution U of the master equation in the half space is unbounded
near {x1 = 0}, even for t > 0. More precisely, it behaves as ln(x1) near {x1 = 0}, which
shows that Lipschitz estimates may not be true in the case of a boundary. Indeed they
rely mainly on the monotone assumption on F .
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